
T2T: From Distribution Learning in Training
to Gradient Search in Testing for

Combinatorial Optimization

Yang Li, Jinpei Guo, Runzhong Wang, Junchi Yan∗

Dept. of Computer Science and Engineering & MoE Key Lab of AI
Shanghai Jiao Tong University

{yanglily, jinpei, runzhong.wang, yanjunchi}@sjtu.edu.cn

Abstract

Extensive experiments have gradually revealed the potential performance bottle-
neck of modeling Combinatorial Optimization (CO) solving as neural solution
prediction tasks. The neural networks, in their pursuit of minimizing the average
objective score across the distribution of historical problem instances, diverge from
the core target of CO of seeking optimal solutions for every test instance. This calls
for an effective search on each problem instance, while the model should serve
to provide supporting knowledge that benefits the search. To this end, we propose
T2T (Training to Testing) framework that first leverages the generative modeling
to estimate the high-quality solution distribution for each instance during training,
and then conducts a gradient-based search within the solution space during testing.
The proposed neural search paradigm consistently leverages generative modeling,
specifically diffusion, for graduated solution improvement. It disrupts the local
structure of the given solution by introducing noise and reconstructs a lower-cost
solution guided by the optimization objective. Experimental results on Traveling
Salesman Problem (TSP) and Maximal Independent Set (MIS) show the significant
superiority of T2T, demonstrating an average performance gain of 49.15% for TSP
solving and 17.27% for MIS solving compared to the previous state-of-the-art.

1 Introduction

Machine Learning (ML) for Combinatorial Optimization (CO)2, abbreviated as ML4CO [1; 2; 3; 4],
is a rapidly growing area, lying at the intersection between the two well-established communities.
CO problems are essential in operational research as well as computer science, in both theory and
practice. However, due to the inherent computational difficulty, e.g. NP-hardness, (approximately)
solving these problems with effectiveness and efficiency poses significant challenges. Compared with
traditional heuristic-based solvers, ML has recently shown its promising potential to automatically
learn heuristics in a data-driven scheme [1; 2; 3; 4], or meanwhile with the aid of human knowledge
which would normally improve the sample-efficiency [5; 6; 7; 8; 9]. Moreover, the introduction of
neural networks also allows for the speedup by parallel matrix computation in forward inference.

A popular framework in ML4CO is developing neural networks to directly predict a solution or
generate a solution with the aid of neural predictions, such that the corresponding objective score is
minimized [10; 11; 12; 13]. However, the neural network can only fit limited mappings from problem

∗Correspondence author. This work was partly supported by National Key Research and Development
Program of China (2020AAA0107600), NSFC (62222607) and STCSM (22511105100).

2In this paper, CO problems mainly refer to optimization problems on graphs [1] with an objective function.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Distribution
Learning

Gradient
Search

𝑝!(𝒔|𝑮)

𝒔

𝑮 Instance

Solution
Distribution

Solution

Figure 1: Diagram of
proposed framework.

𝒙! . . . 𝒙" 𝒙!"#
𝑝$ 𝒙!"# 𝒙! , 𝐺)

𝑞 𝒙! 𝒙!"#)

. . . 𝒙#

𝐺 Graph Instance, e.g., 2D-Coordinates in TSPDenoising Process
Noising Process

SolutionRandom Noise

Figure 2: Diffusion modeling for CO solving where the model learns
how to gradually denoise from the random noise to predict each step’s
data distribution, eventually modeling the solution distribution.

parameters to (near) optimal solutions in the training set, resulting in subpar performance on unseen
test instances [14; 15]. Therefore, it calls for neural solvers to efficiently explore solutions tailored
to each specific problem instance. In the traditional framework, the network prediction typically
converges to a local optimum with little diversity, struggling to further explore superior solutions. In
this paper, we resort to a more effective framework that first learns to model the distribution of high-
quality solutions conditioned on problem instances, then conducts a gradient-based search to obtain a
superior solution specific to the given instance, as shown in Fig. 1. Existing alternative methods that
conduct the tailored search in the testing phase, e.g. active search [16; 17] and meta-learning [18],
require updating the model weights during testing, hindering their applications in computational
intensive scenarios. In contrast, we develop a more efficient gradient search framework to obtain a
superior solution specific to the given instance, without the need to update model weights.

We exploit the powerful generative neural CO solver [19] that learns to model the distribution of high-
quality solutions conditioned on specific problem instances. The generative models are welcomed in
their ability to output high-quality images [20], texts [21] and graphs [22] with great diversity, whereby
these advantages are also welcomed in the ML4CO community. Some recent successes in generative
learning of CO are demonstrated in classic CO problems e.g. Traveling Salesman Problem (TSP) and
Maximal Independent Set (MIS) (via Diffusion [19] and Variational Auto-Encoder [23]), Satisfiability
Problem (SAT) and Mixed-Integer Linear Programming (MILP) (via graph generators [24; 25; 26]),
also in more realistic applications e.g. routing for chip design (via Diffusion [27] and Generative
Adversarial Network [28]). Notably, the very recent adaptation of the flourishing diffusion models in
probabilistic generation [19] has resulted in state-of-the-art performance for solving CO problems e.g.
TSP. The diffusion modeling for CO solving is illustrated in Fig. 2, where the model is designed to
estimate the solution distribution given a certain instance G, i.e. pθ(x0, G). Despite its high-quality
solutions, a major drawback is the unawareness of optimizing the CO objective as the generative
model simply learns to fit a distribution of solutions. To further improve the efficiency of the current
costly from-scratch sampling, it stands crucial to introduce a more efficient search-based paradigm
to further explore high-quality solutions in terms of the final objective of the problem.

To this end, we propose a gradient-based search paradigm to further leverage the learned solution distri-
bution through training, bridging the solution distribution learning during generative modeling training
to gradient search during testing for CO, dubbed T2T. The proposed search paradigm well aligns with
the behavior of a progressive generative model especially for the SOTA embodiment i.e. diffusion.
The diffusion model provides a probabilistic framework that enables a smooth and flexible transition
between random noises and feasible solutions, allowing for varying degrees of structure disruption,
with a reference denoising process to restore a solution. Leveraging this framework, it is natural to
model the local search heuristic as two stages, i.e., disrupting the local structure and reconstructing it
with a better objective score. Specifically, T2T first adds certain noise to the given solution and then
denoises it to reconstruct a lower-cost solution in iterations, which is achieved by incorporating the ob-
jective optimization guidance into the denoising steps through gradient feedback in the loop, steering
the recovered sampling towards the optimization direction, as illustrated in Fig. 3. T2T enhances the
solving paradigm by incorporating a search procedure with explicit objective guidance, which enables
more efficient sampling and allows for deeper exploitation of the estimated solution distribution.

For the discrete nature of CO, T2T builds itself upon discrete diffusion models [29; 30; 31], which
in training learns the transition between categorical noises and feasible discrete solutions that are

2

represented as probability maps of nodes/edges on graphs indicating whether each node/edge is
included in the solution. The transition is tailored for each instance as it is conditioned on the
corresponding instance’s statistics. The training of T2T follows the standard training paradigm of
diffusion models, which primarily equips the model with feasibility awareness and estimates the
distribution of high-quality solutions. While during testing, we introduce the objective optimization
guidance which serves as the complementary optimization and gradient search utility.

We showcase the efficacy of T2T on two typical NP-hard combinatorial optimization problems for
edge-selecting and node-selecting types respectively, i.e., TSP and MIS, which have been attracting
most attention in the community of ML4CO. Empirically, T2T exhibits strong performance superiority
over existing state-of-the-art neural solvers on benchmark datasets across various scales. Notably,
a significant performance gain is observed when compared to the purely constructive diffusion
solver [19], thereby highlighting the effectiveness of the designed search-based paradigm.

The highlights of this paper include: 1) We introduce the framework of T2T which first estimates the
high-quality solution distribution for each instance during training, and then leverages the diffusion
process to perform an effective local search in the solution space during testing; 2) We incorporate
the optimization objective guidance into the denoising model with theoretical analysis, which equips
the model with gradient feedback directly from the instance-wise objective score, enabling it to
perform optimization while ensuring general feasibility; 3) Extensive experiments show the promising
performance of the proposed T2T, even when trained without high-quality solution labels.

2 Related Work

Machine Learning for CO Solving. ML solvers can be categorized into construction solvers and
improvement solvers. Constructive solvers include autoregressive solvers [32; 12; 6; 23; 8] which
step-by-step extend a partial solution to produce a complete feasible solution, and non-autoregressive
solvers [33; 34; 14; 35; 19] which predict a solution (typically soft constrained) in one shot. Improve-
ment solvers [36; 37; 5] often define local operators such as 2OPT [36; 37], node swapping [5; 37],
sub-problem resolving [7; 38] to perform local search towards minimizing the optimization objec-
tive. The algorithm pipelines generally involve selecting specific regions and locally optimizing
sub-solutions. While T2T can be a rather different improvement solver, which allows for parallel op-
timization across multiple sub-regions and equips the generative modeling with the search procedure.

Generative modeling for CO leverages the powerful expressive and modeling capabilities of
generative models for direct CO solving (e.g. VAE [23; 39], GAN [28; 40; 41], Diffusion [19; 27; 42],
as well as GFlowNets [43; 44], which, while not a typical generative model itself, is closely
related to generative modeling), and for supporting CO solving [24; 25]. DIFUSCO [19] has
become state-of-the-art for the TSP problem by leveraging powerful diffusion models. However,
no instance-specific search paradigms are introduced in existing methods to fully utilize the
estimated solution distribution. Instead, they rely on multiple from-scratch samplings to leverage
the distribution, which is computationally expensive. Though [23] attempts to utilize the evolution
algorithm to conduct multiple iterations of sampling, it yet incurs even more significant costs without
explicit objective guidance in the loop. In contrast, T2T serves as an improvement solver that locally
modifies the given solution with objective guidance in the loop. It offers the flexibility to introduce
any degree of disruption and rewrite without the necessity to construct the solution from scratch.

Diffusion Probabilistic Models. Diffusion models (score-based models) typically comprise a noising
process and a learnable denoising process, where neural networks predict the noise introduced in
each step. Diffusion’s inference can be seen as a score (gradient) guided search, which is a general
principle across different settings [45; 46; 47]. Diffusion in continuous space (e.g., for image genera-
tion) [29; 48; 42; 49; 50; 51; 52] have established and consolidated the theoretical foundations of the
general diffusion framework. Several landmark works have advanced the diffusion model through vari-
ous aspects. DDIM [49] generalizes DDPM via a class of non-Markovian processes which gives rise to
implicit models that produce high-quality samples much faster. For conditional generation, classifier
guidance [29; 52] and classifier-free guidance [53] are introduced with the score estimate of the diffu-
sion models to produce conditional results. Similar paradigms are adopted in discrete diffusion models
for generating discrete data using binomial noises [29] or multinomial/categorial noises [30; 31]. Dif-
fusion also demonstrates its capability to learn offline policies in reinforcement learning tasks [54; 55].

3

3 Approach

This section presents our proposed T2T framework, including the preliminaries, offline training
pipeline based on generative modeling, and online testing pipeline with objective guided search.

3.1 Preliminaries: Combinatorial Optimization on Graphs

Following the notations adopted in [13; 56; 57] we define G as the universe of CO problem instances
represented by graphs G(V,E) ∈ G, where V and E denote the node set and edge set respectively.
CO problems can be broadly classified into two types based on the solution composition: edge-
selecting problems which involve selecting a subset of edges, and node-selecting problems which
select a subset of nodes. Let x ∈ {0, 1}N denote the optimization variable. For edge-selecting
problems, N = n2 and xi·n+j indicates whether Eij is included in x. For node-selecting problems,
N = n and xi indicates whether Vi is included in x. The feasible set Ω consists of x satisfying
specific constraints as feasible solutions. A CO problem on G aims to find a feasible x that minimize
the given objective function f(·;G) : {0, 1}N → R≥0:

min
x∈{0,1}N

f(x;G) s.t. x ∈ Ω (1)

In this paper, we study two primary and representative CO problems: TSP and MIS. TSP defines
on an undirected complete graph G = (V,E), where V represents n cities and each edge Eij has a
non-negative weight wij representing the distance between cities i and j. The problem can then be
formulated as finding a Hamiltonian cycle of minimum weight in G. For MIS, given an undirected
graph G = (V,E), an independent set is a subset of vertices S ⊆ V such that no two vertices in S
are adjacent in G. MIS is the problem of finding an independent set of maximum cardinality in G.

3.2 Offline Solution Distribution Learning on Training Set based on Diffusion

The basic diffusion modeling for solution generation in training is primarily based on [19]’s design
while this paper explicitly formulate the solving task as a conditional generation task. As mentioned
in Sec. 3.1, the solutions of CO problems can be represented as x ∈ {0, 1}N with x ∈ Ω. For
each entry, the model estimates a Bernoulli distribution indicating whether this entry should be
selected. In implementation, each entry of solution x is represented by a one-hot vector3 such
that x ∈ {0, 1}N×2. Generative modeling aims to model the distribution of high-quality solutions
conditioned on the given instance, while feasibility constraints can be broadly captured through
learning and eventually hard-guaranteed by post-processing. For the purpose of problem-solving,
the generative model is desired to estimate the solution distribution given a certain instance G, i.e.,
pθ(x|G). In this section, we model this distribution through the discrete diffusion models [42; 30].

Following the notations of [42; 30], the general framework of diffusion includes a forward noising
and a reverse denoising Markov process. The noising process, also denoted as the diffusion process,
takes the initial solution x0 sampled from the distribution q(x0|G) and progressively introduces noise
to generate a sequence of latent variables x1:T = x1,x2, · · · ,xT . Specifically, the noising process is
formulated as q(x1:T |x0) =

∏T
t=1 q(xt|xt−1). The denoising process is learned by the model, which

starts from the final latent variable xT and denoises xt at each time step to generate the preceding vari-
ables xt−1 based on the instance G, eventually recovering the target data distribution. The formulation
of the denoising process is expressed as pθ(x0:T |G) = p(xT)

∏T
t=1 pθ(xt−1|xt, G), where θ denotes

the parameters of the model. The training optimization aims to align pθ(x0|G) with the data distri-
bution q(x0|G) and the objective adopts the variational upper bound of the negative log-likelihood:

L = Eq

[
− log pθ(x0|x1, G) +

∑
t>1

DKL [q(xt−1|xt,x0) ∥ pθ(xt−1|xt, G)]

]
+ C (2)

Specifically, the forward noising process is achieved by multiplying xt ∈ [0, 1]N×2 at step t with
a forward transition probability matrix Qt ∈ [0, 1]2×2 where [Qt]ij indicates the probability of

transforming ei in each entry of xt to ej . We set Qt =

[
βt 1− βt

1− βt βt

]
[30], where βt ∈ [0, 1]

3Each entry with [0, 1] indicates that it is included in x and [1, 0] indicates the opposite.

4

such that the transition matrix is doubly stochastic with strictly positive entries, ensuring that the
stationary distribution is uniform which is an unbiased prior for sampling. The noising process for
each step and the t-step marginal are formulated as:

q(xt|xt−1) = Cat(xt;p = xt−1Qt) and q(xt|x0) = Cat(xt;p = x0Qt) (3)

where Cat(x;p) is a categorical distribution over N one-hot variables with probabilities given by
vector p and Qt = Q1Q2 · · ·Qt. Through Bayes’ theorem, the posterior can be achieved as:

q(xt−1|xt,x0) =
q(xt|xt−1,x0)q(xt−1|x0)

q(xt|x0)
= Cat

(
xt−1;p =

xtQ
⊤
t ⊙ x0Qt−1

x0Qtx
⊤
t

)
(4)

The neural network is trained to predict the logits of the distribution p̃θ(x̃0|xt, G), such that the
denoising process can be parameterized through q(xt−1|xt, x̃0):

pθ(xt−1|xt) ∝
∑
x̃0

q(xt−1|xt, x̃0)p̃θ(x̃0|xt, G) (5)

Specifically for implementation, the condition G is enforced as an input to the network θ, which
is embodied as an anisotropic graph neural network with edge gating mechanisms [33] following
[19]. For TSP, the instance condition consists of 2D coordinates of the vertices. The network input
includes node embeddings from the 2D coordinates, along with edge embeddings from xt. For MIS,
the edges E serve as the instance condition, complemented by the inclusion of node embeddings
from xt to collectively form the input. The output of the network is p̃θ(x̃0|xt, G) ∈ [0, 1]N×2

parameterizing N Bernoulli distributions for N entries in x̃0.

3.3 Test-stage Gradient-based Search with Instance-wise Objective Feedback

In this section, we first present the technical solution for the objective gradient incorporation in de-
noising steps, and then illustrate the neural search paradigm that leverages the guided denoising steps.

3.3.1 Objective-aware Denoising Process with Gradient Feedback

In the context of combinatorial optimization, the incorporation of objective optimization is necessary
and important, which enables the direct involvement of objective and effective search over the solution
space towards minimizing the score. As discussed in Sec. 3.2, at step t the model denoise xt by
pθ(xt−1|xt, G). For the purpose of objective optimization, we aim to estimate pθ(xt−1|xt, G, y∗)
where y∗ is the optimal objective score given the instance G:

y∗ = min
x

l(x;G) s.t. x ∈ Ω (6)

to guide the denoising process to x∗ = argminx l(x;G). We will show later that this ability does
not necessarily require the access of y∗ or x∗, and can readily be achieved by the model learned in
Sec. 3.2 without relying on any additionally trained networks. The adopted objective is defined below.

Optimization Objective. Since the generated samples are not guaranteed to satisfy the hard
constraints, we incorporate constraint satisfaction into the objective and utilize a relaxed ob-
jective with constraint penalty, as adopted in [13; 56; 57]. Consider a relaxed cost function
fr(·;G) : {0, 1}N → R≥0 which defined on the constraint relaxed space {0, 1}N satisfying
fr(x;G) = f(x;G), ∀ x ∈ Ω, and a constraint penalty gr(x;G) : {0, 1}N → R≥0 where
gr(x;G) = 0 if x ∈ Ω and gr(x;G) ≥ 1 if x /∈ Ω, the objective can be formulated as:

l(x;G) ≜ fr(x;G) + βgr(x;G) (7)

where β > maxx∈Ω f(x;G). For MIS, the constraint can be straightforwardly modeled as xixj = 0

if (i, j) ∈ E, thus the objective can be formulated as lMIS(x;G) ≜ −
∑

1≤i≤N xi+β
∑

(i,j)∈E xixj .
While for TSP, since the constraints are difficult to explicitly express, we directly select the objective
as lTSP = x ⊙D where D ∈ Rn×n

+ denotes the distance matrix.

Objective Guidance in Denoising Steps. The estimation of pθ(xt−1|xt, G, y∗) can be modeled
through the following proposition, adapted from the classifier guidance technique [52]:
Proposition 1. The optimization-enforced denoising probability estimation pθ(xt−1|xt, G, y∗)
equals to Zpθ(xt−1|xt, G)p(y∗|xt−1, G), where Z is a normalizing constant.

5

The proof is given in the Appendix. As pθ(xt−1|xt, G) can be readily obtained from the trained
network, the main challenge of estimating pθ(xt−1|xt, G, y∗) lies in estimating p(y∗|xt−1, G). Since
xt−1 is not accessible at step t, we utilize Taylor expansion to approximate log p(y∗|xt−1, G) around
xt−1 = xt, given that xt−1 ∼ xt:

log p(y∗|xt−1, G) ≈ log p(y∗|xt, G) +
[
∇xt log p(y

∗|xt, G)
]⊤

(xt−1 − xt)

=
[
∇xt log p(y

∗|xt, G)
]⊤

xt−1 + log p(y∗|xt, G)−
[
∇xt log p(y

∗|xt, G)
]⊤

xt︸ ︷︷ ︸
C(xt)

(8)

where C(xt) is irrelevant to xt−1. Applying exponentiation, we obtain:

p(y∗|xt−1, G) ∝ exp
([

∇xt
log p(y∗|xt, G)

]⊤
xt−1

)
(9)

To determine p(y∗|xt, G), we utilize energy-based modeling [58] to model the distribution p(y|xt, G).
In this context, we define the energy function as:

E(y,xt, G) = |y − l(x0(xt);G)| (10)

where x0(xt) denotes the clean target sample x0 corresponding to xt. The energy function quantifies
the compatibility between y and (xt, G), and it reaches zero when y is exactly the final objective
score originating from xt with respect to G. Such a design enables the best y matching the inputs to
maintain the highest probability density, and the probability density is positively correlated with the
matching degree. Then we employ the Gibbs distribution to characterize the probability distribution
over a collection of arbitrary energies:

p(y|xt, G) =
exp(−E(y,xt, G))∫

y′ exp(−E(y′,xt, G))
=

exp(− |y − l(x0(xt);G)|)∫
y′ exp(− |y′ − l(x0(xt);G)|)

(11)

Let Z =
∫
y′ exp(− |y′ − l(x0(xt);G)|) and substitute in y∗, we have:

log p(y∗|xt, G) = y∗ − l(x0(xt);G)− logZ and ∇xt log p(y
∗|xt, G) = −∇xt l(x0(xt);G)

(12)
Note the gradient operator has removed to effect of y∗ as a constant, thereby eliminating the need to
access y∗ for achieving the target. And Z as the integral over the entire distribution is not affected
by xt and thus can also be removed by the gradient operator. Recall that the network θ is trained to
predict the logits of p̃θ(x̃0|xt) ∈ [0, 1]N×2 which includes the logits of N Bernoulli distributions,
satisfying [p̃θ(x̃0|xt)]i =

(
1− [Ex̃0]i , [Ex̃0]i

)
. Thus l(x0(xt);G) can be estimated using Ex̃0 as:

l(x0(xt);G) ≈ l(Ex̃0∼p̃θ(x̃0|xt)x̃0;G) (13)

By Eq. 9, 12 and 13, we obtain p(y∗|xt−1, G) ∝ exp
([

−∇xt
l(Ex̃0∼p̃θ(x̃0|xt)x̃0;G)

]⊤
xt−1

)
,

and the guided denoising probability estimation can now be achieved by pθ(xt−1|xt, G, y∗) =
Zpθ(xt−1|xt, G)p(y∗|xt−1, G) where Z is the normalizing constant, to realize the guided denoising.

3.3.2 The T2T Framework for Efficient Differentiable Neural Search

With the objective gradient incorporated denoising process in Sec. 3.3.1, we now delve into T2T.

Overview. As shown in Fig. 3, the algorithm starts with an initial solution s0 and conducts several
iterations to enhance the given solution. Each iteration involves adding a certain degree of noise
to disrupt the structure, denoising with objective gradient guidance to obtain a lower-cost soft-
constrained solution, and subsequently post-processing to decode a feasible solution s ∈ Ω. The
algorithm eventually reports the solution with the lowest objective score ever achieved.

Structure Disruption. Recall that x1,x2, · · · ,xT are situated in spaces characterized by pro-
gressively escalating levels of disruption. To introduce a controlled degree of disruption to the
given solution, we employ s0QαT to derive the distribution of the disrupted solution q(sαT |s0)
as N Bernoulli distributions, where α serves as a hyperparameter to control the degree of noise.
Subsequently, the disrupted solution sαT can be sampled from q(sαT |s0).
Objective Guided Solution Reconstruction. From sαT , we employ pθ(st−1|st, G, y∗) proposed in
Sec. 3.3.1 to perform denoising, which aimed at recovering a potentially lower-cost s′0. Additionally,

6

Training

Testing

𝑝! 𝒔"# 	 	𝒔$% , 𝑦∗, 𝐺)

𝑝! 𝒔"##	 	𝒔$%# , 𝑦∗, 𝐺)

Denoising Denoising

Noising Noising

Denoising Noising

Figure 3: T2T iteratively adds noise to the solution and performs denoising guided by the problem
objective (e.g. TSP), to improve the solution as shown in the orange part. The bottom blue part shows
the capability of diffusion to establish a smooth transition from random noises to feasible solutions.
s∗: optimal solution; y∗: optimal objective score; θ: model parameters; G: given instance.

we utilize the fast sampling algorithm introduced in DDIM [49] to accelerate sampling. The algorithm
determines a M -element subset from latent variables s1:αT to obtain {sτ1 , sτ2 , · · · , sτM } (τ1 = 1
and τM = αT), and directly models pθ(sτi−1

|sτi , G, y∗), which effectively reduces the number of
denoising steps. In our implementation, we uniformly perform a 10-step reconstruction, i.e., M = 10.

Post-inference Decoding. Note the mechanism guarantees that the recovered solution s ∈ {0, 1}N×2

(consisting of N one-hot vectors), but it does not necessarily satisfy s ∈ Ω. Thus, in the last step’s
inference, we directly output the logits of its distribution pθ(s

′
0) to produce Es′0 as the heatmap

H ∈ [0, 1]N where each element denotes each edge/node’s confidence to be selected, and then
we adopt greedy decoding to obtain a feasible solution. We follow previous works [59; 35; 19] to
perform greedy decoding by sequentially inserting edges (for TSP) or nodes (for MIS) with the
highest confidence if there are no conflicts. For TSP, the 2OPT heuristic [60] is optionally applied.

Tradeoff Between Guidance Accuracy and Local Rewriting Degree. Note that the objective-
guided denoising process relies heavily on the accuracy of the estimation p̃θ(x̃0|xt). Intuitively, it is
easier to restore the original solution from the data that has lower noise content. And with excessive
noise interference, the estimation will deviate significantly from the ground truth, resulting in faulty
guidance. This is also one of the reasons why we use a local rewriting mechanism. However, while
the accuracy of the estimation increases as it moves closer to the original solution space, it also limits
the degree of reconstruction in terms of the solution structure. Therefore, it is crucial to strike a
balance between the estimation accuracy and the extent of local rewriting. To accomplish this, we
employ the aforementioned hyperparameter α to control an appropriate range of perturbation.

4 Experiments

All the experiments are performed on GPUs of NVIDIA Telsla A100. All the test evaluations are
performed on a single GPU, while the trainings are conducted in parallel with four A100 GPUs.
Source code is publicly available at https://github.com/Thinklab-SJTU/T2TCO.

4.1 Experimental Setup

We test on two CO problems including TSP and MIS. The comparison includes SOTA learning-based
solvers, heuristics, and exact solvers for each problem. For comparison fairness of learning solvers,
the initial solutions of our approach are obtained by denoising random noises by Eq. 5 (same solution
as the constructive diffusion solver DIFUSCO [19]). To balance the inference time, for experiments
with runtime measurement, T2T utilizes a reduced number of sampling steps for constructing the
initial solutions, specifically 20 steps. While DIFUSCO, as an important baseline, adopts 120
inference steps for TSP and 50 steps for MIS. The models for both TSP and MIS are trained with
1000 denoising steps, i.e., T = 1000. For gradient search, T2T generally involves 3 iterations with
10 guided denoising steps for each. See more details in Appendix.

7

https://github.com/Thinklab-SJTU/T2TCO

Table 1: Greedy Decoding on TSP-50 and TSP-100. RL: Reinforcement Learning, SL: Supervised
Learning, Grdy: Greedy Decoding. ∗ denotes the baseline for the performance drop.

ALGORITHM TYPE
TSP-50 TSP-100

LENGTH↓ DROP↓ LENGTH↓ DROP↓
Concorde [62] Exact 5.69∗ 0.00% 7.76∗ 0.00%

2OPT [64] Heuristics 5.86 2.95% 8.03 3.54%
Farthest Insertion Heuristics 6.12 7.50% 8.72 12.36%

AM [12] RL+Grdy 5.80 1.76% 8.12 4.53%
GCN [33] SL+Grdy 5.87 3.10% 8.41 8.38%

Transformer [65] RL+Grdy 5.71 0.31% 7.88 1.42%
POMO [6] RL+Grdy 5.73 0.64% 7.84 1.07%

Sym-NCO [8] RL+Grdy – – 7.84 0.94%
Image Diffusion [59] SL+Grdy 5.76 1.23% 7.92 2.11%

DIFUSCO [19] SL+Grdy 5.72 0.48% 7.84 1.01%
T2T (Ours) SL+Grdy 5.69 0.04% 7.77 0.18%

AM [12] RL+Grdy+2OPT 5.77 1.41% 8.02 3.32%
GCN [33] SL+Grdy+2OPT 5.70 0.12% 7.81 0.62%

Transformer [65] RL+Grdy+2OPT 5.70 0.16% 7.85 1.19%
POMO [6] RL+Grdy+2OPT 5.73 0.63% 7.82 0.82%

Sym-NCO [8] RL+Grdy+2OPT – – 7.82 0.76%
DIFUSCO [19] SL+Grdy+2OPT 5.69 0.09% 7.78 0.22%

T2T (Ours) SL+Grdy+2OPT 5.69 0.02% 7.76 0.06%

4.2 Experiments for TSP

Datasets. A TSP instance includes N 2-D coordinates and a reference solution obtained by heuristics.
Training and testing instances are generated via uniformly sampling N nodes from the unit square
[0, 1]2, which is a standard procedure as adopted in [12; 23; 33; 61; 35; 19]. We experiment on
various problem scales including TSP-50, TSP-100, TSP-500, and TSP-1000. The reference solutions
for TSP-50/100 are labeled by the Concorde exact solver [62] and the solutions for TSP-500/1000
are labeled by the LKH-3 heuristic solver [63]. The test set for TSP-50/100 is taken from [12; 33]
with 1280 instances and the test set for TSP-500/1000 is from [34] with 128 instances for the fair
comparison. This section also incorporates results on real-world TSPLIB4 dataset.

Metrics. Following [12; 33; 35; 19], we adopt three evaluation metrics: 1) Length: the average total
distance or cost of the solved tours w.r.t. the corresponding instances, as directly corresponds to the
objective. 2) Drop: the relative performance drop w.r.t. length compared to the global optimality or
the reference solution; 3) Time: the average computational time to solve the problems.

Results for TSP-50/100. Table 1 presents the results. Since DIFUSCO [19] has been shown able
to attain global optimality for instances with these scales, at the cost of a sampling decoding scheme,
we degrade to the greedy decoding setting for a more meaningful evaluation. The baselines include
state-of-the-art learning-based methods with greedy decoding, as well as traditional exact and
heuristic solvers. Hyperparameter α is set as 0.25. Both DIFUSCO and T2T adopt 50 inference
steps. As evident from the results, in the setting of pure greedy decoding without 2OPT refinement,
the proposed search-based paradigm achieves a substantial reduction in performance drops from
0.48% to 0.04% for TSP-50 and from 1.01% to 0.18% for TSP-100.

Results for TSP-500/1000. Table 2 presents the results. The baselines include recent learning
methods with greedy decoding and sampling decoding (×4), i.e. producing multiple solutions in
parallel and selecting the best one, as well as traditional exact and heuristic solvers. DIFUSCO and
T2T are compared in the same conditions. DIFUSCO and T2T adopt 120 and 20 inference steps,
respectively. The results of other baselines are quoted from [34] and [35], with the runtimes provided
for reference. In the sampling decoding setting, compared to previous neural solvers, T2T improves
the performance drop from 0.83% to 0.37% for TSP-500 and 1.30% to 0.78% for TSP-1000.

Effect of Disruption Ratio α. As discussed in Sec. 3.3.2, the hyperparameter α is utilized to regulate
the extent of perturbation, striking a balance between guidance accuracy and local rewriting degree.
Fig. 4 (a) illustrates the impact of α on the solving performance. The experiments are performed
on TSP-500 with both greedy and sampling decoding settings. The results demonstrate the tradeoff
existence and indicate that 0.3 ≤ α ≤ 0.4 can attain relatively better performance.

4http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

8

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

Table 2: Results on TSP-500 and TSP-1000. AS: Active Search, S: Sampling Decoding, BS: Beam
Search. ∗ denotes the baseline for computing the performance drop. DIFUSCO and T2T are compared
in the same running settings, while other numbers are quoted from [34; 35].

ALGORITHM TYPE
TSP-500 TSP-1000

LENGTH↓ DROP↓ TIME LENGTH↓ DROP↓ TIME

Concorde [62] Exact 16.55∗ – 37.66m 23.12∗ – 6.65h
Gurobi [66] Exact 16.55 0.00% 45.63h – – –

LKH-3 (default) [63] Heuristics 16.55 0.00% 46.28m 23.12 0.00% 2.57h
Farthest Insertion Heuristics 18.30 10.57% 0s 25.72 11.25% 0s

AM [12] RL+Grdy 20.02 20.99% 1.51m 31.15 34.75% 3.18m
GCN [33] SL+Grdy 29.72 79.61% 6.67m 48.62 110.29% 28.52m

POMO+EAS-Emb [17] RL+AS+Grdy 19.24 16.25% 12.80h – – –
POMO+EAS-Tab [17] RL+AS+Grdy 24.54 48.22% 11.61h 49.56 114.36% 63.45h

DIMES [35] RL+Grdy 18.93 14.38% 0.97m 26.58 14.97% 2.08m
DIMES [35] RL+AS+Grdy 17.81 7.61% 2.10h 24.91 7.74% 4.49h

DIFUSCO [19] SL+Grdy 18.11 9.41% 5.70m 25.72 11.24% 17.33m
T2T (Ours) SL+Grdy 17.39 5.09% 4.90m 25.17 8.87% 15.66m

DIMES [35] RL+Grdy+2OPT 17.65 6.62% 1.01m 24.83 7.38% 2.29m
DIMES [35] RL+AS+Grdy+2OPT 17.31 4.57% 2.10h 24.33 5.22% 4.49h

DIFUSCO [19] SL+G+2OPT 16.81 1.55% 5.75m 23.55 1.86% 17.52m
T2T (Ours) SL+G+2OPT 16.68 0.78% 4.98m 23.41 1.25% 15.90m

EAN [67] RL+S+2OPT 23.75 43.57% 57.76m 47.73 106.46% 5.39h
AM [12] RL+BS 19.53 18.03% 21.99m 29.90 29.23% 1.64h

GCN [33] SL+BS 30.37 83.55% 38.02m 51.26 121.73% 51.67m
DIMES [35] RL+S 18.84 13.84% 1.06m 26.36 14.01% 2.38m
DIMES [35] RL+AS+S 17.80 7.55% 2.11h 24.89 7.70% 4.53h

DIFUSCO [19] SL+S 17.48 5.65% 19.02m 25.11 8.61% 59.18m
T2T (Ours) SL+S 17.02 2.84% 15.98m 24.72 6.92% 53.92m

DIMES [35] RL+S+2OPT 17.64 6.56% 1.10m 24.81 7.29% 2.86m
DIMES [35] RL+AS+S+2OPT 17.29 4.48% 2.11h 24.32 5.17% 4.53h

DIFUSCO [19] SL+S+2OPT 16.69 0.83% 19.05m 23.42 1.30% 59.53m
T2T (Ours) SL+S+2OPT 16.61 0.37% 16.03m 23.30 0.78% 54.67m

(a) α-Drop Curve (Greedy and Sampling) (b) InitStep-Drop Curve (Greedy and Sampling)

Figure 4: Effect of α and initialization steps to the performance drop. For each subgraph, the left
represents the greedy decoding, while the right represents the sampling decoding.

Effect of Initial Solution Quality. Fig. 4 (b) illustrates the performance variation when altering the
initial solution quality. The quality is controlled by the number of denoising steps for producing
the initial solution. The experiments are performed on TSP-500 with both greedy and sampling
decoding settings. As shown, T2T exhibits a relatively stable performance across varying initial
solution qualities, based on which we generally utilize 20 steps for constructing the initial solutions.

Table 3: Evaluation
on TSPLIB dataset.

Method Drop

AM 16.767%
GCN 40.035%

Learn2OPT 1.725%
GNNGLS 1.529%
DIFUSCO 0.319%

T2T 0.133%

Generalization Results on Synthetic Data and TSPLIB. Based on the
problem set {TSP-50, TSP-100, TSP-500, TSP-1000}, we train the model
on a specific problem scale and then evaluate it on all problem scales. Table
4 presents the generalization results of T2T and DIFUSCO with greedy
decoding. The results show the satisfying cross-domain generalization
ability of T2T, e.g., the model trained on TSP-1000 achieves less than a 2%
optimality gap on all other problem scales. Moreover, we evaluate our model
trained with random 100-node problems on real-world TSPLIB instances
with 50-200 nodes. The compared baselines include DIFUSCO and baselines
listed in [68]’s Table 3. Table 3 shows T2T’s superiority achieving merely
0.133% optimality gap, 58.3% better than the best previous method. Detailed results of Table 3 and
the results on large-scale TSPLIB instances with 200-1000 nodes in Appendix A. For each instance,
we normalize the coordinates to [0,1] and solve with the solving algorithms.

Validation of Gradient Search with Worse Distribution Learning in Training. We investigate
the performance over 1

15 amount of training data and the model trained with lower-quality feasible
solutions produced by farthest insertion heuristic (with 7.50% gap to optimality). Results in Fig. 5 val-
idate the effectiveness of gradient search even if the distribution is poorly learned, suggesting that T2T

9

Table 4: Generalization results. Tour length and drop
with Greedy Decoding are reported.

Testing
Training TSP-50 TSP-100 TSP-500 TSP-1000

TSP-50 DIFUSCO 5.69, 0.09% 5.70, 0.25% 5.83, 2.55% 5.84, 2.71%
T2T 5.69, 0.02% 5.70, 0.11% 5.78, 1.60% 5.75, 1.10%

TSP-100 DIFUSCO 7.87, 1.44% 7.78, 0.23% 8.03, 3.44% 8.02, 3.31%
T2T 7.80, 0.55% 7.77, 0.08% 7.95, 2.47% 7.91, 1.96%

TSP-500 DIFUSCO 17.31, 4.61% 17.05, 3.04% 16.78, 1.40% 16.86, 1.85%
T2T 17.18, 3.79% 16.92, 2.25% 16.68, 0.81% 16.72, 1.00%

TSP-1000 DIFUSCO 24.17, 4.54% 24.04, 3.98% 23.65, 2.30% 23.63, 2.21%
T2T 24.20, 4.66% 23.85, 3.16% 23.47, 1.51% 23.41, 1.23%

Figure 5: Results on TSP-50 for fewer-shot
training with lower-quality supervision.

Table 5: Results on MIS. TS: Tree Search, UL: Unsupervised Learning. DIFUSCO and T2T are
compared in the same running settings, while other numbers are quoted from [35; 43].

ALGORITHM TYPE
SATLIB ER-[700-800]

SIZE↑ DROP↓ TIME SIZE↑ DROP↓ TIME

KaMIS [69] Heuristics 425.96∗ – 37.58m 44.87∗ – 52.13m
Gurobi [66] Exact 425.95 0.00% 26.00m 41.28 7.78% 50.00m

Intel [70] SL+Grdy 420.66 1.48% 23.05m 34.86 22.31% 6.06m
DIMES [35] RL+Grdy 421.24 1.11% 24.17m 38.24 14.78% 6.12m

DIFUSCO [19] SL+Grdy 424.56 0.33% 8.25m 36.55 18.53% 8.82m
T2T (Ours) SL+Grdy 425.02 0.22% 8.12m 39.56 11.83% 8.53m

Intel [70] SL+TS – – – 38.80 13.43% 20.00m
DGL [71] SL+TS – – – 37.26 16.96% 22.71m
LwD [72] RL+S 422.22 0.88% 18.83m 41.17 8.25% 6.33m

GFlowNets [43] UL+S 423.54 0.57% 23.22m 41.14 8.53% 2.92m
DIFUSCO [19] SL+S 425.13 0.19% 26.32m 40.35 10.07% 32.98m

T2T (Ours) SL+S 425.22 0.17% 23.80m 41.37 7.81% 29.73m

stands less sensitive to the quality of labels in training than other peer methods. It further demonstrates
the generality of T2T especially when high-quality solution labels are not easily available.

4.3 Experiments for MIS

Datasets. Two datasets are tested for the MIS problem following [70; 72; 71; 35; 19], include
SATLIB [73] and Erdős–Rényi (ER) graphs [74]. SATLIB contains SAT instances encoded in
DIMACS CNF format, which are then reduced to MIS instances. ER graphs are randomly generated
with each edge maintaining a fixed probability of being present or absent, independently of the other
edges. We adopt ER graphs of 700 to 800 nodes with the pairwise connection probability set as 0.15.

Metrics. Following previous works [12; 33; 35; 19], we adopt three evaluation metrics to measure
model performance: 1) Size: the average size of the solutions w.r.t. the corresponding instances, i.e.
the objective. 2) Drop: the relative performance drop w.r.t. length compared to the optimal solution
or the reference solution; 3) Time: the average computational time required to solve the problems.

Main Results. Table 5 presents results. The baselines include state-of-the-art neural methods with
greedy decoding and sampling decoding (×4), as well as exact solver Gurobi [66] and heuristic solver
KaMIS [69]. The solving time of Gurobi is set as comparable to neural solvers, thus it does not reach
optimality. DIFUSCO and T2T are compared in the same conditions. The results of other baselines
are quoted from [35]. DIFUSCO and T2T adopt 50 and 20 inference steps, respectively. In the
greedy decoding setting, compared to previous neural solvers, T2T improves the performance drop
from 0.33% to 0.22% for SATLIB dataset and from 18.53% to 11.83% for ER-[700-800] dataset.

5 Conclusion and Future work

We have presented a principled learning paradigm for solving hard-constrained optimization problems
specifically combinatorial optimization, which bridges the offline training with reference solution
as supervision to the instance-wise solving in testing which calls for more direct gradient feedback
from the objective score. Experiments on TSP and MIS show the strong performance of our
approach. With the potential generality, further validation across a wider range of CO problems is
the immediate further work, including those with general representing capabilities such as Mixed
Integer Programming (MIP) and ML-dominant special problems like Quadratic Assignment Problem
(QAP). Another promising future direction is to explore the potential of recent (scalable) graph
Transformers [75; 76; 77] as expressive encoder backbones for solving complex CO problems.

10

References
[1] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinatorial optimization: a

methodological tour d’horizon,” European Journal of Operational Research, 2021.

[2] Q. Cappart, D. Chételat, E. Khalil, A. Lodi, C. Morris, and P. Veličković, “Combinatorial
optimization and reasoning with graph neural networks,” arXiv preprint arXiv:2102.09544,
2021.

[3] J. Zhang, C. Liu, X. Li, H.-L. Zhen, M. Yuan, Y. Li, and J. Yan, “A survey for solving mixed
integer programming via machine learning,” Neurocomputing, vol. 519, pp. 205–217, 2023.

[4] W. Guo, H.-L. Zhen, X. Li, W. Luo, M. Yuan, Y. Jin, and J. Yan, “Machine learning methods in
solving the boolean satisfiability problem,” Machine Intelligence Research, 2023.

[5] X. Chen and Y. Tian, “Learning to perform local rewriting for combinatorial optimization,”
Advances in Neural Information Processing Systems, vol. 32, 2019.

[6] Y.-D. Kwon, J. Choo, B. Kim, I. Yoon, Y. Gwon, and S. Min, “Pomo: Policy optimization
with multiple optima for reinforcement learning,” Advances in Neural Information Processing
Systems, vol. 33, pp. 21 188–21 198, 2020.

[7] S. Li, Z. Yan, and C. Wu, “Learning to delegate for large-scale vehicle routing,” Advances in
Neural Information Processing Systems, vol. 34, pp. 26 198–26 211, 2021.

[8] M. Kim, J. Park, and J. Park, “Sym-nco: Leveraging symmetricity for neural combinatorial
optimization,” arXiv preprint arXiv:2205.13209, 2022.

[9] Y. Li, Y. Jia, W. Luo, H.-L. Zhen, X. Li, M. Yuan, and J. Yan, “Kissat adaptive restart,
kissat cfexp: Adaptive restart policy and variable scoring improvement,” Proceedings of SAT
Competition, 2022.

[10] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” Advances in neural information
processing systems, vol. 28, 2015.

[11] R. Wang, J. Yan, and X. Yang, “Neural graph matching network: Learning lawler’s quadratic
assignment problem with extension to hypergraph and multiple-graph matching,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2022.

[12] W. Kool, H. Van Hoof, and M. Welling, “Attention, learn to solve routing problems!” arXiv
preprint arXiv:1803.08475, 2018.

[13] N. Karalias and A. Loukas, “Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs,” Advances in Neural Information Processing Systems,
vol. 33, pp. 6659–6672, 2020.

[14] S. Geisler, J. Sommer, J. Schuchardt, A. Bojchevski, and S. Günnemann, “Generalization
of neural combinatorial solvers through the lens of adversarial robustness,” in International
Conference on Learning Representations, 2022.

[15] H. Lu, Z. Li, R. Wang, Q. Ren, X. Li, M. Yuan, J. Zeng, X. Yang, and J. Yan, “Roco: A general
framework for evaluating robustness of combinatorial optimization solvers on graphs,” in The
Eleventh International Conference on Learning Representations, 2023.

[16] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural combinatorial optimization
with reinforcement learning,” arXiv preprint arXiv:1611.09940, 2016.

[17] A. Hottung, Y.-D. Kwon, and K. Tierney, “Efficient active search for combinatorial optimization
problems,” arXiv preprint arXiv:2106.05126, 2021.

[18] H. Wang and P. Li, “Unsupervised learning for combinatorial optimization needs meta-learning,”
arXiv preprint arXiv:2301.03116, 2023.

[19] Z. Sun and Y. Yang, “Difusco: Graph-based diffusion solvers for combinatorial optimization,”
arXiv preprint arXiv:2302.08224, 2023.

11

[20] G. Harshvardhan, M. K. Gourisaria, M. Pandey, and S. S. Rautaray, “A comprehensive survey
and analysis of generative models in machine learning,” Computer Science Review, vol. 38, p.
100285, 2020.

[21] T. Iqbal and S. Qureshi, “The survey: Text generation models in deep learning,” Journal of King
Saud University-Computer and Information Sciences, vol. 34, no. 6, pp. 2515–2528, 2022.

[22] X. Guo and L. Zhao, “A systematic survey on deep generative models for graph generation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

[23] A. Hottung, B. Bhandari, and K. Tierney, “Learning a latent search space for routing problems
using variational autoencoders,” in International Conference on Learning Representations,
2021.

[24] Y. Li, X. Chen, W. Guo, X. Li, W. Luo, J. Huang, H.-L. Zhen, M. Yuan, and J. Yan, “Hardsatgen:
Understanding the difficulty of hard sat formula generation and a strong structure-hardness-
aware baseline,” in Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), 2023.

[25] J. You, H. Wu, C. Barrett, R. Ramanujan, and J. Leskovec, “G2sat: Learning to generate sat
formulas,” in Advances in neural information processing systems, vol. 32, 2019.

[26] Z. Geng, X. Li, J. Wang, X. Li, Y. Zhang, and F. Wu, “A deep instance generative framework
for milp solvers under limited data availability,” arXiv preprint arXiv:2310.02807, 2023.

[27] X. Du, C. Wang, R. Zhong, and J. Yan, “Hubrouter: Learning global routing via hub generation
and pin-hub connection,” in Advances in Neural Information Processing Systems, 2023.

[28] R. Cheng, X. Lyu, Y. Li, J. Ye, J. Hao, and J. Yan, “The policy-gradient placement and generative
routing neural networks for chip design,” Advances in Neural Information Processing Systems,
vol. 35, pp. 26 350–26 362, 2022.

[29] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning
using nonequilibrium thermodynamics,” in International Conference on Machine Learning,
2015, pp. 2256–2265.

[30] J. Austin, D. D. Johnson, J. Ho, D. Tarlow, and R. van den Berg, “Structured denoising diffusion
models in discrete state-spaces,” Advances in Neural Information Processing Systems, vol. 34,
pp. 17 981–17 993, 2021.

[31] E. Hoogeboom, D. Nielsen, P. Jaini, P. Forré, and M. Welling, “Argmax flows and multinomial
diffusion: Learning categorical distributions,” Advances in Neural Information Processing
Systems, vol. 34, pp. 12 454–12 465, 2021.

[32] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning combinatorial optimization
algorithms over graphs,” Advances in neural information processing systems, vol. 30, 2017.

[33] C. K. Joshi, T. Laurent, and X. Bresson, “An efficient graph convolutional network technique
for the travelling salesman problem,” arXiv preprint arXiv:1906.01227, 2019.

[34] Z.-H. Fu, K.-B. Qiu, and H. Zha, “Generalize a small pre-trained model to arbitrarily large
tsp instances,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 8,
2021, pp. 7474–7482.

[35] R. Qiu, Z. Sun, and Y. Yang, “Dimes: A differentiable meta solver for combinatorial optimization
problems,” arXiv preprint arXiv:2210.04123, 2022.

[36] P. R. d O Costa, J. Rhuggenaath, Y. Zhang, and A. Akcay, “Learning 2-opt heuristics for the
traveling salesman problem via deep reinforcement learning,” in Asian Conference on Machine
Learning, 2020, pp. 465–480.

[37] Y. Wu, W. Song, Z. Cao, J. Zhang, and A. Lim, “Learning improvement heuristics for solving
routing problems,” IEEE transactions on neural networks and learning systems, vol. 33, no. 9,
pp. 5057–5069, 2021.

12

[38] Q. Hou, J. Yang, Y. Su, X. Wang, and Y. Deng, “Generalize learned heuristics to solve large-
scale vehicle routing problems in real-time,” in The Eleventh International Conference on
Learning Representations, 2023.

[39] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in ICLR, 2014.

[40] Y. Li, Y. Mo, L. Shi, and J. Yan, “Improving generative adversarial networks via adversarial
learning in latent space,” in Advances in Neural Information Processing Systems, 2022.

[41] Y. Li, L. Shi, and J. Yan, “Iid-gan: an iid sampling perspective for regularizing mode collapse,”
in International Joint Conference on Artificial Intelligence, 2023.

[42] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in Neural
Information Processing Systems, vol. 33, pp. 6840–6851, 2020.

[43] D. Zhang, H. Dai, N. Malkin, A. Courville, Y. Bengio, and L. Pan, “Let the flows tell: Solving
graph combinatorial optimization problems with gflownets,” arXiv preprint arXiv:2305.17010,
2023.

[44] Y. Bengio, S. Lahlou, T. Deleu, E. J. Hu, M. Tiwari, and E. Bengio, “Gflownet foundations,”
arXiv preprint arXiv:2111.09266, 2021.

[45] D. Belanger, B. Yang, and A. McCallum, “End-to-end learning for structured prediction energy
networks,” in International Conference on Machine Learning. PMLR, 2017, pp. 429–439.

[46] Y. Chen, Y. Shi, and B. Zhang, “Optimal control via neural networks: A convex approach,”
arXiv preprint arXiv:1805.11835, 2018.

[47] B. Amos, L. Xu, and J. Z. Kolter, “Input convex neural networks,” in International Conference
on Machine Learning. PMLR, 2017, pp. 146–155.

[48] Y. Song and S. Ermon, “Generative modeling by estimating gradients of the data distribution,”
Advances in neural information processing systems, vol. 32, 2019.

[49] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” arXiv preprint
arXiv:2010.02502, 2020.

[50] Y. Song and S. Ermon, “Improved techniques for training score-based generative models,”
Advances in neural information processing systems, vol. 33, pp. 12 438–12 448, 2020.

[51] A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion probabilistic models,” in Interna-
tional Conference on Machine Learning, 2021, pp. 8162–8171.

[52] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,” Advances in
Neural Information Processing Systems, vol. 34, pp. 8780–8794, 2021.

[53] J. Ho and T. Salimans, “Classifier-free diffusion guidance,” arXiv preprint arXiv:2207.12598,
2022.

[54] Z. Wang, J. J. Hunt, and M. Zhou, “Diffusion policies as an expressive policy class for offline
reinforcement learning,” in The Eleventh International Conference on Learning Representations,
2022.

[55] H. He, C. Bai, K. Xu, Z. Yang, W. Zhang, D. Wang, B. Zhao, and X. Li, “Diffusion model is an
effective planner and data synthesizer for multi-task reinforcement learning,” in Advances in
Neural Information Processing Systems, 2023.

[56] H. P. Wang, N. Wu, H. Yang, C. Hao, and P. Li, “Unsupervised learning for combinatorial opti-
mization with principled objective relaxation,” in Advances in Neural Information Processing
Systems, 2022.

[57] M. J. Schuetz, J. K. Brubaker, and H. G. Katzgraber, “Combinatorial optimization with physics-
inspired graph neural networks,” Nature Machine Intelligence, vol. 4, no. 4, pp. 367–377,
2022.

13

[58] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang, “A tutorial on energy-based
learning,” Predicting structured data, vol. 1, no. 0, 2006.

[59] A. Graikos, N. Malkin, N. Jojic, and D. Samaras, “Diffusion models as plug-and-play priors,”
arXiv preprint arXiv:2206.09012, 2022.

[60] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the traveling-salesman
problem,” Operations research, vol. 21, no. 2, pp. 498–516, 1973.

[61] P. R. d. O. da Costa, J. Rhuggenaath, Y. Zhang, and A. Akcay, “Learning 2-opt heuristics for the
traveling salesman problem via deep reinforcement learning,” arXiv preprint arXiv:2004.01608,
2020.

[62] D. Applegate, R. Bixby, V. Chvatal, and W. Cook, “Concorde tsp solver,” 2006.

[63] K. Helsgaun, “An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems,” Roskilde: Roskilde University, pp. 24–50, 2017.

[64] G. A. Croes, “A method for solving traveling-salesman problems,” Operations research, vol. 6,
no. 6, pp. 791–812, 1958.

[65] X. Bresson and T. Laurent, “The transformer network for the traveling salesman problem,”
arXiv preprint arXiv:2103.03012, 2021.

[66] Gurobi Optimization, “Gurobi optimizer reference manual,” http://www.gurobi.com, 2020.

[67] M. Deudon, P. Cournut, A. Lacoste, Y. Adulyasak, and L.-M. Rousseau, “Learning heuristics
for the tsp by policy gradient,” in International conference on the integration of constraint
programming, artificial intelligence, and operations research. Springer, 2018, pp. 170–181.

[68] B. Hudson, Q. Li, M. Malencia, and A. Prorok, “Graph neural network guided local search for
the traveling salesperson problem,” arXiv preprint arXiv:2110.05291, 2021.

[69] S. Lamm, P. Sanders, C. Schulz, D. Strash, and R. F. Werneck, “Finding near-optimal indepen-
dent sets at scale,” in 2016 Proceedings of the Eighteenth Workshop on Algorithm Engineering
and Experiments (ALENEX). SIAM, 2016, pp. 138–150.

[70] Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with graph convolutional networks
and guided tree search,” Advances in neural information processing systems, vol. 31, 2018.

[71] M. Böther, O. Kißig, M. Taraz, S. Cohen, K. Seidel, and T. Friedrich, “What’s wrong with deep
learning in tree search for combinatorial optimization,” arXiv preprint arXiv:2201.10494, 2022.

[72] S. Ahn, Y. Seo, and J. Shin, “Learning what to defer for maximum independent sets,” in
International Conference on Machine Learning, 2020, pp. 134–144.

[73] H. H. Hoos and T. Stützle, “Satlib: An online resource for research on sat,” Sat, vol. 2000, pp.
283–292, 2000.

[74] P. Erdős, A. Rényi et al., “On the evolution of random graphs,” Publ. Math. Inst. Hung. Acad.
Sci, vol. 5, no. 1, pp. 17–60, 1960.

[75] Q. Wu, W. Zhao, Z. Li, D. Wipf, and J. Yan, “Nodeformer: A scalable graph structure learning
transformer for node classification,” in Advances in Neural Information Processing Systems,
2022.

[76] Q. Wu, C. Yang, W. Zhao, Y. He, D. Wipf, and J. Yan, “DIFFormer: Scalable (graph) trans-
formers induced by energy constrained diffusion,” in International Conference on Learning
Representations, 2023.

[77] Q. Wu, W. Zhao, C. Yang, H. Zhang, F. Nie, H. Jiang, Y. Bian, and J. Yan, “Simplifying and
empowering transformers for large-graph representations,” in Advances in Neural Information
Processing Systems (NeurIPS), 2023.

[78] J. Zhou, Y. Wu, W. Song, Z. Cao, and J. Zhang, “Towards omni-generalizable neural methods
for vehicle routing problems,” arXiv preprint arXiv:2305.19587, 2023.

14

http://www.gurobi.com

Appendix

A Supplementary Experiments

Results on TSPLIB. We evaluate our model trained with random 100-node problems on real-world
TSPLIB instances with 50-200 nodes. The compared baselines include DIFUSCO and baselines
listed in [68]’s Table 3. Table 6 presents the results and shows T2T’s superiority achieving merely
0.133% optimality gap, 58.3% better than the best previous method. We also supplement the results
(optimality drop) of DIFUSCO and T2T on large-scale TSPLIB benchmark instances with 200-1000
nodes, as shown in Table 7. For each instance, we normalize the coordinates to [0,1] and solve with
the solving algorithms.

Table 6: Solution quality for methods trained on random 100-node problems and evaluated on
TSPLIB instances with 50-200 nodes. The comparison includes baselines in [68]’s Table 3. Results
of DIFUSCO and T2T are based on 4× sampling decoding with 2OPT post-processing. Results of
other baselines are from [68].

INSTANCES AM GCN Learn2OPT GNNGLS DIFUSCO T2T

eil51 16.767% 40.025% 1.725% 1.529% 0.314% 0.314%
berlin52 4.169% 33.225% 0.449% 0.142% 0.000% 0.000%

st70 1.737% 24.785% 0.040% 0.764% 0.172% 0.000%
eil76 1.992% 27.411% 0.096% 0.163% 0.217% 0.163%
pr76 0.816% 27.793% 1.228% 0.039% 0.043% 0.039%
rat99 2.645% 17.633% 0.123% 0.550% 0.016% 0.000%

kroA100 4.017% 28.828% 18.313% 0.728% 0.050% 0.000%
kroB100 5.142% 34.686% 1.119% 0.147% 0.000% 0.000%
kroC100 0.972% 35.506% 0.349% 1.571% 0.000% 0.000%
kroD100 2.717% 38.018% 0.866% 0.572% 0.000% 0.000%
kroE100 1.470% 26.589% 1.832% 1.216% 0.000% 0.000%

rd100 3.407% 50.432% 1.725% 0.003% 0.000% 0.000%
eil101 2.994% 26.701% 0.387% 1.529% 0.124% 0.000%
lin105 1.739% 34.902% 1.867% 0.606% 0.441% 0.393%
pr107 3.933% 80.564% 0.898% 0.439% 0.714% 0.155%
pr124 3.677% 70.146% 10.322% 0.755% 0.997% 0.584%

bier127 5.908% 45.561% 3.044% 1.948% 1.064% 0.718%
ch130 3.182% 39.090% 0.709% 3.519% 0.077% 0.077%
pr136 5.064% 58.673% 0.000% 3.387% 0.182% 0.000%
pr144 7.641% 55.837% 1.526% 3.581% 1.816% 0.000%
ch150 4.584% 49.743% 0.312% 2.113% 0.473% 0.324%

kroA150 3.784% 45.411% 0.724% 2.984% 0.193% 0.193%
kroB150 2.437% 56.745% 0.886% 3.258% 0.366% 0.021%

pr152 7.494% 33.925% 0.029% 3.119% 0.687% 0.687%
u159 7.551% 38.338% 0.054% 1.020% 0.000% 0.000%

rat195 6.893% 24.968% 0.743% 1.666% 0.887% 0.018%
d198 373.020% 62.351% 0.522% 4.772% 0.000% 0.000%

kroA200 7.106% 40.885% 1.441% 2.029% 0.259% 0.000%
kroB200 8.541% 43.643% 2.064% 2.589% 0.171% 0.171%

Mean 16.767% 40.025% 1.725% 1.529% 0.319% 0.133%

Generalization Results on Distribution Shift. The generalization results of the diffusion-based
methods (e.g., DIFUSCO and T2T) on the distribution (e.g., cluster, gaussian, etc., instead of uniform)
are presented in Table. 8 and Table. 9. The TSP data of different distributions are from [78].

Effect of Number of Iterations. Table. 10 shows the results of T2T with varying #iterations. Each
iteration contributes to a single process of solution improvement, and employing more iterations can
lead to improved solutions. However, too many iterations could lead to additional computational
overhead. As a result, we aim to strike a balance in this trade-off and set #iterations to 3.

Effect of Graph Sparsification Hyperparameter k. Table. 10 shows the results of T2T with varying
k. A larger value of k can yield improved results, yet it can also lead to increased computational
overhead. Thus, we strike a balance in this trade-off and set k to 50.

15

Table 7: Solution quality for methods trained on random 500-node problems and evaluated on
TSPLIB instances with 200-1000 nodes. Results of DIFUSCO and T2T are based on 4× sampling
decoding with 2OPT post-processing.

INSTANCES DIFUSCO T2T INSTANCES DIFUSCO T2T

pr439 1.28% 0.26% d493 0.00% 0.00%
pcb442 0.00% 0.00% p654 0.00% 0.00%

fl417 0.00% 0.00% d657 0.00% 0.00%
tsp225 0.99% 0.59% rat783 1.67% 1.22%

u724 0.00% 0.00% ts225 0.32% 0.32%
pr299 0.57% 0.14% lin318 0.30% 0.30%
rd400 0.12% 0.00% u574 0.00% 0.00%
rat575 0.83% 0.26% pr1002 2.21% 1.42%

a280 1.11% 0.00% pr226 0.34% 0.22%
pr264 1.12% 0.48% Mean 0.57% 0.27%

Table 8: Generalization results from the model trained with Uniform-100 data.
Methods Decoding Uniform-100 Gaussian-100

DIFUSCO Greedy 7.78, 0.20% 5.72, 0.72%
T2T Greedy 7.76, 0.06% 5.69, 0.28%

DIFUSCO Sampling 7.76, 0.00% 5.68, 0.09%
T2T Sampling 7.76, 0.00% 5.68, 0.02%

B Applicability of T2T

We provide a summary concerning the types of problems that T2T can effectively manage:

• Mandatory Requirements:

– The decision variables are limited to a countable and finite set of values. Currently, we
focus on binary decision variables and the model predicts a heatmap for the solution.
But it can be easily extended to prediction through the multinomial diffusion. Note that
even binary variables can cover a wide range of CO problems especially on graphs,
since most problems can be attributed to edge-selecting problems like TSP, CVRP, and
node-selecting problems like MIS, MAX Clique.

– A problem-specific post-processing procedure is required to transform the prediction
into feasible solutions. For problems featuring binary decision variables, this prereq-
uisite can be easily met with the greedy decoding strategy, which sequentially inserts
variables (edges or nodes) with the highest confidence if there are no conflicts.

• Nice-to-have Requirements:

– The constraints can be transformed to some sort of penalty with meaningful gradient.
While it is preferable to include a constraint penalty term in Eq. 7, the utilization of the
optimization objective alone is also effective (as evidenced by the TSP results). This is
due to the diffusion’s capacity to implicitly learn constraints.

C Proofs

Proposition 1. The optimization-enforced denoising probability estimation pθ(xt−1|xt, G, y∗)
equals to Zpθ(xt−1|xt, G)p(y∗|xt−1, G), where Z is a normalizing constant.

Proof. Since pθ(xt−1|xt, G, y∗) estimates q(xt−1|xt, G, y∗), we aim to show q(xt−1|xt, G, y∗) ∝
q(xt−1|xt, G)p(y∗|xt−1, G), such that as q(xt−1|xt, G) can be readily estimated by
pθ(xt−1|xt, G), q(xt−1|xt, G, y∗)’s neural estimation pθ(xt−1|xt, G, y∗) can be achieved by
Zpθ(xt−1|xt, G)p(y∗|xt−1, G), where Z is a normalizing constant.

16

Table 9: Generalization results from the model trained with Uniform-500 data.
Methods Decoding Uniform-500 Rotation-500 Explosion-500 Cluster103 -300 Cluster507 -300

DIFUSCO Greedy 16.82, 1.63% 12.69, 2.44% 12.06, 2.80% 9.72, 2.64% 5.80, 3.09%
T2T Greedy 16.68, 0.78% 12.51, 1.00% 11.94, 1.76% 9.61, 1.49% 5.75, 2.17%

DIFUSCO Sampling 16.68, 0.81% 12.60, 1.65% 11.94, 1.78% 9.62, 1.57% 5.75, 2.18%
T2T Sampling 16,62, 0.42% 12.45, 0.48% 11.87, 1.18% 9.55, 0.85% 5.72, 1.67%

Table 10: TSP-500 Greedy results of the hyperparameter #iterations.
#iterations 0 1 3 5 10

Tour Length↓ 16.813 16.705 16.683 16.678 16.669
Drop↓ 1.59% 0.94% 0.80% 0.77% 0.72%

We first show that p(y∗|xt−1, G) does not depend on xt:

p(y∗|xt−1,xt, G) = q(xt|xt−1, y
∗, G)

p(y∗|xt−1, G)

q(xt|xt−1, G)
(14)

= q(xt|xt−1)
p(y∗|xt−1, G)

q(xt|xt−1)
(15)

= p(y∗|xt−1, G) (16)

Then the probability distribution q(xt−1|xt, G, y∗) can be derived by:

q(xt−1|xt, G, y∗) =
q(xt−1,xt, G, y∗)

q(xt, G, y∗)
(17)

=
q(xt−1,xt, G, y∗)

q(y∗|xt, G)q(xt, G)
(18)

=
q(y∗|xt−1,xt, G)q(xt−1|xt, G)q(xt, G)

q(y∗|xt, G)q(xt, G)
(19)

=
q(y∗|xt−1, G)q(xt−1|xt, G)

q(y∗|xt, G)
(20)

q(y∗|xt, G) is not depend on xt−1, thus it can be regarded as a constant. Now we can obtain
q(xt−1|xt, G, y∗) ∝ q(xt−1|xt, G)p(y∗|xt−1, G), completing the proof.

D Discussion from Another Aspect: Constructive and Improvement Solvers

Existing CO solvers including both traditional and emerging ML-based methods, generally can be
categorized into two groups as summarized in detail in Table 12. Constructive solvers solve the
problem from scratch in one shot or multiple steps, and the algorithm ends once a complete solution
is obtained. However, effectively enhancing the final solution quality (e.g. the objective score) while
ensuring the constraints can be challenging for constructive solvers due to the absence of explicit
reference to complete solutions (as the constraints are often obeyed globally across the dimensions
of the solution). While in contrast, improvement solvers yield and maintain a series of complete
solutions during the improvement procedure to optimize (namely minimize) the objective in a score
decreasing trend (with fluctuation). Compared with constructive solvers, improvement (search-based)
solvers [36; 37; 5; 37; 7; 38] seek an enhanced solution by iteratively performing local search within
its neighborhood. The algorithm pipelines generally involve selecting specific regions and locally
optimizing sub-solutions. This paradigm often offers better tractability and a more direct correlation
to objective score thanks to the explicit involvement of the objective and accessibility of complete
solutions. While improvement-based solvers dominate in traditional heuristics (e.g., LKH [60; 63]),
for learning class methods, the constructive solvers remain relatively major in number, given their
more direct compatibility with network prediction tasks.

For constructive ML-solvers, the training procedures can be classified into reinforcement learning
(RL) and supervised learning (SL). RL methods [12; 6; 8] try to directly optimize the objective

17

Table 11: TSP-500 Greedy results of the graph sparsification hyperparameter k.
k 10 50 100 200

Tour Length↓ 16.687 16.681 16.678 16.674
Drop↓ 0.83% 0.79% 0.77% 0.74%

Table 12: Constructive and improvement solvers. Sol. Dist.: solution distribution learning capability;
LS: using local search scheme. A constructive solver can be combined with a search-based solver,
where the latter is responsible for the search component being not part of the constructive approach.

Neural solver Paradigm Training Sol. Dist.? LS?

AM [12] Constructive Reinforce No No
POMO [6] Constructive Reinforce No No

Sym-NCO [8] Constructive Reinforce No No
GCN [33] Constructive Supervised No No

DIMES [35] Constructive Reinforce No No
NeuRewriter [5] Improvement Reinforce No Yes

Learning 2OPT [36] Improvement Reinforce No Yes
Learn2delegate [7] Improvement Reinforce No Yes

TAM [38] Improvement Reinforce No Yes

CVAE-Opt [23] Constructive Supervised Yes No
NeuRouter [28] Constructive Supervised Yes No
DIFUSCO [19] Constructive Supervised Yes No

T2T (ours) Improvement Supervised Yes Yes

function, but since a complete solution is not obtained until the end, the intermediate process lacks
a valid reference. SL methods [33; 35; 19] typically fit the network prediction to the reference
solutions. The lack of objective awareness and local search procedures limits their ability to surpass
the supervised solvers. The training procedures of current improvement ML-solvers are based on RL.

Generative modeling for CO [23; 19] currently falls into a subclass of constructive solvers. Gener-
ative modeling for CO currently falls into a subclass of constructive solvers, which leverages the
powerful expressive and modeling capabilities of generative models, e.g., VAE [23] and the diffusion
model [19]. However, as mentioned above the model lacks awareness of the optimization objective
and does not introduce a search procedure to fully utilize the estimated solution distribution. In
contrast to the constructive way for CO problem solving, our T2T serves as an improvement solver the
strong compatibility between the diffusion model and the diffuse-and-denoise local search paradigm
with objective feedback in the loop. In our approach, generative diffusion model and local search are
both used (which is the first time to our best knowledge), in a complementary and synergistic way to
achieve state-of-the-art performance in both objective score and solving time. Compared to existing
improvement solvers, such a design facilitates parallel optimization across multiple sub-regions of the
entire solution, greatly improving efficiency while also eliminating the need for the iterative selection
of optimization regions.

E Network Architecture Details

E.1 Input Embedding Layer

Given node vector x ∈ RN×2, weighted edge vector e ∈ RE , denoising timestep t ∈ {τ1, . . . , τM},
where N denotes the number of nodes in the graph, and E denotes the number of edges, we compute
the sinusoidal features of each input element respectively:

18

x̃i = concat(x̃i,0, x̃i,1) (21)

x̃i,j = concat

(
sin

xi,j

T
0
d

, cos
xi,j

T
0
d

, sin
xi,j

T
2
d

, cos
xi,j

T
2
d

, . . . , sin
xi,j

T
d
d

, cos
xi,j

T
d
d

)
(22)

ẽi = concat

(
sin

ei

T
0
d

, cos
ei

T
0
d

, sin
ei

T
2
d

, cos
ei

T
2
d

, . . . , sin
ei

T
d
d

, cos
ei

T
d
d

)
(23)

t̃ = concat

(
sin

t

T
0
d

, cos
t

T
0
d

, sin
t

T
2
d

, cos
t

T
2
d

, . . . , sin
t

T
d
d

, cos
t

T
d
d

)
(24)

where d is the embedding dimension, T is a large number (usually selected as 10000), concat(·)
denotes concatenation.

Next, we compute the input features of the graph convolution layer:

x0
i = W 0

1 x̃i (25)

e0i = W 0
2 ẽi (26)

t0 = W 0
4 (ReLU(W 0

3 t̃)) (27)

where t0 ∈ Rdt , dt is the time feature embedding dimension. Specifically, for TSP, the embedding
input edge vector e is a weighted adjacency matrix, which represents the distance between different
nodes, and e0 is computed as above. For MIS, we initialize e0 to a zero matrix 0E×d.

E.2 Graph Convolution Layer

Following [33], the cross-layer convolution operation is formulated as:

xl+1
i = xl

i +ReLU(BN(W l
1x

l
i +
∑
j∼i

ηlij ⊙W l
2x

l
j)) (28)

el+1
ij = eli +ReLU(BN(W l

3e
l
ij +W l

4x
l
i +W l

5x
l
j)) (29)

ηlij =
σ(elij)∑

j′∼i σ(e
l
ij′) + ϵ

(30)

where xl
i and elij denote the node feature vector and edge feature vector at layer l, W1, · · · ,W5 ∈

Rh×h denote the model weights, ηlij denotes the dense attention map. The convolution operation
integrates the edge feature to accommodate the significance of edges in routing problems.

For TSP, we aggregate the timestep feature with the edge convolutional feature and reformulate the
update for edge features as follows:

el+1
ij = elij +ReLU(BN(W l

3e
l
ij +W l

4x
l
i +W l

5x
l
j)) +W l

6(ReLU(t0)) (31)

For MIS, we aggregate the timestep feature with the node convolutional feature and reformulate the
update for node features as follows:

xl+1
i = xl

i +ReLU(BN(W l
1x

l
i +
∑
j∼i

ηlij ⊙W l
2x

l
j)) +W l

6(ReLU(t0)) (32)

E.3 Output Layer

The prediction of the edge heatmap in TSP and node heatmap in MIS is as follows:

ei,j = Softmax(norm(ReLU(Wee
L
i,j))) (33)

xi = Softmax(norm(ReLU(Wnx
L
i))) (34)

where L is the number of GCN layers and norm is layer normalization.

19

E.4 Hyper-parameters

For both TSP and MIS tasks, we construct a 12-layer GCN derived above. We set the node, edge, and
timestep embedding dimension d = 256, 128 for TSP and MIS tasks, respectively.

F Fast Inference for Discrete Diffusion Models

The technique of denoising diffusion implicit models (DDIMs) [49] is introduced for accelerating
inference and solution reconstruction. Let x1:T denotes the latent variables and {τ1, . . . , τM} is one
increasing subset of time sequences {1, . . . , T}. τM = T for the inference processes and αT for
the reconstruction processes. The diffusion processes can be generated to a class non-Markovian
processes with the same training objective, where the inference processes traverse only on a subset of
latent variables. The inference processes are reformulated as:

q(xτ−1|xτ ,x0) =
q(xτ |xτ−1,x0)q(xτ−1|x0)

q(xτ |x0)

= Cat

(
xτ−1;p =

xτQ
⊤
τ ⊙ x0Qτ−1

x0Qτx
⊤
τ

) (35)

For both TSP and MIS tasks, we adopt the cosine denosing scheduler such that τi = ⌊cos
(
1−π·ci

2

)
·T ⌋

for some constant c.

G Experimental Details

G.1 Training Resource Requirement

Table 13: Details about the training resource requirement of T2T framework. The results are
calculated on A100 GPUs.
We provide the details about the offline training resource requirement of T2T framework in Table 13.

The results are calculated on A100 GPUs. For comparison reference: AM [12] requires 128M
instances generated on the fly for training TSP-100, and it requires 45.8h on 2 1080Ti GPUs;

POMO [6] requires 200M instances generated on the fly for training TSP-100, and it requires 1
week on a single Titan RTX; Sym-NCO [8] based on POMO requires 2 weeks on a single A100,

Sym-NCO [8] based on AM requires 3 days on 4 A100 GPUs.
Problem Scale Dataset Size 1 GPU 2 GPUs 4 GPUs GPU Mem

TSP-50 1,502 k 56h 24m 30h 49m 19h 8m 13.2 GB
TSP-100 1,502 k 206h 20m 109h 45m 59h 55m 24.0 GB
TSP-500 128 k 64h 26m 34h 37m 22h 46m 19.1 GB
TSP-1000 64 k 123h 31m 65h 46m 38h 35m 35.8 GB

G.2 Hyperparamters

We conduct experiments on TSP and MIS benchmarks with our methods and compare the performance
with SOTA learning-based solvers, heuristics, and exact solvers. We select hyperparameters to
balance the inference time and the solution quality. Specifically, the inference time of our method is
approximate with other learning-based frameworks. For each benchmark, we adopt 20 inference steps
and 10 objective-guided denoising steps for reconstruction, which involves 3 iterations and selects
the optimal solutions. The disruption ratio α associated with each benchmark is listed in Table. 14.

Table 14: Disruption Ratio for each benchmark.
Benchmark TSP-50 TSP-100 TSP-500 TSP-1000 SATLIB ER-[700-800]

α 0.25 0.25 0.4 0.4 0.1 0.1

20

G.3 Baseline Settings

G.3.1 TSP Benchmarks

TSP-50/100. For TSP-50 and TSP-100, we compare our proposed T2T with 10 baselines, including
one exact solver Concorde [62], two heuristic solvers 2OPT [64] and Farthest Insertion, and 7
learning-based solvers, i.e., AM [12], GCN [33], Transformer [65], POMO [6], Sym-NCO [8],
Image Diffusion [59] and DIFUSCO [19]. The post-processing includes greedy sampling and 2OPT
refinement. To ensure a fair comparison with similar runtimes, we set the number of inference steps
for DIFUSCO to 120.

TSP-500/1000. For TSP-500 and TSP-1000, we compare our method with 2 exact solvers Con-
corde [62] and Gurobi [66], 2 heuritics solvers LKH-3 [63] and Farthest Insertion, and 6 learning-
based methods including EAN [67], AM [12], GCN [33], POMO+EAS [17], DIMES [35] and
DIFUSCO [19]. The learning-based methods can further be categorized into supervised learning
(SL) and reinforcement learning (RL). The post-processing includes greedy sampling (Grdy, G),
multiple sampling (S), 2OPT refinement (2OPT), beam search (BS), active search (AS), and their
combinations. To ensure a fair comparison with similar runtimes, we set the number of inference
steps for DIFUSCO to 120.

G.3.2 MIS Benchmarks

We evaluate our method on two benchmarks, namely SATLIB and ER-[700-800]. For both bench-
marks, we compare T2T with one exact solver Gurobi [66], one heuristic solver KaMIS [69] and
5 learning-based frameworks Intel [70], DGL [70], LwD [72], DIMES [35] and DIFUSCO [19].
The post-processing includes greedy sampling (Grdy) and tree search (TS). Specifically, we set the
inference steps 50 for DIFUSCO on both benchmarks.

G.4 Graph Sparsification

In TSP, the number of edges in the graph increases quadratically with the number of nodes, which
poses scalability challenges. To address this, we adopt graph sparsification by limiting each node to
connect only with its k nearest neighbors (KNN) based on Euclidean distance. Specifically, we set
k = 50 for TSP-500 and TSP-1000.

G.5 Visualization

Fig. 6 visualizes the specific process of T2T with 5 rounds of gradient search on TSP-50.

𝒕 = 𝜶𝑻 𝒕 = 𝟎 Postprocessing

Round 1

Round 2

Round 3

Round 4

Round 5

Figure 6: The visualization of T2T solving TSP-50, as corresponding to the orange part in Fig. 3.

21

	Introduction
	Related Work
	Approach
	Preliminaries: Combinatorial Optimization on Graphs
	Offline Solution Distribution Learning on Training Set based on Diffusion
	Test-stage Gradient-based Search with Instance-wise Objective Feedback
	Objective-aware Denoising Process with Gradient Feedback
	The T2T Framework for Efficient Differentiable Neural Search

	Experiments
	Experimental Setup
	Experiments for TSP
	Experiments for MIS

	Conclusion and Future work
	Supplementary Experiments
	Applicability of T2T
	Proofs
	Discussion from Another Aspect: Constructive and Improvement Solvers
	Network Architecture Details
	Input Embedding Layer
	Graph Convolution Layer
	Output Layer
	Hyper-parameters

	Fast Inference for Discrete Diffusion Models
	Experimental Details
	Training Resource Requirement
	Hyperparamters
	Baseline Settings
	TSP Benchmarks
	MIS Benchmarks

	Graph Sparsification
	Visualization

