Learning Semantics-Aware Locomotion Skills from Human Demonstration

Anonymous Author(s)
Affiliation
Address
email

Abstract: The semantics of the environment, such as the terrain type and property, reveals important information for legged robots to adjust their behaviors. In this work, we present a framework that learns semantics-aware locomotion skills from perception for quadrupedal robots, such that the robot can traverse through complex offroad terrains with appropriate speeds and gaits using perception information. Due to the lack of high-fidelity outdoor simulation, our framework needs to be trained directly in the real world, which brings unique challenges in data efficiency and safety. To ensure sample efficiency, we pre-train the perception model with an off-road driving dataset. To avoid the risks of real-world policy exploration, we leverage human demonstration to train a speed policy that selects a desired forward speed from camera image. For maximum traversability, we pair the speed policy with a gait selector, which selects a robust locomotion gait for each forward speed. Using only 40 minutes of human demonstration data, our framework learns to adjust the speed and gait of the robot based on perceived terrain semantics, and enables the robot to walk over 6km without failure at close-to-optimal speed.

Keywords: Legged Locomotion, Semantic Perception, Imitation Learning, Hierarchical Control

1 Introduction

In order to operate in complex offroad environments, it is crucial for quadrupedal robots to adapt their motion based on the perception of the terrain ahead. As encountering new terrains, the robot needs to identify changes in key terrain properties, such as friction and deformation, and respond with the appropriate locomotion strategy to maintain a reasonable forward speed without incurring failures. In many cases, information about such terrain properties is more easily inferred from a terrain’s semantics class (e.g. grass, mud, asphalt, etc.), instead of its geometric shape (e.g. slope angle, smoothness). However, recent works in perceptive locomotion [1, 2, 3, 4, 5, 6, 7] mostly focus on the geometric aspect of the terrain, and do not make use of such semantic information.

In this work, we present a framework for quadrupedal robots to adapt locomotion behaviors based on perceived terrain semantics. The central challenge in learning such a semantic-aware locomotion controller is the high cost in data collection. On one hand, while simulation has become an effective data source for many robot learning tasks, it is still difficult to use simulation in offroad locomotion tasks, because modeling the complex contact dynamics accurately and rendering the environment photorealistically in such offroad terrains is not yet possible in simulation. On the other hand, data collection in the real world is time-consuming and requires significant human labor. Moreover, the robot needs to remain safe during the data collection process, as any robot failure can cause significant damage to the hardware and surrounding environment. Therefore, it is difficult to use standard reinforcement learning methods for this task.

Submitted to the 6th Conference on Robot Learning (CoRL 2022). Do not distribute.
Our framework addresses all concerns above, and learns semantics-aware locomotion skills directly in the real world. To reduce the amount of data required, we pre-train a semantic segmentation network on an off-road driving dataset, and extract a semantic embedding from the model for further fine-tuning. To avoid policy exploration in real-world environments, we collect speed and gait choices from human expert demonstrations, and train the policy using imitation learning \cite{8}. To further improve robot’s traversability, we pair the speed policy with a gait selector, which selects a robust gait for each forward speed. With the pre-trained image embedding, the imitation learning setup, and the gait selector, our framework learns semantics-aware locomotion skills directly in the real world safely and efficiently.

We deploy our framework on an A1 quadrupedal robot from Unitree \cite{9}. Using only 40 minutes of human demonstration data, our framework learns semantics-aware locomotion skills that can be directly deployed for offroad operation. The learned skill policy inspects the environment and selects an appropriate locomotion skill that is fast and failure-free, from slow and cautious stepping on heavy pebbles to fast and active running on flat asphalts. The learned framework generalizes well, and operates without failure on a number of trails not seen during training (over 6km in total). Moreover, our framework outperforms manufacturer’s default controller in terms of speed and safety. We further conduct ablation studies to justify the important design choices.

The technical contributions of this paper include:

1. We develop a hierarchical framework that adapts locomotion skills from terrain semantics.
2. We propose a safe and data-efficient method to train our framework directly in the real world, which only requires 40 minutes of human demonstration data.
3. We evaluate the trained framework on multiple trails spanning 6km with different terrain types, where the robot reached high speed while remaining failure-free.

2 Related Works

Terrain Understanding for Legged Robots Creating a perceptive locomotion controller is a critical step to enable legged robots to walk in outdoor, unstructured environments. Most importantly it allows robots to detect and react to terrain changes proactively before contact. Many prior works have focused on understanding terrain geometry from perceptive sensors \cite{10,11,1,4}. However, such information can be insufficient for a robot to handle many challenging outdoor terrains as it does not reveal important terrain properties such as deformability or contact friction \cite{6,7,12,13}. To ameliorate this, recent works proposed to update the geometric understanding of a terrain with proprioceptive information \cite{6,7,12}. However, these methods sacrifice proactivity, as the update cannot happen until after the robot has stepped on the terrain. Unlike these works, our framework infers terrain properties from its semantics \cite{14,15,16,17}, so that the robot can detect terrain changes before contact, and select its locomotion strategies proactively.

Motion Controller Design for Perceptive Locomotion Another important question in perceptive locomotion is the design of a motion controller that can effectively make use of perceptive information. A common strategy is to create a low-level motion controller that plans precise foothold placements based on the perceived terrain \cite{1,2,3,4,5}. While these methods have shown good results in highly uneven terrains, the high computational cost required for terrain understanding and rapid planning makes it infeasible for complex offroad environments. In this work, we devise a novel way to interface between perception and low-level motion controllers for legged robots, where the high-level perception model outputs the desired locomotion skills, including forward speed and robot gait, to a low-level motor controller. With our framework, the robot can select a safe and fast walking strategy for different terrains, which is crucial for offroad traversal.

Terrain Traversability Estimation Researchers have proposed a number of approaches to infer terrain traversability from geometric and semantic terrain properties, including manually designed
Figure 1: Our framework consists of a high-level skill policy and a low-level motor controller. The skill policy selects locomotion skills (gait and speed) based on camera images. The low-level controller computes motor commands for robot control.

[18], learned from self exploration [11], or learned from human demonstration [19]. While learning-based approaches provide more flexibility, they usually require large amounts of data, which is difficult to collect in the real world. As a result, most approaches rely on simulation as a source for training data [20]. For example, Frey et al. [11] learns a mapping from heightmap to traversability through self-exploration in simulation. Cai et al. [19] also learns a semantics-conditioned traversability map for off-road vehicles using a high-fidelity simulator. Unlike these approaches, our framework can be trained directly in the real world with 40 minutes of human demonstration data by leveraging a pre-trained semantic embedding.

3 Overview

Our hierarchical framework (Fig. 1) consists of a high-level skill policy and a low-level motor controller. At the high level, the skill policy receives the RGB image stream from onboard camera and determines the corresponding locomotion skill. Each skill consists of a desired forward speed and a corresponding locomotion gait, which are computed by the speed policy and gait selector, respectively. We train the speed policy using imitation learning from human demonstrations, and manually design the gait selector to find the appropriate gait for each forward speed. At the low level, a convex MPC controller [21] receives the skill command from the skill policy, and computes motor commands for robot control. In addition, the convex MPC controller can optionally receive a steering command from an external teleoperator, which specifies the desired turning rate.

4 Learning Speed Policies

In unstructured outdoor terrains, it is important for a robot to adjust its speed in response to terrain changes, so that it can traverse through different terrains efficiently and without failure. To achieve that, we design a speed policy, which computes the desired forward speed of the robot based on camera inputs. We train the speed policy using a two-staged procedure: First, we pre-train a semantic embedding from an offline dataset. After that, we collect human demonstrations and train the speed policy using imitation learning.

Pre-trained Semantic Embedding To reduce the amount of real-world data required to train the speed policy, we pre-train a semantic segmentation model and extract a semantic embedding for subsequent training. We implement the semantic segmentation model using FCHarDNet[22] and train it on an off-road driving dataset, RUGD [23]. We choose the FCHarDNet[22] model because
of its compactness and real-time performance, and choose RUGD because of its similarity to images collected by the robot camera.

Although RUGD [23] provides pixel-wise semantic labels for every image, the raw semantic categories from the dataset can be insufficient in assessing terrain traversability. For example, RUGD labels both shallow and deep ground vegetation as ”grass”, on which the robot have notably different traversabilities. Instead, we extract a semantic embedding as the output before the final layer in FCHarDNet[22], which assigns a 48-dimensional embedding vector to each pixel in the input image (Fig. 2). We then compute a speed map by feeding each pixel’s embedding through a fully-connected layer. Finally, the desired forward speed is obtained from averaging in a fixed region in the speed map – a region at the bottom of the image, which roughly corresponds to a rectangular area 1m long, 0.3m wide in front of the robot.

Learning Speed Commands from Human Demonstration Even with the pre-trained image embedding, learning the speed policy directly in the real world using reinforcement learning is still challenging, due to omnipresent noise in real world environments and concerns for robot safety. Instead, we leverage human demonstration data and train the speed policy using imitation learning.

Collection of Demonstration Data We collect human demonstration data, where the human operator walks the robot on a variety of terrains, including asphalt, pebble, grass and dirt. During data collection, the operator gives speed command (between 0.5 m/s and 1.5m/s) to the robot using a joystick, while other components of the pipeline, such as the gait selector and motor controller, works accordingly (Fig. 1). Each time the camera captures a new image, we store the image and the corresponding speed command for policy training.

Policy Training We train the speed policy using behavior cloning [8], where we solve a supervised learning problem to minimize the difference between policy output and human command. To train the speed policy, we compute the mean-squared loss between the predicted forward speed (Fig. 2) and demonstrated speed, and update network parameters using back-propagation.

Policy Deployment At deployment time, the policy computes the desired forward speed from RGB camera images. We clip the policy output to be in [0.5, 1.5] m/s to match demonstration data.

5 Speed-based Gait Selector

In addition to speed, the gait of a legged robot, such as its foot swing height, can greatly affect its traversability, especially on uneven terrains. Moreover, change in robot speed usually leads to a change in the set of feasible gaits. For example, as the robot accelerates, it needs to increase its stepping frequency in order to catch up with the accelerated base [24, 25, 26]. To select a gait with high traversability for each speed, we design a heuristics-based gait selector that computes appropriate gait parameters based on desired forward speed.
Gait Parameterization In our design, each gait is parameterized by three parameters, stepping frequency, swing foot height, and base height. The **stepping frequency (SF)** determines the number of locomotion cycles each second. Similar to [25], we adopt a phase-based parameterization for gait cycles, where each leg alternates between swing and stance. In addition, we assume a trotting pattern for leg coordination, where diagonal legs move together and are 180° out-of-phase with the other diagonal. The trotting pattern is known for its stability and thereby is the default gait choice in most quadrupedal robots [21, 9]. The **swing foot height (SH)** determines the leg’s maximum ground clearance in each swing phase. While a higher swing height improves stability on uneven terrains by preventing unexpected contacts, a lower swing height is usually necessary for high-speed running. The **base height (BH)** specifies the height of robot’s center-of-mass. While a low base height gives better stability at high speeds, a higher base height can be beneficial when traversing through unknown obstacles.

Speed-Based Gait Selection We use empirical evidence to design the speed-based gait selector, which finds a gait with high traversability for each speed. More specifically, for the boundary speeds (0.5m/s and 1.5m/s), we first try different SFs with a nominal SH (0.12m) and BH (0.26m), and find the lowest SF that would still ensure base stability (2.8Hz and 3.5Hz). After that, we sweep over different values of SH and BH, to find the highest value of both that would allow the robot to walk robustly without falling. Lastly, we linearly interpolate the parameter values between the boundary speeds to find the gait for intermediate speeds. See Fig. 3 for details.

6 Low-level Convex MPC Controller

The low-level convex MPC controller computes and applies torques for each actuated degree of freedom, given the locomotion skills from the skill policy. Our low-level convex MPC controller is based on Di Carlo et al. [21] with two important modifications. Firstly, to walk robustly on slopes, we implemented a state estimator to estimate ground orientation, and adjust the robot pose to fit the inclination of the slope, similar to Gehring et al. [27]. Secondly, to reduce foot slipping, we designed an impedance controller for stance legs [28]. In addition to the motor torque command computed by MPC, the controller adds a small feedback torque to track the leg in its desired position. We found both techniques to significantly improve locomotion quality. Please refer to Appendix A for details.

7 Experiment and Result

To see whether our framework can learn to adapt locomotion skills based on terrain semantics, we deploy it to a quadruped robot and test it in a number of outdoor environments in the real world. We aim to answer the following questions in our experiments:

1. Can our framework operate without failure in complex offroad terrains for extended periods of time, and does it achieve the maximum safety speed for each terrain?
2. How does our framework generalize to unseen terrains?
3. How does our framework compare with existing baselines, and what is the contribution of each component to the overall framework?

7.1 Experiment Setup

We implement our framework on an A1 quadrupedal robot from Unitree [9]. We equip the robot with an Intel Realsense D435i camera to capture RGB images, and a GPS receiver to track its real-time location. We implement the entire control stack in the Robot Operating System (ROS) framework [29], and deploy it on a Mac Mini with M1 chip mounted on the robot. The convex MPC controller runs at 400Hz, and the speed policy and gait selector run at 3Hz.

To train the speed policy, we collected 7239 frames of data on a variety of terrains, which corresponds to 40 minutes of robot operation. The entire process, including robot setup, data collection and battery swaps, took less than an hour. The speed policy is trained on a standard desktop computer with an Nvidia 2080Ti GPU, which took approximately 30 minutes to complete.

7.2 Fast and Failure-free Walking on Multiple Terrains

To evaluate the off-road traversability of our framework, we deploy our framework on an outdoor trail with multiple terrain types, including deep grass, shallow grass, gravel and asphalt (Fig. 4). Our controller switches between a wide range of skills as it traverses through the trail, from slow and careful stepping to fast and active walking, and completes the trail in 9.6 minutes, comparable to the performance of human demonstration (10 minutes).
To test the optimality of our framework, we deploy the learned skill policy on four different outdoor terrains, including rock, pebble, grass and pebble (Fig. 5a). We compare our semantics-aware skill policy with 5 fixed skills, where the speed linearly interpolates between 0.5m/s and 1.5m/s. For each skill, the corresponding gait is selected according to Fig. 3. For each terrain and skill combination, we repeat the experiment 5 times, and report the success rate, where a trial is considered successful if the robot does not fall over during the traversal (Fig. 5b). By comparing the success rate at different speeds, we obtained an approximation of the safe speed range for each terrain. We then test the optimality of our framework by comparing the average speed obtained by our learned skill policy on each terrain against these safe speed ranges.

The maximum safe speed varies significantly on different terrains. For example, while the robot can walk up to 1.25m/s without failure on asphalt, it can only walk up to 0.5m/s on rock, due to unexpected bumps and foot slips on the surface. Although not directly optimized for speed or robot safety, our learned policy finds a close-to-maximum speed in the failure-free region of each terrain after learning from human demonstrations. We also noted that on pebble and grass, there is a slightly larger gap between the maximum safety speed and the speed selected by the skill policy. One reason for this is that the speed demonstrated by the human operator can be more conservative than the maximum safety speed.

7.3 Generalization to Unseen Terrains

To further test the generalizability of our framework, we deploy the robot on a number of outdoor trails not seen during training. The trails contain diverse terrain types, such as dirt, gravel, mud, grass and asphalt. The robot traverses through all of them without failure, and adjusts its locomotion skills based on terrain semantics. Please refer to Appendix. B.1 for details. To demonstrate the skill choices of our framework, we select a few key frames from the camera images and plot the corresponding speed in Fig. 6. In general, the skill policy selects a faster skill on rigid and flat terrains, and a slower speed on deformable or uneven terrains. At the time of writing, the robot has traversed through over 6km of outdoor trails without failure.

7.4 Comparison with Unitree’s Built-in Controllers

We compared our learned framework with a baseline, the Unitree’s built-in controller on the same trail (Fig. 4). We tested two modes of the built-in controller, a normal mode (Unitree-Normal) that walks up to 1m/s, and a sports (Unitree-Sport) mode that walks up to 1.5m/s. Both controllers do not include perception and assume a fixed gait at all times. Results can be found in Table 1. Although normal mode completed the entire trail without failure, it walks slower than our learned framework, especially on asphalts, due to limitations on the maximum speed. On the other hand, the sports mode controller failed to complete the course, and got stuck in deep grass twice due to insufficient swing foot clearance. Compared to the built-in controllers, our perception-enabled, terrain-adaptive framework completes the trail in a shorter time and without failures.

7.5 Ablation Studies

We further conduct ablation studies to justify important design choices.
<table>
<thead>
<tr>
<th>Policy Type</th>
<th>Speed (m/s)</th>
<th>Gait Params (SF, SH, BH)</th>
<th>Traversal Time (min)</th>
<th>Number of Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed-Slow</td>
<td>0.5</td>
<td>[2.8, 0.16, 0.29]</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Fixed-Medium</td>
<td>1</td>
<td>[3.1, 0.14, 0.28]</td>
<td>∞</td>
<td>4</td>
</tr>
<tr>
<td>Fixed-Fast</td>
<td>1.5</td>
<td>[3.5, 0.12, 0.27]</td>
<td>∞</td>
<td>10+</td>
</tr>
<tr>
<td>Speed-Only</td>
<td></td>
<td>[3.1, 0.14, 0.28]</td>
<td>∞</td>
<td>9</td>
</tr>
<tr>
<td>Gait-Only</td>
<td>Adapter</td>
<td>Adaptive</td>
<td>∞</td>
<td>2</td>
</tr>
<tr>
<td>Unitree-Normal</td>
<td>Tele-operated</td>
<td>N/A</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Unitree-Sport</td>
<td>Tele-operated</td>
<td>N/A</td>
<td>∞</td>
<td>2</td>
</tr>
<tr>
<td>Fully-Adaptive (ours)</td>
<td>Adaptive</td>
<td>Adaptive</td>
<td>9.6</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1: Performance of different policies on the test trail. Compared to other policies, our framework completes the entire trail without failure in the shortest time.

Fixed Skill with No Adaptation For these baselines, we disable the perception module and operate the robot with a fixed locomotion skills. We test three skills, namely slow, medium and fast, operating at 0.5m/s, 1m/s, 1.5m/s, respectively, with the corresponding gait selected according to Fig. 3. Both the medium skill and the fast skill fail to complete the trail and incurred a large number of failures. While the slow skill completes the trail without failure, its traversal time is 50% longer compared to our learned framework.

Adapt Speed or Gait Only In our framework, we design a robot skill to be a combination of gait and forward speed. To justify this design, we design two policies, where the robot adapts the gait or the forward speed only. For the speed-only policy, we fix the gait to have a stepping frequency of 3.1Hz, a swing height of 0.14m, and a base height of 0.28m, which corresponds to a forward speed of 1.0m/s in Fig. 3, and allow the speed to be adapted in the same way as our framework. For the gait-only policy, we fix the base speed to be 0.8m/s, similar to the average speed attained by our learned policy, and adapt the gait in the same way as our framework. Both policies failed to complete the trail. For speed-only policy, we found the fixed gait to only work well when the base speed is close to 1m/s, and fails frequently at either higher or lower speeds. For the gait-only policy, the robot is mostly stable throughout the trail, but still fails twice on unexpected bumps.

Learning Without Human Demonstration Additionally, to demonstrate the importance of learning from human demonstration, we designed a baseline, in which we train the speed policy directly in the real world. For sample-efficiency concerns, we choose to optimize the speed policy using Bayesian Optimization. Please refer to Appendix. B.2 for the details. Despite its high sample efficiency, we find the training process unsafe and labor intensive, due to frequent attempts at unsafe locomotion actions and constant need for robot resets, and have to stop the experiment early. While additional efforts in safe and data-efficient real world learning might make direct real-world training possible, our framework provides a simple alternative approach, where the robot learns the speed policy using only 40 minutes of human demonstration.

8 Limitations and Future Work

In this work, we present a hierarchical framework to learn semantic-aware locomotion gaits from human demonstrations. Our framework learns to adapt locomotion skills for a variety of terrains using 40 minutes of human demonstration, and traverses over 6km of outdoor terrains without failure. One limitation of our framework is that its performance is limited by the quality of human demonstration. For example, while the same robot platform has achieved a speed over 2m/s [25, 9], the maximum speed learned by our framework is close to human walking speed (around 1.5m/s), as it is difficult for human to demonstrate at faster speeds. Another limitation of the current framework is that perception is only used to select locomotion skills but is not yet used in navigational tasks such as path planning. In future work, we plan to integrate navigation and path planning into our framework, so that the robot can operate fully autonomously in challenging off-road environments.
References

