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ABSTRACT

Network data are ubiquitous across the social sciences, biology, and information
systems. Generating realistic synthetic network data has broad applications from
network simulation to scientific discovery. However, many existing black-box
approaches for network generation tend to overfit observed data while overlooking
characteristic network structure, and incur substantial computational overhead at
scale. These practical challenges call for synthetic network generation methods
that are both efficient and capable of capturing structural properties of networks.
In this paper, we introduce Synthetic Network Generation via Latent Embedding
Reconstruction (SyNGLER), a general and efficient framework for synthetic net-
work generation that builds on latent space network models. Given an observed
network, SYNGLER first learns low-dimensional latent node embeddings via a
latent space network model and then reconstructs the latent space by building a
distribution-free generator over these embeddings. For generation, SyYNGLER
first samples (or resamples) node embeddings from the generator in the latent
space and then produces synthetic networks using the latent space network model.
Through the latent space framework, SYNGLER preserves unique characteristics
in networks such as sparsity and node degree heterogeneity, while allowing for effi-
cient training with lower computational cost than many existing deep architectures.
We provide theoretical guarantees by developing consistency results regarding
the distance between the true and synthetic edge distributions. Empirical studies
further demonstrate the effectiveness of SYNGLER, where SyYNGLER efficiently
produces networks that better preserve key network characteristics such as network
moments and degree distributions compared with existing approaches.

1 INTRODUCTION

Graph network data capture interactions among entities in complex systems. Examples include social
networks (Traud et al., 2012), molecular interaction networks (Goémez-Bombarelli et al., 2018), and
brain connectivity networks (Bullmore & Sporns, 2009). Generating realistic synthetic network
data (Zhu et al., 2022) has broad applications, spanning drug discovery (Li et al., 2018a), material
discovery (Merchant et al., 2023), and image recognition (Xie et al., 2019). Designing efficient
generative models that produce realistic network data while preserving characteristic structural
network properties remains a long-standing and active research challenge.

Recent years have witnessed a growing line of work on data-driven graph network generation using
deep learning. For example, Li et al. (2018b) proposed an autoregressive generation scheme, in which
a graph neural network (GNN; Scarselli et al. (2008)) sequentially adds nodes and edges based on the
current graph. You et al. (2018) later adopted recurrent neural networks (Schmidt, 2019) that summa-
rize nodes and edges and generate, at each step, the next node and its associated edges. Liao et al.
(2019) introduced a block-wise autoregressive model with graph attention mechanism (Velickovi¢
et al., 2017), reducing serial computation while preserving long-range dependencies. Nevertheless,
for large graphs, training and sampling in deep autoregressive models remain computationally heavy
due to sequential modeling of a large graph (Salha et al., 2021). Another line of research devel-
ops diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) for graphs.
Early methods (Niu et al., 2020; Jo et al., 2022) applied continuous diffusion processes directly in
adjacency-matrix space, which neglected discreteness in graphs. Vignac et al. (2022) and Haefeli
et al. (2022) studied discrete Markov processes over adjacency matrices. However, while operating
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Figure 1: An illustrative SyNGLER pipeline using the YOUTUBE dataset (Yang & Leskovec, 2012)
with a two-dimensional latent space. From left to right: observed network in the form of an adjacency
matrix; learned latent embeddings; synthetic embeddings from the generator in the latent space;
synthetic network.

on a discrete state space, applying diffusion directly in adjacency-matrix space still overlooks the
low-rank structure often present in large-scale network data (Luo et al., 2023). Vahdat et al. (2021)
and Rombach et al. (2022) combined diffusion modeling with encoder-decoder architectures by
applying diffusion in a continuous latent space. The resulting latent-diffusion approach has been
used for molecular and protein graph generation (Xu et al., 2023; Fu et al., 2024) and extended to
general graph generation (Zhou et al., 2024), covering both conditional and unconditional settings.
Nevertheless, these methods typically rely on variational training to connect the graphs and the
latent space, which becomes computationally demanding for large-scale networks. Overall, existing
methods tend to face computational challenges on large graphs due to deep neural network training
on large-dimensional data and/or variational procedures, while characteristic network structure is
often neglected, underscoring the need for graph generation models that can capture complex network
structure while staying computationally tractable and scalable to large graphs.

In this work, we introduce Synthetic Network Generation via Latent Embedding Reconstruction
(SyNGLER), an efficient synthetic network generation framework that leverages latent space net-
work models (Hoff et al., 2002; Ma et al., 2020) to address these challenges. During training,
SyNGLER first fits a likelihood-based latent space model to the observed network to learn a set
of low-dimensional node embeddings. Using these embeddings, it then trains a distribution-free
generator in the latent space. For generation, SYNGLER samples (or resamples) node embeddings
from the generator and produces synthetic networks from these node embeddings via the latent space
model. An illustrative pipeline is in Figure 1. Via the latent space approach, SyNGLER efficiently
learns a set of low-dimensional node embeddings and requires only lightweight generative model
training in the latent space, thereby reducing computational cost. Moreover, the geometry of in the
latent space enables SYNGLER to preserve key structural properties of the network that reflect latent
node-node interactions. We provide a theoretical analysis of SYNGLER and establish its consistency
and generalization guarantees under a hierarchical latent space network model. Extensive experiments
on synthetic and real-world datasets further demonstrate its strong performance in comparison to
existing approaches, with significantly reduced computational cost.

The remainder of the paper is organized as follows. In Section 2, we formally introduce the SYNGLER
framework. Section 3 presents the theoretical results. Section 4 reports empirical results on simulated
and real-world data. Section 5 concludes the paper with a discussion. Additional numerical results,
experimental details, and proofs are provided in the Appendix.

2  SYNTHETIC NETWORK GENERATION VIA LATENT EMBEDDING
RECONSTRUCTION

2.1 SETUP AND SYNGLER

Given an observed network with n nodes, our goal is to train a generative model that can produce
networks that preserves key structural properties of the original network. The synthetic node set may
comprise the original nodes, newly generated nodes with distributional characteristics similar to the
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originals, or any mixture of the two. Specifically, we represent the observed network by an adjacency
matrix A € R™*"™ with A;; = A;; for i # j and A;; = 0 for all ¢ € [n], where the observation
A;; can be binary observations in {0, 1}, count-valued observations in N, or general continuous

observations in R. Given the observation A, our goal is to generate a synthetic network A e Rxm,

We introduce Synthetic Network Generation via Latent Embedding Reconstruction (SyYNGLER) to
achieve this goal. During training, SYNGLER first learns a set of node embeddings from the observed
network using a likelihood model p(- | -) compatible with edge types of A;;, and then reconstructs
the latent space by training a distribution-free generator over the learned embeddings. For data
generation, SYNGLER samples a set of node embeddings from the latent generator and produces
synthetic networks using these embeddings via p(- | -). Algorithm 1 summarizes the procedure.

Algorithm 1 Synthetic Network Generation via Latent Embedding Reconstruction

1: Input: Latent dimension r, input network A € {0, 1}™*™.

2: Fit the likelihood model to get (Z, &, p) € R™™" x R" x R;

3: Train a generative model using the fitted data: Sampler = GenModel({(Z;, &)} 1);

4: foreachi=1,...,ndo

5:  Sample (%;, &;) € R™"! from Sampler.

6: end for

7: for each pair of nodes (7,j) with 1 <i < j <ndo

8:  Independently generate the edge observation A;; = A;; from the conditional model
p(- 1212 + @i+ a; + pn)

9: end for

10: Output: Generated network A.

In Algorithm 1, Z = (21,...,2,) " denotes the learned latent node embeddings, & = (d,...,d,)"
the learned node degree parameters, and p the learned global sparsity parameter. GenMode1 denotes
the generator architecture in latent space. We specify the likelihood p(- | -) and formally introduce

the model parameters in Section 2.2, and we detail GenModel in Section 2.3.

2.2 LATENT SPACE NETWORK MODELS AND NETWORK EMBEDDING

Latent space network models (Hoff et al., 2002; Ma et al., 2020; Li et al., 2025) provide a flexible and
efficient network embedding framework. Associate each node ¢ with a latent position z; € R" and a
degree parameter a; € R. Let a = (a1, ag, ..., a,) € R and define ® € R™*("+1) where each
row of @ is given by ®; = (2,/, ;)T € R""1,i =1,... n. Let p, € R denote the global sparsity
parameter that is allowed to diverge with n and controls network sparsity (or, for weighted edges,
overall signal strength). Latent space network models specify that given ®, each edge observation
A;j = Aj; for 1 < i < j < nisindependently generated from:

P(Ai; € A| ®,p,) = / plalzi zj + ai + o + py) du(a), 1)
A

where p(- | -) is the conditional density of A;; given ® and p,,, 11 is some measure on R (e.g., counting
measures for discrete-valued edges or Lebesgue measures for continuous-valued edges), and A is the
corresponding Borel set. Given ® and p,,, we use P 4|5 ,,, to denote the conditional distribution of A
given ® and p,,. We consider the following assumptions on the latent embedding distribution.

Assumption 2.1. We assume that {(z;, ;) }1, are independently sampled from some distribution
Py on R™t1 such that:

(i) the conditional distribution of «; given z; follows that Py(a|z) = Po(a|Uz) for any
UeR™ suchthat U'U = I,.;

(ii) there exists R > 0 with Ep,[¢] = 0,11 and supp (Py) C Br, where Bp = {¢ € R"*+1 :
¢ll2 < R},

(iii) the expectation of z and o under Py is zero, i.e. Ep,[a] = 0 and Ep,[z] = 0,;

(iv) the sparsity parameter p?, satisfies that p?, > (—1 + k) logn for some universal constant
Kk > 0.
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Assumption (i) ensures that the choice of coordinates for the latent positions does not affect the
conditional distribution of the degree parameter. Assumption (ii) requires the latent positions and
degree parameters to be bounded to ensure well-conditioning in latent space, Assumption (iii)
guarantees the identifiability of the latent parameters, since joint shifts in a and z could leave the
edge distribution unchanged, and Assumption (iv) on p;, guarantees that the observed network A is
not too sparse to enable valid estimation (Li et al., 2025).

Network embedding for general edge types. Based on the observed edge type of A;;, the
likelihood model p(- | -) can be chosen flexibly. Define 7;; = 2, 2; + «; + v + py,, which determines
the distribution of A4;;. If A;;’s are binary, one can choose the Bernoulli model as further introduced
in the next paragraph. If A;;’s are continuously measured, one can use a Gaussian noise model
plai; | mij) = (2n0?) Y2 exp{—(a;; — mi;)?/(202} for some o > 0. Once the conditional model
is determined, we can fit the latent space model by maximizing the following likelihood function

over the parameters (Z, a, p), where Z = (2] , 25 ,..., 2,1 )7 is the latent position matrix with rows
21,29, ...,2n and @ = (a1, ..., Q,) is the vector of degree parameters:
5 oA A T
(Z,&,p) = arg max Z logp(Aij | z; zj + i + a5 + p). 2)
(Z,0)eR™*("TD) peR: 1<i<j<n

Z" Z diagonal,Z " 1,,=0,.,& ' 1,=0

The constraint in Eq. (2) ensures identifiability of the fitted latent positions and degree parameters
and is designed based on (iii) in Assumption 2.1. Although this problem is nonconvex, it can be
solved efficiently via projected gradient descent, with provable convergence guarantees (Ma et al.,
2020). We leave the details of the optimization algorithms in Appendix B.1.

Sparse networks for binary edges. For binary networks, let 4 = §y + ;1 (Dirac measures at 0
and 1) and SpCCify p(aij ‘ Tl'ij) = exp{aijmj} (1 + exp{ﬂ'ij})_l, i.e., P(Aij =1 | 7Tij) = 0'(71'2‘]‘),
where o(-) = exp(-)/(1 + exp(-)). Recall that 7;; = 2" z; + a; + a; + pp, and with p, — —o0,
the edge probability Pr(A;; = 1 | m;;) = o(m;;) — 0. This is consistent with the fact that many
large-scale networks are sparse, and o (m;;) < exp(p,,) controls the sparsity level. We remark that,
provided that exp(p,,) decays no faster than n~17¢ for some € > 0 as n — oo, the solution to Eq. (2)
remains theoretically tractable; see Li et al. (2025).

2.3 LATENT EMBEDDING RECONSTRUCTION

In this section, we introduce two implementations of GenModel in Algorithm 1. Both implementa-
tions reconstruct the latent space from the learned embeddings. The first approach resamples from the
empirical distribution on ®; this is suitable when the synthetic network should include some original
nodes from the observed network. The second approach trains a distribution-free generative model on
the learned embeddings, and we use a score-based generator as an example and for implementation
in this work. The choice of GenModel is flexible and can be adapted to practitioners’ needs.

Resampling based latent space reconstruction. Given the learned embeddings b, we set
GenModel to be the uniform distribution over the discrete set ®. At each call, this sampler
returns one of the row vectors of ®, with replacement. The resampled latent embeddings, denoted
®, are used later to construct the synthetic network. The idea of resampling latent embeddings in
networks has been used for bootstrap inference of network statistics (see Levin & Levina, 2019),
but it has not been systematically studied for network generation tasks. Although stralghtforward
to implement, direct resampling from ® has several limitations. First, resampling P exposes the
latent characteristics of existing nodes, which may carry sensitive, although unobserved, information
about individuals in the original network into downstream network generation. Moreover, sampling
with replacement can easily lead to duplicate embeddings in ®, which is unrealistic because latent
positions are typically continuous and distinct. In this scenario, we suggest dropping the duplicate
embeddings and preserving any nodes that must remain in the network as needed.

Score-based generator in the latent space. To sample novel node embeddings that are close in
distribution to the learned embeddings, here we use a score-based generative model (Song et al., 2020),
in which a forward noising process gradually adds noise to the input data, and a backward denoising
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process recovers the original data from pure noise using information from the forward process. In
our setup, a key difference is that we train the score network based on the learned embeddings.
Specifically, let sg(x,t) : R% x [0, 1] — R? be a black-box prediction model parameterized by 6. We
use xgboost, following ForestDiffusion (Jolicoeur-Martineau et al., 2024), to approximate the score
function. Consider a variance-preserving Ornstein-Uhlenbeck (OU) (Maller et al., 2009) forward
process. Given the fitted embeddings d, the forward process ¢, follows

dpy = —¢¢ dt + /2 dBy,

where ¢ is randomly sampled from the row vectors of $ and B is a standard Wiener process.
Given the forward process, the parameter 6 in s (x,t) is optimized by minimizing the denoising
score-matching objective (Song et al., 2020) constructed using the learned embeddings (Wu et al.,
2025):

1 — R . 2
g Bty onoron |2 32 s 4 VT2 1)+ ]
argamln U [0,1], 2N (0, I, 4 1) [n 2 so(e "o + etz 1) + —

To sample from the generator, we simulate the following process initialized at PO ~ N (0,141),
using the trained network s:

GO = 509 4 h(309 4 280(00) 1~ k) + VERE., €N (O, ).

When T is large (equivalently, h is small) and sy sufficiently approximates the true score, the
distribution of ¢([*/71 is close to the distribution of the learned embeddings. This approach enables
us to sample novel node embeddings, thereby including novel nodes in the synthetic network.

3 THEORETICAL ANALYSIS

In this section, we study the distance between the distributions of the synthetic and the original
network. Throughout this section, we treat the global sparsity parameter p;, as a fixed parameter,
where a superscript * indicates true parameters, and consider the data generating model where the
observed network A is generated from the latent space model in Eq. (1), with global sparsity parameter
pr. and some ®* whose rows are independent realizations of Py from Assumption 2.1. Note that the
distribution of the synthetic network A is based on the model trained on the observed network A. We
denote the distribution of A given A as ]P’g, which can be viewed as a random measure where the
randomness comes from the observed network A generated under model Eq. (1) with embeddings ®*
and sparsity parameter p;,. Similarly, we define ]P’g as the random measure for the group of latent

embeddings on R™*("+1) We also denote the individual distribution of g?) given A as ]Pg. Similarly,

we denote the marginal distribution of each qAbz as P & where the subscript ¢ in él is omitted due to the
exchangeability of the nodes. Our first theorem decomposes the Kullback-Leibler (KL) divergence
between P4 and IP’%.

Theorem 3.1. The average KL divergence between the distribution of A and A given A admits the
following decomposition:

1
—5dki(Pa [| P3) = E, + Eo + Egen. ©)
where the three error terms are defined as follows:

)

p(A1a] 2] 22+ a1 + az + p;i)}

E = E n |:10
P Paje P & p(A12 | ZIZQ + a1+ ag + [))

By = min -~ (B;7 [ log i‘i(szﬁ)} + By (g 25 (0)] ~Er, [ls220)]): @
¢ ¢

1
Egen = —dgcr (P || P%).

Here the minimization in Eq. (4) is over all orthogonal transforms T : ® = (Z,a) — (ZU, ),
where U is a r-dimensional rotation matrix, and P, is the distribution of T (¢) when ¢ ~ Pg.
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The first term in Theorem 3.1 is referred to as E, since p(4;; | 2, zj + oy + «j + p};) differs from
p(Aij | zy zj + a; + a; + p) only in the global sparsity parameter p,,. The second term is denoted
as Ep, since it primarily depends on the distance between [P 3 and Py. The third term FE,, denotes
the KL divergence between the conditional distributions of ngS and ¢ given A, and is determined
by the generative model in Algorithm 1. Error analysis of such terms has been considered in the
literature, for example, Chen et al. (2022; 2023a) for score-based generative models. In this analysis,
we focus on characterizing the first two terms in Eq. (3), while noting that the third term concerns the
generative error in a low-dimensional space rather than in the original large-scale network space.

In the sequel, we analyze F/, and Fg under Assumption 2.1 and the asymptotic regime where n — oo.
We first have the following theorem on E,,.

Theorem 3.2. Suppose that the log likelihood for each edge l,(w) = logp(a|n) follows that
SUP, | r|<2r2 1o ()] < M, and each 'y, (,z,*Tz;k +aj +aj + p},) is independently bounded random

variables, then it holds that E, = O,((wy, - n)~*/?logn), where w,, = e.

Analyzing the second term is challenging since it involves the marginal distribution of the estimated
latent positions, which is practically hard to be compared with the true distribution Py. Following
Wau et al. (2025), we use the technique of discretizing the underlying distribution to understand the
approximation error between P; and P] for some transform 7. Suppose that Py is a continuous

distribution of the latent embeddings with density p, that follows Assumption 2.1. Since the support
of Py is bounded, we discretize the support of Py into the following grid:

G, ={p€ R . @i/ €EZ,|pi| < R+ v},

where {7, } is a sequence of discretization scales that goes to zero. Then for any ¢ € G, we define
the following mass function:

0@ = [ TL 164 € 160 =90/2.005 30/ 20()d

i<r+1

Using the linearity of expectation, we conclude that ) scg,, G (¢) = 1. Therefore, g, is a

probability mass function. We claim that, as long as the original density function is sufficiently
smooth, this discretized mass function is able to capture the structure of the original density function
well. To this end, we define the projection operator associated with the grid as projg_ (¢) =

argming cg [|¢' — ¢[|2, and consider p,, (¢) = g, (projg,, ()7~ "*tY. Then we have the
following theorem.

Theorem 3.3. Suppose that py : R — R is L-Lipschitz, then it holds that
0(¢) =y, (9)| < LynVr + 1.

This theorem indicates that sampling from the original distribution is almost the same as sampling
from ¢, . We consider 1 = (¢!, ..., ¢1)T € R"*("+1) where the rows are independent realizations
from ., . We denote the corresponding empirical mass function as g, (¢) =n='>", ]l{d)j = ¢}
for ¢ € G,,,. Then the following result indicates that §,,, is close to ¢, .

Lemma 3.1. For any small 6 > 0, it holds that maxgeg.,
V1og(1/8) + log(R/~n)/+/n with probability 1 — 6.

07, (9) = Gy, (D)) <

When ®* is replaced by ®', we need to modify the estimators in Eq. (2) accordingly using the
projection operator projg . Given ® and a rotation transform T, we define the corresponding
empirical distribution on the grid G, as follows:

1 .
Gy (@) = = > 1{gi =projg, (Th:)}, ¢ € Gr.
i=1

Next theorem shows that ¢, is close to g,,,, which is a direct consequence of the uniform consistency
of the estimated latent embeddings.
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Theorem 3.4. Suppose that each ¢ is sampled from a discrete mass function q,, on G,,. Then, for
any vy, = Q((wn . n)_l/ 2+6) for some € > 0, there exists a rotation transform T, such that

P((ﬁrggx |Gy, (@) = Gy, (D) = 0) — 1.

In

Note that here the randomness comes from the realizations of the observed network A.

This result shows that the marginal distribution of any single point from {proj, (él)}lgn is close to
the discretized distribution ¢, up to a rotation. Combining with the uniform convergence result in
Li et al. (2025), we conclude that [P p is close to IPg— for some rotation transform 7 .

4 EXPERIMENTS

In this section, we empirically evaluate the effectiveness and efficiency of the proposed SYNGLER
framework using both simulated and real-world network datasets.

Simulated network dataset. We consider simulated networks with sizes and latent dimensions
(n,r) € {500,1000,1500} x {2,3,4}. For each (n,r), we independently sample latent node
embeddings {z}}"_, from a truncated Gaussian mixture in R” and degree parameters {c; }_ , from
a uniform distribution. Based on the sampled latent embeddings, we generate a network from Eq. (1)
with the binary logistic model. Each result is based 200 Monte Carlo repetitions. Please see more
details in Appendix B.2.

Real-world datasets. We use four large real-world networks: (i) the user-user friendship network
from the Yelp Open Dataset (Yelp, 2024); (ii) the YouTube social network dataset (Yang & Leskovec,
2012); (iii) the DBLP co-authorship network (Yang & Leskovec, 2012); and (iv) the PolBlogs network
(Adamic & Glance, 2005). Details regarding the preprocessing of these datasets are in Appendix B.4.

Baselines and implementations. We consider two variants of our method: the diffusion-based
SyNG-D and the resampling-based SyNG-R, as defined in Section 2.3. For baselines, VGAE (Kipf &
Welling, 2016) is compared across all experiments. In the real-data evaluations, we also compare to
GRAN (Liao et al., 2019), EDGE (Chen et al., 2023b), and the classical Erd6s—Rényi model (Erdos
& Rényi, 1960). Implementation details for our methods are provided in Appendix B.4. The
implementations of the baselines on simulated and real-world datasets are provided separately in
Appendix B.5 and Appendix B.6, respectively.

4.1 GENERATION PERFORMANCE

Evaluation metrics. To evaluate the quality of the synthetic networks, we consider the distance
between characteristic network statistics of the synthetic and observed networks. Specifically, we
evaluate triangle density (Tri.), clustering coefficient (Clus.), eigenvalue distributions (Eig.), and
degree centrality (DegC.). For Tri. and Clus., which are single values for each network, we compute
the root-mean-square error (RMSE) and bias relative to the observed network. For Eig. and DegC.,
which are vectors for each network, we compute the maximum mean discrepancy (MMD), the
Kolmogorov-Smirnov (KS) statistic, and the energy distance. More details are in Appendix B.3.

Results. Table 1 summarizes the results for simulated networks. Our methods exhibit overall
superior performance compared to the baseline VGAE model, reasonably due to the fact that the data
are simulated from latent space network models with a mixture distribution over latent embeddings. In
the relatively large-scale setting with (n, ) = (1500, 4), we note that SyNG-D outperforms SyNG-R
on all metrics, indicating the effectiveness of generating novel node embeddings while capturing
network structures. Here, we report only the results for (n,r) € {(500, 2), (1500,4)} in Table 1 due
to page constraints. Full experimental results on simulated networks are provided in Appendix B.5.

Real-world datasets allow a fairer comparison. For each method, we select the configuration that
yields the best average performance across all four metrics. The results are summarized in Table 2.
EDGE and GRAN ran out of memory on the Yelp dataset on a single NVIDIA GeForce RTX 4090 with
memory of 24GB, and are marked “-” at the corresponding entries. This reflects that these methods
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Table 1: Results on simulated networks. Eigenvalues and degree centrality are compared
using energy distance (En.) and Kolmogorov-Smirnov distance (KS). Best performances are
in bold.

Tri. (x107%)  Clus. (x1073)  Eig. (x1072?) DegC. (x107?)
RMSE Bias RMSE Bias En. KS  En. KS
SyYNG-D 454 175  6.16 344 278 467 272 688

(500,2)  SyNG-R 4.33 1.65 6.12 368 299 524 273 7.20
VGAE 6.85 -5.45 259 -24.9 101 96.5 17.2 45.6

SyNG-D  2.65 0.194 3.21 -0.293 155 276 1.51 3.83
(1500,4) SyNG-R  2.65  0.605 3.37 128 246 422 153 4.00
VGAE 6.54 -5.68 25.3 240 110 987 175 45.5

(n,7) Method

are computationally expensive at scale and pose challenges when computational resources are limited.
For most metrics, SYNG-D and SyNG-R produce networks with better-preserved characteristics. In
Figure 2, we visualize the YouTube network alongside synthetic networks produced by different
methods. SyNG-D and SyNG-R preserve the clustering patterns in the observed network evidently,
whereas other methods do not. More results and details are in Appendix B.6.

VGAE

Trainir;g graph

y.

EDGE ER

Figure 2: Visualization of the YouTube network and synthetic networks by different methods.
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Figure 3: Efficiency comparison between different models. Left: number of e-FLOPS versus the
number of nodes in the observed graph. Right: Synthetic networks from different methods on the
DBLP dataset.

4.2 EFFICIENCY
Evaluation metrics and configuration. We compare training efficiency between SyNG-D and

the baseline methods through a computational workload metric we define as the equivalent floating-
point operations (e-FLOPs). To evaluate the training efficiency of different methods, the e-FLOPs
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Table 2: Results on real-world networks. Eigenvalues and degree centrality are evaluated using MMD.
Each entry is the average over 200 generated networks. Best performances are in bold.

(a) YouTube (b) DBLP
Tri Clus Eig DegC Tri Clus Eig DegC
Method (x10™%) (x1072) (x107%) (x1072) Method (x10™%) (x1071) (x1071) (x1071)
E-R 1.05 16.3 25.96 69.22 E-R 7.96 8.94 4.409 8.716
VGAE 0.559 8.0 17.20 27.83 VGAE 0.578 0.136 1.196 2.797
GRAN 1.13 10.1 7.88 7.86 GRAN 7.99 8.92 1.757 2.973

EDGE 0.785 14.4 4.44 7.84 EDGE 2.20 1.33 1.387 0.992

SyNG-D  0.967 2.15 2.61 2.13 SyNG-D  1.58 0.622 0.879 0.926
SyNG-R  1.11 2.08 4.47 1.10 SyNG-R 143 0.378 0.799 0.748

(c) Yelp (d) PolBlogs
Tri Clus Eig DegC Tri Clus Eig DegC
Method (x107%) (x1072) (x107%) (x1072) Method (x10™%) (x1072) (x1072%) (x1073)
E-R 8.12 14.5 24.53 77.36 E-R 3.22 20.4 40.10 79.24
VGAE 7.41 10.3 17.58 33.74 VGAE 2.07 3.26 31.10 3533
GRAN - - - - GRAN 1.57 114 9.04 13.86
EDGE - - - - EDGE 0.790 5.69 4.69 0.00

SyNG-D  2.00 1.77 2.50 6.72 SyNG-D  0.710 1.90 2.58 0.97
SyNG-R  0.778 0.756 4.69 0.62 SyNG-R  0.830 2.45 3.01 0.92

metric counts the total number of floating-point operations or their approximate equivalents during
the training process. Note that SyYNG-D and the baseline methods consist of neural nets and tree
structures in their model architecture. For neural nets, e-FLOPs counts floating-point operations,
whereas for tree structures, e-FLOPs counts node visits. We use e-FLOPs to evaluate the efficiency
of different methods, since they are less dependent on the hardware environment. For the more
straightforward wall-clock training time, we present the results along with the hardware environment
used by each method in Appendix B.7. In addition to four real-world datasets, we also compare these
methods on a group of simulated networks with sizes of 200, 500, and 800. For a fair comparison,
we keep the latent dimension of all models at 4. Specifically, for SyNG-D and VGAE, the latent
dimension corresponds to the dimension of the latent space. For GRAN, it is the output dimension of
the attention layers. For EDGE, it is the dimension of the hidden layer in the score network.

Results. Figure 3 summarizes the results. We have several observations. In terms of e-FLOPs,
SyNG-D attains the lowest cost across all settings and remains stable as network size grows. In terms
of synthetic network quality, SyNG-D best preserves the overall structure of the observed networks;
VGAE, while computationally comparable to SyNG-D, does not match its quality. Third, GRAN
and EDGE require substantially longer training times, yet their performance is not as satisfactory,
especially for GRAN. Overall, SyNG-D is both effective and efficient for this task, producing realistic
synthetic networks with a computationally lightweight training process. Additional results regarding
efficiency comparisons, along with further details, are provided in Appendix B.7.

5 CONCLUSION

In this work, we address the challenge of synthesizing realistic networks at scale while preserving
salient structural properties using Synthetic Network Generation via Latent Embedding Recon-
struction (SyNGLER), a general and efficient framework that learns low-dimensional latent node
embeddings from a single observed network and then trains a distribution-free generator in the learned
latent space. By separating representation learning via a likelihood-based latent space approach from
generative modeling, SYNGLER preserves structural information with latent space geometry where
lightweight generators suffice, enabling fast training and sampling. Theoretical and empirical results
both demonstrate the effectiveness of SYNGLER. Future research directions include incorporating
richer supervision for conditional generation (e.g., node/edge attributes and constraints), extending to
directed, dynamic, and multilayer networks, and developing rigorous privacy-preserving training and
release mechanisms.
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APPENDIX

We provide experimental details, additional numerical results, and proofs of the theoretical results
in the appendix. Appendix A collects proofs of the theoretical results in Section 3. Appendix B
contains complete experimental details. Specifically, Appendix B.1 covers the details of the estimation
algorithms. Appendix B.2 specifies the setup for the simulated networks and provides details on the
real-world networks, as well as their preprocessing pipelines. Appendix B.4 contains implementation
details for both SyNGLER and the baselines, including the device environments on which they are
implemented and the hyperparameter configurations used. Appendix B.5 and Appendix B.6 collect
additional results for the simulated networks and the real-world networks, respectively. Appendix B.7
provides additional numerical results on the efficiency analysis of different methods.

A PROOFS IN SECTION 3

Lemma A.1 (Theorem 5 in Chung & Radcliffe (2011)). Let X1, ..., X,, be independent random
n X n Hermitian matrices. Assume || X; — EX;|| < M for all i, and put

= HiVar(X
i=1

Let X = > | X;. Then for any a > 0,

a2

Lemma A.2. Under the model in Eq. (1) and Assumption 2.1, let OI* € R™*" be the matrix where
each entry is Ol; = lf% (m7;)- Then we have that

|ot*|| = Op(wi/2n1/2 (logn)1/2).

Proof of Lemma A.2. Let E*J be the n x n matrix with 1 in the (4,5) and (j,4) positions and 0
elsewhere. Denote p;; = E4 [114”, (m7;). To use Lemma A.1, write 91" as the sum of matrices A
defined as '

AY = (Ay; — piy) BV, 1<i<j<n,

sothat O = 717 >0, A", Note that [|A%/]| < 1, E[A™/] = 0, and

E[(A™)] = (b = (p};)?) (B" + E77).

Let
n n
5 3w - 85 S - o 2
=1 j=141 1=1 j=1+41
Then
n n n gj—1
v = Z( Z(pm (p3; )El’l+2(zpza 29 )E“
=1 j=i+41 j=2 =1
< 2max , Inax Z pij — p” < Qnqu;X(p;kj _(p:j)2) < 2nngxp;kj.

For ¢ > 0, we seta = \/571 max; j p;; log(2n/e’). By Assumption 2.1, for sufficiently large n, it
holds that

nmaxp” > 2\/ nmaxp” 10g(2n/e)
0.
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Applying Lemma A.1, we obtain

Snmax; ; pi; log(2n/€
(|01 > a) < 2nexpd — Py 108(2n/€)

4nmax; ; pj; + 2\/%nmaxi,j p;; log(2n/€’)
< 2nexp{—log(2n/e')} =¢€.

Noting that max; j pj; < wy, as n — oo, there exists M "> 0 such that, for any € > 0,
IP(H(‘)Z*H > M'\/nw,, log(n/e’)) <¢,

which concludes the proof. O

Proof of Theorem 3.1. Note that the marginal distribution of the network A can be expressed as the
product of the conditional distribution and the marginal distribution of the latent positions. Because
of the identifiability issue of Z in model Eq. (1), we consider any transform 7 : ® = (Z,«a) —
(ZU, ) € R**("+1) where U is a r-dimensional rotation matrix. The transform 7~ applied on ®
does not change the conditional distribution of A. We define Py« as the distribution of 7 ®*, then

Pyj7e- Pre-
dir (Pa || P4) = EPAqup®n{logP‘7(A|<I>)+log 7 (cp)}

Z\«i
% Z Zi +o; + o+
_]EPAWX]P’"[ Zlo ~j‘ ’ 1P )} + dxL(Pro- || PS)
i<j 2]|Z Zj+Oéz+C¥J+p)
2 p(1412\2122+041+oz2+p) N
=n"E 1o 2]+ dct (Pra- | P).
]PA12\¢17¢2 p(A12|ZirZ2+Oél+a2+p) KL( T q;.)

Here the last equality holds because of the exchangeability of the distributions of (¢1, @2, . .., ¢p).
We decompose the K-L divergence in the right-hand side as follows

dia(Pra- || B4) = - o [ log EZ; )]
— - Be [log I;i (%) 1155 (4]
=n- (Eep [1o gpi«m] + Egg | §¢ ()] ~ Bz, [ Lo ;‘jg (@)
+EP$[1og;‘;§<¢>]).

Here P 3 is the marginal distribution of gf)z for each 7, which is the same for all 7 because of the
exchangeability. Minimizing over all transform 7 concludes the proof of the theorem. O

Proof of Theorem 3.2. We denote 0;; = z, 2; + «; + ;. The Lipschitz continuity of ;;(7) =
log p(A;; | m) in 7 implies that
|log p(Aij | 0i5 + p*) — log p(Aij | 0i5 + p)| < M|p* — pl.

Now it suffices to bound |p* — p|. Let m;; = z] z; + oy + a; + p and 7 be its estimated version.
Applying Taylor’s expansion to each [;; at 7;; yields that

lej le lj Zl;j(ﬂ-:j)(ﬁ- Zl fz] - :])27

1<j 1<j 1<j 1<]
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where each &;; € [min{7;;, 7};}, max{#;;,7};}]. Using the optimality condition, it holds that
Zi<j lij(ﬁ'ij) > Zi<j l”<71';kj) And therefore

Zl i) (Rij — Z l/l (&) (Fij — ij)g
i<j 1<j
1 _op? . .
> 7Wn € 2R Z|7rij —7TM|2. 5)

i<j

To facilitate the matrix inequalities, we define 91*,I1*, I € R"*™ such that ol = Uy, (7)),

I}, =7 = 27125 +af + of + pl, and I1;; = 7 = 2] 2 + &; + &% + f. Then, we can upper
bound the left-handed-side in Eq. (5) as

D U (wy) (i — ) < (00, T —117)|

1<J

<V2r 300 - T — TT*Jp. (6)

Last inequality holds since IT — II* has rank at most 2r + 3. Invoking Lemma A.2, we have
that ||0l*]] = O (wn *n1/2logn). Combining Eqs. (5) and (6) yields that |[IT — IT*||p =
Op(wﬁl/2n1/2 logn).

Before obtammg the estimation error of p, we need to involve an 1dent1ﬁabihty transform over

Z*, o, since their sample average is not necessarily zero. We cons1der ZV=Z7*—n"11,1] Z* and
ol =a*+ 221, - 110 a1, — 17 2*Z* "1, - 1, and p! = p* +n~ 11Toz* Then, it

is evident that
2 7 a1l 4100l 4 pT1,1] = 2°2°T 40t 1] 4 1ot 41,10

Additionally, we have that Z 71, =0, and 1 al =0.

On the other hand, we can expand ||TT — IT*||2 as

-1 = 1227 = 21217 |2 + [[(6 = N1 + 1a(al = &) 7|2+ 2|5 — ol
+22ZT - 7' 21T (6 — aN1] + 1,6 — D))
+262Z7 - 7' 21T (5 — pH1,1])
+2((@— a1, +1,(a—ah)7, (p— pN1,1,)
=227 = 2127 |2 + 2n)|a — o> + 0|5 — p1|”
>n?p—p'>.
Here the second line holds because Z1 ' 1,, = 0,, and 1} af = 0. In conclusion, we have that | —

pt| = Op(wn*/*n=1/2.1og n). On the other hand, we have that | — p*| = O(n~1/2) because of the

boundedness and i.i.d. condition of o*. Therefore, we have that |5 — p*| = Op(wglmrfl/2 logn).

O
Proof of Lemma 3.1. For fixed ¢ € G, using Hoeffding’s inequality yields that
P(la(6) — 4 (0)| = t) < 2exp(~2nt?).
Using the union bound over all (R/~)"*! points in G, yields that
P( i g(6) — 43(6)] 2 1) < 2(R/7)" exp(~2nt?)
Therefore, setting t = \/(r + 1) log(R/7) + log(2/8)/+/2n yields the desired result. O
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Proof of Theorem 3.4. Using Theorem 3.3 in Li et al. (2025), we have for any €', > 0, there exists
a constant M > 0 and a rotation matrix U such that

P (max i ~ Ul > M(wan) 2+ <,

Therefore, we have that P(max; ||¢; — U2 < yn) — 1 with ~,, = Q((w,n)~/2%€) and fixed
€ > 0. On the event {||¢; — U} |2 < v}, we have that §,,, — ¢,,, = 0. O

B SUPPLEMENTAL MATERIALS FOR EXPERIMENTS

B.1 DEFERRED ALGORITHMS

Estimation in the latent space model. Suppose that we observe a network A, and we want to
fit a latent space network model on A with proper conditional model p(- | -) and candidate latent
dimension r. We use the following Algorithm 2 to solve Eq. (2).

Algorithm 2 Projected Gradient Descent

Require: Network observation A € R™*", model p(:|-), stepsizes 1z, 7o > 0, number of iterations
N eN;
1: fori =0to N — 1do
2 M+ ZZ"+al’ +1a7;
3 Z Z+42ny 0, p(A)Z;
4 o4 a+2n, 0 p(A|ID)1,;
S: Z <+ (Z-n""1,1]Z)R, where R € R"™" is the orthonormal matrix such that n=!(Z —
n 11,17 2)"(Z —n~11,1] 2).
6: end for
7.return Z=Z,6=a—a 1,/n,p=a'l,.

The convergence of Algorithm 2 in the well-specified setting can be found in Ma et al. (2020). In
practice, we need to use a proper initialization for Z and «. And we use the output of universal
singular value thresholding (USVT) (Chatterjee, 2015) as the initialization of Z and «. The detail of
this initialization algorithm can be found in Ma et al. (2020).

B.2 DATASETS DETAILS

Simulated Datasets. In the simulated datasets evaluation, we consider (n,r) €
{500, 1000, 1500} x {2,3,4}. For each (n,r) pair and each replicate ¢ = 1,...,200, we
generate an undirected simple graph A € {0,1}"*™ as follows.

We first draw the degree parameters c; '~ Unif([-1/2,1/2]) fori = 1,...,n and set @ =
(a1,...,an) . Let Z; € R be i.i.d. realizations of proji_o, /7 o/ /7 #N:(0, I, /7) (i.€., a scaled
Gaussian distribution truncated to [—2/+/7,2/4/7]"). We then independently draw two centers
v v € R" from Unif ([-1,1]7). For each node, we independently sample a label L; with
P(L; = 1) = P(L; = 2) = 1/2fori = 1,...,n. Finally, we set 2/ = Z; + v*?) and z; =
7 (T 2t ) 2

Given the latent positions and the degree parameters, we generate the network edges. We set
the sparsity parameter p* = 0. For each pair of nodes 1 < ¢ < j < n, we calculate p;; =
o(a; + aj + 2; z;). Then we independently sample A4;; = A;; ~ Bernoulli(p;;) fori < j and set
A;; =0foralli < n.

Real-world datasets. We evaluate on four networks spanning thousands to millions of nodes.
For Yelp, YouTube, and DBLP, whose full graphs are extremely large and highly sparse, we con-
struct tractable training sets by extracting high-degree nodes and then taking the largest connected
component (LCC).
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Table 3: Dataset statistics for Yelp, YouTube, DBLP and PolBlogs.

D |  Original Dataset | Subgraph | Statistics
ataset
| Nodes Edges | Nodes Edges | Density Clustering Coef. Triangle Density
Yelp 906,179 7,305,874 | 4,530 541,655 | 0.0527 0.1976 0.0010
YouTube | 1,134,890 2,987,624 | 1,991 51,756 | 0.0261 0.1891 0.0002
DBLP 317,080 1,049,866 | 1,481 18,901 0.0172 09116 0.0008
PolBlogs 1,490 19,090 1,222 16,714 0.0224 0.2259 0.0003
Degree Distribution Spectrum Distribution Degree Distribution Spectrum Distribution
o] u ]
0.003 005 H 0.010 ‘ 01:5 H
) goot | £ 0.008 i £0.100 ‘
guooz Zo03 }‘ & 0.008 } (:50075 }‘
.l ot =
(a) Yelp dataset. (b) YouTube dataset.
Degree Distribution Spectrum Distribution Degree Distribution Spectrum Distribution
oo | ol | oos! | ol
oo ‘ 0.20 H 0.04 H 0.25 H
bl B = il
ot 2l - ‘hhm
(c) DBLP dataset. (d) PolBlogs dataset..

Figure 4: Degree and eigenvalue distributions for four real-world datasets.

In the Yelp and YouTube datasets, nodes represent users and an undirected edge between users
represents a social tie (friendship/subscription). In the DBLP dataset, nodes represent authors, and an
edge connects two authors if they have coauthored at least one paper. In the PolBlogs dataset, nodes
represent U.S. political blogs from the 2004 election blogosphere and two blogs are connected if one
of them contains a link to the other.

Since the Yelp, YouTube, and DBLP datasets are very large and contain many low-degree nodes, we
sample induced subgraphs for tractable evaluation. Our general procedure is to rank nodes by degree,
take the induced subgraph on the top-k nodes (for £ between 1,000 and 5,000), and then extract the
largest connected component (LCC). For Yelp, we select the top 0.5% of users by degree, yielding an
LCC of 4,530 nodes and 541,655 edges. For YouTube and DBLP, we take the top 2,000 and 1,500
nodes, resulting in LCCs of 1,991 and 1,481 nodes, respectively. To avoid out-of-memory (OOM)
issues for some baseline methods, we cap most subgraphs at < 2,000 nodes. The PolBlogs network
is relatively smaller, so we use its full LCC of 1,222 nodes and 16,714 edges. For all networks, we
symmetrize edges and remove self-loops. Key statistics for the original and the extracted graphs are
in Table 3, with degree and eigenvalue(spectrum) distributions shown in Figure 4.

B.3 EVALUATION DETAILS

Metrics for similarity. We assess the quality of the generated networks by comparing some metrics
that capture both numerical and structural aspects of a network. For the numerical characteristics, we
use the triangle density and the global clustering coefficient. For the structural characteristics, we
consider the distribution of degree centralities and the eigenvalues of the adjacency matrix. For any
network adjacency A, we consider the following numerical characteristics:

* The triangle density: TD(A) = NT(A)/(}) where NT(A4) = ¢
triangles in the graph;

* The global clustering coefficient: GC(A) = 3NT(A) />0, (%) where d; = D Aij i
the degree of node .

tr(A3) is the number of
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For each input network and generative model, we generate S = 200 independent networks
Aiq,...,Ag and compute the empirical distribution of each numerical characteristic. Specifically, for

a numerical characteristic f with f € {TD, GC} and a collection of generated networks {A(®)}5_ |
we compute

1S o172
RMSE; = (g Y (£(4) = F(A9)*) 7,
s=1
13 ~
MAE; = <> [F(4) = f(A)],
1 3;1 i
Bias; = < > (F(AW) = f(4)).

s=1

For the structural characteristics, we consider the following:
¢ The degree centrality: DC(A) = (dy,...,d,), where d; = Z#i A;; is the degree of node
1;
* The eigenvalues: EV(A) = (A1,...,A,), where Ay > Ay > -+ > ), are the eigenvalues
of A.

For two vectors, we consider the Wasserstein distance 1-distance, the Kolmogorov—Smirnov distance,
energy distance and maximum mean discrepancy (MMD) as follows:

1 n ‘ |
= — Uiy — .
=Dl — vl
=1

1 1
KS(u,v) = ilelﬁ‘ﬁzl{u’ <a}-— EZl{vi <

i=1 i=1

n

1< 1<
ED = Z '_vj|_ﬁ2|ui_uj‘_ﬁz|Ui_”j|7

Jj=1 1,j=1 1,j=1
n

MMD (u, v) E (ui, uj) 3 E k(vs, v5) 3 E k(u;,v5),
j=1 ,j=1 1,j=1

where w1y < ug2) < -+ < ugy, are the order statistics of u, and k(z,y) = exp(—|z — y|?/2)
is the standard Gaussian RBF kernel. For a structural characteristic f with f € {DC,EV} and a
discrepancy metric d with d € {W1, KS, ED, MMD}, we compute the average distance between the

original network and the generated networks as dy = & 325 d(f(A), f(A®)).

Evaluation pipeline.  For single input network A, we generate S = 200 independent networks and
calculate the above metrics. In the simulated dataset setting, we repeat this procedure for 200 input
networks and report the Monte Carlo mean and standard deviation of each metric. In the real-world
dataset setting, we directly report the averaged metrics for each input network and its associated
standard deviation.

B.4 IMPLEMENTATION DETAILS

Implementation of SYNGLER. For the SyNG-D, we use ForestDiffusion (Jolicoeur-
Martineau et al., 2024) to construct the score approximation. Table 4 lists all the hyperparameters for
ForestDiffusion throughout our experiments.

Experimental environment. All experiments are conducted on NVIDIA GeForce RTX 4090
(24 GB) GPUs and 384 CPU cores.

The ForestDiffusion module is parallelized on the CPU and executes entirely on host cores.
We deploy VGAE and SyNG-D models on CPUs. EDGE and GRAN are deployed on a single GPU,
according to the default configuration in the original codebase.
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Table 4: ForestDiffusion Hyperparameters For Data Generation.

Category | Hyperparameter Simulated Data Real-world data Description
ng 50 100 Number of diffusion time steps.
ForestDiffusion duplicate K 100 100 Sample duplication factor for training data.
diffusion type vp vp Use variance-preserving (VP) diffusion.
max depth 7 7 Maximum tree depth.
number of estimators 100 100 Number of boosting trees.
eta 0.3 0.3 Learning rate.

XGBoost tree method hist hist Histogram-based tree construction.
regression lambda 0.0 0.0 L2 regularization parameter.
regression alpha 0.0 0.0 L1 regularization parameter.

subsample 1.0 1.0 Row subsampling ratio per tree.

Implementation for baselines. For the VGAE, EDGE and GRAN, we use the codebases hosted in
gae, graph-generation-EDGE, GRAN, respectively. For each baseline method, we adopt the default
models in the corresponding codebase without further clarification. In the real data experiments,
we include the results for each method with several different configurations. For our SyNG-D and
SyNG-R, we vary the number of the latent dimension r from 2 to 6. For VGAE, we vary the number
of the embeddings consecutively from 2 to 6, and include the default setting 16. For GRAN, we
choose the dimension of the hidden layer from 128, 256 and 512. Other methods remain their default
configurations.

B.5 EVALUATION RESULTS ON SIMULATED NETWORK

Structural characteristics. The following Table 5 and Table 6 summarize the discrepancies
between the numerical statistics of the generated networks and those of the input networks.

Table 5: Averaged distance between the degree centralities of the original network and the generated
output.

n = 500 n = 1000 n = 1500
Metric Method r=2 r=3 r=4 r=2 r=3 r=4 r=2 r=3 r=4
SyNG-D  0.008 £ 0.002 0.008 £0.002 0.008 +0.002 0.005 4 0.001  0.005 = 0.002 0.006 £ 0.002 0.004 +0.001  0.004 £ 0.001  0.004 =+ 0.001
W-dist SyNG-R  0.008 £0.002 0.008 4+ 0.002 0.008 £ 0.002 0.005 £ 0.001  0.006 £ 0.002  0.006 & 0.002 0.004 £ 0.001 0.004 £ 0.001 0.004 & 0.001
VGAE  0.049+£0.002  0.049 +0.003  0.050 £0.003  0.049 £0.002  0.050 +0.003  0.050 = 0.003  0.050 £0.002  0.051 +£0.002  0.051 & 0.002
SyNG-D  0.069 £0.010 0.068 +0.010 0.070 £0.013 0.047 £0.007 0.047 £0.009 0.048 &+ 0.009 0.038 £0.006 0.038 +0.007 0.038 & 0.007

KS-dist SyNG-R  0.072+£0.009 0.072+£0.009 0.073 £0.012 0.049 £0.006 0.049 £0.008 0.051 £0.008 0.039 +£0.005 0.040 +0.006  0.040 & 0.006
VGAE 0456 +0.023 0453 4+0.024 0457 +£0.028 0451 £0.019 0451 £0.020 0452+£0.021 0.4524+0.016 0453 +0.016 0.455+0.017
SyNG-D  0.027 £0.006 0.027 +0.006 0.028 +0.007 0.019 +0.004 0.019 +0.005 0.019 £0.005 0.015+0.003 0.015£0.004 0.015 + 0.004

Energy-dist SyNG-R  0.027 £0.005 0.028 £ 0.005 0.028 +0.007 0.019 £ 0.004 0.019 £0.005 0.019£0.005 0.015 +0.003 0.015 +0.004 0.015 + 0.004
VGAE  0.17240.006  0.1724+0.007  0.173£0.007  0.172£0.005 0.173 £0.006  0.173 £0.006  0.173 £0.005  0.175+0.005  0.175 + 0.005

Table 6: Averaged distance between the eigenvalues of the original network and the generated output.

n = 500 n = 1000 n = 1500
eigenvalues Distance ~ Method =2 r=3 =4 r=2 =3 r=4 =2 r=3 =4
SyNG-D  0.037 +0.004 0.043 £0.009 0.066 4 0.037 0.024 £ 0.003 0.026 4-0.004 0.036 +0.013 0.0194+0.002 0.020 +0.003 0.025 =+ 0.005
Wi-dist SyNG-R  0.040 £0.004  0.059 £ 0.009 0.098 £0.018 0.025+0.003 0.035+0.005 0.05640.015 0.020 +0.002  0.025 +0.003  0.038 + 0.006

VGAE  0.954 £0.051 0970 £0.067 0.955+0.078 0.95540.046 0.980 +0.069 0.99140.076  0.952+0.050 0.980 +0.070  0.983 + 0.082

SyNG-D  0.047 £0.006 0.048 £0.011 0.062£0.029 0.032£0.003 0.032+0.006 0.038+0.015 0.02740.003 0.026 =0.004 0.028 + 0.006

KS-dist SyNG-R  0.052+0.006  0.065+0.012  0.096 +0.022  0.035 +0.003  0.042+0.008  0.059 £ 0.018  0.028 £0.002  0.032+£0.005  0.042 £ 0.009
VGAE  0.965£0.001 0961 £0.002 0961 +0.004 0981 £0.001 0.982+0.001 0.98140.002 0.987+0.001 0.988 +0.001  0.987 + 0.001

SyNG-D  0.028 £0.004 0.029 £0.007 0.041 £0.021 0.018 £0.002 0.018 £+ 0.004 0.023 £0.011 0.015+0.002 0.014 =0.003 0.016 + 0.004

Energy-dist SyNG-R  0.030 £0.004  0.039 +0.008  0.064 +0.016  0.019 £0.002  0.023 £0.005 0.036 £ 0.012  0.015 4 0.001  0.017 £0.003  0.025 £ 0.006
VGAE 1.015+£0.023  1.040 £0.031  1.048 £0.036  1.055£0.020 1.078 £0.030  1.092+0.032 1.070 £0.022  1.089 £ 0.028  1.099 = 0.033

Numerical characteristics. The following Table 7 and Table 8 summarize the distances between
the structural characteristics of the generated networks and the input networks.
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Table 7: Similarity between the the triangle densities of the original network and generated network.

n Method | RMSE \ MAE (< std) \ Bias (+ std)
| =2 =3 =4 | =2 =3 r=4 | =2 =3 =4

SyNG-D | 0.0045 0.0044 0.0050 | 0.0037 £ 0.0026  0.0047 + 0.0034  0.0050 £ 0.0049 | 0.0018 #+ 0.0042  0.0010 £ 0.0043  0.0022 + 0.0066
500  SyNG-R | 0.0043 0.0044 0.0049 | 0.0035 = 0.0026 0.0051 + 0.0037  0.0039 = 0.0030 | 0.0017 + 0.0040  0.0013 £ 0.0042  0.0018 + 0.0046
VGAE | 0.0068 0.0073 0.0071 | 0.0058 & 0.0036 0.0061 & 0.0039  0.0058 & 0.0041 | -0.0054 £ 0.0042 -0.0057 £ 0.0045 -0.0052 =+ 0.0049

SyNG-D | 0.0031 0.0032 0.0033 | 0.0032 4 0.0017 0.0031 £ 0.0025 0.0035 # 0.0029 | 0.0009 £ 0.0029  0.0005 + 0.0032  0.0006 + 0.0045
1000 SyNG-R | 0.0030 0.0043 0.0034 | 0.0025 +0.0017 0.0034 4 0.0026  0.0027 + 0.0020 | 0.0009 & 0.0028  0.0019 +0.0038  0.0010 = 0.0032
VGAE | 0.0066 0.0067 0.0068 | 0.0058 & 0.0032 0.0059 + 0.0033  0.0059 £ 0.0033 | -0.0056 & 0.0035 -0.0056 + 0.0038 -0.0056 = 0.0038

SyNG-D | 0.0031 0.0031 0.0032 | 0.0025 £ 0.0014  0.0024 & 0.0019  0.0025 = 0.0021 | 0.0008 4 0.0030  0.0003 £ 0.0025  -0.0003 =+ 0.0032
1500 SyNG-R | 0.0024 0.0032 0.0034 | 0.0020 & 0.0013  0.0025 + 0.0020  0.0027 £ 0.0020 | 0.0004 + 0.0023  0.0013 4 0.0030 ~ 0.0013 + 0.0031
VGAE | 0.0071 0.0065 0.0065 | 0.0065 & 0.0029 0.0059 + 0.0028 0.0058 £ 0.0031 | -0.0065 £ 0.0029  -0.0057 £ 0.0032  -0.0057 + 0.0033

Table 8: Similarity between the the global clustering coefficients of the original network and generated
network.

n Method | RMSE \ MAE (= std) | Bias (+ std)
| =2 =3 =4 | =2 =3 =4 | =2 =3 =4

SyNG-D | 0.0062 0.0058 0.0070 | 0.0051 + 0.0034 0.0047 & 0.0034  0.0050 + 0.0049 | 0.0034 + 0.0051  0.0021 + 0.0054  0.0022 + 0.0066
500  SyNG-R | 0.0061 0.0063 0.0070 | 0.0051 +0.0034 0.0051 +0.0037  0.0057 & 0.0041 | 0.0037 +0.0049  0.0036 £ 0.0052  0.0043 + 0.0056
VGAE | 0.0259 0.0260 0.0258 | 0.0249 £ 0.0072  0.0245 + 0.0086  0.0240 £ 0.0093 | -0.0249 £ 0.0072  -0.0245 + 0.0086  -0.0240 = 0.0094

SyNG-D | 0.0040 0.0039  0.0045 | 0.0032 £ 0.0023  0.0031 + 0.0025  0.0035 £ 0.0029 | 0.0017 + 0.0036  0.0007 £ 0.0039  0.0006 + 0.0045
1000 SyNG-R | 0.0040 0.0043 0.0052 | 0.0032 £ 0.0024 0.0034 +0.0026  0.0041 £ 0.0032 | 0.0020 +0.0035  0.0019 & 0.0038  0.0026 + 0.0045
VGAE | 0.0259 0.0257 0.0261 | 0.0250 & 0.0070  0.0243 £ 0.0085  0.0247 £ 0.0085 | -0.0250 £ 0.0070  -0.0243 £ 0.0085 -0.0247 £ 0.0085

SyNG-D | 0.0031 0.0031 0.0032 | 0.0025 4+ 0.0017  0.0024 £ 0.0019  0.0025 + 0.0021 | 0.0008 + 0.0030  0.0003 + 0.0031  -0.0003 + 0.0032
1500  SyNG-R | 0.0030 0.0032 0.0034 | 0.0024 +0.0017 0.0025 4 0.0020  0.0027 £ 0.0020 | 0.0010 4 0.0028  0.0013 £ 0.0030  0.0013 + 0.0031
VGAE | 0.0271 0.0246  0.0253 | 0.0263 £ 0.0064 0.0235 + 0.0074  0.0240 £ 0.0082 | -0.0263 £ 0.0064 -0.0235 + 0.0074  -0.0240 + 0.0082
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B.6 EVALUATION RESULTS ON REAL-WORLD DATASETS

In this subsection, we list all the experiment results on the real-world datasets. For each dataset, we
present three tables detailing the generation quality. The first table evaluates the similarity of degree
centrality distributions, the second assesses the similarity of eigenvalue distributions, and the third

reports on numerical characteristics such as global clustering coefficient and triangle density.

YouTube dataset.

Tables 9 to 11 summarize the generation quality on the YouTube dataset.

Table 9: Generation quality in degree centralities distribution similarity on YouTube dataset.

Method  Config | W1 dist. KS dist. Energy dist. MMD
2 0.0015 £ 0.0007  0.0376 = 0.0143  0.0001 £ 0.0001  0.0213 + 0.0180
3 0.0023 £ 0.0009  0.0561 £ 0.0167 0.0001 & 0.0001  0.0446 £ 0.0202
SyNG-D 4 0.0032 £ 0.0010 0.0742 +0.0191  0.0003 £+ 0.0002 0.0671 £ 0.0215
5 0.0049 £ 0.0009 0.1179 +0.0178  0.0007 £+ 0.0002  0.1149 4+ 0.0190
6 0.0058 £ 0.0009 0.1392 +0.0187  0.0010 £ 0.0003  0.1380 £ 0.0198
2 0.0013 £ 0.0006  0.0286 + 0.0113  0.0000 + 0.0000 0.0110 + 0.0143
3 0.0013 £ 0.0006  0.0291 £ 0.0116  0.0000 &+ 0.0000 0.0121 £+ 0.0147
SyNG-R 4 0.0013 £ 0.0006  0.0291 £ 0.0111  0.0000 £+ 0.0000 0.0118 4+ 0.0150
5 0.0013 £ 0.0006  0.0298 £ 0.0116  0.0000 £+ 0.0000 0.0115 £ 0.0147
6 0.0013 £ 0.0006  0.0300 + 0.0121  0.0000 £ 0.0000 0.0116 4+ 0.0152
2 0.0089 £ 0.0001  0.2374 +0.0044  0.0020 £ 0.0000 0.3385 + 0.0046
3 0.0089 £ 0.0001  0.2349 £ 0.0040  0.0020 £ 0.0000  0.3339 £ 0.0055
VGAE 4 0.0080 £+ 0.0001  0.2010 £ 0.0043  0.0015 £ 0.0000 0.2783 £ 0.0041
5 0.0091 £ 0.0001  0.2440 £+ 0.0039  0.0021 4+ 0.0000 0.3496 + 0.0036
6 0.0082 £ 0.0001  0.2033 £ 0.0043  0.0016 4+ 0.0000 0.2878 4 0.0036
16 0.0085 £ 0.0001  0.2176 £ 0.0043  0.0018 £ 0.0000 0.3103 £ 0.0040
128 | 0.0078 +0.0038  0.1538 +£0.0547 0.0012 £ 0.0017 0.1602 £ 0.0424
GRAN 256 | 0.0571 £0.0041 0.5759 +0.0300 0.0387 £+ 0.0048 0.6202 + 0.0320
512 | 0.0076 £ 0.0020  0.0924 + 0.0200 0.0008 + 0.0004 0.0786 + 0.0172
EDGE — | 0.0041 £ 0.0005  0.0782 = 0.0086  0.0004 = 0.0001  0.0784 = 0.0095
E-R — | 0.0141 £ 0.0001  0.4708 £ 0.0044  0.0067 = 0.0001  0.6922 = 0.0040
DBLP dataset. The following Tables 12 to 14 present the full experimental results for the DBLP
dataset.
Yelp dataset. Here we provide the detailed evaluation for the Yelp dataset. The results for degree

centrality, eigenvalue distribution, and other numerical characteristics are shown in the Tables 15
to 17 respectively.

PolBlogs dataset. Finally, we present the comprehensive results for the PolBlogs dataset. The
subsequent Tables 18 to 20 detail the performance of each method in capturing the structural and
numerical properties of the original network.
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Table 10: Generation quality in eigenvalue distribution similarity on YouTube dataset.

Method ~ Config | W1 dist. KS dist. Energy dist. MMD
2 0.3111 £ 0.0552  0.0303 £ 0.0067 0.0109 £ 0.0051  0.0261 % 0.0094
3 0.2296 + 0.0400 0.0198 £ 0.0056 0.0049 £+ 0.0026  0.0084 +£ 0.0097
SyNG-D 4 0.1901 £ 0.0398 0.0142 £ 0.0038  0.0028 £ 0.0015 0.0007 £ 0.0030
5 0.3003 £ 0.0759 0.0199 £ 0.0056 0.0075 £ 0.0042  0.0019 £ 0.0051
6 0.4025 £ 0.0820 0.0278 £+ 0.0068 0.0142 £ 0.0068 0.0114 £+ 0.0115
2 0.4337 £ 0.0683  0.0440 £+ 0.0070  0.0241 £ 0.0086  0.0447 £+ 0.0089
3 0.3756 £ 0.0627 0.0394 £+ 0.0068 0.0189 + 0.0071  0.0392 £ 0.0095
SyNG-R 4 0.3299 + 0.0586  0.0359 £ 0.0064 0.0150 &+ 0.0059 0.0340 % 0.0091
5 0.3081 £ 0.0559 0.0355 £ 0.0061 0.0135 £ 0.0055 0.0322 £ 0.0088
6 0.2935 £ 0.0539  0.0354 £ 0.0058 0.0126 £+ 0.0051 0.0311 + 0.0088
2 1.2692 £ 0.0092 0.1514 +£0.0010 0.2348 £+ 0.0039 0.1848 4+ 0.0012
3 1.2646 £ 0.0087 0.1510 £ 0.0010 0.2332 £ 0.0037 0.1843 £+ 0.0012
VGAE 4 1.1502 £+ 0.0085 0.1406 + 0.0010 0.1941 + 0.0033  0.1720 + 0.0013
5 1.2868 + 0.0096  0.1532 £ 0.0011 0.2415 £ 0.0041  0.1875 &+ 0.0012
6 1.1740 £ 0.0085 0.1422 +£0.0011 0.2016 + 0.0034 0.1743 4+ 0.0013
16 1.2084 + 0.0092 0.1456 £ 0.0011 0.2136 £ 0.0038 0.1791 + 0.0012
128 0.9723 £ 0.4615 0.0697 = 0.0289 0.1140 £ 0.1250 0.0708 + 0.0324
GRAN 256 3.9987 +0.2321 0.2398 £0.0119  1.4200 +0.1533  0.2576 £ 0.0139
512 0.9434 + 0.1651 0.0759 £ 0.0098  0.0987 + 0.0328 0.0788 £ 0.0085
EDGE - ] 0.3357 £ 0.0388  0.0389 & 0.0085 0.0136 + 0.0049  0.0444 + 0.0072
E-R - | 1.9528 £ 0.0101  0.2099 + 0.0010  0.5537 & 0.0059  0.2596 + 0.0009

Table 11: Generation quality in numerical characteristics on YouTube dataset.

Config |

Global clustering coefficient

\ Triangle density

Method
\ RMSE MAE Bias \ RMSE MAE Bias
2 0.022788  0.021504 -0.021504 | 0.000097 0.000092  0.000092
3 0.016919  0.014596 -0.014099 | 0.000089 0.000084  0.000084
SyNG-D 4 0.013366  0.010770 -0.009493 | 0.000083 0.000078  0.000078
5 0.014951  0.012186 -0.010930 | 0.000058 0.000052  0.000052
6 0.014220 0.011899 -0.010130 | 0.000041 0.000035  0.000035
2 0.022261  0.020758 -0.020731 | 0.000115 0.000111  0.000111
3 0.010665 0.008717 -0.004048 | 0.000138 0.000134  0.000134
SyNG-R 4 0.011996 0.009619  0.006626 | 0.000153 0.000149  0.000149
5 0.015688 0.012999  0.011945 | 0.000161 0.000157  0.000157
6 0.018381 0.015688  0.015182 | 0.000165 0.000161 0.000161
2 0.117986  0.117984 -0.117984 | 0.000081 0.000081 -0.000081
3 0.116633 0.116631 -0.116631 | 0.000080 0.000080 -0.000080
VGAE 4 0.080046  0.080040 -0.080040 | 0.000056 0.000056 -0.000056
5 0.120663  0.120662 -0.120662 | 0.000083 0.000083 -0.000083
6 0.092410  0.092407 -0.092407 | 0.000065 0.000065 -0.000065
16 0.098745 0.098741 -0.098741 | 0.000069 0.000069 -0.000069
128 0.113408 0.113203 -0.113203 | 0.000085 0.000056 0.000054
GRAN 256 0.053022 0.052876 -0.052876 | 0.001505 0.001495  0.001495
512 0.101078  0.101039 -0.101039 | 0.000113 0.000108  0.000108
EDGE - \ 0.144481 0.138077 -0.137958 \ 0.000078  0.000075 -0.000050
E-R - \ 0.163006 0.163006 -0.163006 \ 0.000105 0.000105 -0.000105
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Table 12: Generation quality in degree centralities distribution similarity on DBLP dataset.

Method ~ Config | W1 dist. KS dist. Energy dist. MMD
2 0.0019 + 0.0008  0.0751 £ 0.0170  0.0002 £ 0.0001  0.0926 + 0.0226
3 0.0018 + 0.0006 0.0913 £ 0.0162  0.0002 £+ 0.0001 0.1034 + 0.0191
SyNG-D 4 0.0022 4+ 0.0007 0.1223 £ 0.0140 0.0003 £ 0.0001  0.1286 4+ 0.0172
5 0.0033 +0.0009 0.1735 £ 0.0178  0.0005 £ 0.0002 0.1782 4 0.0197
6 0.0044 4+ 0.0010 0.2191 £ 0.0183  0.0009 £ 0.0002  0.2224 4 0.0196
2 0.0015 4 0.0007  0.0725 + 0.0181  0.0001 £ 0.0001 0.0748 + 0.0281
3 0.0015 + 0.0007 0.0729 £0.0178  0.0001 £ 0.0001 0.0754 £ 0.0278
SyNG-R 4 0.0015 + 0.0007 0.0731 £0.0182 0.0001 £ 0.0001 0.0768 + 0.0281
5 0.0016 4+ 0.0007 0.0737 £ 0.0177  0.0001 £ 0.0001 0.0781 4 0.0273
6 0.0016 4+ 0.0007 0.0746 £+ 0.0174  0.0001 £ 0.0001 0.0798 4+ 0.0267
2 0.0049 + 0.0001  0.2328 + 0.0084 0.0010 & 0.0000 0.2840 + 0.0096
3 0.0029 4 0.0000 0.2653 £ 0.0066  0.0009 £ 0.0000 0.2797 £ 0.0059
VGAE 4 0.0035 + 0.0001  0.3202 £ 0.0081 0.0012 £ 0.0000 0.3275 4+ 0.0059
5 0.0035 + 0.0001 0.3164 £ 0.0083 0.0012 4+ 0.0000 0.3231 +£ 0.0067
6 0.0032 + 0.0000  0.2959 £ 0.0071 0.0011 4 0.0000 0.3015 + 0.0053
16 0.0032 4+ 0.0000 0.2960 + 0.0078  0.0010 £ 0.0000  0.2957 4+ 0.0060
128 0.0148 +0.0025 0.3785 £ 0.0882 0.0041 £ 0.0014  0.5133 4 0.0962
GRAN 256 0.0125 +0.0003  0.4609 £ 0.0119  0.0054 £ 0.0002 0.6118 4+ 0.0141
512 0.0106 & 0.0001  0.2207 £ 0.0080 0.0031 £ 0.0001 0.2973 + 0.0086
EDGE - ] 0.0023 +0.0012 0.0790 £ 0.0106  0.0002 £ 0.0002  0.0992 + 0.0232
E-R - ‘ 0.0157 = 0.0001  0.6626 £ 0.0069 0.0102 & 0.0002 0.8716 + 0.0061

Table 13: Generation quality in eigenvalue distribution similarity on DBLP dataset.

Method

Config |

W1 dist.

KS dist.

Energy dist.

MMD

SyNG-D

0.3021 + 0.0319
0.2127 £ 0.0276
0.1730 £ 0.0167
0.2559 + 0.0431
0.3803 + 0.0456

0.0807 + 0.0063
0.0914 £ 0.0069
0.1056 + 0.0072
0.1320 £+ 0.0084
0.1628 + 0.0085

0.0235 £+ 0.0043
0.0157 + 0.0021
0.0165 + 0.0020
0.0299 + 0.0057
0.0562 + 0.0089

0.0879 £ 0.0059
0.0769 + 0.0049
0.0767 + 0.0052
0.0964 + 0.0075
0.1281 £+ 0.0083

SyNG-B

0.2893 £ 0.0333
0.2254 + 0.0327
0.1698 + 0.0287
0.1312 + 0.0299

0.1187 + 0.0315

0.0626 + 0.0049
0.0575 £+ 0.0054
0.0500 £ 0.0056
0.0459 £ 0.0050
0.0406 + 0.0050

0.0202 £ 0.0050
0.0135 +0.0039
0.0083 £ 0.0025
0.0052 + 0.0018
0.0040 + 0.0015

0.0799 £+ 0.0067
0.0651 £+ 0.0071
0.0492 £ 0.0066
0.0366 £ 0.0068
0.0273 + 0.0071

VGAE

=NE= IV IV S ) o U RNV S e %R SR S

1.2381 £ 0.0156
0.4036 + 0.0056
0.3828 £ 0.0096
0.3756 + 0.0116
0.3512 £ 0.0077
0.3575 £ 0.0093

0.2351 4+ 0.0028
0.0979 £+ 0.0035
0.0673 £+ 0.0027
0.0654 £+ 0.0029
0.0610 £ 0.0021
0.0628 £ 0.0026

0.3767 + 0.0101
0.0347 £ 0.0017
0.0281 + 0.0018
0.0269 + 0.0021
0.0230 + 0.0013
0.0248 + 0.0016

0.2622 £+ 0.0033
0.1196 + 0.0039
0.0683 £+ 0.0028
0.0653 £+ 0.0026
0.0643 + 0.0032
0.0654 + 0.0032

128
256
512

GRAN

0.6396 + 0.1610
1.7553 £ 0.0482

0.6951 + 0.0236

0.1608 + 0.0204
0.3056 £+ 0.0053
0.1491 + 0.0055

0.1492 + 0.0620
0.7524 + 0.0329
0.1181 + 0.0100

0.1874 £ 0.0223
0.3538 + 0.0062
0.1757 £+ 0.0066

EDGE -

| 0.5500 + 0.1337

0.1223 + 0.0249

0.0972 + 0.0423

0.1387 + 0.0296

E-R -

| 2.2549 £ 0.0136

0.3768 + 0.0016

1.2143 £ 0.0126

0.4409 + 0.0016
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Table 14: Generation quality in numerical characteristics on DBLP dataset.

Config ‘

Global clustering coefficient

Triangle density

Method
\ RMSE MAE Bias \ RMSE MAE Bias
2 0.062213 0.058698 -0.058698 | 0.000158 0.000126 0.000046
3 0.053395 0.049389 -0.049389 | 0.000161 0.000137 -0.000087
SyNG-D 4 0.055118 0.052253 -0.052253 | 0.000181 0.000157 -0.000139
5 0.052696 0.049473 -0.049473 | 0.000234 0.000213 -0.000207
6 0.057088 0.053737 -0.053737 | 0.000301 0.000286 -0.000286
2 0.037820 0.032761 -0.032515 | 0.000143 0.000112  0.000011
3 0.032168 0.026907 -0.026373 | 0.000144 0.000112  0.000019
SyNG-B 4 0.026335 0.020965 -0.019649 | 0.000145 0.000112  0.000025
5 0.022729 0.017575 -0.015066 | 0.000146 0.000113  0.000028
6 0.021397 0.016556 -0.013237 | 0.000146 0.000113  0.000031
2 0.632837 0.632827 -0.632827 | 0.000665 0.000665 -0.000665
3 0.013590 0.013382 -0.013382 | 0.000058 0.000058 -0.000058
VGAE 4 0.029395 0.029349  0.029349 | 0.000028 0.000028  0.000028
5 0.030082 0.030021  0.030021 | 0.000026 0.000026  0.000026
6 0.033185 0.033145 0.033145 | 0.000011 0.000010  0.000010
16 0.031045 0.031000  0.031000 | 0.000005 0.000005  0.000005
128 0.876328 0.876311 -0.876311 | 0.000678 0.000673 -0.000673
GRAN 256 0.889293 0.889279 -0.889279 | 0.000793 0.000793 -0.000793
512 0.892119 0.892116 -0.892116 | 0.000799 0.000799 -0.000799
EDGE - \ 0.132680 0.108559 -0.108559 \ 0.000220 0.000177 -0.000177
E-R - \ 0.894349 0.894349 -0.894349 \ 0.000796 0.000796 -0.000796

Table 15: Generation quality in degree centralities distribution similarity on Yelp dataset.

Method  Config | Wi KS Energy MMD
2 0.0015 £ 0.0005  0.0249 £ 0.0074  0.0054 + 0.0019  0.0128 -+ 0.0087
3 0.0021 £0.0010  0.0355 £ 0.0126  0.0077 £ 0.0034  0.0236 £ 0.0143
SyNG-D 4 0.0024 £0.0010 0.0454 +£0.0112  0.0098 £ 0.0033  0.0346 £+ 0.0109
5 0.0036 £ 0.0011  0.0602 £ 0.0116  0.0142 +0.0037 0.0503 £ 0.0115
6 0.0044 £ 0.0013  0.0772 £ 0.0142 0.0181 £ 0.0044 0.0672 £ 0.0136
2 0.0013 = 0.0006 0.0202 £ 0.0080  0.0047 £ 0.0022 0.0065 + 0.0094
3 0.0013 + 0.0006 0.0198 £ 0.0078  0.0047 £ 0.0022  0.0060 -+ 0.0090
SyNG-B 4 0.0013 + 0.0006 0.0199 £+ 0.0082  0.0047 £ 0.0023  0.0062 + 0.0092
5 0.0014 £ 0.0006  0.0205 £ 0.0080 0.0048 £+ 0.0022  0.0067 +£ 0.0094
6 0.0013 £ 0.0006 0.0198 £ 0.0078  0.0047 = 0.0022 0.0062 £ 0.0091
2 0.0165 £+ 0.0000 0.2212 + 0.0023  0.0579 £ 0.0002 0.3223 + 0.0016
3 0.0170 £ 0.0000  0.2314 £ 0.0022  0.0598 £+ 0.0002  0.3332 +£ 0.0019
VGAE 4 0.0171 £0.0000 0.2350 £ 0.0021  0.0603 £ 0.0002  0.3367 £ 0.0017
5 0.0169 £ 0.0000  0.2281 £ 0.0022  0.0597 £+ 0.0002  0.3338 £ 0.0016
6 0.0179 £ 0.0000  0.2447 £ 0.0020 0.0634 £ 0.0002  0.3549 +£ 0.0014
16 0.0173 £0.0000 0.2337 £ 0.0021  0.0609 £+ 0.0002  0.3374 £ 0.0018
E-R - | 0.0281 £ 0.0000 0.5717 & 0.0018  0.1209 + 0.0003  0.7736 + 0.0013
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Table 16: Generation quality in eigenvalue distribution similarity on Yelp dataset.

Method

Config |

W1 dist.

KS dist.

Energy dist.

MMD

SyNG-D

1.2877 £+ 0.0902
1.0882 £ 0.1008
0.9242 £+ 0.0833
0.7666 £+ 0.0816
0.6392 + 0.0923

0.0529 £ 0.0039
0.0443 £+ 0.0046
0.0376 £+ 0.0039
0.0302 £ 0.0040
0.0234 £ 0.0046

0.2932 £+ 0.0239
0.2428 £+ 0.0273
0.2034 £+ 0.0228
0.1620 £+ 0.0225
0.1279 £+ 0.0251

0.0611 £ 0.0045
0.0508 £ 0.0053
0.0426 £ 0.0046
0.0336 £+ 0.0050
0.0250 £ 0.0062

SyNG-B

1.3240 £+ 0.0944
1.2229 £+ 0.0933
1.0975 £ 0.0903
1.0018 £ 0.0894
0.9405 + 0.0875

0.0551 £ 0.0041
0.0514 £ 0.0041
0.0474 £+ 0.0040
0.0437 £ 0.0038
0.0421 + 0.0037

0.3035 £ 0.0251
0.2816 £ 0.0249
0.2553 +0.0241
0.2333 £ 0.0237
0.2209 + 0.0232

0.0636 £ 0.0047
0.0590 £ 0.0048
0.0539 £ 0.0047
0.0493 £+ 0.0047
0.0469 + 0.0046

VGAE
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2.4428 £+ 0.0057
2.4566 £ 0.0053
2.4662 £ 0.0057
2.4762 £+ 0.0057
2.5127 £ 0.0054
2.4206 £ 0.0057

0.1401 £ 0.0004
0.1410 £ 0.0004
0.1415 £+ 0.0004
0.1416 £ 0.0004
0.1436 £ 0.0004
0.1400 £ 0.0004

0.6508 £+ 0.0018
0.6557 £ 0.0017
0.6582 £+ 0.0018
0.6596 £+ 0.0017
0.6707 £ 0.0017
0.6487 £+ 0.0018

0.1728 £+ 0.0004
0.1755 £+ 0.0004
0.1763 £ 0.0004
0.1749 £ 0.0004
0.1792 £+ 0.0003
0.1758 £ 0.0004

E-R

| 3.8301 +£ 0.0067

0.2001 £ 0.0003

1.0215 £ 0.0018

0.2453 £+ 0.0003

Table 17: Generation quality in numerical characteristics on Yelp dataset.

Method ~ Config | Global clustering coefficient | Triangle density
‘ RMSE MAE Bias ‘ RMSE MAE Bias
2 0.025551 0.025188 -0.025188 | 0.000124 0.000108 -0.000105
3 0.026478 0.026080 -0.026080 | 0.000171 0.000157 -0.000156
SyNG-D 4 0.020121 0.019630 -0.019630 | 0.000159 0.000147 -0.000146
5 0.018293 0.017720 -0.017720 | 0.000182 0.000172 -0.000171
6 0.017662 0.017043 -0.017043 | 0.000200 0.000189 -0.000188
2 0.027935 0.027581 -0.027581 | 0.000149 0.000135 -0.000134
3 0.023972  0.023582 -0.023582 | 0.000133 0.000117 -0.000115
SyNG-B 4 0.015615 0.014984 -0.014984 | 0.000101 0.000085 -0.000073
5 0.009946  0.008985 -0.008902 | 0.000083 0.000069 -0.000043
6 0.007562 0.006486 -0.006140 | 0.000078 0.000064 -0.000030
2 0.103578 0.103578 -0.103578 | 0.000736 0.000736 -0.000736
3 0.105472 0.105471 -0.105471 | 0.000745 0.000745 -0.000745
VGAE 4 0.105552 0.105552 -0.105552 | 0.000746 0.000746 -0.000746
5 0.107737 0.107737 -0.107737 | 0.000749 0.000749 -0.000749
6 0.112563 0.112563 -0.112563 | 0.000767 0.000767 -0.000767
16 0.102531 0.102531 -0.102531 | 0.000741 0.000741 -0.000741
E-R - ‘ 0.144825 0.144825 -0.144825 ‘ 0.000812 0.000812 -0.000812
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Table 18: Generation quality in degree centralities distribution similarity on PolBlogs dataset.

Method ~ Config | W1 KS Energy MMD
2 0.0018 + 0.0008 0.0453 + 0.0097 0.0001 £+ 0.0001 0.0097 + 0.0144
3 0.0022 +0.0011  0.0502 + 0.0134  0.0001 £+ 0.0001 0.0195 4+ 0.0215
SyNG-D 4 0.0028 4+ 0.0013  0.0574 + 0.0164 0.0002 + 0.0002 0.0318 £ 0.0250
5 0.0044 4+ 0.0014 0.0829 + 0.0204 0.0004 + 0.0002  0.0649 + 0.0244
6 0.0052 4+ 0.0015 0.0998 £ 0.0211  0.0006 £ 0.0003  0.0831 4 0.0250
2 0.0018 + 0.0010  0.0447 £ 0.0092 0.0001 £ 0.0001 0.0092 + 0.0145
3 0.0018 4+ 0.0010 0.0449 + 0.0111  0.0001 £ 0.0001  0.0093 £ 0.0150
SyNG-B 4 0.0018 4+ 0.0010 0.0457 + 0.0123  0.0001 £ 0.0001  0.0094 £ 0.0150
5 0.0018 + 0.0010 0.0468 + 0.0130  0.0001 + 0.0001 0.0106 4+ 0.0162
6 0.0018 + 0.0010 0.0488 + 0.0149  0.0001 £ 0.0001 0.0112 4+ 0.0167
2 0.0093 4+ 0.0001 0.3538 + 0.0049 0.0024 + 0.0001  0.3542 + 0.0061
3 0.0097 + 0.0001  0.3624 + 0.0053  0.0026 £+ 0.0001 0.3716 4+ 0.0051
VGAE 4 0.0094 4+ 0.0001 0.3565 + 0.0052 0.0024 + 0.0001  0.3602 + 0.0060
5 0.0092 + 0.0001  0.3531 + 0.0051 0.0023 + 0.0001 0.3533 + 0.0064
6 0.0097 4+ 0.0001  0.3635 + 0.0053 0.0026 £ 0.0001  0.3742 4+ 0.0057
16 0.0098 4+ 0.0001 0.3656 + 0.0049 0.0026 + 0.0001  0.3782 £ 0.0056
128 0.0056 + 0.0019 0.1588 + 0.0270  0.0008 + 0.0005 0.1386 + 0.0201
GRAN 256 0.0225 +0.0031 0.3558 £0.0315 0.0064 £+ 0.0015 0.3378 4+ 0.0361
512 0.0930 4+ 0.0067 0.6337 £ 0.0238 0.0636 £ 0.0072 0.6741 4+ 0.0269
EDGE - ‘ 0.0006 + 0.0000 0.0491 + 0.0044 0.0000 + 0.0000 0.0000 + 0.0000
E-R - ‘ 0.0183 4+ 0.0001  0.5670 + 0.0056 0.0104 + 0.0001 0.7924 + 0.0059

Table 19: Generation quality in eigenvalue distribution similarity on PolBlogs dataset.

Method

Config |

W1 dist.

KS dist.

Energy dist.

MMD

SyNG-D

0.2060 £ 0.0574
0.2022 + 0.0401
0.2013 + 0.0488
0.2482 + 0.0683
0.2973 £ 0.0857

0.0482 £ 0.0094
0.0502 £ 0.0103
0.0441 + 0.0096
0.0322 + 0.0077
0.0332 £ 0.0089

0.0092 + 0.0051
0.0090 + 0.0038
0.0074 + 0.0032
0.0080 =+ 0.0046
0.0119 + 0.0072

0.0258 £+ 0.0137
0.0315 £ 0.0116
0.0252 £ 0.0122
0.0151 £ 0.0118
0.0143 + 0.0136

SyNG-B

0.2400 £ 0.0787
0.2336 £ 0.0705
0.2272 £ 0.0674
0.2192 + 0.0663
0.2182 + 0.0619

0.0504 + 0.0110
0.0545 £ 0.0102
0.0558 £+ 0.0106
0.0568 + 0.0099
0.0569 + 0.0098

0.0124 + 0.0082
0.0133 £ 0.0076
0.0135 £ 0.0079
0.0134 £ 0.0077
0.0136 £ 0.0073

0.0301 + 0.0159
0.0364 £+ 0.0134
0.0386 £ 0.0132
0.0398 £ 0.0120
0.0415 £ 0.0117

VGAE
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1.2339 + 0.0104
1.2677 + 0.0121
1.2410 £ 0.0112
1.2263 + 0.0117
1.2671 £ 0.0108
1.2787 £ 0.0114

0.2733 £ 0.0018
0.2767 £ 0.0018
0.2741 £ 0.0018
0.2727 + 0.0018
0.2772 £ 0.0018
0.2781 £ 0.0018

0.4220 + 0.0072
0.4405 £ 0.0082
0.4265 £ 0.0074
0.4188 + 0.0075
0.4416 £ 0.0074
0.4470 £ 0.0077

0.3111 £+ 0.0020
0.3157 £ 0.0021
0.3123 £ 0.0020
0.3110 + 0.0022
0.3162 £ 0.0019
0.3180 £ 0.0020

GRAN

128
256
512

0.4770 £ 0.1785
1.2251 + 0.1586
3.5235 + 0.1906

0.1091 £ 0.0115
0.1089 + 0.0118
0.2455 + 0.0124

0.0463 + 0.0288
0.1703 + 0.0431
1.2293 + 0.1278

0.0904 + 0.0098
0.0939 £ 0.0126
0.2684 £+ 0.0141

EDGE

| 0.2793 £ 0.0415

0.0821 + 0.0117

0.0190 + 0.0059

0.0469 + 0.0126

| 2.0281 + 0.0109

0.3442 + 0.0012

0.9320 + 0.0092

0.4010 £ 0.0011
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Table 20: Generation quality in numerical characteristics on PolBlogs dataset.

\ Global clustering coefficient

Triangle density

Method  Config
| RMSE MAE Bias | RMSE MAE Bias
2 0.018976 0.015124  0.011476 | 0.000071 0.000055  0.000013
3 0.015564 0.012312  0.005437 | 0.000068 0.000056 -0.000033
SyNG-D 4 0.018539 0.014519  0.009024 | 0.000078 0.000066 -0.000043
5 0.016557 0.013288  0.004908 | 0.000109 0.000100 -0.000098
6 0.019115 0.014940  0.009254 | 0.000119 0.000109 -0.000107
2 0.024512  0.020038  0.018285 | 0.000083 0.000062  0.000039
3 0.026816 0.022261  0.021210 | 0.000085 0.000064  0.000044
SyNG-B 4 0.028811 0.024436  0.023662 | 0.000087 0.000066  0.000049
5 0.029078  0.024992  0.024354 | 0.000089 0.000068  0.000051
6 0.031319 0.027414  0.026902 | 0.000092 0.000071  0.000055
2 0.037207 0.037138 -0.037138 | 0.000210 0.000210 -0.000207
3 0.044932  0.044882 -0.044882 | 0.000220 0.000220 -0.000220
VGAE 4 0.040265 0.040203 -0.040203 | 0.000214 0.000214 -0.000214
5 0.032565 0.032483  -0.032483 | 0.000207 0.000207 -0.000207
6 0.048727 0.048684 -0.048684 | 0.000222 0.000222 -0.000222
16 0.045418 0.045365 -0.045365 | 0.000222 0.000222 -0.000222
128 0.114164 0.113753 -0.113753 | 0.000157 0.000149 -0.000141
GRAN 256 | 0.108178 0.107799 -0.107799 | 0.000442 0.000422  0.000422
512 | 0.007568 0.006001  0.000342 | 0.006494 0.006445  0.006445
EDGE — | 0.056941 0.054337 -0.054337 | 0.000079 0.000075 -0.000075
E-R - | 0.203573  0.203573  -0.203573 | 0.000322 0.000322 -0.000322
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B.7 SUPPLEMENTARY FOR THE EFFICIENCY COMPARISON

In this section, we begin with a note on e-FLOPs and then present a comparison of training and
sampling time across methods, specifying the device environment used for each.

A note on e-FLOPs. The definition of e-FLOPs considers two types of operations: the float-point
operations on neural nets, and node visit operations on trees. These two operations are not directly
comparable, as node visits involve comparison and branching which are different operations than the
float-point operations on neural nets. In Section 4.2, we use e-FLOPs for a comparison which is less
dependent on the implemented device environments. As a supplementary, we study the wall-block
training and sampling time of each methods with their implemented device environments specified.
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Figure 5: Wall-clock training time of different methods for datasets of different sizes.

Evaluation metrics and configuration. We compare training and sampling efficiency between
SyNG-D and the baseline methods through the time they spend during training and sampling. SyNG-
D and VGAE are trained on CPUs, while GRAN and EDGE are trained on a single NVIDIA GeForce
RTX 4090 with memory of 24GB. For each dataset, we train each model using the default training
schedule, sample 128 networks from each model, and record the wall-clock training time and average
sampling time.

Results and discussion. Figure 5 presents the training time comparisons between our method and
the baselines. In particular, our model can be trained in tens of seconds even for graphs with up
to 5,000 nodes, whereas deep learning based methods typically require on the order of hundreds
to thousands of seconds. As network size increases, the training time for our method grows at a
moderate rate, while the training time for VGAE increases much faster. This indicates that the
computational cost of SyNG-D remains relatively stable as network size grows, demonstrating its
advantages on large-scale networks. The training time of EDGE and GRAN remains high across all
dataset sizes.

For sampling speed, on networks with fewer than 1,000 nodes, both SyNG-D and VGAE complete a
single draw in under 0.1 s on average, whereas EDGE and GRAN require a few seconds. SyNG-D
requires only a small number of diffusion steps to generate high-quality latent embeddings. For larger
networks with 5,000 nodes, SyNG-D samples a synthetic network in only a few seconds, significantly
faster than GRAN and EDGE, which require tens of seconds. The sampling time of SyNG-D is also
more stable as network size increases, compared with the other methods.

These results highlight the scalability of SyNG-D and its advantage for large graphs.
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