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Abstract

Controlling the parameters’ norm often yields good generalisation when training
neural networks. Beyond simple intuitions, the relation between regularising
parameters’ norm and obtained estimators remains theoretically misunderstood.
For one hidden ReLU layer networks with unidimensional data, this work shows the
parameters’ norm required to represent a function is given by the total variation of
its second derivative, weighted by a

√
1 + x2 factor. Notably, this weighting factor

disappears when the norm of bias terms is not regularised. The presence of this
additional weighting factor is of utmost significance as it is shown to enforce the
uniqueness and sparsity (in the number of kinks) of the minimal norm interpolator.
Conversely, omitting the bias’ norm allows for non-sparse solutions. Penalising the
bias terms in the regularisation, either explicitly or implicitly, thus leads to sparse
estimators.

1 Introduction

Although modern neural networks are not particularly limited in terms of their number of parameters,
they still demonstrate remarkable generalisation capabilities when applied to real-world data [Belkin
et al., 2019, Zhang et al., 2021]. Intriguingly, both theoretical and empirical studies have indicated
that the crucial factor determining the network’s generalisation properties is not the sheer number of
parameters, but rather the norm of these parameters [Bartlett, 1996, Neyshabur et al., 2014]. This
norm is typically controlled through a combination of explicit regularisation techniques, such as
weight decay [Krogh and Hertz, 1991], and some form of implicit regularisation resulting from the
training algorithm employed [Soudry et al., 2018, Lyu and Li, 2019, Ji and Telgarsky, 2019, Chizat
and Bach, 2020].

Neural networks with a large number of parameters can approximate any continuous function
on a compact set [Barron, 1993]. Thus, without norm control, the space of estimated functions
encompasses all continuous functions. In the parameter space, this implies considering neural
networks with infinite width and unbounded weights [Neyshabur et al., 2014]. Yet, when weight
control is enforced, the exact correspondence between the parameter space (i.e., the parameters θ of
the network) and the function space (i.e., the estimated function fθ produced by the network’s output)
becomes unclear. Establishing this correspondence is pivotal for comprehending the generalisation
properties of overparameterised neural networks. Two fundamental questions arise.
Question 1. What quantity in the function space, does the parameters’ norm of a neural network
correspond to?

Question 2. What functions are learnt when fitting training data with minimal parameters’ norm?

We study these questions in the context of a one-hidden ReLU layer network with a skip connec-
tion. Previous research [Kurková and Sanguineti, 2001, Bach, 2017] has examined generalisation
guarantees for small representational cost functions, where the representational cost refers to the
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norm required to parameterise the function. However, it remains challenging to interpret this rep-
resentational cost using classical analysis tools and identify the corresponding function space. To
address this issue, Question 1 seeks to determine whether this representational cost can be translated
into a more interpretable functional (pseudo) norm. Note that Question 1 studies the parameters’
norm required to fit a function on an entire domain. In contrast, when training a neural network for a
regression task, we only fit a finite number of points given by the training data. Question 2 arises
to investigate the properties of the learned functions when minimising some empirical loss with a
regularisation of the parameters’ norm regardless of whether it is done explicitly or implicitly.

In relation to our work, Savarese et al. [2019], Ongie et al. [2019] address Question 1 for one-hidden
layer ReLU neural networks, focusing on univariate and multivariate functions, respectively. For
a comprehensive review of this line of work, we recommend consulting the survey of Parhi and
Nowak [2023]. On the other hand, Parhi and Nowak [2021], Debarre et al. [2022], Stewart et al.
[2022] investigate Question 2 specifically in the univariate case. Additionally, Sanford et al. [2022]
examine a particular multidimensional case. However, all of these existing studies overlook the bias
parameters of the neural network when considering the ℓ2 regularisation term. By omitting the biases,
the analysis and solutions to these questions become simpler.

In sharp contrast, our work addresses both Questions 1 and 2 for univariate functions while also
incorporating regularisation of the bias parameters. It may appear as a minor detail—it is commonly
believed that similar estimators are obtained whether or not the biases’ norm1 is penalised [see e.g.
Ng, 2011]. Nonetheless, our research demonstrates that penalising the bias terms enforce sparsity and
uniqueness of the estimated function, which is not achieved without including the bias regularisation.
The practical similarity between these two explicit regularisations can be attributed to the presence of
implicit regularisation, which considers the bias terms as well. The updates performed by first-order
optimisation methods do not distinguish between bias and weight parameters, suggesting that they
are subject to the same implicit regularisation. Consequently, while both regularisation approaches
may yield similar estimators in practical settings, we contend that the theoretical estimators obtained
with bias term regularisation capture the observed implicit regularisation effect. Hence, it is essential
to investigate the implications of penalising the bias terms when addressing Questions 1 and 2, as the
answers obtained in this scenario significantly differ from those without bias penalisation.

It is also worth mentioning that Shevchenko et al. [2022], Safran et al. [2022] prove that gradient
flow learns sparse estimators for networks with ReLU activations. These sparsity guarantees are
yet much weaker (larger number of activated directions) as they additionally deal with optimisation
considerations (in opposition to directly considering the minimiser of the optimisation problem in
both our work and the line of works mentioned above).

Contributions. After introducing the setting in Section 2, we address Question 1 in Section 3 using
a similar analysis approach as Savarese et al. [2019]. The key result, Theorem 1, establishes that the
representational cost of a function, when allowed a free skip connection, is given by the weighted
total variation of its second derivative, incorporating a

√
1 + x2 term. Notably, penalising the bias

terms introduces a
√
1 + x2 multiplicative weight in the total variation, contrasting with the absence

of bias penalisation.

This weighting fundamentally impacts the answer to Question 2. In particular, it breaks the shift
invariance property of the function’s representational cost, rendering the analysis technique proposed
by Debarre et al. [2022] inadequate2. To address this issue, we delve in Sections 4 and 5 into the
computation and properties of solutions to the optimisation problem:

inf
f

∥∥∥√1 + x2f ′′
∥∥∥
TV

subject to ∀i ∈ [n], f(xi) = yi.

In Section 4, we reformulate this problem as a continuous dynamic program, enabling a simpler
analysis of the minimisation problem. Leveraging this dynamic program reformulation, Section 5
establishes the uniqueness of the solution. Additionally, under certain data assumptions, we demon-
strate that the minimiser is among the sparest interpolators in terms of the number of kinks. It is

1Even though Goodfellow et al. [2016, Chapter 7] claim that penalising the biases might lead to underfitting,
our work does not focus on the optimisation aspect and assumes interpolation occurs.

2Although shift invariance is useful for analytical purposes, it is not necessarily desirable in practice. Notably,
Nacson et al. [2022] show that dealing with uncentered data might be beneficial for learning relevant features,
relying on the lack of shift invariance.
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worth noting that similar results have been studied in the context of sparse spikes deconvolution
[Candès and Fernandez-Granda, 2014, Fernandez-Granda, 2016, Poon et al., 2019], and our problem
can be seen as a generalisation of basis pursuit [Chen et al., 2001] to infinite-dimensional parameter
spaces. However, classical techniques for sparse spikes deconvolution are ill-suited for addressing
Question 2, as the set of sparsest interpolators is infinite in our setting.

Finally, the significance of bias term regularisation in achieving sparser estimators during neural
network training is illustrated on toy examples in Section 6. To ensure conciseness, only proof
sketches are presented in the main paper, while the complete proofs can be found in the Appendix.

2 Infinite width networks

This section introduces the considered setting, representing unidimensional functions as infinite width
networks. Some precise mathematical arguments are omitted here, since this construction follows
directly the lines of Savarese et al. [2019], Ongie et al. [2019]. This work considers unidimensional
functions fθ : R → R parameterised by a one hidden layer neural networks with ReLU activation as

fθ(x) =
∑m
j=1 ajσ(wjx+ bj),

where σ(z) = max(0, z) is the ReLU activation and θ = (aj , wj , bj)j∈[m] ∈ R3m are the parameters
defining the neural network. The vector a = (aj)j∈[m] stands for the weights of the last layer,
while w and b respectively stand for the weights and biases of the hidden layer. For any width m
and parameters θ, the quantity of importance is the squared Euclidean norm of the parameters:
∥θ∥22 =

∑m
j=1 a

2
j + w2

j + b2j .

We recall that contrary to Savarese et al. [2019], Ongie et al. [2019], the bias terms are included in
the considered norm here. We now define the representational cost of a function f : R → R as

R(f) = inf
m∈N
θ∈R3m

1

2
∥θ∥22 such that fθ = f.

By homogeneity of the parameterisation, a typical rescaling trick [see e.g. Neyshabur et al., 2014,
Theorem 1] allows to rewrite

R(f) = inf
m,θ∈R3m

∥a∥1 such that fθ = f and w2
j + b2j = 1 for any j ∈ [m].

Note that R(f) is only finite when the function f is exactly described as a finite width neural network.
We aim at extending this definition to a much larger functional space, i.e. to any function that can be
arbitrarily well approximated by finite width networks, while keeping a (uniformly) bounded norm of
the parameters. Despite approximating the function with finite width networks, the width necessarily
grows to infinity when the approximation error goes to 0. Similarly to Ongie et al. [2019], define

R(f) = lim
ε→0+

(
inf

m,θ∈R3m

1

2
∥θ∥22 such that |fθ(x)− f(x)| ≤ ε for any x ∈ [−1/ε, 1/ε]

)
.

Note that the approximation has to be restricted to the compact set [−1/ε, 1/ε] to avoid problematic
degenerate situations. The functional space for which R(f) is finite is much larger than for R, and in-
cludes every compactly supported Lipschitz function, while coinciding withR when the latter is finite.

By rescaling argument again, we can assume the hidden layer parameters (wj , bj) are in S1 and
instead consider the ℓ1 norm of the output layer weights. The parameters of a network can then be
seen as a discrete signed measure on the unit sphere S1. When the width goes to infinity, a limit is
then properly defined and corresponds to a possibly continuous signed measure. Mathematically,
define M(S1) the space of signed measures µ on S1 with finite total variation ∥µ∥TV. Following the
typical construction of Bengio et al. [2005], Bach [2017], an infinite width network is parameterised
by a measure µ ∈ M(S1) as3

fµ : x 7→
∫
S1 σ(wx+ b)dµ(w, b). (1)

Similarly to Ongie et al. [2019], R(f) verifies the equality

R(f) = inf
µ∈M(S1)

∥µ∥TV such that f = fµ.

3By abuse of notation, we write both fθ and fµ, as it is clear from context whether the subscript is a vector
or a measure.
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The right term defines the F1 norm [Kurková and Sanguineti, 2001], i.e. R(f) = ∥f∥F1 . The F1

norm is intuited to be of major significance for the empirical success of neural networks. In particular,
generalisation properties of small F1 norm estimators are derived by Kurková and Sanguineti [2001],
Bach [2017], while many theoretical results support that training one hidden layer neural networks
with gradient descent often yields an implicit regularisation on the F1 norm of the estimator [Lyu
and Li, 2019, Ji and Telgarsky, 2019, Chizat and Bach, 2020, Boursier et al., 2022]. However, this
implicit regularisation of the F1 norm is not systematic and some works support that a different
quantity can be implicitly regularised on specific examples [Razin and Cohen, 2020, Vardi and
Shamir, 2021, Chistikov et al., 2023]. Still, F1 norm seems to be closely connected to the implicit
bias and its significance is the main motivation of this paper. While previous works also studied the
representational costs of functions by neural networks [Savarese et al., 2019, Ongie et al., 2019],
they did not penalise the bias term in the parameters’ norm, studying a functional norm slightly
differing from the F1 norm. This subtlety is at the origin of different levels of sparsity between the
obtained estimators with or without penalising the bias terms, as discussed in Sections 5 and 6; where
sparsity of an estimator here refers to the minimal width required for a network to represent the
function (or similarly to the cardinality of the support of µ in Equation (1)). This notion of sparsity is
more meaningful than the sparsity of the parameters θ here, since different θ (with different levels of
sparsity) can represent the exact same estimated function.

2.1 Unpenalised skip connection

Our objective is now to characterise the F1 norm of unidimensional functions and minimal norm
interpolators, which can be approximately obtained when training a neural network with norm
regularisation. The analysis and result yet remain complex despite the unidimensional setting.
Allowing for an unpenalised affine term in the neural network representation leads to a cleaner
characterisation of the norm and description of minimal norm interpolators. As a consequence, we
parameterise in the remaining of this work finite and infinite width networks as follows:

fθ,a0,b0 : x 7→ a0x+ b0 + fθ(x), and fµ,a0,b0 : x 7→ a0x+ b0 + fµ(x),

where (a0, b0) ∈ R2. The affine part a0x+ b0 actually corresponds to a free skip connection in the
neural network architecture [He et al., 2016] and allows to ignore the affine part in the representational
cost of the function f , which we now define as

R1(f) = lim
ε→0+

(
inf

m,θ∈R3m

(a0,b0)∈R2

1

2
∥θ∥22 such that |fθ,a0,b0(x)− f(x)| ≤ ε for any x ∈ [−1/ε, 1/ε]

)
.

The representational cost R1(f) is similar to R(f), but allows for a free affine term in the network
architecture. Similarly to R(f), it can be proven, following the lines of Savarese et al. [2019], Ongie
et al. [2019], that R1(f) verifies

R1(f) = inf
µ∈M(S1)
a0,b0∈R

∥µ∥TV such that f = fµ,a0,b0 .

The remaining of this work studies more closely the cost R1(f). Theorem 1 in Section 3 can be
directly extended to the cost R(f), i.e. without unpenalised skip connection. Its adapted version is
given by Theorem 4 in Appendix C for completeness.

Multiple works also consider free skip connections as it allows for a simpler analysis [e.g. Savarese
et al., 2019, Ongie et al., 2019, Debarre et al., 2022, Sanford et al., 2022]. Since a skip connection can
be represented by two ReLU neurons (z = σ(z)− σ(−z)), it is commonly believed that considering
a free skip connection does not alter the nature of the obtained results. This belief is further supported
by empirical evidence in Section 6 and Appendix B, where our findings hold true both with and
without free skip connections.

3 Representational cost

Theorem 1 below characterises the representational cost R1(f) of any univariate function.
Theorem 1. For any Lipschitz function f : R → R,

R1(f) =
∥∥∥√1 + x2f ′′

∥∥∥
TV

=

∫
R

√
1 + x2 d|f ′′|(x).
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For any non-Lipschitz function, R1(f) = ∞.

In Theorem 1, f ′′ is the distributional second derivative of f , which is well defined for Lipschitz
functions. Without penalisation of the bias terms, the representational cost is given by the total
variation of f ′′ [Savarese et al., 2019]. Theorem 1 states that penalising the biases adds a weight√
1 + x2 to f ′′. This weighting favors sparser estimators when training neural networks, as shown in

Section 5. Also, the space of functions that can be represented by infinite width neural networks with
finite parameters’ norm, when the bias terms are ignored, corresponds to functions with bounded
total variation of their second derivative. When including these bias terms in the representational
cost, second derivatives additionally require a light tail. Without a free affine term, Theorem 4 in
Appendix C characterises R(f), which yields an additional term accounting for the affine part of f .

We note that Remark 4.2 of E and Wojtowytsch [2021] and Theorem 1 by Li et al. [2020b] are closely
related to Theorems 1 and 4. However, these results only establish an equivalence between the norm
R(f) and another norm that quantifies the total variation of

√
1 + x2f ′′, aside from the affine term.

Our result, on the other hand, provides an exact equality between both norms, which proves to be
particularly useful in the analysis of minimal norm interpolators.
Example 1. If the function f is given by a finite width network f(x) =

∑n
i=1 aiσ(wix+ bi) with

ai, wi ̸= 0 and pairwise different bi
wi

; Theorem 1 yields R1(f) =
∑n
i=1 |ai|

√
w2
i + b2i . This exactly

corresponds to half of the squared ℓ2 norm of the vector (ciai, wi

ci
, bici )i=1,...,n when ci =

√√
wi+b2i
|ai| .

This vector is thus a minimal representation of the function f .

According to Theorem 1, the minimisation problem considered when training one hidden ReLU layer
infinite width neural network with ℓ2 regularisation is equivalent to the minimisation problem

inf
f

n∑
i=1

(f(xi)− yi)
2 + λ

∥∥∥√1 + x2f ′′
∥∥∥
TV

. (2)

What types of functions do minimise this problem? Which solutions does the
∥∥√1 + x2f ′′

∥∥
TV

regularisation term favor? These fundamental questions are studied in the following sections. We
show that this regularisation favors functions that can be represented by small (finite) width neural
networks. On the contrary, when the weight decay term does not penalise the biases of the neural
network, such a sparsity is not particularly preferred as highlighted by Section 6.

4 Computing minimal norm interpolator

To study the properties of solutions obtained by training data with either an implicit or explicit weight
decay regularisation, we consider the minimal norm interpolator problem

inf
θ,a0,b0

1

2
∥θ∥22 such that ∀i ∈ [n], fθ,a0,b0(xi) = yi, (3)

where (xi, yi)i∈[n] ∈ R2n is a training set. Without loss of generality, we assume in the following
that the observations xi are ordered, i.e., x1 < x2 < . . . < xn. Thanks to Theorem 1, this problem is
equivalent, when allowing infinite width networks, to

inf
f

∥∥∥√1 + x2f ′′
∥∥∥
TV

such that ∀i ∈ [n], f(xi) = yi. (4)

Lemma 1 below actually makes these problems equivalent as soon as the width is larger than some
threshold smaller than n− 1. Equation (4) then corresponds to Equation (2) when the regularisation
parameter λ is infinitely small.
Lemma 1. The problem in Equation (4) admits a minimiser. Moreover, with i0 := min{i ∈ [n]|xi ≥
0}, any minimiser is of the form

f(x) = ax+ b+
∑n−1
i=1 ai(x− τi)+

where τi ∈ (xi, xi+1] for any i ∈ {1, . . . , i0 − 2}, τi0−1 ∈ (xi0−1, xi0) and τi ∈ [xi, xi+1) for any
i ∈ {i0, . . . , n− 1}.

Lemma 1 already provides a first guarantee on the sparsity of any minimiser of Equation (4). It
indeed includes at most n− 1 kinks. In contrast, minimal norm interpolators with an infinite number
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of kinks exist when the bias terms are not regularised [Debarre et al., 2022]. An even stronger sparse
recovery result is given in Section 5. Lemma 1 can be seen as a particular case of Theorem 1 of Wang
et al. [2021]. In the multivariate case and without a free skip connection, the latter states that the
minimal norm interpolator has at most one kink (i.e. neuron) per activation cone of the weights4 and
has no more than n + 1 kinks in total. The idea of our proof is that several kinks among a single
activation cone could be merged into a single kink in the same cone. The resulting function then still
interpolates, but has a smaller representational cost.

Lemma 1 allows to only consider 2 parameters for each interval (xi, xi+1) (potentially closed at one
end). Actually, the degree of freedom is only 1 on such intervals: choosing ai fixes τi (or inversely)
because of the interpolation constraint. Lemma 2 below uses this idea to recast the minimisation
Problem (4) as a dynamic program with unidimensional state variables si ∈ R for any i ∈ [n].
Lemma 2. If x1 < 0 and xn ≥ 0, then we have for i0 = min{i ∈ [n]|xi ≥ 0} the following
equivalence of optimisation problems

min
f

∀i∈[n],f(xi)=yi

∥∥∥√1 + x2f ′′
∥∥∥
TV

= min
(si0−1,si0 )∈Λ

gi0(si0 , si0−1) + ci0−1(si0−1) + ci0(si0) (5)

where the set Λ and the functions gi and ci are defined in Equations (6) to (8) below.

Let us describe the dynamic program defining the functions ci, which characterises the minimal norm
interpolator thanks to Lemma 2. First define for any i ∈ [n−1], the slope δi :=

yi+1−yi
xi+1−xi

; the function

gi+1(si+1, si) :=

√
(xi+1(si+1 − δi)− xi(si − δi))

2
+ (si+1 − si)

2 for any (si+1, si) ∈ R2;

(6)

and the intervals Si(s) :=


(−∞, δi] if s > δi
{δi} if s = δi
[δi,+∞) if s < δi

for any s ∈ R.

The set Λ is then the union of three product spaces given by
Λ := (−∞, δi0−1)× (δi0−1,+∞) ∪ {(δi0−1, δi0−1)} ∪ (δi0−1,+∞)× (−∞, δi0−1). (7)

Finally, we define the functions ci : R → R+ recursively as c1 = cn ≡ 0 and
ci+1 : si+1 7→ min

si∈Si(si+1)
gi+1(si+1, si) + ci(si) for any i ∈ {1, . . . , i0 − 2}

ci : si 7→ min
si+1∈Si(si)

gi+1(si+1, si) + ci+1(si+1) for any i ∈ {i0, . . . , n− 1}. (8)

Equation (8) defines a dynamic program with a continuous state space. Intuitively for i ≥ i0, the
variable si accounts for the left derivative at the point xi. The term gi+1(si+1, si) is the minimal
cost (in neuron norm) for reaching the point (xi+1, yi+1) with a slope si+1, knowing that the left
slope is si at the point (xi, yi). Similarly, the interval Si(si) gives the reachable slopes5 at xi+1,
knowing the slope in xi is si. Finally, ci(si) holds for the minimal cost of fitting all the points
(xi+1, yi+1), . . . , (xn, yn) when the left derivative in (xi, yi) is given by si. It is defined recursively
by minimising the sum of the cost for reaching the next point (xi+1, yi+1) with a slope si+1, given by
gi+1(si+1, si); and the cost of fitting all the points after xi+1, given by ci+1. This recursive definition
is illustrated in Figure 1 below. A symmetric definition holds for i < i0.

The idea to derive Equation (6) is to first use Lemma 1 to get a finite representation of a minimal
function f∗. From there, the minimal cost for connecting the point (xi+1, yi+1) with (xi, yi) is done
by using a single kink in between. The restrictions given by si and si+1 then yield a unique possible
kink. Minimizing its neuron norm then yields Equation (6)
Remark 1. Equation (5) actually considers the junction of two dynamic programs: a first one
corresponding to the points with negative x values and a second one for positive values. This
separation around x = 0 is not needed for Lemma 2, but allows for a cleaner analysis in Section 5.
Lemmas 1 and 2 also hold for any arbitrary choice of i0. In particular for i0 = 1, Equation (5) would
not consider the junction of two dynamic programs anymore, but a single one.

4See Equation (21) in the Appendix for a mathematical definition.
5Here, a single kink is used in the interval [xi, xi+1], thanks to Lemma 3.
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Figure 1: Recursive definition of the dynamic program for i ≥ i0.

Remark 2. The assumption x1 < 0 and xn ≥ 0 is not fundamental, but is only required to properly
define the junction mentioned in Remark 1. If all the x values are positive (or negative by symmetry),
the analysis of the right term in Equation (5) is simplified, since there is no junction to consider. In
particular, all the results from Section 5 hold without this assumption. These results are proven in the
hardest case x1 < 0 and xn ≥ 0 in Appendix E, from which other cases can be directly deferred.

Lemma 2 formulates the minimisation of the representational cost among the interpolating functions
as a simpler dynamic program on the sequence of slopes at each xi. This equivalence is the key
technical result of this work, from which Section 5 defers many properties on the minimiser(s) of
Equation (4).

5 Properties of minimal norm interpolator

Thanks to the dynamic program formulation given by Lemma 2, this section derives key properties on
the interpolating functions of minimal representational cost. In particular, it shows that Equation (4)
always admits a unique minimum. Moreover, under some condition on the training set, this minimising
function has the smallest number of kinks among the set of interpolators.
Theorem 2. The following optimisation problem admits a unique minimiser:

inf
f

∥∥∥√1 + x2f ′′
∥∥∥
TV

such that ∀i ∈ [n], f(xi) = yi.

The proof of Theorem 2 uses the correspondence between interpolating functions and sequences of
slopes (si)i∈[n] ∈ S , where the set S is defined by Equation (23) in Appendix D.2. In particular, we
show that the following problem admits a unique minimiser:

mins∈S
∑n−1
i=1 gi+1(si+1, si). (9)

We note in the following s∗ ∈ S the unique minimiser of the problem in Equation (9). From this
sequence of slopes s∗, the unique minimising function of Equation (4) can be recovered. Moreover,
s∗ minimises the dynamic program given by the functions ci as follows:

ci+1(s
∗
i+1) = gi+1(s

∗
i+1, s

∗
i ) + ci(s

∗
i ) for any i ∈ [i0 − 2]

ci(s
∗
i ) = gi+1(s

∗
i+1, s

∗
i ) + ci+1(s

∗
i+1) for any i ∈ {i0, . . . , n− 1}.

Using simple properties of the functions ci given by Lemma 7 in Appendix E, properties on s∗ can
be derived besides the uniqueness of the minimal norm interpolator. Lemma 3 below gives a first
intuitive property of this minimiser, which proves helpful in showing the main result of the section.
Lemma 3. For any i ∈ [n], s∗i ∈ [min(δi−1, δi),max(δi−1, δi)], where δ0 := δ1 and δn := δn−1 by
convention.

A geometric interpretation of Lemma 3 is that the optimal (left or right) slope in xi is between the
line joining (xi−1, yi−1) with (xi, yi) and the line joining (xi, yi) with (xi+1, yi+1).

5.1 Recovering a sparsest interpolator

We now aim at characterising when the minimiser of Equation (4) is among the set of sparsest
interpolators, in terms of number of kinks. Before describing the minimal number of kinks required
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to fit the data in Lemma 4, we partition [x1, xn) into intervals of the form [xnk
, xnk+1

) where
n0 = 1 and for any k ≥ 0 such that nk < n,

nk+1 = min {j ∈ {nk + 1, . . . , n− 1} | sign(δj − δj−1) ̸= sign(δj−1 − δj−2)} ∪ {n}, (10)
and sign(0) := 0 by convention. If we note flin the canonical piecewise linear interpolator, it is either
convex, concave or affine on every interval [xnk−1, xnk+1

]. This partitioning thus splits the space into
convex, concave and affine parts of flin, as illustrated by Figure 2 on a toy example. This partition is
crucial in describing the sparsest interpolators, thanks to Lemma 4.
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Figure 2: Partition given by (nk)k on a toy example.

Lemma 4. If we denote by ∥f ′′∥0 the cardinality of the support of the measure f ′′,

min
f

∀i,f(xi)=yi

∥f ′′∥0 =
∑
k≥1

⌈
nk+1 − nk

2

⌉
1δnk−1 ̸=δnk

.

Lemma 4’s proof idea is that for any interval [xk−1, xk+1) where flin is convex (resp. concave) non
affine, any function requires at least one positive (resp. negative) kink to fit the three data points in
this interval. The result then comes from counting the number of such disjoint intervals and showing
that a specific interpolator exactly reaches this number.

The minimal number of kinks required to interpolate the data is given by Lemma 4. Before giving the
main result of this section, we introduce the following assumption on the data (xk, yk)k∈[n].

Assumption 1. For the sequence (nk)k defined in Equation (10):
nk+1 − nk ≤ 3 or δnk

= δnk−1 for any k ≥ 0.

Assumption 1 exactly means there are no 6 (or more) consecutive points xk, . . . , xk+5 such that
flin is convex (without 3 aligned points) or concave on [xk, xk+5]. This assumption depends a lot
on the structure of the true model function (if there is any). For example, it holds if the truth is
given by a piecewise linear function, while it may not if the truth is given by a quadratic function.
Theorem 3 below shows that under Assumption 1, the minimal cost interpolator is amongst the
sparsest interpolators, in number of its kinks.
Theorem 3. If Assumption 1 holds, then

argmin
f

∀i,f(xi)=yi

∥
√
1 + x2f ′′∥TV ∈ argmin

f
∀i,f(xi)=yi

∥f ′′∥0. (11)

Theorem 3 states conditions under which the interpolating function f with the smallest representa-
tional cost R1(f) also has the minimal number of kinks, i.e. ReLU hidden neurons, among the set of
interpolators. It illustrates how norm regularisation, and in particular adding the biases’ norm to the
weight decay, favors estimators with a small number of neurons. While training neural networks with
norm regularisation, the final estimator can actually have many non-zero neurons, but they all align
towards a few key directions. As a consequence, the obtained estimator is actually equivalent to a
small width network, meaning they have the same output for every input x ∈ R.

Recall that such a sparsity does not hold when the bias terms are not regularised. More precisely,
some sparsest interpolators have a minimal representational cost in that case, but there are also
minimal cost interpolators with an arbitrarily large (even infinite) number of kinks [Debarre et al.,
2022]. There is thus no particular reason that the obtained estimator is sparse when minimising
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the representational cost without penalising the bias terms. Section 6 empirically illustrates this
difference of sparsity in the recovered estimators, depending on whether or not the bias parameters
are penalised in the norm regularisation.

The generalisation benefit of this sparsity remains unclear. Indeed, generalisation bounds in the
literature often rely on the parameters’ norm rather than the network width (i.e., sparsity level). The
relation between sparsest and min norm interpolators is important to understand in the particular
context of implicit regularisation. In particular, while Boursier et al. [2022] conjectured that the
implicit bias for regression problem was towards min norm interpolators, Chistikov et al. [2023]
recently proved that the implicit bias could sometimes instead lead to sparsest interpolators. Our
result suggests that both min norm and sparsest interpolators often coincide, which could explain
the prior belief of convergence towards min norm interpolators. Yet, Theorem 3 and Chistikov et al.
[2023] instead suggest that, at least in some situations, implicit bias favors sparsest interpolators,
yielding different estimators6.
Remark 3. Theorem 3 states that sparse recovery, given by Equation (11), occurs if Assumption 1
holds. When nk+1 − nk ≥ 4, i.e. there are convex regions of flin with at least 6 points, Appendix A
gives a counterexample where Equation (11) does not hold. However, Equation (11) can still hold
under weaker data assumptions than Assumption 1. In particular, Appendix A gives a necessary and
sufficient condition for sparse recovery when there are convex regions with exactly 6 points. When we
allow for convex regions with at least 7 points, it however becomes much harder to derive conditions
where sparse recovery still occurs.
Remark 4. The counterexample presented in Appendix A reveals an unexpected outcome: minimal
representational cost interpolators may not necessarily belong to the sparest interpolators. This
finding is closely related to the idea that it may not be generally feasible to characterize the implicit
regularisation of gradient descent as minimising parameters norm [Vardi and Shamir, 2021, Chistikov
et al., 2023]. In particular, Vardi and Shamir [2021], Chistikov et al. [2023] rely on examples where
minimal norm interpolators are not the sparsest ones; and the implicit regularisation instead favors
the latter. We believe that this inherent limitation is one of the underlying reason for the different
implicit regularization effects observed in other settings such as matrix factorization [Gunasekar
et al., 2017, Razin and Cohen, 2020, Li et al., 2020a].

5.2 Application to classification

In the binary classification setting, max-margin classifiers, defined as the minimiser of the problem
min
f
R(f) such that ∀i ∈ [n], yif(xi) ≥ 1, (12)

are known to be the estimators of interest. Indeed, gradient descent on the cross entropy loss
l(ŷ, y) = log(1 + e−ŷy) converges in direction to such estimators [Lyu and Li, 2019, Chizat and
Bach, 2020]. Theorem 3 can be used to characterise max- margin classifiers, leading to Corollary 1.
Corollary 1.

argmin
f

∀i∈[n],yif(xi)≥1

R1(f) ⊂ argmin
f

∀i∈[n],yif(xi)≥1

∥f ′′∥0.

Theorem 3 yields that the max-margin classifier is among the sparsest margin classifiers, when a free
skip connection is allowed. We believe that the left minimisation problem admits a unique solution.
However, uniqueness cannot be directly derived from Theorem 3, but would instead require another
thorough analysis, using an adapted dynamic programming reformulation. Since the uniqueness
property is of minor interest, we here prefer to focus on a direct corollary of Theorem 3. We emphasise
that no data assumptions are required for classification tasks, apart from being univariate.

6 Experiments

This section compares, through Figure 3, the estimators that are obtained with and without counting
the bias terms in the regularisation, when training a one-hidden ReLU layer neural network. The
code is made available at github.com/eboursier/penalising_biases.

6Note that this nuance only holds for regression tasks. Instead, it is known that implicit regularisation favors
min norm interpolators in classification tasks [Chizat and Bach, 2020], which always coincide with sparsest
interpolators in that case (see Corollary 1 in Section 5.2) for univariate data.

9

github.com/eboursier/penalising_biases


For this experiment, we train neural networks by minimising the empirical loss, regularised with
the ℓ2 norm of the parameters (either with or without the bias terms) with a regularisation factor
λ = 10−3. Each neural network has m = 200 hidden neurons and all parameters are initialised i.i.d.
as centered Gaussian variables of variance 1/

√
m (similar results are observed for larger initialisation

scales).7 There is no free skip connection here, which illustrates its benignity: the results that are
expected by the above theory also happen without free skip connection. Experiments with a free skip
connection are given in Appendix B and yield similar observations.
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(a) Penalising bias terms in the ℓ2 regularisation.

−2 −1 0 1 2 3

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

f θ
(x

)

x −wj,2/wj,1

−0.4

−0.2

0.0

0.2

0.4

0.6

s j
‖w

j‖

(b) Ignoring the bias terms in the ℓ2 regularisation.

Figure 3: Final estimator when training one-hidden layer network with ℓ2 regularisation. The green
dots correspond to the data and the green line is the estimated function. Each blue star represents a
hidden neuron (wj , bj) of the network: its x-axis value is given by −bj/wj , which coincides with
the position of the kink of its associated ReLU; its y-axis value is given by the output weight aj .

As predicted by our theoretical study, penalising the bias terms in the ℓ2 regularisation enforces the
sparsity of the final estimator. The estimator of Figure 3a indeed counts 2 kinks (the smallest number
required to fit the data), while in Figure 3b, the directions of the neurons are scattered. More precisely,
the estimator is almost smooth near x = −0.5, while the sparse estimator of Figure 3a is clearly not
differentiable at this point. Also, the estimator of Figure 3b includes a clear additional kink at x = 0.
Figure 3 thus illustrates that counting the bias terms in regularisation can lead to sparser estimators.

7 Conclusion

This work studies the importance of parameters’ norm for one hidden ReLU layer neural networks
in the univariate case. In particular, the parameters’ norm required to represent a function is given
by
∥∥√1 + x2f ′′

∥∥
TV

when allowing for a free skip connection. In comparison to weight decay,
which omits the bias parameters in the norm, an additional

√
1 + x2 weighting term appears in

the representational cost. This weighting is of crucial importance since it implies uniqueness of
the minimal norm interpolator. Moreover, it favors sparsity of this interpolator in number of kinks.
Minimising the parameters’ norm (with the biases), which can be either obtained by explicit or
implicit regularisation when training neural networks, thus leads to sparse interpolators. We believe
this sparsity is a reason for the good generalisation properties of neural networks observed in practice.

Although these results provide some understanding of minimal norm interpolators, extending them to
more general and difficult settings remains open. Even if the representational cost might be described
in the multivariate case [as done by Ongie et al., 2019, without bias penalisation], characterising
minimal norm interpolators seems very challenging in that case. Characterising minimal norm
interpolators, with no free skip connection, also presents a major challenge for future work.

7For small initialisations, both methods yield sparse estimators, since implicit regularisation of the bias terms
is significant in that case. Our goal is only to illustrate the differences in the minimisers of the two problems
(with and without bias penalisation), without any optimisation consideration.
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A Discussing Assumption 1

Theorem 3 requires Assumption 1, which assumes that there are no convex (or concave) regions of
flin with at least 6 data points. Actually, when there is a convex (or concave) region with exactly 6
data points, i.e. nk+1 = nk + 4, Theorem 3 holds (for this region) if and only if for i = nk + 1:

⟨ui, wi−1⟩⟨ui+1, wi+1⟩
∥wi−1∥ ∥wi+1∥

− ⟨ui, ui+1⟩ ≤
√

∥ui∥2 −
⟨ui, wi−1⟩2
∥wi−1∥2

√
∥ui+1∥2 −

⟨ui+1, wi+1⟩2
∥wi+1∥2

(13)

where ui = (xi, 1); wi−1 =
δi − δi−1

δi − δi−2
(xi, 1) +

δi−1 − δi−2

δi − δi−2
(xi−1, 1);

and ui+1 = (xi+1, 1); wi+1 =
δi+2 − δi+1

δi+2 − δi
(xi+2, 1) +

δi+1 − δi
δi+2 − δi

(xi+1, 1).

The proof of this result (omitted here) shows that the problem
min

(si,si+1)∈[δi−1,δi]×[δi,δi+1]
gi(si, s

∗
i−1) + gi+1(si+1,si) + gi+2(s

∗
i+2, si+1)

is minimised for (si, si+1) = (δi, δi) if and only if Equation (13) holds, which corresponds to the
(unique) sparsest way to interpolate the data on this convex region. To show that the minimum
is reached at that point, we can first notice that s∗i−1 = δi−2 and s∗i+2 = δi+2. Then, it requires
a meticulous study of the directional derivatives of the (convex but non-differentiable) objective
function at the point (δi, δi).

Figure 4 below illustrates a case of 6 data points, where the condition of Equation (13) does not hold.
Clearly, the minimal norm interpolator differs from the (unique) sparsest interpolator in that case.
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min norm

sparsest

Figure 4: Case of difference between minimal norm interpolator and sparsest interpolator.

When considering more than 6 points, studying the minimisation problem becomes cumbersome
and no simple condition of sparse recovery can be derived. When generating random data with
large convex regions, e.g. 35 points, the minimal norm interpolator is rarely among the sparsest
interpolators. Moreover, it seems that its number of kinks could be arbitrarily close to 34, which is
the trivial upper bound of the number of kinks given by Lemma 3; while the sparsest interpolators
only have 17 kinks.

B Additional experiments

Figure 5 shows the minimiser of Equation (4) on the toy example of Figure 2. The minimising
function is computed thanks to the dynamic program given by Lemma 2. Although the variables of
this dynamic program are continuous, we can efficiently solve it by approximating the constraint
space of each slope si as a discrete grid of [δi−1, δi] thanks to Lemma 3. For the data used in Figure 5,
Assumption 1 holds. It is clear that the minimiser is very sparse, counting only 4 kinks. The partition
given by Figure 2 then shows that this is indeed the smaller possible number of kinks, thanks to
Lemma 4. On the other hand, the canonical piecewise linear interpolator flin is is not as sparse and
counts 7 kinks here.
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Figure 5: Minimiser of Equation (4) on a toy data example.

Figure 6 considers the exact same setting as Figure 3 in Section 6. The only difference is that we here
allow a free skip connection in the neural network architecture, which represents the setting exactly
described by Theorem 3.
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(a) Final estimator when penalising bias terms in
the ℓ2 regularisation.
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(b) Final estimators when training one-hidden
ReLU neural networks with ℓ2 regularisation and
a free skip connection.

Figure 6: Final estimators when training one-hidden ReLU neural networks with ℓ2 regularisation.
The green dots correspond to the data, while the green line is the estimated function. Each blue
star represents a hidden neuron (wj , bj) of the network: its x-axis value is given by −bj/wj , which
coincides with the position of the kink of its associated ReLU; its y-axis value is given by the output
layer weight aj .

Similar observations can be made: the obtained estimator when counting the bias terms in regular-
isation only has 2 kinks, while the estimator obtained by omitting the biases in the regularisation
is much smoother (and thus much less sparse in the number of kinks). The only difference is that
the latter estimator here does not have a clear kink at x = 0, but is instead even smoother on the
interval [−0.5, 0]. This is explained by the presence of more scattered kinks in this interval. Despite
this slight difference, the main observation remains unchanged: the estimator is a sparsest one when
counting the bias terms, while it counts a lot of kinks (and is even smooth) when omitting the biases.

C Proofs of Section 3

Theorem 4 below extends the characterisation of the representational cost R1(f) of Theorem 1.
Theorem 4. For any Lipschitz function f : R → R,

R1(f) =
∥∥∥√1 + x2f ′′

∥∥∥
TV

=

∫
R

√
1 + x2 d|f ′′|(x)

and R(f) =
∥∥∥√1 + x2f ′′

∥∥∥
TV

+D(xf , Cf ),
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where

xf =

(
f ′(+∞) + f ′(−∞), f(0)−

∫
R
|x|df ′′(x)

)
Cf =

{∫
R
φ(x)df ′′(x),−

∫
R
xφ(x)df ′′(x) | ∥φ∥∞ ≤ 1

}
D(xf , Cf ) = inf

x∈Cf

∥x− xf∥.

For any non-Lipschitz function, R1(f) = R(f) = +∞.

Proof. We only prove the equality onR(f) here. The other part of Theorem 4 can be directly deduced
from this proof. First assume that R(f) is finite. We can then consider some µ ∈ M(S1) such
that for any x ∈ R, f(x) =

∫
S1 σ(wx + b)dµ(w, b). Note that f is necessarily ∥µ∥TV-Lipschitz,

which proves the second part of Theorem 4. Without loss of generality, we can parameterise S1 on
θ ∈ [−π

2 ,
3π
2 ) with T−1(θ) = (cos θ, sin θ). If we note ν = T#µ the pushforward measure of µ

by T , we then have

f(x) =

∫ 3π
2

−π
2

σ(x cos θ + sin θ)dν(θ). (14)

Since the total variation of µ and thus ν is bounded, we can derive under the integral sign:

f ′(x) =

∫ 3π
2

−π
2

cos θ1x cos θ+sin θ≥0dν(θ).

Now note that x cos θ+sin θ ≥ 0 if and only if θ ∈ [− arctan(x), π−arctan(x)] since θ ∈ [−π
2 ,

3π
2 ),

i.e.

f ′(x) =

∫ π−arctan x

− arctan x

cos θdν(θ).

When deriving this expression over x, we finally get for the distribution f ′′

df ′′(x) = −cos (π − arctan(x)) dν (π − arctan(x))− cos (− arctan(x)) dν (− arctan(x))

1 + x2

=
cos(arctan(x))(dν (π − arctan(x)) + dν (− arctan(x)))

1 + x2
.

This equality is straightforward for continuous distributions ν. Extending it to any distribution
ν requires some extra work but can be obtained following the typical definition of distributional
derivative.

Defining ν+(θ) = ν(θ) + ν(π + θ) for any θ ∈ [−π
2 ,

π
2 ) and noting that cos(arctanx) = 1√

1+x2
,

∀x ∈ R,
√
1 + x2df ′′(x) =

dν+(− arctan(x))

1 + x2
.

Or equivalently, for any θ ∈ (−π
2 ,

π
2 )

df ′′(− tan θ)

cos θ
= cos2(θ) dν+(θ). (15)

Similarly to the proof of Savarese et al. [2019], f ′′ fixes ν+ and the only degree of freedom is on
ν⊥(θ) := ν(θ)− ν(π + θ). The proof now determines which valid ν⊥ minimises ∥µ∥TV = ∥ν∥TV.
Equation (14) implies the following condition on ν⊥

f(x) =
1

2

∫ π
2

−π
2

σ(−x cos θ − sin θ)d(ν+ + ν⊥)(θ) +
1

2

∫ π
2

−π
2

σ(x cos θ + sin θ)d(ν+ − ν⊥)(θ)

=
1

2

∫ π
2

−π
2

|x cos θ + sin θ|dν+(θ) +
x

2

∫ π
2

−π
2

cos θdν⊥(θ) +
1

2

∫ π
2

−π
2

sin θdν⊥(θ).

While ν+ is given by f ′′, ν⊥ holds for affine part of f . The above equality directly leads to the
following condition on ν⊥{∫ π

2

−π
2
cos θ dν⊥(θ) = f ′(+∞) + f ′(∞)∫ π

2

−π
2
sin θ dν⊥(θ) = f(0)−

∫ π
2

−π
2
| sin θ|dν+(θ)

. (16)
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Now note that 2 ∥µ∥TV = ∥ν+ + ν⊥∥TV + ∥ν+ − ν⊥∥TV, so that R(f) is given by

2R(f) = min
ν⊥

∥ν+ + ν⊥∥TV + ∥ν+ − ν⊥∥TV such that ν⊥ verifies Equation (16).

Lemma 5 below then implies8

R(f) = ∥ν+∥TV +D(xf , Cf ),
where xf and Cf are defined in Theorem 4. Equation (15) leads with a simple change of variable
when R(f) is finite to

R(f) =
∥∥∥√1 + x2f ′′

∥∥∥
TV

+D(xf , Cf ).

Reciprocally, when
∥∥√1 + x2f ′′

∥∥
TV

is finite, we can define ν+ as in Equation (15) and ν⊥ as a sum
of Diracs in −π

2 and 0 verifying Equation (16). The corresponding µ is then of finite total variation,
implying that R(f) is finite. This ends the proof of the first part of Theorem 4:

R(f) =
∥∥∥√1 + x2f ′′

∥∥∥
TV

+D(xf , Cf ).

For R1(f), the analysis is simpler since there is no constraint on ν⊥, whose optimal choice is then
given by ν⊥ = 0.

Lemma 5. The minimisation program

min
ν⊥

∫ π
2

−π
2

d|ν+ + ν⊥|+
∫ π

2

−π
2

d|ν+ − ν⊥|

such that

(∫ π/2

−π/2
cos θ dν⊥(θ),

∫ π/2

−π/2
sin θ dν⊥(θ)

)
= (a, b)

(17)

is equivalent to

2

∫ π
2

−π
2

d|ν+|+ 2min
u∈C

∥(a, b)− u∥,

where C =

{(∫ π
2

−π
2

cos(θ)φ(θ)dν+(θ),

∫ π
2

−π
2

sin(θ)φ(θ)dν+(θ)

)
| ∥φ∥∞ ≤ 1

}
.

(18)

Proof. For any ν⊥ in the constraint set of Equation (17), we can use a decomposition ν⊥ = φν++µ2

where ∥φ∥∞ ≤ 1. It then comes pointwise
|ν+ + ν⊥|+ |ν+ − ν⊥| ≤ 2|µ2|+ |(1 + φ)ν+|+ |(1− φ)ν+| (19)

= 2|µ2|+ 2|ν+|.
As a consequence, if we note v the infimum given by Equation (17):

v ≤ 2

∫ π
2

−π
2

d|ν+|+ 2 min
(φ,µ2)∈Γ

∫ π
2

−π
2

d|µ2|,

where

Γ =

{
(φ, µ2)

∣∣∣ ∥φ∥∞ ≤ 1 and
∫ π/2

−π/2
(cos θ, sin θ) (φ(θ)dν+(θ) + dµ2(θ)) = (a, b)

}
.

Moreover for a fixed ν⊥, we can choose (φ, µ2) as:{
φ = sign(dν⊥dν+

)min
(∣∣∣dν⊥dν+

∣∣∣ , 1) ,
µ2 = ν⊥ − φν+,

where dν⊥
dν+

denotes by abuse of notation the Radon-Nikodym derivative dνa
dν+

, with the Lebesgue
decomposition ν⊥ = νa + νs with νa ≪ ν+ and νs ⊥ ν+. For this choice, Equation (19) becomes
an equality, which directly implies that

v = 2

∫ π
2

−π
2

d|ν+|+ 2 min
(φ,µ2)∈Γ

∫ π
2

−π
2

d|µ2|.

8A change of variable is also necessary to observe that the min of Lemma 5 is equal to D(xf , Cf ).

17



It now remains to prove that min
u∈C

∥(a, b)− u∥2 = min
(φ,µ2)∈Γ

∫ π
2

−π
2
d|µ2|. Fix in the following φ such

that ∥φ∥∞ ≤ 1 and note {
x = a−

∫ π/2
−π/2 cos θ φ(θ)dν+(θ),

y = b−
∫ π/2
−π/2 sin θ φ(θ)dν+(θ).

It now suffices to show that for any fixed φ:

min
µ2 s.t. (φ,µ2)∈Γ

∫ π
2

−π
2

d|µ2| = ∥(x, y)∥ .

The constraint set is actually
{
µ2 |

∫ π/2
−π/2(cos θ, sin θ) dµ2(θ) = (x, y)

}
. Now define

θ∗ = arcsin

(
sign(x)y√
x2 + y2

)
and µ∗

2 = sign(x)
√
x2 + y2δθ∗ ,

where δθ∗ is the Dirac distribution located at θ∗. This definition is only valid if x ̸= 0, otherwise we
choose µ∗

2 = −yδ−π
2

.

Note that µ∗
2 is in the constraint set and

∫ π
2

−π
2
d|µ2| = ∥(x, y)∥, i.e.

min
µ2 s.t. (φ,µ2)∈Γ

∫ π
2

−π
2

d|µ2| ≤ ∥(x, y)∥ .

Now consider any µ2 in the constraint set and decompose µ2 = µ+
2 − µ−

2 with (µ+
2 , µ

−
2 ) ∈

M+([−π
2 ,

π
2 ))

2. Define

(x+, y+) =

(∫ π
2

−π
2

cos θ dµ+
2 ,

∫ π
2

−π
2

sin θ dµ+
2

)

(x−, y−) =

(∫ π
2

−π
2

cos θ dµ−
2 ,

∫ π
2

−π
2

sin θ dµ−
2

)
By Cauchy-Schwarz inequality,∫

cos2(θ) dµ+
2 (θ)

∫
dµ+

2 (θ) ≥ x2+,∫
sin2(θ) dµ+

2 (θ)

∫
dµ+

2 (θ) ≥ y2+.

Summing these two inequalities yields∫
dµ+

2 ≥
√
x2+ + y2+.

Similarly, we have ∫
dµ−

2 ≥
√
x2− + y2−.

Recall that
∫
d|µ2| =

∫
dµ+

2 +
∫
dµ−

2 . By triangle inequality, this yields:∫
d|µ2| ≥ ∥(x+, y+)∥+ ∥(x−, y−)∥

≥ ∥(x+, y+)− (x−, y−)∥ = ∥(x, y)∥.
As a consequence:

min
µ2 s.t. (φ,µ2)∈Γ

∫ π
2

−π
2

d|µ2| ≥ ∥(x, y)∥ .

We finally showed that

min
µ2 s.t. (φ,µ2)∈Γ

∫ π
2

−π
2

d|µ2| =
∥∥∥∥∥(a, b)−

(∫ π/2

−π/2
cos θ φ(θ)dν+(θ),

∫ π/2

−π/2
sin θ φ(θ)dν+(θ)

)∥∥∥∥∥ .
This leads to Lemma 5 when taking the infimum over φ.
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D Proof of Section 4

D.1 Proof of Lemma 1

We first need to show the existence of a minimum. Using the definition of R1(f) and Theorem 1,
Equation (4) is equivalent to

inf
µ,a,b

∥µ∥TV such that for any i ∈ [n], fµ,a,b(xi) = yi. (20)

Consider a sequence (µj , aj , bj)j such that fµj ,aj ,bj (xi) = yi for any i and j and ∥µj∥TV converges
to the infimum of Equation (20). The sequence ∥µj∥TV is necessarily bounded. This also implies that
both (aj) and (bj) are bounded9. Since the space of finite signed measures on S1 is a Banach space,
there is a subsequence converging weakly towards some (µ, a, b). By weak convergence, (µ, a, b) is
in the constraints set of Equation (20) and ∥µ∥TV = limj ∥µj∥TV. (µ, a, b) is thus a minimiser of
Equation (20). We thus proved the existence of a minimum for Equation (4), which is reached for
fµ,a,b.

Define for the sake of the proof the activation cones Ci as
C0 =

{
θ ∈ R2 | ∀i = 1, . . . , n, ⟨θ, (xi, 1)⟩ ≥ 0

}
,

Ci =
{
θ ∈ R2 | ⟨θ, (xi+1, 1)⟩ ≥ 0 > ⟨θ, (xi, 1)⟩

}
for any i = 1, . . . , i0 − 2,

Ci0−1 =
{
θ ∈ R2 | ⟨θ, (xi0 , 1)⟩ > 0 > ⟨θ, (xi0−1, 1)⟩

}
,

Ci =
{
θ ∈ R2 | ⟨θ, (xi+1, 1)⟩ > 0 ≥ ⟨θ, (xi, 1)⟩

}
for any i = i0, . . . , n− 1,

Cn =
{
θ ∈ R2 \ {0} | ∀i = 1, . . . , n, ⟨θ, (xi, 1)⟩ ≤ 0⟩

}
.

(21)

As the xi are ordered, note that (C0, C1,−C1, . . . , Cn−1,−Cn−1, Cn) forms a partition of R2. To
prove Lemma 1, it remains to show that any minimiser (µa, b) of Equation (20) has a function fµ,a,b
of the form

fµ,a,b(x) = ãx+ b̃+

n−1∑
i=1

ãiσ(⟨θi, (x, 1)⟩) where θi ∈ Ci.

Let f be a minimiser of Equation (4). Let µ, a, b be a minimiser of Equation (20) such that fµ,a,b = f .
Define µ̃, ã, b̃ as

dµ̃(θ) =


dµ(θ) + dµ(−θ) for θ ∈ Ci for any i = 1, . . . , n− 1

0 for θ ∈ −Ci for any i = 1, . . . , n− 1

dµ(θ) otherwise,

ã = a−
n−1∑
j=1

∫
−Cj

θ1dµ(θ),

b̃ = b−
n−1∑
j=1

∫
−Cj

θ2dµ(θ).

Thanks to the identity σ(u)− u = σ(−u), fµ,a,b = fµ̃,ã,b̃. Moreover, ∥µ̃∥TV ≤ ∥µ∥TV, so we can
assume w.l.o.g. that the support of µ is included10 in

⋃n
i=0 Ci. In that case, for any i =, 1 . . . , n

f(xi) = axi + b+

i−1∑
j=0

∫
Cj

⟨θ, (xi, 1)⟩dµ(θ)

= axi + b+

i−1∑
j=0

⟨
∫
Cj

θdµ(θ), (xi, 1)⟩. (22)

9To see that, we can first consider the difference fµj ,aj ,bj (x1)−fµj ,aj ,bj (x2) to show that (aj)j is bounded.
This then leads to the boundedness of (bj)j when considering fµj ,aj ,bj (x1).

10We here transform the triple (µ, a, b), but the corresponding function f remains unchanged.
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First, the reduction

ã = a+

∫
C0

θ1dµ(θ)

b̃ = b+

∫
C0

θ2dµ(θ)

µ̃ = µ|
⋃n−1

i=1 Ci
,

does not increase the total variation of µ and still interpolates the data. As a consequence, the support
of µ is included in

⋃n−1
i=1 Ci. Now let µ = µ+ − µ− be the Jordan decomposition of µ and define for

any i ∈ [n− 1]

αi =

∫
Ci

θdµ+(θ) and βi =

∫
Ci

θdµ−(θ).

Note that αi and βi are both in the positive convex cone Ci. For θi := αi−βi, Equation (22) rewrites

f(xi) = axi + b+

i−1∑
j=1

⟨θi, (xi, 1)⟩.

If θi ∈ Ci ∪ −Ci, we can then define
µ̃ = µ− µ|Ci

+ ∥θi∥δ θi
∥θi∥

.

Thanks to Equation (22), the function fµ̃,a,b still interpolates the data and

∥µ̃∥TV ≤ ∥µ∥TV −
∥∥µ|Ci

∥∥
TV

+ ∥θi∥.
By minimisation of ∥µ∥TV, this is an equality. Moreover as µ is a measure on the sphere,∥∥µ|Ci

∥∥
TV

=

∫
Ci

∥θ∥dµ+(θ) +

∫
Ci

∥θ∥dµ−(θ)

≥
∥∥∥∥∫

Ci

θdµ+(θ)

∥∥∥∥+ ∥∥∥∥∫
Ci

θdµ−(θ)

∥∥∥∥
= ∥αi∥+ ∥βi∥ ≥ ∥θi∥.

By minimisation, all inequalities are equalities. Jensen’s case of equality implies for the first inequality
that both µ+ |Ci

and µ− |Ci
are Diracs, while the second inequality implies that either αi = 0 or

βi = 0. Overall, µ|Ci
is at most a single Dirac.

Now if θi ̸∈ Ci ∪ −Ci, assume first that ⟨θi, (xi+1, 1)⟩ > 0. This implies ⟨θi, (xi, 1)⟩ > 0 since

θi ̸∈ Ci ∪ −Ci. This then implies that either αi ∈
◦
Ci or βi ∈

◦
Ci, depending on whether i ≥ i0 or

i < i0. Assume first that βi ∈
◦
Ci (i ≥ i0) and define
t = sup

{
t′ ∈ [0, 1] | t′αi − βi ∈ −Ci

}
.

By continuity, tαi − βi ∈ −Ci. Moreover 0 < t < 1 , since βi ∈
◦
Ci and θi ̸∈ −Ci. We now define

µ̃ = µ− µ|Ci
+ (1− t)∥αi∥δ αi

∥αi∥
+ ∥tαi − βi∥δ tαi−βi

∥tαi−βi∥
.

The function fµ̃,a,b still interpolates the data. Similarly to the case θi ∈ Ci ∪ −Ci, the minimisation
of ∥µ∥TV implies that µ|Ci

is at most a single Dirac.

If αi ∈
◦
Ci instead, similar arguments follow defining

t = sup
{
t′ ∈ [0, 1] | αi − t′βi ∈ Ci

}
.

Symmetric arguments also hold if ⟨θi, (xi+1, 1)⟩ < 0. In any case, µ|Ci
is at most a single Dirac.

This holds for any i = 1, . . . , n− 1, which finally leads to Lemma 1.

D.2 Proof of Lemma 2

Before proving Lemma 2, let us show a one to one mapping from the parameterisation given by
Lemma 1 to a parameterisation given by the sequences of slopes in the points xi. Let us define the
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sets

S =

{
(s1, . . . , sn) ∈ Rn |∀i = 1, . . . , i0 − 2, si ∈ Si(si+1),

(si0−1, si0) ∈ Λ and ∀i = i0, . . . , n− 1, si+1 ∈ Si(si)

} (23)

and

I =

{
(a, b, (ai, τi)i=1,...,n−1) |∀j = 1, . . . , n, axj + b+

n−1∑
i=1

ai(xj − τi)+ = yj , τi0−1 ∈ (xi0−1, xi0),

τi =
xi + xi+1

2
if ai = 0, ∀i ∈ {1, . . . , i0 − 2}, τi ∈ (xi, xi+1]

and ∀i ∈ {i0, . . . , n− 1}, τi ∈ [xi, xi+1)

}
.

The condition τi = xi+xi+1

2 if ai = 0 in the definition of I is just to avoid redundancy, as any
arbitrary value of τi would yield the same interpolating function. Lemma 6 below gives a one to one
mapping between these two sets.
Lemma 6. The function

ψ :
I → S
(a0, b0, (ai, τi)i=1,...,n−1) 7→ (

∑i−1
j=0 aj)i=1,...,n−1

is a one to one mapping. Its inverse is given by

ψ−1 :
S → I
(si)i∈[n] 7→ (a0, b0, (ai, τi)i∈[n−1])

where
a0 = s1; b0 = y1 − s1x1; ai = si+1 − si for any i ∈ [n− 1];

τi =

{
si+1−δi
si+1−sixi+1 +

δi−si
si+1−sixi if si+1 ̸= si

xi+xi+1

2 otherwise
.

Proof. For (a0, b0, (ai, τi)i=1,...,n−1) ∈ I, let f be the associated interpolator:

f(x) = a0x+ b0 +

n−1∑
i=1

ai(x− τi)+

and let (si)i∈[n] = ψ(a0, b0, (ai, τi)i). Given the definition of ψ, it is straightforward to check that
si corresponds to the left (resp. right) derivative of f at xi ≥ 0 (resp. xi < 0). We actually have the
two following inequalities linking the parameters (a0, b0, (ai, τi)i) and (si)i for any i ∈ [n− 1]:

si + ai = si+1,

yi + si(xi+1 − xi) + ai(xi+1 − τi) = yi+1.

The first equality comes from the (left or right) derivatives of f in xi, while the second equality is
due to the interpolation of the data by f . These two equalities imply that an interpolator with ReLU
parameters in I (i.e., f ) can be equivalently described by its (left or right) derivatives in each xi. A
straightforward computation then allows to show that ψ and ψ−1 are well defined and indeed verify
ψ ◦ ψ−1 = IS and ψ−1 ◦ ψ = II .

Using this bijection from I to S, we can now prove Lemma 2. Note for the remaining of the proof
α = min f

∀i∈[n],f(xi)=yi

∫
R
√
1 + x2d|f ′′(x)|. Thanks to Lemma 1, we have the first equivalence:

α = min
(a0,b0,(ai,τi)i=1,...,n−1)∈I

n−1∑
i=1

|ai|
√
1 + τ2i .

For any (a0, b0, (ai, τi)i=1,...,n−1) ∈ I, we can define thanks to Lemma 6 (si)i =
ψ(a0, b0, (ai, τi)i) ∈ S. We then have (a0, b0, (ai, τi)i) = ψ−1((si)i). Moreover, by definition
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of ψ−1, we can easily check that

|ai|
√
1 + τ2i =

√
a2i + (aiτi)2

=
√
(si+1 − si)2 + ((si+1 − δi)xi+1 + (si − δi)xi)2

= gi+1(si+1, si). (24)
As ψ is a one to one mapping, we have for any function h the equivalence minu∈ψ−1(S) h(u) =

mins∈S h(ψ
−1(s)). In particular, thanks to Equation (24):

min
(a0,b0,(ai,τi)i=1,...,n−1)∈I

n−1∑
i=1

|ai|
√

1 + τ2i = min
(si)i∈S

n−1∑
i=1

gi+1(si+1, si). (25)

From there, define for any i ≥ i0,

di(si) = min
(s̃)j∈S

s.t. s̃i=si

n−1∑
j=i

gj+1(s̃j+1, s̃j);

and for any i < i0

di(si) = min
(s̃)j∈S

s.t. s̃i=si

i−1∑
j=1

gj+1(s̃j+1, s̃j).

Obviously, we have from Equation (25) and the definition of S that
α = min

(si0−1,si0 )∈Λ
gi0(si0 , si0−1) + di0−1(si0−1) + di0(si0). (26)

It now remains to show by induction that for any i that ci = di. This is obviously the case for i = n.
Let us now consider i ∈ {i0, . . . , n− 1}. The definition of di leads to

di(si) = min
(s̃)j∈S

s.t. s̃i=si

n−1∑
j=i

gj+1(s̃j+1, s̃j)

= min
si+1∈Si(si)

min
(s̃)j∈S

s.t. s̃i=si
s̃i+1=si+1

gi+1(si+1, si) +

n−1∑
j=i+1

gj+1(s̃j+1, s̃j)

= min
si+1∈Si(si)

gi+1(si+1, si) + min
(s̃)j∈S

s.t. s̃i=si
s̃i+1=si+1

n−1∑
j=i+1

gj+1(s̃j+1, s̃j). (27)

Now note that for any si+1 ∈ Si(si), we have the equality of the sets{
(s̃j)j≥i+1 | (s̃)j∈[n−1] ∈ S s.t. s̃i = si and s̃i+1 = si+1

}
=
{
(s̃j)j≥i+1 | (s̃)j∈[n−1] ∈ S s.t. s̃i+1 = si+1

}
Since the last term in Equation (27) only depends on (s̃j)j≥i+1, this implies that

di(si) = min
si+1∈Si(si)

gi+1(si+1, si) + min
(s̃)j∈S

s.t. s̃i+1=si+1

n−1∑
j=i+1

gj+1(s̃j+1, s̃j)

= min
si+1∈Si(si)

gi+1(si+1, si) + di+1(si+1).

By induction, it naturally comes from the definition of ci that ci = di for any i ≥ i0. Symmetric
arguments hold for any i < i0, which finally gives ci = di for any i ∈ [n]. Equation (26) then yields
Lemma 2.

22



E Proof of Section 5

The proofs of this section are shown in the case where x1 < 0 and xn ≥ 0. When all the x are
positive, i.e., x1 ≥ 0, the adapted version of Lemma 2 would yield for i0 = 1 the equivalence11

min
f

∀i∈[n],f(xi)=yi

∫
R

√
1 + x2d|f ′′(x)| = min

si0∈R
ci0(si0).

The proofs of Appendix E can then be easily adapted to this case (and similarly if xn < 0).
Appendix E.5 at the end of the section more precisely states how to adapt them to this case.

E.1 Proof of Theorem 2

Before proving Theorem 2, Lemma 7 below provides important properties verified by the functions
ci defined in Equation (8).

Lemma 7. For each i ∈ {i0, . . . , n − 1}, the function ci is convex,
√
1 + x2i -Lipschitz on R and

minimised for si = δi.
Moreover, on both intervals (−∞, δi] and [δi,+∞):

1. either ci(si) =
√
1 + x2i |si − δi| + ci+1(δi) for all si in the considered interval, or ci is

strictly convex on the considered interval;

2. |ci(si)− ci(s
′
i)| ≥ 1+xixi+1√

1+x2
i+1

|si − s′i| for all si, s′i in the considered interval.

Similarly, for each i ∈ {1, . . . , i0 − 2}, the function ci+1 is convex,
√
1 + x2i+1-Lipschitz on R and

and minimised for si+1 = δi.
Moreover, on both intervals (−∞, δi] and [δi,+∞):

1. either ci+1(si+1) =
√
1 + x2i+1|si+1 − δi|+ ci(δi) for all si+1 in the considered interval,

or ci+1 is strictly convex on the considered interval;

2. |ci+1(si+1) − ci+1(s
′
i+1)| ≥ 1+xixi+1√

1+x2
i

|si+1 − s′i+1| for all si+1, s
′
i+1 in the considered

interval.

Proof. For any i ∈ {1, . . . , i0 − 2}, we prove the result by (backward) induction. Since cn = 0, a
straightforward calculation gives12

cn−1(sn−1) =
√

1 + x2n−1|sn−1 − δn−1|,
which gives the wanted properties for i = n− 1.

Now consider i ∈ {i0, . . . , n−2} such that ci+1 verifies all the properties in the first part of Lemma 7.
We first show the Lipschitz property of ci. Let si, s′i < δi first. By inductive assumption, the function
si+1 7→ gi+1(si+1, si) + ci+1(si+1) reaches a minimum on [δi,+∞). Consider si+1 ≥ δi such that

ci(si) = gi+1(si+1, si) + ci+1(si+1).

Also by minimisation, ci(s′i) ≤ gi+1(si+1, s
′
i) + ci+1(si+1). For the vectors u = (xi+1, 1) and

v = (xi, 1), it then holds:
ci(s

′
i)− ci(si) ≤ gi+1(si+1, s

′
i)− gi+1(si+1, si)

= ∥(si+1 − δi)u− (s′i − δi)v∥ − ∥(si+1 − δi)u− (si − δi)v∥

≤ ∥(si − s′i)v∥ =
√
1 + x2i |si − s′i|.

The first equality comes from the definition of gi+1 as a norm and the second inequality comes from
the triangle inequality. By symmetry, we showed |ci(s′i)− ci(si)| ≤

√
1 + x2i |si− s′i| for si, s′i < δi.

11Note that in that case c1 ̸≡ 0. Instead, c1 is defined through the recursion given in Equation (8).
12This calculation uses the fact that both xn−1 and xn are positive, which implies that the minimal sn in the

definition of cn−1 is δn−1
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Note that if si = δi, then si+1 = δi and we show similarly that ci(s′i)− ci(δi) ≤
√

1 + x2i |δi − s′i|.
Moreover,

ci(s
′
i)− ci(δi) = min

s′i+1≥δi
∥(s′i+1 − δi)u− (s′i − δi)v∥+ ci+1(s

′
i+1)− ci+1(δi)

≥ min
s′i+1≥δi

∥(s′i+1 − δi)u− (s′i − δi)v∥ − ∥(s′i+1 − δi)u∥

≥ 0.

The first inequality comes from the Lipschitz property of ci+1. The second from the fact that
(s′i+1 − δi)u and (s′i − δi)v are negatively correlated, since xi and xi+1 are both positive. As a
consequence, ci is

√
1 + x2i -Lipschitz on (−∞, δi]. Symmetrically, it is also

√
1 + x2i -Lipschitz on

[δi,+∞), which finally implies it is
√
1 + x2i -Lipschitz on R. Moreover, the last calculation also

shows that ci is minimised for si = δi.

Let us now show that ci verifies the first point on (−∞, δi]. By continuity, we only have to show it
on (−∞, δi). Let si ∈ (−∞, δi), we then have by definition

ci(si) = min
si+1≥δi

gi+1(si+1, si) + ci+1(si+1).

If δi+1 ≤ δi, note that both functions gi+1(·, si) and ci+1 are increasing on [δi,+∞)13. The minimum
is thus reached for si+1 = δi and

ci(si) =
√
1 + x2i |si − δi|+ ci+1(δi).

If δi+1 > δi, both functions gi+1(·, si) and ci+1 are increasing on [δi+1,+∞). As a consequence,
we can then rewrite

ci(si) = min
si+1∈[δi,δi+1]

gi+1(si+1, si) + ci+1(si+1). (28)

Assume first that ci+1(si+1) =
√

1 + x2i+1|si+1 − δi+1| + ci+2(δi+1) on [δi, δi+1]. By triangle
inequality, we actually have

gi+1(si+1, si) ≥ gi+1(δi+1, si)−
√
1 + x2i+1|δi+1 − si+1|.

This leads for si+1 ∈ [δi, δi+1] to
gi+1(si+1, si) + ci+1(si+1) ≥ gi+1(δi+1, si) + ci+2(δi+1).

The minimum in Equation (28) is thus reached for si+1 = δi+1, which finally gives for any si ≤ δi
ci(si) = gi+1(δi+1, si) + ci+2(δi+1).

Since δi+1 > δi, it is easy to check that gi+1(δi+1, ·) is strictly convex on (−∞, δi) and so is ci.

Let us now assume the last case, where ci+1 is strictly convex on [δi, δi+1]. By contradiction, assume
that the first point on (−∞, δi] does not hold. Note in the following h(si+1, si) = gi+1(si+1, si) +
ci+1(si+1). For si, s′i < δi, by continuity of h, let si+1, s

′
i+1 ∈ [δi, δi+1] be such that

ci(si) = h(si+1, si) and ci(s
′
i) = h(s′i+1, s

′
i).

For any t ∈ (0, 1), by convexity of h:
ci(tsi + (1− t)s′i) ≤ h(t(si+1, si) + (1− t)(si+1, si))

≤ th(si+1, si) + (1− t)h(s′i+1, s
′
i)

= tci(si) + (1− t)ci(s
′
i).

ci is thus convex on (−∞, δi]. Moreover, the case of equality corresponds to the case of equality for
both gi+1 and ci+1:

gi+1(t(si+1, si) + (1− t)(si+1, si)) = tgi+1(si+1, si) + (1− t)gi+1(s
′
i+1, s

′
i)

ci+1(tsi+1 + (1− t)s′i+1) = tci+1(si+1) + (1− t)ci+1(s
′
i+1).

The former leads to the colinearity of the vectors (si+1 − δi, si − δi) and (s′i+1 − δi, s
′
i − δi); the

latter gives si+1 = s′i+1 by strict convexity of ci+1. Two cases are then possible{
either si+1 = δi = s′i+1

or si = s′i.

13Here again, we use the fact that xi and xi+1 are positive.
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The former case then implies that ci(si) =
√
1 + x2i |si − δi|+ ci+1(δi). Since ci(δi) = ci+1(δi), ci

is
√
1 + x2i -Lipschitz and convex on (−∞, δi], this leads to ci(s) =

√
1 + x2i |s− δi|+ ci+1(δi) for

any s ∈ (−∞, δi]. This contradicts the assumption that the first point does not hold on (−∞, δi]. Nec-
essarily, we have si = s′i. So ci is strictly convex on (−∞, δi], which leads to another contradiction:
the first point does hold on (−∞, δi].

Finally, we just showed that in any case, ci is either strictly convex or equal to si 7→
√
1 + x2i |si−δi|

on (−∞, δi]. Symmetric arguments yield the same on [δi,+∞). ci is thus minimised in δi,
√

1 + x2i -
Lipschitz and verifies the first point on both intervals (−∞, δi] and [δi,+∞). This directly implies
that ci is convex on R.

It now remains to show the second point on the two intervals. Let us show it on (−∞, δi]: on
(−∞, δi) is actually sufficient by continuity. Consider si < s′i < δi and si+1 ∈ [δi,+∞) such that

ci(si) = gi+1(si+1, si) + ci+1(si+1).

By definition of ci,
ci(si)− ci(s

′
i) ≥ gi+1(si+1, si)− gi+1(si+1, s

′
i).

Straightforward computations yield that the function

h2 :
(−∞, δi] → R+

s 7→ gi+1(si+1, s)

is convex and h′2(δi) = − 1+xixi+1√
1+x2

i+1

. Thus, h′2 ≤ − 1+xixi+1√
1+x2

i+1

, which finally implies

ci(si)− ci(s
′
i) ≥ h(si)− h(s′i)

≥ 1 + xixi+1√
1 + x2i+1

(s′i − si).

The second point is thus verified on (−∞, δi) and on (−∞, δi] by continuity. Symmetric arguments
lead to the same property on [δi,+∞).

By induction, this implies the first part of Lemma 7. Symmetric arguments lead to the second part of
Lemma 7 for i ≤ i0 − 2.

We can now prove Theorem 2. Following the proof of Lemma 2, there is a unique minimiser of
Equation (4) if and only if the following problem admits a unique minimiser:

min
s∈S

n−1∑
i=1

gi+1(si+1, si). (29)

We already know that the minimum is attained thanks to Lemma 1. By construction of the functions
ci, any minimum s̃ of Equation (29) verifies

s̃i ∈ argmin
si∈Si(s̃i+1)

gi+1(s̃i+1, si) + ci(si) for any i ∈ [i0 − 2] (30)

(s̃i0−1, s̃i0) ∈ argmin
(si0−1,si0 )∈Λ

gi0(si0 , si0−1) + ci0−1(si0−1) + ci0(si0) (31)

s̃i+1 ∈ argmin
si+1∈Si(s̃i)

gi+1(si+1, s̃i) + ci+1(si+1) for any i ∈ {i0, . . . , n− 1}

It now remains to show that all these problems admit unique minimisers. First assume Equation (31)
admits different minimisers (si0−1, si0) and (s′i0−1, s

′
i0
). Note in the following hi0−1 : (s, s′) 7→

gi0(s, s
′) + ci0−1(s

′) + ci0(s). By minimisation and convexity of the three functions gi0 , ci0−1, ci0 ,
for any t ∈ (0, 1):
hi0−1(t(si0−1, si0) + (1− t)(s′i0−1, s

′
i0)) ≤ thi0−1(si0−1, si0) + (1− t)hi0−1(s

′
i0−1, s

′
i0) (32)

= hi0−1(si0−1, si0). (33)
The whole segment joining (si0−1, si0) and (s′i0−1, s

′
i0
) is then a minimiser. Without loss of gener-

ality, we can thus assume that both si0 and s′i0−1 are on the same side of δi0−1 (e.g. smaller than
δi0−1) and both si0 and s′i0 are on the same side of δi0 .

Moreover, Equation (33) implies an equality on gi0 that leads to the colinearity of the vectors
(si0−1 − δi0−1, si0 − δi0−1) and (s′i0−1 − δi0−1, s

′
i0

− δi0−1). In particular, both si0 ̸= s′i0 and
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si0−1 ̸= s′i0−1. Moreover, we have equality cases on both ci0−1 and ci0 implying, thanks to the first
point of Lemma 7

|ci0−1(si0−1)− ci0−1(s
′
i0−1)| =

√
1 + x2i0−1|si0−1 − si0−1|

|ci0(si0)− ci0(s
′
i0)| =

√
1 + x2i0 |si0 − si0 |.

(34)

For u = (xi0−1, 1) and v = (xi0 , 1), we have by (positive) colinearity of (si0−1− δi0−1, si0 − δi0−1)
and (s′i0−1 − δi0−1, s

′
i0
− δi0−1):

|gi0(si0 , si0−1)− gi0(s
′
i0 , s

′
i0−1)| =

∣∣∥(si0 − δi0−1)v − (si0−1 − δi0−1)u∥ − ∥(s′i0 − δi0−1)v − (s′i0−1 − δi0−1)u∥
∣∣

= ∥(si0 − s′i0)v − (si0−1 − s′i0−1)u∥.
Since si0 ̸= s′i0 and si0−1 ̸= s′i0−1, the triangle inequality gives both strict inequalities∣∣∣√1 + x2i0 |si0 − s′i0 | −

√
1 + x2i0−1|si0−1 − s′i0−1|

∣∣∣ < |gi0(si0 , si0−1)− gi0(s
′
i0 , s

′
i0−1)|,√

1 + x2i0 |si0 − s′i0 |+
√
1 + x2i0−1|si0−1 − s′i0−1| > |gi0(si0 , si0−1)− gi0(s

′
i0 , s

′
i0−1)|.

Using this with Equation (34), this yields
gi0(si0 , si0−1)− gi0(s

′
i0 , s

′
i0−1) ̸= ci0(si0)− ci0(s

′
i0) + ci0−1(si0−1)− ci0−1(s

′
i0−1).

This contradicts the fact that (si0−1, si0) and (s′i0−1, s
′
i0
) both minimise Equation (31). Hence,

Equation (31) admits a unique minimiser.

Also the minimisation problem
min

si+1∈Si(s̃i)
gi+1(si+1, s̃i) + ci+1(si+1)

admits a unique minimiser for any i ∈ {i0, . . . , n − 1}. Indeed, either s̃i = δi in which case the
constraint set is a singleton, or the function si+1 7→ gi+1(si+1, s̃i) is strictly convex for s̃i ̸= δi. A
symmetric argument exists for the minimisation problem of Equation (28). It thus concludes the
proof of Theorem 2.

E.2 Proof of Lemma 3

Let i ∈ {i0, . . . , n− 1}. Recall that
s∗i+1 = argmin

si+1∈Si(s∗i )

gi+1(si+1, s
∗
i ) + ci+1(si+1).

If i = n− 1, the objective is obviously minimised for s∗n = δn−1 as both xn−1 and xn are positive.
Otherwise, assume for example that s∗i > δi. Thanks to Lemma 7, the objective is decreasing
on (−∞,min(δi, δi+1)] and Si(s∗i ) = [δi,+∞) which yields that s∗i+1 ∈ [min(δi, δi+1), δi] ⊂
[min(δi, δi+1),max(δi, δi+1)]. The case s∗i = δi is trivial and similar arguments hold for s∗i < δi.

Now consider i = i0 − 1. Assume first that s∗i0−1 > δi0−1, then

s∗i0 = argmin
si0<δi0−1

gi0(si0 , s
∗
i0−1) + ci0(si0).

Thanks to the last point of Lemma 7

ci0(si0)− ci0(s
′
i0) ≥

1 + xi0xi0+1√
1 + x2i0+1

(si0 − s′i0) for any si0 < s′i0 ≤ δi0 . (35)

Note that the function

h :
(−∞, δi0−1] → R+

s 7→ gi0(s, s
∗
i0−1)

is convex and verifies h′(δi0−1) = − 1+xi0−1xi0√
1+x2

i0−1

. Since xi0−1 < 0 ≤ xi0+1, it comes

−1 + xi0−1xi0√
1 + x2i0−1

≤ xi0 ≤ 1 + xi0xi0+1√
1 + x2i0+1

.

Thanks to Equation (35), the function si0 7→ gi0(si0 , s
∗
i0−1) + ci0(si0) is thus decreasing on

(−∞,min(δi0−1, δi0)]. As above, this implies that s∗i0 ∈ [min(δi0−1, δi0),max(δi0−1, δi0)]. The
case s∗i0−1 = δi0−1 is trivial and similar arguments hold if s∗i0−1 < δi0−1.
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We showed s∗i+1 ∈ [min(δi, δi+1),max(δi, δi+1)] for any i ∈ {i0, . . . , n}. Symmetric arguments
hold for i ∈ [i0 − 1]. This concludes the proof of Lemma 3.

E.3 Proof of Lemma 4

Let us first prove that any sparsest interpolator f has at least a number of kinks given by the right
sum. For that, we actually show that for k ≥ 1, on any interval (xnk−1, xnk+1

) with δnk−1 ̸= δnk
,

f has at least
⌈
nk+1−nk

2

⌉
kinks, whose signs are given by sign(δnk

− δnk−1). Consider any k ≥ 1

such that δnk−1 ̸= δnk
. Assume w.l.o.g. that δnk−1 < δnk

. By the definition of Equation (10):
δj > δj−1 for any j ∈ {nk, . . . , nk+1 − 1}.

Obviously, f must count at least one positive kink on each interval of the form14 (xj−1, xj+1) for

any nk ≤ j ≤ nk+1 − 1. Note that we can build
⌈
nk+1−nk

2

⌉
disjoint such intervals. Thus, f has at

least
⌈
nk+1−nk

2

⌉
positive kinks on (xnk−1, xnk+1

).

The intervals of the form (xnk−1, xnk+1
) with δnk−1 < δnk

are disjoint by definition. As a conse-
quence, f has a total number of positive kinks at least∑

k≥1

⌈
nk+1 − nk

2

⌉
1δnk−1<δnk

.

Similarly, f has a total number of negative kinks at least∑
k≥1

⌈
nk+1 − nk

2

⌉
1δnk−1>δnk

,

which leads to the first part of Lemma 4

min
f

∀i,f(xi)=yi

∥f ′′∥0 ≥
∑
k≥1

⌈
nk+1 − nk

2

⌉
1δnk−1 ̸=δnk

.

We now construct an interpolating function that has exactly the desired number of kinks. Note that
the problem considered in Lemma 4 is shift invariant (which is not the case of Equation (4)). As a
consequence, we can assume without loss of generality that x1 ≥ 0. This simplifies the definition of
the following sequence of slopes s ∈ S:

s1 = δ1

and for any i ∈ {2, . . . , n}, si =

{
δi−1 if (si−1 = δi−1 or i = nk for some k ≥ 1)

si = δi otherwise.

It is easy to check that s ∈ S. We now consider the function f associated to the sequence of
slopes by the mapping of Lemma 6 and an interval [xnk−1, xnk+1

) with δnk−1 ̸= δnk
. By definition,

snk+1+2p = δnk+1+2p for any p such that nk+1 ≤ nk+1+2p < nk+1. This implies that f has no
kink in the interval [xnk+1+2p, xnk+2+2p). From there, a simple calculation shows that f has at most⌈
nk+1−nk

2

⌉
kinks on [xnk

, xnk+1
). Moreover, as si = δi−1 if i = nk, f has no kink on intervals

[xnk
, xnk+1

) when δnk−1 = δnk
. f is thus an interpolating function with at most∑
k≥1

⌈
nk+1 − nk

2

⌉
1δnk−1 ̸=δnk

,

kinks, which concludes the proof of Lemma 4.

E.4 Proof of Theorem 3

Let f be the minimiser of Equation (4). The proof of Theorem 3 separately shows that f has exactly⌈
nk+1−nk

2

⌉
1δnk−1 ̸=δnk

kinks on each (xnk−1, xnk+1
). Fix in the following k ≥ 0.

14Otherwise, the derivative would be weakly decreasing on the interval, contradicting interpolation.
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Assume first that δnk−1 = δnk
. Then Lemma 3 along with the definitions of nk and nk+1 directly

imply that s∗i = δnk−1 for any i = nk, . . . , nk+1 − 1. This then implies that the associated
interpolator, i.e. f has no kink on (xnk−1, xnk+1

).

Now assume that δnk−1 ̸= δnk
. Without loss of generality, assume δnk−1 < δnk

. By the definition
of Equation (10):

δj > δj−1 for any j ∈ {nk, . . . , nk+1 − 1}.
Moreover, by definition of nk, we have{

either nk = 1

or δnk−1 ≤ δnk−2
and

{
either nk+1 = n

or δnk+1
≤ δnk+1−1

Since nk+1 ≤ nk + 3 by Assumption 1, Lemma 8 below states that for all the cases, f has exactly⌈
nk+1−nk

2

⌉
kinks on (xnk−1, xnk+1

).

Symmetric arguments hold if δnk−1 > δnk
. In conclusion, f has exactly

⌈
nk+1−nk

2

⌉
1δnk−1 ̸=δnk

kinks on each (xnk−1, xnk+1
). This implies that f has at most∑

k≥1

⌈
nk+1 − nk

2

⌉
1δnk−1 ̸=δnk

kinks in total. This concludes the proof of Theorem 3, thanks to Lemma 4.
Lemma 8. For any k ≥ 0, if δnk−1 < δnk

, then the minimiser of Equation (4) f has

1. 1 kink on (xnk−1, xnk+1
) if nk+1 = nk + 1;

2. 1 kink on (xnk−1, xnk+1
) if nk+1 = nk + 2;

3. 2 kinks on (xnk−1, xnk+1
) if nk+1 = nk + 3.

Lemma 8 is written in this non-compact way since its proof shows separately (with similar arguments)
the three cases.

Proof. 1) Consider nk+1 = nk + 1. First assume that xnk
≥ 0. Lemma 3 implies that s∗nk+1 ∈

[δnk+1, δnk
] and s∗nk

∈ [δnk−1, δnk
]. In particular, s∗nk

≤ δnk
, which implies that s∗nk+1 = δnk

.
Similarly, s∗nk−1 ≥ δnk−1, which implies that s∗nk

= δnk−1. Using the mapping from Lemma 6, both
values s∗nk

and s∗nk+1 yield that the associated function f has exactly one kink on (xnk−1, xnk+1),
which is located at xnk

. Similar arguments hold if xnk
< 0.

2) Consider now nk+1 = nk + 2.

First assume that xnk+2 < 0. Thanks to Lemma 3, we can show similarly to the case 1) that
s∗nk+1 = δnk+1.

Now assume that xnk+2 ≥ 0. Similarly to the case 1), s∗nk+2 = δnk+1. The minimisation problem of
the slopes becomes on s∗i+1 for i = nk:

s∗i+1 = argmin
s∈S̃

gi+1(s, s
∗
i ) + gi+2(δi+1, s),

where S̃ = Si(s
∗
i ) if xi+1 ≥ 0, and S̃ = {δi+1} otherwise. Note that gi+1(s, s

∗
i ) is

√
1 + x2i+1-

Lipschitz in its first argument, while gi+2(δi+1, s) =
√

1 + x2i+1|s − δi+1|. Moreover, s∗nk
∈

[δnk−1, δnk
]. As a consequence, either xnk+1 ≥ 0 and s∗nk

= δnk
= s∗nk+1; or s∗nk+1 = δnk+1.

Symmetrically, when reasoning on the points xnk−1, xnk
:

• either s∗nk
= δnk−1;

• or (xnk
< 0 and s∗nk

= δnk
= s∗nk+1).

There are thus two possible cases in the end:
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• either (s∗nk
= δnk−1 and s∗nk+1 = δnk+1);

• or (s∗nk
= δnk

= s∗nk+1 and xnk
< 0 ≤ xnk+1).

In the case where xnk
< 0 ≤ xnk+1, we also have s∗nk−1 = δnk−1 and s∗nk+2 = δnk+1. A

straightforward computation then yields a smaller cost on the functions gi for the choice of slopes
s∗nk

= δnk−1 and s∗nk+1 = δnk+1.

As a consequence, s∗nk
= δnk−1 and s∗nk+1 = δnk+1 in any case. The mapping of Lemma 6 then

yields that f has exactly one kink on (xnk−1, xnk+2), which is located in (xnk
, xnk+1). Indeed, we

either have ank−1 = 0 or τnk−1 = xnk−1; similarly either ank+1 = 0 or τnk+1 = xnk+2.

3) Consider now nk+1 = nk + 3. Similarly to the case 2), we have both{
either s∗nk+2 = δnk+2

or (s∗nk+1 = δnk+1 = s∗nk+2 and x∗nk+2 ≥ 0)

and
{

either s∗nk
= δnk−1

or (s∗nk
= δnk

= s∗nk+1 and xnk
< 0).

When considering all the possible cases, the mapping of Lemma 6 implies that f has exactly two
kinks on (xnk−1, xnk+3), which are located in [xnk

, xnk+2].

E.5 Adapted analysis for the case x1 ≥ 0

This section explains how to adapt the analysis of this section to the easier case where all x are
positive. Lemma 7 holds under the exact same terms (but its second part is useless) in that case. From
there, the proof of Theorem 2 consists in just showing the uniqueness of the minimisation problems
for any s̃ ∈ S:

min
si0∈R

ci0(si0)

min
si+1∈Si(s̃i)

gi+1(si+1, s̃i) + ci+1(si+1) for any i ∈ {i0, . . . , n− 1}.

The unique solution of the first problem is δi0 thanks to Lemma 7, while same arguments as in
Appendix E.1 hold for the second problem.

For the proof of Lemma 3, the exact same arguments as in Appendix E.2 hold for any i ≥ i0 + 1. For
i = i0 = 1, it is obvious in that case that s∗1 = δ1, leading to Lemma 3.

Finally, the proof of Theorem 3 follows the same lines when x1 ≥ 0.

E.6 Proof of Corollary 1

Proof of Corollary 1. For classification, the natural partition to define is the following:
n1 = 1 and for any k ≥ 0 such that nk < n+ 1,

nk+1 = min {j ∈ {nk + 1, . . . , n} | ynk
̸= yj} ∪ {n+ 1}. (36)

This partition splits the data so that for any k, yi has a the same value for i ∈ {nk, nk+1− 1}. Denote
K the number of nk defined in Equation (36), i.e., nK = n+ 1. From there, by simply noting that
any margin classifier has at least a kink in [xnk

, xnk+1
) for k ∈ [K − 2]:

min
f

∀i∈[n],yif(xi)≥1

∥f ′′∥0 = K − 2.
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Similarly to the proof of Lemma 1, we can first show the existence of a minimum.15 Let us now
consider f a minimiser of

min
f

∀i∈[n],yif(xi)≥1

∥∥∥√1 + x2f ′′
∥∥∥
TV

. (37)

Define the set
S =

{
nk | k ∈ {2, . . . ,K − 1}} ∪ {nk − 1 | k ∈ {2, . . . ,K − 1}

}
.

By continuity of f , we can choose an alternative training set (x̃i, ỹi) satisfying:
x̃i ∈ [xnk−1, xnk

] for any i ∈ {nk − 1, nk},
yi = f(x̃i) for any i ∈ S.

Then, a direct application of Theorem 2 yields that the minimisation problem

min
f̃

∀i∈S,yi=f̃(x̃i)

∥∥∥√1 + x2f̃ ′′
∥∥∥
TV

, (38)

admits a unique minimiser, that we denote freg. But also note that this unique minimiser is also in
the constraint set of Equation (37) thanks to Lemma 3, so that∥∥∥√1 + x2f ′′reg

∥∥∥
TV

≥
∥∥∥√1 + x2f ′′

∥∥∥
TV

.

However, since f is in the constraint set of Equation (38), we actually have an equality, and by unicity
of the minimiser of Equation (38),

freg = f.

Moreover, it is easy to check that Assumption 1 holds for the data (x̃i, yi)i∈S , with nk+1 = nk + 2.
As a consequence, Theorem 3 implies that the minimiser of Equation (38) is among the sparsest
interpolators for the set (x̃i, yi)i∈S , i.e. it exactly counts K − 2 kinks. This then implies that
∥f ′′∥0 = K − 2, so that

argmin
f

∀i∈[n],yif(xi)≥1

R1(f) ⊂ argmin
f

∀i∈[n],yif(xi)≥1

∥f ′′∥0. (39)

15Proving that the sequence (aj , bj) is bounded is here a bit more tricky. Either the data is linearly separable,
in which case the minimum is 0, or the data is not linearly separable. When the data is not linearly separable,
then (aj , bj) is necessarily bounded, since (µj , aj , bj) would behave as a linear classifier for arbitrarily large
(aj , bj).
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