
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CO-ACTIVATION PATTERNS ALGORITHM:
A FORWARD-ONLY DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

Traditional end-to-end neural networks are designed to optimise the predictive ac-
curacy of the final output layer, therefore rendering the network dependent on error
backpropagation (BP) for training. Although BP has achieved remarkable suc-
cess across a wide range of tasks, it has been criticised for its reliance on precise
long-range gradient transmission, weight symmetry, and sequential learning con-
straints. Inspired by co-activation patterns (CAPs) in neuroscience, we propose
a learning framework centred on separability of diffrent patterns to circumvent
the dependence on BP. In this framework, the network “output” is redefined as a
global activation state aggregated across layers, with the backbone regarded as a
pattern extractor. Task discrimination is achieved through the evaluation of cosine
similarity between CAPs. From an optimisation perspective, each layer updates
its parameters using only its own partial derivatives. This removes the reliance on
long-range gradient propagation. Simultaneously, global coupling across layers is
maintained through fractional normalisation and inter-class competition. In addi-
tion, constraints on the co-activation patterns allow task-specific sub-networks to
emerge spontaneously. More importantly, this framework readily extends to cross-
modal integration and multimodal joint inference, enabling heterogeneous and in-
dependent sub-networks to operate in a loosely coupled manner via CAPs, without
weight sharing or long-range gradient exchange. Experimental results across mul-
tiple datasets demonstrate that the proposed CAPs-based method achieves compa-
rable accuracy to classical BP while significantly accelerating training.

1 INTRODUCTION

Neural networks are commonly designed as end-to-end multi-layer mapping structures (Cybenko,
1989), where each layer functions as a sequential processing unit contributing to the generation
of optimal predictions for the final output layer. Consequently, learning across all layers is driven
entirely by top-down error feedback, giving rise to a backpropagation (BP)-centred learning mech-
anism. While BP has served as the computational backbone for many successful architectures,
researchers in neuroscience have raised several critical concerns regarding its biological plausibil-
ity: (i) biological neurons lack the capacity to store or manipulate large-scale weight matrices, thus
preventing precise, long-distance and symmetric gradient transmission; (ii) error signals are unlikely
to propagate backwards along the same pathways; (iii) error propagation should occur in a paral-
lel, multi-path manner; and (iv) plasticity in brains does not adhere strictly to sequential locking
mechanisms (Crick, 1989; Hinton & McClelland, 1987).

In contrast, theories of consciousness, such as Integrated Information Theory (IIT) (Tononi, 2004),
originate from a fundamentally different observation: any conscious experience (i.e., subjec-
tive awareness) is composed of rich and heterogeneous informational components (Dehaene &
Changeux, 2011), which are integrated at the system level into a unified perceptual state. For in-
stance, perceiving a painting is not merely a stepwise recognition of colour and shape, but rather
the holistic fusion of these features into a coherent visual representation. Such experiences re-
flect the cooperative contributions of distributed neuronal populations in forming global perception.
This differs markedly from the layer-wise, quasi-Markovian dependency in conventional neural net-
works, where the final output is typically determined only by the highest-level abstract representation
(Baars, 1993; Shanahan, 2006; Chalasani & Principe, 2013).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Extraction of Co-activation Patterns: the global activation state serves as the network
output, with the backbone limited to forward propagation. Task-specific outputs are derived by
analysing similarities between activation modalities.

For a backbone neural network N comprising L layers, we define perception as the global activation
state vector A(x) induced by an input x within the network:

A(x) =
[
a1(x),a2(x), . . . ,aL(x)

]
, (1)

where A(x) ∈ RD, D =
∑L

l=1 dl is the total number of neurons in the network, and al(x) denotes
the activation vector of layer l under input x. In neuroscience, different neuronal populations exhibit
diverse global activation states in response to stimulation. These patterns are commonly referred to
as co-activation patterns (CAPs) (Liu et al., 2018). Adopting this terminology, we regard A(x) as a
quantitative representation of the network’s internal representational state induced by x.

Within this framework, neural nodes operate under the principle of ‘forward correlation and back-
ward independence’. The notion of ‘ forward correlation’ denotes that input signals are processed
in a hierarchical order, enabling the network to progressively abstract concepts (Hinton & Salakhut-
dinov, 2006). In contrast, ‘backward independence’ implies that the cognitive contribution of
each node is independent, such that parameter learning does not rely on interdependencies among
nodes. Thus, the backbone network is redefined as a pattern extractor, where the separability of
co-activation patterns—rather than direct task-specific outputs—becomes the central design objec-
tive. The network propagate unidirectionally forward to generate and preserve cross-layer activation
states, while downstream task-specific outputs are obtained via analysis and mapping of the similar-
ity between patterns (Fig. 3). For greater clarity regarding the positioning of our contribution within
the existing literature, an extended review of related work is deferred to Appendix A.

We quantify the separability of pattern using strong negative correlation (Liu & Yao, 1999) across
several benchmark datasets (Chen et al., 2022) and conduct systematic comparisons. Results demon-
strate that, relative to full BP-based training, the proposed pattern-constrained approach exhibits only
marginal degradation in optimisation performance, while substantially improving robustness, ability
to generalise to a range of tasks and significantly reducing training time. By reducing collinear-
ity among neural units, pattern constraints enhance the decoupling capacity of task-specific sub-
networks, offering a promising alternative to error-backpropagation-centric architectures.

2 CO-ACTIVATION PATTERNS

Consider a standard feedforward neural network that maps an input x ∈ Rd0 to a final-layer repre-
sentation aL ∈ RdL . This mapping is realised through the composition of L layers:

ai = fi(ai−1) = σi

(
Wiai−1 + bi

)
, i = 1, . . . , L, a0 = x, (2)

where σi denotes an element-wise nonlinear function, and (Wi,bi) are trainable parameters. In the
conventional end-to-end training, the loss function is defined as L = L(aL, y), depending solely on
the relation between the output aL and the target y. To enable a multi-layer nonlinear structure to
approximate complex mappings, informative error signals must be propagated backwards from the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

output layer to preceding layers. The error signal ∂L
∂ai

is computed recursively as

∂L
∂ai

=

(
L∏

k=i+1

∂ak
∂ak−1

)⊤
∂L
∂aL

,
∂ak

∂ak−1
= Diag

(
σ′
k(Wkak−1 + bk)

)
Wk. (3)

This expression involves a product of Jacobian matrices and is therefore prone to vanishing or ex-
ploding gradients (Bengio et al., 1994), governed by the spectral properties of these matrices. While
differentiability of σi with a moderate slope constitutes a standard sufficient condition for stable
gradient transmission (often complemented in practice by orthogonal or variance-preserving initial-
isation of Wi) (Mishkin & Matas, 2015; Xiao et al., 2018), strong invertibility assumptions on σi

or Wi are not strictly necessary for the correctness of backpropagation. Rather, they are technical
assumptions invoked in specific analyses to improve the local conditioning of the Jacobians.

From a system perspective, we replace the explicit output vector with CAPs, and reinterpret the
forward pass a0→a1→· · ·→aL as a unidirectional mapping from low-level to high-level features:

F : Rd0 →
L∏

i=1

Rdi , x 7→ A(x) = (a1(x), . . . ,aL(x)), (4)

where ai ∈ Rdi denotes the activation at layer i (the raw input a0 = x is omitted hereafter to
avoid notational overhead). The “representational target” of the network is formed collectively by
activations across all layers, rather than by a single ‘final’ vector. Based on A(x), a general loss
functional of contrastive or similarity type can be denoted

L
(
A(x),A(x(j))

)
, (5)

where A(x) denotes the activation set of the current input x, and A(x(j)) corresponds to that of
other samples in the dataset. This viewpoint aligns with recent methods that dispense with an ex-
plicit output layer and instead, it discriminates via statistics of the activation patterns. For instance,
the Forward-Forward algorithm proposed by Hinton (2022) operates directly in parameter space,
learning to classify data by amplifying the difference in activation strengths between positive and
negative samples.

To render the above concept more explicit and actionable in classification tasks, we adopt a prac-
tical rule that combines unified supervision with gradient decoupling. Specifically, we flatten and
concatenate activations across all layers to construct a single global embedding

m(x) = concat
(
vec(a1(x)), . . . , vec(aL(x))

)
∈ RD, D =

L∑
i=1

di, (6)

which provides a common coordinate system in RD for comparing all samples. This naturally
allows the introduction of trainable class-prototype CAPs, µc ∈ RD, for each class c (Algorithm 1),
serving as surrogates for full dataset traversal. As an illustrative case, we adopt a cosine similarity
with softmax formulation:

sc =
m⊤µc

∥m∥ ∥µc∥
, pc =

exp(sc/τ)∑
k exp(sk/τ)

, Lglob(m, y) = − log py, (7)

where τ > 0 is a temperature parameter, sk denotes the score with respect to class k, and the index k
runs over all candidate classes. Denoting m̂ = m/|m| and µ̂c = µc/|µc|, the single-sample gradient
becomes

∂Lglob

∂m
=
∑
c

(pc − 1[c=y])
∂sc
∂m

,
∂sc
∂m

=
µ̂c − sc m̂

∥m∥
. (8)

Partitioning m into blocks m = (m1, . . . ,mL), where mi = vec(ai), yields the partial derivative
with respect to the i-th block:

∂Lglob

∂mi
=

1

∥m∥

[∑
c

(pc − 1[c=y])
(
µ̂c,i − sc m̂i

)]
, (9)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where µ̂c,i and m̂i denote the components of µ̂c and m̂ corresponding to the i-th block.

To avoid conceptual ambiguity, we first clarify the definitions of partial and total derivatives. If
(m1, . . . ,mL) are treated as mutually independent block variables, the above expression provides
the partial derivative with respect to the i-th block, namely the instantaneous sensitivity of Lglob to
mi while holding the other blocks fixed. In contrast, for a full gradient backpropagation, ai also
affects the loss via deeper blocks {mj}j>i, in which case, the total derivative with respect to ai
should be written as

∂Lglob

∂mi︸ ︷︷ ︸
direct term (partial derivative)

+
∑
j>i

(∂mj

∂mi

)⊤ ∂Lglob

∂mj︸ ︷︷ ︸
indirect term (propagated via deeper layers)

. (10)

The update strategy adopted in this work is equivalent to performing block coordinate descent (or
ascent) on Lglob(m1, . . . ,mL). When updating the i-th layer, the remaining blocks {mj}j ̸=i are
treated as constants. Consequently, the update uses the partial derivative ∂Lglob/∂mi while dis-
carding all indirect terms propagated along mi→mj (j > i). In implementation, this operation of
“treating the other blocks as constants” corresponds precisely to applying a stop-gradient between
adjacent layers: the computational graph edges from ai to deeper layers are severed, such that the
automatic differentiation system returns only the partial derivative. Thus,

∂Lglob

∂θi
=
(∂Lglob

∂ai
⊙ σ′

i(Zi)
) ∂Zi

∂θi
, Zi = Wiai−1 + bi,

∂Lglob

∂ai
≡ ∂Lglob

∂mi
, (11)

where θi = (Wi,bi) denotes the parameters of the i-th layer. In other words, starting directly from
the similarity objective, updating the i-th layer with all other blocks frozen naturally yields an update
rule that retains only the direct term. This does not modify the objective function itself, but rather
applies a block-coordinate partial-derivative update to the same objective.

It is important to emphasise that, although the indirect terms of end-to-end backpropagation are
discarded at the computational-graph level via stop-gradient, the global coupling induced by the
discriminative objective still holds. The reason is that the partial derivative ∂Lglob/∂mi explicitly
depends on |m|, m̂, sc(m), pc(m), and all class-prototype CAPs µc –quantities jointly determined
by the entire activation chain {mj}Lj=1. Consequently, block updates are modulated by global nor-
malisation and class competition, rather than realised through Jacobian chains propagating “from
deeper to shallower” layers. Formally, for all ∀i ̸= j, ∂2Lglob/∂mi∂m

⊤
j ̸= 0, which reflects cross-

layer interactions. Put differently, we perform block-coordinate partial-derivative updates on the
same global objective Lglob ; what is discarded are the indirect propagation paths in the graph, not
the intrinsic global consistency constraints of the objective.

Nevertheless, ignoring the chained term
∑

j>i(∂mj/∂mi)
⊤(∂Lglob/∂mj) means that the update

direction no longer coincides with the true steepest descent. When the overall scale of the rep-
resentation ∥m∥ fluctuates during training, this bias is further amplified, since the block gradient
satisfies ∥∥∥∂Lglob

∂mi

∥∥∥ ∝ 1
∥m∥ . (12)

On the one hand, if ∥m∥ increases, the effective step size of all block parameters is simultaneously
reduced, causing learning-rate mismatch and slower convergence. On the other hand, the model
may deliberately enlarge the norm (“norm inflation”) to reduce gradient magnitude, leading to norm
competition and other scale pathologies (Zhang et al., 2018). To mitigate these issues, we incor-
porate Batch Normalisation (BN) (Ioffe & Szegedy, 2015) in each layer, centring the activations ai
and normalising them by the mini-batch variance, while introducing a learnable scaling factor γi to
adjust block scale. This ensures that E|m|2 ≈

∑
i di, and γ2

i is effectively controlled in expectation,
thereby stabilising the global step size induced by 1/∥m∥. Furthermore, the reduction of cross-layer
distributional shift can indirectly alleviate directional bias. In small-batch or single-sample settings,
Layer Normalisation ba2016layer may serve as a viable alternative.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3 TRAINING PROCEDURE

The CAPs-based training procedure is summarised in Algorithm 1. Specifically, the activations
from each block are subjected to batch normalisation and pooling, before being concatenated into a
global pattern vector. This representation is subsequently aligned with the class template matrix and
constrained via a softmax function, after which gradient-based optimisation is employed to update
the parameters. Details of the network architecture, dataset descriptions, and implementation details
are presented in Appendix B.

Algorithm 1 Training Step of Co-activation Patterns Algorithm
Require: dataset {(xi, yi)}Bi=1, batch size B, network fθ , average pooling P(·), batch norm BN(·), class tem-
plate matrix T ∈ RC×H

Ensure: updated θ, BN, T
1: for each mini-batch B ⊂ {(xi, yi)}Ni=1 of size B do
2: initialise empty activation buffer: global state← []
3: for each block b in fθ do
4: xb ← b.CONV(x)
5: x← stopgradient(xb)
6: global state.append(flatten(BN(P(xb))))

7: h← concat(global state) ▷ Global pattern vector h ∈ RB×H

8: logits← h · T⊤

9: p← softmax(logits)
10: compute the loss: L = − 1

B

∑
i∈B log pi,yi

11: update θ, BN, and T using gradient-based optimisation (e.g. Adam)

4 RESULTS AND DISCUSSION

This section presents a systematic empirical evaluation of the CAPs-based separability quantification
framework in comparison with the conventional end-to-end training approach. The analysis focuses
on four aspects: classification accuracy, convergence behaviour, gradient directional consistency,
and scale stability. For reference, the standard implementation of “cosine similarity + softmax” un-
der end-to-end backpropagation (formally equivalent to classical cross-entropy) is adopted as the
baseline loss. It should be emphasised that, although the two are notationally identical, their algo-
rithmic roles differ significantly. In the CAPs framework, global normalisation and class-prototype
CAPs competition induce strong competitive coupling across layers and blocks, leading to marked
negative correlation (mutual inhibition) among their contributions. By contrast, end-to-end cross-
entropy mainly performs probability modelling and normalisation at the output layer, and its con-
straints on intermediate layers remain relatively indirect and weak.

4.1 THE EFFECT OF NETWORK DEPTH

In terms of accuracy, Table 1 shows that error rates under both paradigms decrease as the back-
bone depth increases, consistent with the well-established expectation that deeper convolutional
networks provide representational benefits. On the Multilayer Perceptron (MLP), CAPs achieves
a substantially lower average error than output layer class training using BP, whereas within the
Visual Geometry Group (VGG) series no substantial difference is observed. Since MNIST-family
tasks are largely saturated, these differences alone are insufficient to determine superiority; more
discriminative conclusions require evaluation on more challenging natural image datasets.

In terms of cost and efficiency, Table 1 shows that CAPs, compared with BP, exhibits the following
overall characteristics: a slight increase in parameters, reduced memory footprint, markedly faster
backpropagation, and forward time that remains largely comparable or shows only minor fluctua-
tions. The increase in parameter count primarily arises from the trainable class-prototypes CAPs
µc ∈ RDC

c=1: a finite set of prototype vectors replaces exhaustive traversal of the dataset, introduc-
ing approximately D × C additional parameters. In our implementation, features from each layer
are globally averaged and unified to 1024 dimensions, so that D ≈ 1024L, and the extra parameters
therefore grow linearly with both depth and number of classes. In the VGG series, the increase

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of BP and CAPs across varying-depth backbones on MNIST,
Fashion-MNIST and Kuzushiji-MNIST considering Error, Parameters, Memory, and Runtime (ms).

Backbone Method MNIST Error Params(M) Memory(MiB) Runtime (ms)

Origin Fashion Kuzushiji Forward Backward

3×3000 MLP BP 4.29% 16.69% 2.82% 0.03 231 0.61 1.36
CAPs 1.79% 12.81% 1.91% 0.09 235 0.62 0.88

VGG6 BP 0.30% 0.44% 5.07% 4.46 2092 1.28 3.44
CAPs 0.39% 0.51% 4.97% 4.54 1941 1.15 2.35

VGG8 BP 0.29% 0.40% 4.50% 5.24 2330 2.85 6.04
CAPs 0.33% 0.38% 4.42% 5.36 2181 2.82 5.05

VGG11 BP 0.34% 0.39% 4.32% 7.96 2695 3.68 8.20
CAPs 0.33% 0.40% 4.29% 8.14 2549 4.17 5.81

VGG16 BP 0.32% 0.37% 4.69% 13.67 3158 5.44 11.57
CAPs 0.35% 0.35% 5.68% 13.95 3008 5.53 8.89

VGG19 BP 0.34% 0.35% 3.80% 16.83 3413 6.20 13.40
CAPs 0.39% 0.48% 5.59% 17.18 3257 6.61 9.71

is typically confined to single-digit percentages, whereas for the extremely small-parameter MLP,
the relative increase is larger but the absolute scale remains negligible. Training memory usage
decreases by about 5–7% across VGG series, reflecting the effect of stop-gradient in avoiding layer-
by-layer storage and backpropagation of long Jacobian chains, hence shortening the activation and
gradient window that must be retained; convolution-dominated networks benefit more noticeably.
With respect to runtime, the backward phase consistently achieves double-digit percentage speed-
ups (16–35%), attributable to the elimination of end-to-end chained indirect terms, which allows
parallel updates. In the forward phase, the additional computation of the global embedding and
cosine similarity with C prototypes has complexity O(D,C), which is of the same order as the
linear classifier head in BP. Relative to the convolutional backbone, this extra operator is usually of
secondary magnitude, and thus overall forward time shows only minor fluctuations.

4.2 THE EFFECT OF THE NUMBER OF CLASSES

Table 2: Performance comparison of BP and CAPs across Backbones on CIFAR-10 and CIFAR-100
considering Error, Parameters, Memory, and Runtime (ms).

Backbone Method CIFAR-10 CIFAR-100

Error
Params

(M)
Mem
(MiB)

Fwd
(ms)

Bwd
(ms) Error

Params
(M)

Mem
(MiB)

Fwd
(ms)

Bwd
(ms)

3×3000 MLP BP 55.66% 0.03 289 0.52 0.74 N/A N/A N/A N/A N/A
CAPs 48.55% 0.09 294 0.50 1.12 N/A N/A N/A N/A N/A

VGG6 BP 8.69% 6.03 2212 1.49 4.27 32.86% 6.86 2216 1.84 4.24
CAPs 10.34% 6.12 2012 1.65 3.14 32.88% 7.68 2018 1.90 3.11

VGG8 BP 6.23% 6.81 2517 2.76 6.03 29.80% 8.01 2522 2.39 8.96
CAPs 8.36% 6.94 2319 2.87 4.74 30.57% 9.24 2329 2.86 5.25

VGG11 BP 5.82% 9.53 2981 4.45 9.49 28.31% 11.28 2989 4.56 9.39
CAPs 8.30% 9.72 2787 4.85 6.96 29.98% 13.13 2800 4.93 6.46

VGG16 BP 5.66% 15.24 3573 6.60 13.65 32.31% 17.92 3584 7.09 14.59
CAPs 8.71% 15.53 3369 6.89 9.82 30.88% 20.78 3391 8.46 12.02

VGG19 BP 5.83% 18.40 3899 7.88 16.35 34.14% 21.63 3913 7.92 16.52
CAPs 9.20% 18.75 3685 8.07 11.53 31.53% 25.11 3711 8.76 12.35

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

We conducted a systematic comparison of BP and CAPs on CIFAR-10 and CIFAR-100 (see Table
2). On CIFAR-10, CAPs clearly outperforms BP on the shallow MLP 3×3000. For convolutional
backbones in the VGG family, CAPs yields slightly higher error rates than BP, with an average
difference of +2.54 percentage points across the five depths. On CIFAR-100, however, the opposite
trend emerges: while CAPs is comparable to but marginally inferior to BP on VGG6, VGG8, and
VGG11, it achieves a consistent advantage on the deeper VGG16 and VGG19, reducing error rates
by 1.43 and 2.24 percentage points, respectively.

The observed differences arise from the coupling of global normalisation and class-prototype com-
petition in CAPs. Under a fixed norm budget, class prototypes engage in strongly exclusive com-
petition via the softmax, inducing a systematic negative correlation in discriminative contributions
across layers: when one layer gains discriminative strength, the effective contribution of others is
correspondingly suppressed. On CIFAR-100 (with more classes and stronger competition), achiev-
ing higher posterior quality drives representational capacity towards deeper layers to form sharper
margins, while shallow layers converge to shared low-frequency and shape priors, thereby reducing
overfitting. Consequently, deeper backbones (VGG16/19) attain a stable advantage. By contrast,
on CIFAR-10, capacity is not sufficiently redistributed to the deeper layers, leaving their potential
underutilised. As a result, CAPs exhibits mild degradation on convolutional backbones, whilst still
conferring benefits on MLPs with weaker shallow representations.

4.3 THE EFFECT OF NETWORK WIDTH

Table 3: Performance comparison of BP and CAPs across varying-width backbones on CIFAR-100
considering Error, Parameters, Memory, and Runtime (ms).

Width Method VGG11 VGG16

Error
Params

(M)
Mem
(MiB)

Fwd
(ms)

Bwd
(ms) Error

Params
(M)

Mem
(MiB)

Fwd
(ms)

Bwd
(ms)

1× BP 28.31% 11.28 2989 4.56 9.39 32.31% 17.92 3584 7.09 14.59
CAPs 30.55% 13.13 2800 4.93 6.46 30.88% 20.78 3391 8.46 12.02

2× BP 26.23% 35.07 8290 13.35 23.71 29.02% 58.51 9519 21.33 38.20
CAPs 29.32% 36.91 7912 13.50 15.41 29.84% 61.38 9122 21.65 24.41

4× BP 25.11% 57.72 14493 34.00 60.23 28.59% 89.79 16240 54.40 95.42
CAPs 28.42% 57.57 14103 34.14 35.90 29.00% 92.66 15856 54.59 57.22

The effects of depth and width on CAPs are also differentiated. Taking the VGG11 family as an
example, as width increases from the baseline to 2× and 4×, the error of BP decreases steadily,
whereas CAPs improves more slowly. By contrast, on the VGG16 baseline CAPs actually outper-
forms BP (a 1.43 percentage point advantage). This suggests that, once depth is sufficient to support
semantic specialisation across layers, the global geometric constraint induced by full-layer embed-
dings and prototype competition becomes effective: shallow layers capture shared priors, while
deeper layers carry more selective features, leading to a more balanced allocation under the fixed
“norm budget”. Simply widening shallow networks intensifies mutual inhibition around the fixed
budget, whereas increasing depth is more conducive to shifting representational capacity towards
deeper layers. At the same time, as parameter count and activation size grow, the computational
and memory cost of BP backpropagation scales nearly linearly, or even super-linearly, while CAPs
reduces backpropagation paths and activation storage by truncating cross-layer gradient chains, and
its parallelisation advantage scales markedly with model size.

4.4 THE EFFECT OF GRADIENT INDIRECT TERMS
The table also compares VGG11-based “CAPs” (retaining only partial derivatives with stop-
gradient) and “CAPs-full” (optimising the same global geometric objective but retaining full-chain
indirect terms) to assess the trade-offs of discarding indirect gradients. On CIFAR-10 and CIFAR-
100, CAPs-full consistently surpasses CAPs in accuracy, and in several cases even outperforms BP.
This shows that, in natural image tasks, geometric constraints alone are insufficient to fully correct
the directional bias induced by truncated gradient chains; reinstating the indirect terms significantly

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Performance comparison of BP, CAPs and CAPs-full on CIFAR10 and CIFAR100 with
VGG11 backbone considering Error, Parameters, Memory, and Runtime (ms)
Backbone Dataset Method Error Params(M) Memory(MiB) Forward (ms) Backward (ms)

VGG11

CIFAR10
BP 5.82% 9.53 2981 4.45 9.49
CAPs 8.30% 9.72 2787 4.85 6.96
CAPs-full 5.15% 9.72 2995 4.83 11.85

CIFAR100
BP 28.31% 11.28 2989 4.56 9.39
CAPs 30.55% 13.13 2800 4.93 6.46
CAPs-full 24.38% 13.13 3015 4.41 10.33

Figure 2: Impact of Batch Normalization ablation (noBN-CAPs) on training and test error dynamics,
in comparison with BP and CAPs

reduces this bias. The drawback is increased cost in backpropagation and memory: the backward
latency of CAPs-full rises from 6.96 to 11.85 ms (+70%) and from 6.46 to 10.33 ms (+60%) on the
two datasets. From an engineering perspective, a practical recommendation is to use CAPs for most
of the training to gain substantial advantages in time and memory, and to switch to CAPs-full for
short-range fine-tuning in the later convergence stages if ultimate accuracy is required.

4.5 THE EFFECT OF BATCH NORMALISATION

Figure 2 shows that batch normalisation (BN) (Ioffe & Szegedy, 2015) is essential for stable training.
On CIFAR-10, removing BN leads to a characteristic “scale pathology”: the training error remains
at a high plateau with pronounced oscillations, while the test error fails to decrease effectively.

The underlying cause lies in the interaction between global normalisation and scale drift. Without
normalisation, the norm of the global embedding m, obtained by concatenating activations across
layers, tends to grow during training, thereby reducing the effective step size to ηeff = η

∥m∥ .

If the learning-rate schedule fails to track this drift, training shows “sluggish convergence” and “di-
rectional jitter”, as shown in the non-BN curves, which exhibit marked kinks and oscillations around
epochs 200/300, corresponding to common learning-rate decay points. In contrast, BN recentres and
normalises activations using batch statistics, constraining layer-wise scales within a stable range. As
a result, the global step size guided by 1/∥m∥ is stabilised, cross-layer distributional shifts are miti-
gated, and directional bias is reduced, thereby enabling faster and smoother convergence.

4.6 GENERALISATION ABILITY

The test error alone cannot disentangle optimisation dynamics from generalisation ability. To ad-
dress this, we introduce an analysis of training error to reveal the key dynamics during model learn-
ing. As illustrated in Fig. 2, the conventional BP method demonstrates superior optimisation perfor-
mance, achieving a faster reduction in training error and converging to a lower final value. However,
despite its optimisation advantage, BP tends to overfit during compression, over-adapting to training
data. In contrast, approaches that emphasise pattern separation display a more balanced behaviour,
maintaining resilience against overfitting on both the training and test sets. This consistency sug-
gests that pattern-separation methods inherently possess a stronger inductive bias, favouring solu-
tions with better generalisation capability and thereby mitigating the risk of overfitting.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3: Evolution of Modal Orthogonality and Neuronal Sparsity Across Training Epochs for
Various Neural Computation Strategies on CIFAR-10. (A): Cosine Similarity Reflecting Inter-Class
CAPs Orthogonality. (B): L1 Norm Reflecting Activation Sparsity in Neural Representations

4.7 SPARSITY

Fig.3(A) illustrates the evolution of modal orthogonality during the training of the VGG8 model on
the CIFAR-10 dataset, with the aim of assessing the enhancement of inter-class pattern separation,
i.e., the independence of task-specific sub-networks. Orthogonality is quantified by computing the
average cosine similarity between sample modalities and their corresponding class-mean modalities.
The figure is presented as a line plot, where the horizontal axis denotes training epochs and the
vertical axis represents the orthogonality metric O. Lower values of O indicate stronger inter-class
pattern orthogonality. Fig.3(B) visualises the evolution of network sparsity throughout training on
CIFAR-10, intended to verify that CAPs under softmax constraints tend to utilise only the minimal
number of neuronal nodes required to achieve the computational objective. Similarly, Fig.3(B) is
a line plot, with training epochs on the horizontal axis and average L1 norm on the vertical axis.
Lower values of L1avg correspond to stronger neuronal sparsity.

As shown in Fig.3(A), standard BP consistently exhibits weak separation of patterns throughout
training, lacking clear reasoning pathways. This can be attributed to the absence of explicit pattern
constraints, which leads to high correlations between modalities. In contrast, CAPs learning with
softmax constraints achieves a marked improvement in orthogonality within the first 200 training
epochs. This indicates that, although the primary role of the softmax constraint is to regulate inter-
class projection distances, it also effectively facilitates pattern separation during the early stages of
training. Correspondingly, Fig.3(B) reveals that BP tends to learn dense weight distributions, with
the majority of connections remaining non-zero, thereby increasing redundancy, reducing sparsity,
and exacerbating the risk of overfitting. By contrast, pattern-based learning methods demonstrate
greater sparsity, which can be ascribed to the independence of their reasoning pathways.

5 CONCLUSION

This work introduces a CAPs-centric learning paradigm of “parameter decoupling—representation
coupling”. In the parameter domain, block-wise updates based on partial derivatives of the global
objective enable parallel optimisation while eliminating long-range gradient transmission, thereby
reducing training overhead and significantly reducing training time. In the representational domain,
alignment through CAPs preserves the necessary global coupling and task consistency. Although
the proposed approach shows a modest performance gap compared with standard BP on several
benchmarks, its mechanism is more consistent with the local plasticity and parallel propagation ob-
served in biological neural systems. It should be noted that the current implementation relies on
engineered operators such as pooling and batch normalisation, which lack direct biological counter-
parts. In future work, we will pursue two main directions: first, extending this decoupled framework
to cross-modal integration and multimodal joint inference, enabling heterogeneous and independent
sub-networks to operate in a controllably loosely coupled manner through CAPs without shared
weights or long-range gradient exchange; and second, this mechanism makes it possible to intro-
duce new tasks incrementally without damaging existing representations, and also provides a prac-
tical computational model for explaining both short-term and long-term memory. Building on this,
future work will involve system-level evaluations of its scalability and robustness in lifelong learning
and memory consolidation scenarios.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The underlying principle of our work is simple and readily reproducible. The required implemen-
tation steps are presented in Algorithm 1, and all source code is provided in the supplementary
material.

REFERENCES

Bernard J Baars. A cognitive theory of consciousness. Cambridge University Press, 1993.

Sergey Bartunov, Adam Santoro, Blake Richards, Luke Marris, Geoffrey E Hinton, and Timothy
Lillicrap. Assessing the scalability of biologically-motivated deep learning algorithms and archi-
tectures. Advances in neural information processing systems, 31, 2018.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

Rakesh Chalasani and Jose C Principe. Deep predictive coding networks. arXiv preprint
arXiv:1301.3541, 2013.

Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, and Zhangyang Wang. The principle
of diversity: Training stronger vision transformers calls for reducing all levels of redundancy.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12020–12030, 2022.

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David
Ha. Deep learning for classical japanese literature. arXiv preprint arXiv:1812.01718, 2018.

Francis Crick. The recent excitement about neural networks. Nature, 337(6203):129–132, 1989.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Stanislas Dehaene and Jean-Pierre Changeux. Experimental and theoretical approaches to conscious
processing. Neuron, 70(2):200–227, 2011.

Xingping Dong and Jianbing Shen. Triplet loss in siamese network for object tracking. In Proceed-
ings of the European conference on computer vision (ECCV), pp. 459–474, 2018.

Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv preprint
arXiv:2212.13345, 2(3):5, 2022.

Geoffrey E Hinton and James McClelland. Learning representations by recirculation. In Neural
information processing systems, 1987.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural
networks. science, 313(5786):504–507, 2006.

Zhouyuan Huo, Bin Gu, and Heng Huang. Training neural networks using features replay. Advances
in Neural Information Processing Systems, 31, 2018a.

Zhouyuan Huo, Bin Gu, Heng Huang, et al. Decoupled parallel backpropagation with convergence
guarantee. In International Conference on Machine Learning, pp. 2098–2106. PMLR, 2018b.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David
Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. In Inter-
national conference on machine learning, pp. 1627–1635. PMLR, 2017.

Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Banerjee, and Fillia
Makedon. A survey on contrastive self-supervised learning. Technologies, 9(1):2, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propaga-
tion. In Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part I 15, pp. 498–
515. Springer, 2015.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random feedback
weights support learning in deep neural networks. arXiv preprint arXiv:1411.0247, 2014.

Xiao Liu, Nanyin Zhang, Catie Chang, and Jeff H Duyn. Co-activation patterns in resting-state fmri
signals. Neuroimage, 180:485–494, 2018.

Yong Liu and Xin Yao. Ensemble learning via negative correlation. Neural networks, 12(10):1399–
1404, 1999.

Dmytro Mishkin and Jiri Matas. All you need is a good init. arXiv preprint arXiv:1511.06422,
2015.

Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. Advances in
neural information processing systems, 29, 2016.

Ce Qi and Fei Su. Contrastive-center loss for deep neural networks. In 2017 IEEE international
conference on image processing (ICIP), pp. 2851–2855. IEEE, 2017.

Oren Rippel, Manohar Paluri, Piotr Dollar, and Lubomir Bourdev. Metric learning with adaptive
density discrimination. arXiv preprint arXiv:1511.05939, 2015.

Murray Shanahan. A cognitive architecture that combines internal simulation with a global
workspace. Consciousness and cognition, 15(2):433–449, 2006.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. Advances in
neural information processing systems, 29, 2016.

Gavin Taylor, Ryan Burmeister, Zheng Xu, Bharat Singh, Ankit Patel, and Tom Goldstein. Training
neural networks without gradients: A scalable admm approach. In International conference on
machine learning, pp. 2722–2731. PMLR, 2016.

Giulio Tononi. An information integration theory of consciousness. BMC neuroscience, 5:1–22,
2004.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoenholz, and Jeffrey Pennington.
Dynamical isometry and a mean field theory of cnns: How to train 10,000-layer vanilla convolu-
tional neural networks. In International conference on machine learning, pp. 5393–5402. PMLR,
2018.

Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger Grosse. Three mechanisms of weight decay
regularization. arXiv preprint arXiv:1810.12281, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A RELATED WORK

In recent years, numerous training algorithms have emerged that seek to avoid the traditional back-
propagation (BP) mechanism. Biologically inspired approaches, such as target propagation (Lee
et al., 2015; Bartunov et al., 2018) and feedback alignment (Lillicrap et al., 2014; Nøkland, 2016),
utilise auxiliary networks to propagate optimal activations or error signals directly backward, thereby
circumventing BP. Decoupled Neural Interfaces (DNI) (Jaderberg et al., 2017) similarly rely on aux-
iliary networks, but instead generate synthetic gradients. Other techniques, such as the Alternating
Direction Method of Multipliers (ADMM), decompose the end-to-end optimisation process into
smaller sub-problems using auxiliary variables (Taylor et al., 2016). Decoupled Parallel Backpropa-
gation (Huo et al., 2018b) and Feature Replay (Huo et al., 2018a) use previously computed gradients
instead of current ones to update parameters, providing theoretical guarantees of convergence and
enabling parallel training of network modules. Collectively, these methods emulate, to some extent,
the biological principle of local synaptic plasticity, where neurons adjust synaptic strengths based
solely on local input-output relationships. However, these approaches largely remain extensions of
end-to-end training paradigms, with optimisation objectives still predominantly defined by errors
computed at the output layers or their variants. Crucially, they lack explicit optimisation directly
targeting the network’s global activation states.

The FF algorithm (Hinton, 2022), similar to our proposed method, explicitly targets the network’s
activation states. FF entirely abandons BP, instead employing two forward passes: one with genuine
data as positive samples and another with artificially generated or differently classed inputs serv-
ing as negative samples. Each layer is trained independently by a local objective function, which
adjusts weights to increase the activation magnitude for positive samples relative to negative sam-
ples, thereby enabling class discrimination. Despite its advantages, FF has two main limitations:
firstly, it oversimplifies the evaluation of global network activations by merely summing neuronal
activities, failing to exploit the rich, high-dimensional nature of these activation patterns; secondly,
its distributed layer-wise optimisation lacks a convincing rationale at earlier layers, as shallow-layer
features are forced into a potentially unnatural separation between positive and negative sample
activations.

Meanwhile, numerous studies have focused on designing more discriminative loss functions to en-
hance class separability. These contrastive learning approaches establish a metric space tailored for
specific tasks, encouraging representations of samples from the same class to cluster together, while
pushing apart those from different classes. Some methods, such as Triplet Loss (Dong & Shen,
2018) and N-Pair Loss (Sohn, 2016; Jaiswal et al., 2020), explicitly measure relative distances be-
tween sample pairs. Others, like those proposed by Rippel et al. (2015) and Qi & Su (2017), adjust
the representational distances between individual samples and learned class centres. Nevertheless,
most of these contrastive losses operate solely on the final layers of the network, emphasising local
sample pairs or local statistical differences rather than modelling and controlling the global acti-
vation patterns throughout the entire network. Furthermore, all these approaches fundamentally
depend on BP for parameter updates. Consequently, individual layers receive fragmented gradi-
ent signals originating from the output loss rather than receiving a cohesive and globally informed
feedback that directly reflects the overall activation state of the network.

B EXPERIMENTAL SETUP

B.1 NETWORK ARCHITECTURE

In this study, we adopted a multilayer perceptron (MLP) (Krizhevsky et al., 2009) together with a
series of VGG-style convolutional networks of varying depths and widths (Simonyan & Zisserman,
2014) as baseline architectures. The 3 × 3000 MLP represents a fully-connected structure char-
acterised by short forward paths and relatively low computational and memory overheads, albeit
with limited representational capacity. The VGG family adheres to the classical design paradigm:
stacking homogeneous 3 × 3 convolutional layers (stride of 1, same padding) as the basic building
blocks, interleaved with 2 × 2 max-pooling layers (M) to achieve spatial downsampling. To sys-
tematically examine the impact of network depth, we selected five configurations—VGG6, VGG8,
VGG11, VGG16, and VGG19. Furthermore, to evaluate the role of width expansion in enhancing
representational power, we constructed channel-augmented variants (e.g., VGG11-2x and VGG16-

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

4x), in which the number of channels is increased by factors of two or four. In all cases, channels
were progressively doubled in a stage-wise manner, ranging from 128 channels in the shallow layers
up to 1024 channels in the widest models. It is noteworthy that none of these architectures incor-
porated residual connections or attention mechanisms, thereby ensuring a simplified and controlled
setting in which the influence of depth and width on the proposed learning framework could be more
transparently assessed.

B.2 DATASET

We conducted experiments using the PyTorch framework on five benchmark datasets: MNIST (Le-
Cun et al., 1998), Fashion-MNIST (Xiao et al., 2017), Kuzushiji-MNIST (Clanuwat et al., 2018),
CIFAR-10, and CIFAR-100 (Krizhevsky et al., 2009). MNIST comprises 70,000 handwritten digit
images of size 28× 28 pixels, with 60,000 images allocated for training and 10,000 for testing, and
is designed for digit recognition. Fashion-MNIST, serving as a more challenging alternative, mirrors
the structure of MNIST while consisting of 70,000 images of fashion products. Kuzushiji-MNIST
contains cursive Japanese characters and follows the same scale and format as MNIST. Both CIFAR-
10 and CIFAR-100 are constructed for image classification tasks, each consisting of 60,000 colour
images of size 32 × 32 pixels. CIFAR-10 is divided into 10 distinct classes, whereas CIFAR-100
comprises 100 classes further grouped into 20 superclasses.

B.3 IMPLEMENTATION DETAILS

For experiments on the MNIST family of datasets and CIFAR-10, we employed a 3×3000 MLP to-
gether with VGG variants as baselines to evaluate the performance of different methods; for CIFAR-
100, only VGG models were considered as baselines. All experiments were conducted on a single
NVIDIA RTX 5090 GPU without data augmentation. The Adam optimiser (Kingma & Ba, 2014)
was used with a batch size of 128 and an initial learning rate of 5 × 10−4. The number of training
epochs was set to 100 for MNIST and Kuzushiji-MNIST, 200 for Fashion-MNIST, and 400 for both
CIFAR-10 and CIFAR-100.

A dropout rate of 0.2 was consistently applied to both MLP and VGG models across all datasets.
To balance the contribution of individual layers to the CAPs, average pooling was applied to the
features of each block, with kernel sizes adjusted as required to ensure that the resulting feature
dimension was fixed at 1024 across all datasets.

13

	Introduction
	Co-activation Patterns
	Training Procedure
	Results and Discussion
	The Effect of Network Depth
	The Effect of the Number of Classes
	The Effect of Network Width
	The Effect of Gradient Indirect Terms
	The Effect of Batch Normalisation
	Generalisation Ability
	Sparsity

	Conclusion
	Related Work
	Experimental Setup
	Network Architecture
	Dataset
	Implementation Details

