
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

EFFICIENT SYNTHETIC NETWORK GENERATION VIA
LATENT EMBEDDING RECONSTRUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Network data are ubiquitous across the social sciences, biology, and information
systems. Generating realistic synthetic network data has broad applications from
network simulation to scientific discovery. However, many existing black-box
approaches for network generation tend to overfit observed data while overlooking
characteristic network structure, and incur substantial computational overhead at
scale. These practical challenges call for synthetic network generation methods
that are both efficient and capable of capturing structural properties of networks.
In this paper, we introduce Synthetic Network Generation via Latent Embedding
Reconstruction (SyNGLER), a general and efficient framework for synthetic net-
work generation that builds on latent space network models. Given an observed
network, SyNGLER first learns low-dimensional latent node embeddings via a
latent space network model and then reconstructs the latent space by building a
distribution-free generator over these embeddings. For generation, SyNGLER
first samples (or resamples) node embeddings from the generator in the latent
space and then produces synthetic networks using the latent space network model.
Through the latent space framework, SyNGLER preserves unique characteristics
in networks such as sparsity and node degree heterogeneity, while allowing for effi-
cient training with lower computational cost than many existing deep architectures.
We provide theoretical guarantees by developing consistency results regarding
the distance between the true and synthetic edge distributions. Empirical studies
further demonstrate the effectiveness of SyNGLER, where SyNGLER efficiently
produces networks that better preserve key network characteristics such as network
moments and degree distributions compared with existing approaches.

1 INTRODUCTION

Graph network data capture interactions among entities in complex systems. Examples include social
networks (Traud et al., 2012), molecular interaction networks (Gómez-Bombarelli et al., 2018), and
brain connectivity networks (Bullmore & Sporns, 2009). Generating realistic synthetic network
data (Zhu et al., 2022) has broad applications, spanning drug discovery (Li et al., 2018a), material
discovery (Merchant et al., 2023), and image recognition (Xie et al., 2019). Designing efficient
generative models that produce realistic network data while preserving characteristic structural
network properties remains a long-standing and active research challenge.

Recent years have witnessed a growing line of work on data-driven graph network generation using
deep learning. For example, Li et al. (2018b) proposed an autoregressive generation scheme, in which
a graph neural network (GNN; Scarselli et al. (2008)) sequentially adds nodes and edges based on the
current graph. You et al. (2018) later adopted recurrent neural networks (Schmidt, 2019) that summa-
rize nodes and edges and generate, at each step, the next node and its associated edges. Liao et al.
(2019) introduced a block-wise autoregressive model with graph attention mechanism (Veličković
et al., 2017), reducing serial computation while preserving long-range dependencies. Nevertheless,
for large graphs, training and sampling in deep autoregressive models remain computationally heavy
due to sequential modeling of a large graph (Salha et al., 2021). Another line of research devel-
ops diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) for graphs.
Early methods (Niu et al., 2020; Jo et al., 2022) applied continuous diffusion processes directly in
adjacency-matrix space, which neglected discreteness in graphs. Vignac et al. (2022) and Haefeli
et al. (2022) studied discrete Markov processes over adjacency matrices. However, while operating

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: An illustrative SyNGLER pipeline using the YOUTUBE dataset (Yang & Leskovec, 2012)
with a two-dimensional latent space. From left to right: observed network in the form of an adjacency
matrix; learned latent embeddings; synthetic embeddings from the generator in the latent space;
synthetic network.

on a discrete state space, applying diffusion directly in adjacency-matrix space still overlooks the
low-rank structure often present in large-scale network data (Luo et al., 2023). Vahdat et al. (2021)
and Rombach et al. (2022) combined diffusion modeling with encoder-decoder architectures by
applying diffusion in a continuous latent space. The resulting latent-diffusion approach has been
used for molecular and protein graph generation (Xu et al., 2023; Fu et al., 2024) and extended to
general graph generation (Zhou et al., 2024), covering both conditional and unconditional settings.
Nevertheless, most of the methods typically rely on variational training to connect the graphs and the
latent space, which becomes computationally demanding for large-scale networks. Overall, existing
methods tend to face computational challenges on large graphs due to deep neural network training on
large-dimensional data and/or variational procedures, while characteristic network structure is often
neglected. A recent work Li et al. (2023) uses a message-passing neural network (MPNN) as the
encoder and is able to efficiently generate networks from a single large observation, but a theoretical
analysis of the algorithm is lacking. These limitations underscore the need for graph generation
models that can capture complex network structure while staying computationally tractable and
scalable to large graphs, with accompanying theoretical guarantees.

In this work, we introduce Synthetic Network Generation via Latent Embedding Reconstruction
(SyNGLER), an efficient synthetic network generation framework that leverages latent space net-
work models (Hoff et al., 2002; Ma et al., 2020) to address these challenges. During training,
SyNGLER first fits a likelihood-based latent space model to the observed network to learn a set
of low-dimensional node embeddings. Using these embeddings, it then trains a distribution-free
generator in the latent space. For generation, SyNGLER samples (or resamples) node embeddings
from the generator and produces synthetic networks from these node embeddings via the latent space
model. An illustrative pipeline is in Figure 1. Via the latent space approach, SyNGLER avoids
training deep models directly on the high-dimensional network space by learning low-dimensional
node embeddings with flexibly chosen likelihood models and requiring only lightweight generative
model training in the latent space, thereby reducing computational cost. Moreover, the geometry
of in the latent space enables SyNGLER to preserve key structural properties of the network that
reflect latent node-node interactions. We provide a theoretical analysis of SyNGLER and establish its
consistency and generalization guarantees under a hierarchical latent space network model. Extensive
experiments on synthetic and real-world datasets further demonstrate its strong performance in
comparison to existing approaches, with significantly reduced computational cost.

The remainder of the paper is organized as follows. In Section 2, we formally introduce the SyNGLER
framework. Section 3 presents the theoretical results. Section 4 reports empirical results on simulated
and real-world data. Section 5 concludes the paper with a discussion. Additional numerical results,
experimental details, and proofs are provided in the Appendix.

2 SYNTHETIC NETWORK GENERATION VIA LATENT EMBEDDING
RECONSTRUCTION

Given an observed network with n nodes, our goal is to train a generative model that can produce
networks that preserves key structural properties of the original network. The synthetic node set may

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

comprise the original nodes, newly generated nodes with distributional characteristics similar to the
originals, or any mixture of the two. Specifically, we represent the observed network by an adjacency
matrix A ∈ Rn×n with Aij = Aji for i ̸= j and Aii = 0 for all i ∈ [n], where the observation
Aij can be binary observations in {0, 1}, count-valued observations in N, or general continuous
observations in R. Given the observation A, our goal is to generate a synthetic network Ã ∈ Rn×n.

We introduce Synthetic Network Generation via Latent Embedding Reconstruction (SyNGLER) to
achieve this goal. During training, SyNGLER first learns a set of node embeddings from the observed
network using a likelihood model p(· | ·) compatible with edge types of Aij , and then reconstructs
the latent space by training a distribution-free generator over the learned embeddings. For data
generation, SyNGLER samples a set of node embeddings from the latent generator and produces
synthetic networks using these embeddings via p(· | ·). Algorithm 1 summarizes the procedure.

Algorithm 1 Synthetic Network Generation via Latent Embedding Reconstruction

1: Input: Latent dimension r, input network A ∈ {0, 1}n×n.
2: Fit the likelihood model to get (Ẑ, α̂) ∈ Rn×r × Rn;
3: Train a generative model using the fitted data: Sampler = GenModel({(ẑi, α̂i)}ni=1);
4: for each i = 1, . . . , n do
5: Sample (z̃i, α̃i) ∈ Rr+1 from Sampler.
6: end for
7: for each pair of nodes (i, j) with 1 ≤ i < j ≤ n do
8: Independently generate the edge observation Ãij = Ãji from the conditional model

p(· | z̃⊤i z̃j + α̃i + α̃j)
9: end for

10: Output: Generated network Ã.

In Algorithm 1, Ẑ = (ẑ1, . . . , ẑn)
⊤ denotes the learned latent node embeddings and α̂ =

(α̂1, . . . , α̂n)
⊤ the learned node degree parameters. GenModel denotes the generator architec-

ture in latent space. We specify the likelihood p(· | ·) and formally introduce the model parameters in
Section 2.1, and we detail GenModel in Section 2.2.

2.1 LATENT SPACE NETWORK MODELS AND NETWORK EMBEDDING

Latent space network models (Hoff et al., 2002; Ma et al., 2020; Li et al., 2025) provide a flexible and
efficient network embedding framework. Associate each node i with a latent position zi ∈ Rr and a
degree parameter αi ∈ R. Let α = (α1, α2, . . . , αn) ∈ Rn and define Φ ∈ Rn×(r+1), where each
row of Φ is given by Φi = (z⊤i , αi)

⊤ ∈ Rr+1, i = 1, . . . , n. Latent space network models specify
that given Φ, each edge observation Aij = Aji for 1 ≤ i < j ≤ n is independently generated from
P(Aij ∈ A | Φ) =

∫
A p(a | zi

⊤zj + αi + αj) dµ(a), where p(· | ·) is the conditional density of Aij
given Φ, µ is some measure on R (e.g., counting measures for discrete-valued edges or Lebesgue
measures for continuous-valued edges), and A is the corresponding Borel set. Given Φ, we use PA|Φ
to denote the conditional distribution of A given Φ.
Assumption 2.1 (embedding distribution). {(zi, αi)}ni=1 are independently generated from some
distribution P0 on Rr+1 such that EP0 [zi] = 0r. Moreover, there exists R > 0 such that ∥z∥2 ≤ R
for all (z, α) ∈ supp(P0).

Assumption 2.1 guarantees the boundedness of the embedding space and the identifiability of the
node degree distribution, since joint shifts in α and z can leave the edge distribution unchanged.
Specifically, in (2.1), for all i ∈ [n], let ži = zi + a and α̌i = αi − a⊤zi − a⊤a/2 for some a ∈ Rr.
Then ž⊤i žj + α̌i + α̌j = z⊤i zj + αi + αj for all i, j ∈ [n], and the likelihood remains unchanged.
Assumption 2.1 thus fixes this shift as a = −EP0

[zi] to ensure node-degree identifiability. Similar
conditions have been commonly considered in the latent space literature for node degree identifiability,
for example, in Ma et al. (2020) and Zhang et al. (2022).

Network embedding for general edge types. Based on the observed edge type of Aij , the
likelihood model p(·|·) can be chosen flexibly. Define πij = z⊤i zj + αi + αj , which determines the
distribution of Aij . If Aij’s are binary, one can choose the Bernoulli model as further introduced

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

in the next paragraph. If Aij’s are continuously measured, one can use a Gaussian noise model
p(aij |πij) = (2πσ2)−1/2 exp{−(aij − πij)2/(2σ2} for some σ2 > 0 (Sun & Li, 2017; Wang &
Guo, 2023). Once the conditional model is determined, degree parameters and latent embeddings
can be estimated by maximizing the following likelihood function over the parameters (Z,α), where
Z = (z⊤1 , z

⊤
2 , . . . , z

⊤
n)

⊤ is the latent position matrix with rows z1, z2, . . . , zn and α = (α1, . . . , αn)
is the vector of degree parameters:

(Ẑ, α̂) = argmax
(Z,α)∈Rn×(r+1):Z⊤1n=0r

∑
1≤i<j≤n

log p(Aij | z⊤i zj + αi + αj). (1)

The constraint in Eq. (1) ensures identifiability of the degree parameters and is designed based on
Assumption 2.1. A projected gradient descent algorithm can be employed to efficiently solve Eq. (1)
with provable convergence guarantees (Ma et al., 2020). We leave the details of the optimization
algorithm to Appendix C.1.

Sparse networks for binary edges. For binary networks, let µ = δ0 + δ1, where δ0 and δ1 are
Dirac measures at 0 and 1, and specify p(aij | πij) = exp{aijπij} (1 + exp{πij})−1, i.e., P(Aij =
1 | πij) = σ(πij), where σ(·) = exp(·)/

(
1 + exp(·)

)
. Recall that πij = z⊤i zj + αi + αj with

EP0
[zi] = 0. We further define ρn = 2EP0

[αi] and let wn = exp(ρn). Then we can reparameterize
πij = z⊤i zj+αi+αj+ρn, where the αi have been centered by their expectation EP0 [αi]. Accordingly,
Eq. (1) is modified by introducing an additional parameter ρ and an additional constraint α⊤1n = 0,
which we empirically find to facilitate the embedding process. Under the logistic link, note that
σ(πij) ≍ wn → 0 as ρn → −∞, assuming the variance of αi is bounded. The quantity wn thus
serves to quantify the global edge sparsity, which is commonly observed in large networks. In our
theoretical analysis in Section 3, we provide a more detailed discussion of sparsity.

Remark 1. The latent space network model also covers a wide class of classical network reconstruc-
tion models given appropriate choices of link functions and parametrizations of the node embeddings,
including the Erdős–Rényi graph (Erdos & Rényi, 1960), the Chung–Lu graph (Chung & Lu, 2002),
and the stochastic block model and its mixed-membership variants (Holland et al., 1983; Karrer &
Newman, 2011; Airoldi et al., 2008). Further discussion is provided in Appendix B.

2.2 LATENT EMBEDDING RECONSTRUCTION

In this section, we introduce two implementations of GenModel in Algorithm 1. Both implementa-
tions reconstruct the latent space from the learned embeddings. The first approach resamples from
the empirical distribution on Φ̂, which is suitable when the synthetic network should include some
original nodes from the observed network. The second approach trains a score-based generator using
the learned embeddings and is appropriate when new nodes need to be generated in the network. The
final GenModel can be a mixture of the two, producing networks that include both original nodes
and new nodes. This choice is flexible and can be adapted to practitioners’ needs.

Resampling based latent space reconstruction. Given the learned embeddings Φ̂, we set
GenModel to be the uniform distribution over the discrete set Φ̂. At each call, this sampler returns
one of the row vectors of Φ̂, with replacement. The resampled latent embeddings, denoted Φ̃, are used
later to construct the synthetic network. The idea of resampling latent embeddings in networks has
been used for bootstrap inference of network statistics (see Levin & Levina, 2019), but it has not been
systematically studied for network generation tasks. In scenarios where duplicate embeddings exist
in Φ̃ due to sampling with replacement, we suggest removing the duplicate embeddings. Meanwhile,
any nodes that must remain in the network can have their embeddings preserved in Φ̃ as needed.

Score-based generator in the latent space. To sample novel node embeddings that are close in
distribution to the learned embeddings, we consider a score-based generative model formulated via
stochastic differential equations (Song et al., 2020), in which a forward noising process gradually
adds noise to the training samples and a backward denoising process recovers the distribution of the
original samples from pure noise using information from the forward process. In our setup, a key
difference from existing work is that we train the score network based on the learned embeddings.
Specifically, let sθ(x, t) : Rd × [0, 1]→ Rd be a prediction model parameterized by θ. We use both

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

the XGBoost, following ForestDiffusion (Jolicoeur-Martineau et al., 2024) and multilayer perceptrons
(MLP), to approximate the score function. Consider a variance-preserving Ornstein-Uhlenbeck (OU)
(Maller et al., 2009) forward process. Given the fitted embeddings Φ̂, the forward process ϕt follows
dϕt = −ϕt dt +

√
2 dBt, where ϕ0 is randomly sampled from the row vectors of Φ̂ and Bt is a

standard Wiener process. Given the forward process, the parameter θ in sθ(x, t) is optimized by
minimizing the denoising score-matching objective (Vincent, 2011) constructed using the learned
embeddings (Wu et al., 2025):

θ̂ = argmin
θ

Et∼U [0,1], z∼N (0,Ir+1)

[
1

n

n∑
i=1

∥∥∥sθ(e−tϕ̂i +√
1− e−2t z, t

)
+

z√
1− e−2t

∥∥∥2].
To sample from the generator, we simulate the following process initialized at ϕ̃(0) ∼ N (0, Ir+1),
using the trained network sθ̂:

ϕ̃(k+1) = ϕ̃(k) + h
(
ϕ̃(k) + 2 sθ̂(ϕ̃

(k), 1− kh)
)
+
√
2h ξk, ξk

i.i.d.∼ N (0, Ir+1).

When T is large (equivalently, h is small) and sθ sufficiently approximates the true score, the
distribution of ϕ̃(⌈1/h⌉) is close to the distribution of the learned embeddings. This approach enables
us to sample novel node embeddings, thereby including novel nodes in the synthetic network.

2.3 SYNGLER-ATTR: SYNTHETIC NETWORK GENERATION VIA LATENT EMBEDDING
RECONSTRUCTION FOR ATTRIBUTED NETWORK

In the main body of this work, we study the task of generating networks when only network structures
are observed and needed in downstream tasks, using the vanilla SyNGLER. Meanwhile, generating
attributed networks that preserve feature-network interactions is also an important problem. The
classical VGAE (Kipf & Welling, 2016) approaches this problem in the setting of fixed attributes,
where the attributes of the generated graph remain the same as those of the input graph. Using
continuous diffusion models, Jo et al. (2022) developed a pipeline that successfully generates
attributed graphs with new features, although its design and training are tailored to multiple small-
scale graphs. Li et al. (2023) uses a message-passing neural network (MPNN) as the encoder and is
able to efficiently generate attributed graphs from a single large observation. In our paper, to address
this task, we introduce SyNGLER-Attr, a generalization of SyNGLER for generating attributed
networks. Specifically, SyNGLER-Attr jointly embeds and reconstructs the latent embeddings of
the network and its associated attributes, allowing the synthetic data to preserve the joint latent
structures of the network and its attributes. Due to page limits, we present the detailed algorithmic
description and implementation, along with an empirical study of SyNGLER-Attr to assess its utility
in downstream machine learning tasks in Appendix E.

3 THEORETICAL ANALYSIS

In this section, we study generation consistency of SyNGLER via the distance between the distribu-
tions of the synthetic and original networks. We consider the logistic link model for sparse binary
networks introduced in Section 2.1 with logsitic link . Throughout this section, we treat the global
sparsity parameter ρ∗n = EP0 [α1]/2 as a fixed parameter, where a superscript ∗ denotes the true
parameters, and we assume that the observed network A is generated from the latent space model in
Section 2.1 with global sparsity parameter ρ∗n and some Φ∗ whose rows are independent realizations
from P0 in Assumption 2.1. In this section, we study generation consistency of SyNGLER via the
distance between the distributions of the synthetic and original networks. We consider the model for
sparse binary networks introduced in Section 2.1 with logistic link. Throughout this section, we treat
the global sparsity parameter ρ∗n = EP0

[α1]/2 as a fixed parameter, where a superscript ∗ denotes
the true parameters, and we assume that the observed network A is generated from the latent space
model in Section 2.1 with global sparsity parameter ρ∗n and some Φ∗ whose rows are independent
realizations from P0 in Assumption 2.1. Note that the distribution of the synthetic network Ã is based
on the model trained on the observed network A. We denote the distribution of Ã given A as PA

Ã
,

which can be viewed as a random measure where the randomness comes from the observed network
A generated under model Section 2.1 with embeddings Φ∗ and sparsity parameter ρ∗n. Similarly, we

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

define PA
Φ̃

as the random measure for the group of latent embeddings on Rn×(r+1). We also denote
the individual distribution of ϕ̃ given A as PA

ϕ̃
. Similarly, we denote the marginal distribution of each

ϕ̂i as Pϕ̂, where the subscript i in ϕ̃i is omitted due to the exchangeability of the nodes. Our first
theorem decomposes the Kullback-Leibler (KL) divergence between PA and PA

Ã
.

Theorem 3.1. Under Assumption 2.1, the average KL divergence between the distribution of A and
Ã given A admits the following decomposition:

1

n2
dKL(PA ∥ PAÃ) = Eρ + EΦ + Egen. (2)

where the three error terms are defined as follows:

Eρ = EPA|Φ×P⊗n
0

[
log

p(A12 | z⊤1 z2 + α1 + α2 + ρ∗n)

p(A12 | z⊤1 z2 + α1 + α2 + ρ̂)

]
;

EΦ = min
T

1

n

(
EPT

0

[
log

PT
0

Pϕ̂
(ϕ)

]
+ EPT

0

[
log

Pϕ̂
PA
ϕ̃

(ϕ)
]
− EPϕ̂

[
log

Pϕ̂
PA
ϕ̃

(ϕ)
])

; (3)

Egen =
1

n
dKL(Pϕ̂ ∥ P

A
ϕ̃
).

Here the minimization in Eq. (3) is over all orthogonal transforms T : Φ = (Z,α) 7→ (ZU,α),
where U is a r-dimensional rotation matrix, and PT

0 is the distribution of T (ϕ) when ϕ ∼ P0.

The first term in Theorem 3.1 is referred to as Eρ since p(Aij | z⊤i zj + αi + αj + ρ∗n) differs from
p(Aij | z⊤i zj + αi + αj + ρ̂) only in the global sparsity parameter ρn. The second term is denoted
as EΦ, since it primarily depends on the distance between Pϕ̂ and P0. The third term Egen denotes

the KL divergence between the conditional distributions of ϕ̂ and ϕ̃ given A, and is determined
by the generative model in Algorithm 1. Error analysis of such terms has been considered in the
literature, for example, Chen et al. (2022; 2023a) for score-based generative models. In this analysis,
we focus on characterizing the first two terms in Eq. (2), while noting that the third term concerns the
generative error in a low-dimensional space rather than in the original large-scale network space.

We first consider the sparsity regime in the following assumption.
Assumption 3.1 (network sparsity). wn = exp(ρ∗n) = Ω(log n/n).

Assumption 3.1 states that the edge density is bounded below by Ω(log n/n), and accordingly the
expected node degrees are at least of order log n as n grows. Such a sparsity regime is consistent
with the network analysis literature; see, for example, Athreya et al. (2018) and Ma et al. (2020).

In the sequel, we analyze Eρ and EΦ under the asymptotic regime where n→∞. We first have the
following theorem on Eρ.

Theorem 3.2. Under Assumptions 2.1 and 3.1, it holds that Eρ = Op((wn · n)−1/2 log n).

Theorem 3.2 demonstrates that as long as wn ≫ (logn)2/n, the first error term satisfies Eρ = op(1).
This requirement on wn is consistent with Assumption 3.1 up to a logrithmic factor. Analyzing the
second term is challenging since it involves the marginal distribution of the estimated latent positions,
which is practically hard to be compared with the true distribution P0. Following Wu et al. (2025),
we use the technique of discretizing the underlying distribution to understand the approximation error
between Pϕ̂ and PT

0 for some transform T . Suppose that P0 is a continuous distribution of the latent
embeddings with density p0 that follows Assumption 2.1. Since the support of P0 is bounded, we
discretize the support of P0 into the following grid: Gγn = {ϕ ∈ Rr+1 : ϕi/γn ∈ Z, |ϕi| ≤ R+γn},
where {γn} is a sequence of discretization scales that converge to zero. Then for any ϕ ∈ Gγn , we
define the following mass functionqγn(ϕ) =

∫
Rr+1

∏
i≤r+1 1{ϕ′i ∈ [ϕi−γn/2, ϕi+γn/2}p0(ϕ′)dϕ′.

Using the linearity of expectation, we conclude that
∑
ϕ∈Gγn

qγn(ϕ) = 1. Therefore, qγn is a
probability mass function. We claim that, as long as the original density function is sufficiently
smooth, this discretized mass function is able to capture the structure of the original density function
well. To this end, we define the projection operator associated with the grid as projGγn

(ϕ) =

argminϕ′∈Gγn
∥ϕ′ − ϕ∥2, and consider pγn(ϕ) = qγn(projGγn

(ϕ))γn
−(r+1). Then we have the

following theorem.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Theorem 3.3. Suppose that p0 : Rr+1 → R+ is L-Lipschitz, then it holds that |p0(ϕ)− pγn(ϕ)| ≤
Lγn
√
r + 1.

This theorem indicates that sampling from the original distribution is almost the same as sampling
from qγn . We consider Φ† = (ϕ†1, . . . , ϕ

†
n)

⊤ ∈ Rn×(r+1) where the rows are independent realizations
from qγn . We denote the corresponding empirical mass function as q̂γn(ϕ) = n−1

∑
i≤n 1{ϕ

†
i = ϕ}

for ϕ ∈ Gγn . Then the following result indicates that q̂γn is close to qγn .

Lemma 3.1. For any small δ > 0, it holds that maxϕ∈Gγn
|qγn(ϕ) − q̂γn(ϕ)| ≤√

log(1/δ) + log(R/γn)/
√
n with probability 1− δ.

When Φ∗ is replaced by Φ†, we need to modify the estimators in Eq. (1) accordingly using the
projection operator projGγn

. Given Φ̂ and a rotation transform T , we define the corresponding
empirical distribution on the grid Gγn as follows: q̌γn(ϕ) =

1
n

∑n
i=1 1{ϕi = projGγn

(T ϕ̂i)}, ϕ ∈
Gγn . Next theorem shows that q̌γn is close to q̂γn , which is a direct consequence of the uniform
consistency of the estimated latent embeddings.

Theorem 3.4. Suppose that each ϕ is sampled from a discrete mass function qγn on Gγn . Fix a
sequence of discretization levels γn = Ω

(
(wn ·n)−1/2+ϵ

)
where ϵ > 0 is fixed. Under Assumption 2.1

and Assumption 3.1, there exists a transform T : ϕ = (Z,α) 7→ (ZU,α) for some rotation matrix U ,
such that maxϕ∈Gγ |q̂γn(ϕ)− q̌γn(ϕ)| → 0, in probability as n→∞. Here, the randomness comes
from the realizations of A.

This result shows that the marginal distribution of any single point from {projγn(ϕ̂i)}i≤n is close to
the discretized distribution qγn , up to a rotation, and consequently controls EΦ. Proofs of all results
in this section are provided in Appendix A.

4 EXPERIMENTS

In this section, we empirically evaluate the effectiveness and efficiency of the proposed SyNGLER
framework using both simulated and real-world network datasets.

Simulated network dataset. We consider simulated sparse networks with sizes and latent dimen-
sions (n, r) ∈ {500, 1000, 1500} × {2, 3, 4}. For each (n, r), we independently sample latent node
embeddings {z∗i }ni=1 from a truncated Gaussian mixture in Rr and degree parameters {α∗

i }ni=1 from
a uniform distribution. We adopt a logarithmic sparsity ρn = −0.4 log(n), which results in an edge
density that scales as O(n−0.4). Such sparse configuration is able to closely characterize real-world
network dataset. Based on the sampled latent embeddings, we generate a network from the binary
logistic network model in Section 2.1. Each result is based on 200 Monte Carlo repetitions. Please
see more details in Appendix C.2.

Real-world datasets. We use four large real-world networks: (i) the user-user friendship network
from the Yelp Open Dataset (Yelp, 2024); (ii) the YouTube social network dataset (Yang & Leskovec,
2012); (iii) the DBLP co-authorship network (Yang & Leskovec, 2012); and (iv) the PolBlogs network
(Adamic & Glance, 2005). Details regarding the preprocessing of these datasets are in Appendix C.4.

Baselines and implementations. We consider two diffusion-based approaches, SyNG-D and SyNG-
D (MLP), where SyNG-D (MLP) uses a multilayer perceptron to approximate the score instead
of the tree-based estimator in SyNG-D, and a resampling-based approach, SyNG-R, as defined in
Section 2.2. SyNG-D and SyNG-R are included in all experiments, whereas SyNG-D (MLP) is
evaluated only on real-world datasets. For baselines, VGAE (Kipf & Welling, 2016) is compared
across all experiments evaluating structural recovery and efficiency. In the real-data evaluations, we
also compare to GRAN (Liao et al., 2019), EDGE (Chen et al., 2023b), GraphMaker (Li et al., 2023),
and the classical Erdős–Rényi model (Erdos & Rényi, 1960). Implementation details for our methods
are provided in Appendix C.4. We also cover mKPGM (Moreno et al., 2013) and BTER (Kolda et al.,
2014) for baselines. The implementations of the baselines on simulated and real-world datasets are
provided separately in Appendix C.5 and Appendix C.7, respectively.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 1: Simulated sparse networks. Eigenvalues and degree centrality are evaluated by
energy (En.) and Kolmogorov–Smirnov (KS) distances. Best results are in bold.

(n, r) Method Tri. (×10−4) Clus. (×10−3) Eig. (×10−2) DegC. (×10−2)

RMSE Bias RMSE Bias En. KS En. KS

(500, 2)
SyNG-D 4.60 4.37 15.7 15.2 5.88 9.07 3.34 11.07
SyNG-R 5.37 5.11 18.1 17.7 6.38 9.78 3.69 12.45
VGAE 9.70 -9.16 53.1 -50.2 10.18 15.67 10.69 44.45

(1500, 4)
SyNG-D 0.63 0.57 4.58 4.07 7.09 12.09 1.59 6.42
SyNG-R 1.35 1.26 9.80 9.65 9.41 14.45 2.52 9.58
VGAE 3.05 -2.78 37.4 -35.0 17.26 32.46 9.25 48.18

4.1 STRUCTURAL PROPERTY RECOVERY

To evaluate the quality of the synthetic networks, we consider the distance between network statistics
of the synthetic and the observed networks. Specifically, we evaluate triangle density (Tri., measuring
the prevalence of triangle motifs / three-node interactions), clustering coefficient (Clus., summarizing
local transitivity), eigenvalue distributions (Eig., reflecting global spectral structure), and degree
centrality (DegC., describing node connectivity). For Tri. and Clus., which are single values for
each network, we compute the root-mean-square error (RMSE) and bias relative to the observed
network. For Eig. and DegC., which are vectors for each network, we compute the maximum mean
discrepancy (MMD), the Kolmogorov-Smirnov (KS) statistic, and the energy distance. In addition,
we also include the 4-graphlet frequency distance in the real-data experiment. More details are in
Appendix C.3.

Table 1 summarizes the results for simulated networks. Our methods exhibit overall superior
performance compared to the baseline VGAE model, reasonably due to the fact that the data are
simulated from sparse latent space network models with a mixture distribution over latent embeddings.
In the relatively large-scale setting with (n, r) = (1500, 4), we note that SyNG-D outperforms SyNG-
R on all metrics, indicating the effectiveness of generating novel node embeddings while capturing
network structures. Here, we report only the results for (n, r) ∈ {(500, 2), (1500, 4)} due to page
constraints. More results on simulated networks are provided in Appendix C.5.

Real-world datasets allow a fairer comparison. For each method, we select the configuration that
yields the best average performance across all four metrics. The results are summarized in Table 2.
EDGE and GRAN ran out of memory on the Yelp dataset on a single NVIDIA GeForce RTX 4090 with
memory of 24GB, and are marked “-” at the corresponding entries. This reflects that these methods
are computationally expensive at scale and pose challenges when computational resources are limited.
For most metrics, SyNG-D and SyNG-R produce networks with better-preserved characteristics. In
Figure 2, we visualize the YouTube network alongside synthetic networks produced by different
methods using the Fruchterman-Reingold force-directed algorithm. We also provide additional
visualization results obtained using alternative tools in Appendix G. SyNG-D and SyNG-R preserve
the clustering patterns in the observed network evidently better in comparison with other methods.
More results and details are in Appendix C.7. Our proposed approach shows superior performances
on all four networks. The improvements on Yelp and PolBlogs networks are clear.

4.2 ML UTILITY EVALUATION

We also evaluate the machine learning utility of the generated graphs, that is, whether synthetic graphs
can effectively support downstream predictive tasks. Following the evaluation protocol proposed by
Li et al. (2023), we adopt a discriminative-model-based framework to quantify utility. In this setting,
a predictive model is first trained on the original graph G and then separately on a generated graph Ĝ.
Both models are then evaluated on the test set of the original graph to obtain performance measures
ACC(G | G) and ACC(G | Ĝ) (Li et al., 2023). A generated graph is regarded as having high ML
utility if ACC(G|Ĝ)

ACC(G|G) ≈ 1, indicating that training on the synthetic graph yields predictive performance
comparable to training on the real graph. We consider the link prediction task, which aims to infer
missing edges in a partially observed graph and may utilize node features and node labels where
available. For this task, we adopt the Graph Autoencoder (GAE) model of Kipf & Welling (2016),

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

SyNG-D(ours) SyNG-R(ours)

VGAE

Training graph

EDGE GRAN ER

SyNG-D(MLP)(ours) GraphMaker

Figure 2: Visualization of the YouTube network and synthetic networks by different methods.

Table 2: Results on real-world networks. Eigenvalues and degree centrality are evaluated using MMD.
Each entry is the average over 200 generated networks. Best performances are in bold.

(a) YouTube

Method
Tri

(×10−4)
Clus

(×10−2)
Eig

(×10−2)
DegC

(×10−2)

E-R 1.05 16.3 25.96 69.22
BTER 0.02 9.7 6.42 0.00
mKPGM 1.03 16.0 22.38 44.86
VGAE 0.559 8.0 17.20 27.83
GRAN 1.13 10.1 7.88 7.86
EDGE 0.785 14.4 4.44 7.84
GraphMaker 1.12 16.7 23.13 64.99

SyNG-D 0.967 2.28 2.61 2.13
SyNG-D(MLP) 1.62 1.58 0.378 3.89
SyNG-R 1.11 2.23 4.47 1.10

(b) DBLP

Method
Tri

(×10−4)
Clus

(×10−1)
Eig

(×10−1)
DegC

(×10−1)

E-R 7.96 8.94 4.409 8.716
BTER 6.09 6.78 1.484 0.462
mKPGM 8.00 9.00 3.003 4.568
VGAE 0.578 0.136 1.196 2.797
GRAN 7.99 8.92 1.757 2.973
EDGE 2.20 1.33 1.387 0.992
GraphMaker 7.98 8.98 3.931 7.512

SyNG-D 1.58 0.622 0.879 0.926
SyNG-D(MLP) 3.63 1.01 1.116 1.401
SyNG-R 1.43 0.378 0.799 0.748

(c) Yelp

Method
Tri

(×10−4)
Clus

(×10−2)
Eig

(×10−2)
DegC

(×10−2)

E-R 8.12 14.5 24.53 77.36
BTER 2.27 4.45 8.26 0.00
mKPGM 9.35 16.0 9.26 49.97
VGAE 7.41 10.3 17.58 33.74
GRAN - - - -
EDGE - - - -
GraphMaker 8.82 15.5 20.70 69.26

SyNG-D 2.00 1.77 2.50 6.72
SyNG-D(MLP) 0.745 2.35 9.62 3.26
SyNG-R 0.778 0.756 4.69 0.62

(d) PolBlogs

Method
Tri

(×10−4)
Clus

(×10−2)
Eig

(×10−2)
DegC

(×10−2)

E-R 3.22 20.4 40.10 79.24
BTER 0.88 5.27 3.04 0.00
mKPGM 3.32 21.4 31.15 50.67
VGAE 2.07 3.26 31.10 35.33
GRAN 1.57 11.4 9.04 13.86
EDGE 0.790 5.69 4.69 0.00
GraphMaker 3.27 20.8 38.28 74.15

SyNG-D 0.710 1.90 2.58 0.97
SyNG-D(MLP) 0.594 2.23 5.27 3.05
SyNG-R 0.830 2.45 3.01 0.92

and use AUROC as the performance measure ACC. Additional implementation details are provided
in Appendix F.

Table 3 summarizes the results for ML utility ratios. Our SyNGLER-based methods consistently
achieve ratios close to one, indicating strong preservation of the learning signal necessary for down-
stream ML tasks. These results suggest that SyNGLER not only captures structural characteristics
but also maintains the discriminative information required for effective model training.

4.3 EFFICIENCY

Evaluation metrics and configuration. We compare training efficiency between SyNG-D and the
baseline methods through a computational workload metric we define as the equivalent floating-point
operations (e-FLOPs). To evaluate the training efficiency of different methods, the e-FLOPs metric

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

102 103
#nodes

1010

1011

1012

1013

1014

#e
-F
LO

PS

SyNG-D
EDGE
GRAN
VGAE

Training graph

SyNG-D(ours) GRAN

VGAE EDGE

Figure 3: Efficiency comparison. Left: number of e-FLOPS versus the number of nodes in the
observed graph. Right: Synthetic networks from different methods on the DBLP dataset.

counts the total number of floating-point operations or their approximate equivalents during the
training process.

Table 3: ML utility evaluation. “–”: out-of-memory.

Method DBLP PolBlogs YouTube Yelp

ER 0.90 ± 0.03 1.00 ± 0.00 0.99 ± 0.00 0.80 ± 0.01
BTER 0.85 ± 0.05 0.95 ± 0.01 0.91 ± 0.01 0.94 ± 0.01
mKPGM 0.96 ± 0.02 1.01 ± 0.00 0.92 ± 0.01 0.89 ± 0.02
VGAE 1.00 ± 0.00 1.01 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
GRAN 0.98 ± 0.08 0.92 ± 0.08 1.00 ± 0.00 -
EDGE 1.00 ± 0.00 0.98 ± 0.01 1.00 ± 0.00 -
GraphMaker 0.95 ± 0.02 1.00 ± 0.00 0.99 ± 0.00 0.83 ± 0.01

SyNG-D 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.01 0.99 ± 0.00
SyNG-D(MLP) 1.00 ± 0.00 0.97 ± 0.01 0.99 ± 0.00 0.99 ± 0.00
SyNG-R 1.00 ± 0.00 0.99 ± 0.01 0.99 ± 0.01 1.00 ± 0.00

Note that SyNG-D and the baseline meth-
ods consist of neural nets and tree struc-
tures in their model architecture. For neural
nets, e-FLOPs counts floating-point opera-
tions, whereas for tree structures, e-FLOPs
counts node visits. We use e-FLOPs to
evaluate the efficiency of different methods,
since they are less dependent on the hard-
ware environment. For the more straightfor-
ward wall-clock training time, we present
the results along with the hardware envi-
ronment used by each method in Appendix C.8. In addition to four real-world datasets, we also
compare these methods on a group of simulated networks with sizes of 200, 500, and 800. For a fair
comparison, we keep the latent dimension of all models at 4. Specifically, for SyNG-D and VGAE,
the latent dimension corresponds to the dimension of the latent space. For GRAN, it is the output
dimension of the attention layers. For EDGE, it is the dimension of the hidden layer in the score
network.

Results. Figure 3 summarizes the results. We have several observations. In terms of e-FLOPs,
SyNG-D attains the lowest cost across all settings and remains stable as network size grows. In terms
of synthetic network quality, SyNG-D best preserves the overall structure of the observed networks;
VGAE, while computationally comparable to SyNG-D, does not match its quality. Third, GRAN
and EDGE require substantially longer training times, yet their performance is not as satisfactory,
especially for GRAN. Overall, SyNG-D is both effective and efficient for this task, producing realistic
synthetic networks with a computationally lightweight training process. Additional results regarding
efficiency comparisons, along with further details, are provided in Appendix C.8.

5 CONCLUSION

In this work, we address the challenge of synthesizing realistic networks at scale while preserving
salient structural properties using Synthetic Network Generation via Latent Embedding Recon-
struction (SyNGLER), a general and efficient framework that learns low-dimensional latent node
embeddings from a single observed network and then trains a distribution-free generator in the learned
latent space. By separating representation learning via a likelihood-based latent space approach from
generative modeling, SyNGLER preserves structural information with latent space geometry where
lightweight generators suffice, enabling fast training and sampling. Theoretical and empirical results
both demonstrate the effectiveness of SyNGLER. Future research directions include incorporating
richer supervision for conditional generation (e.g., node/edge attributes and constraints), extending to
directed, dynamic, and multilayer networks, and developing rigorous privacy-preserving training and
release mechanisms.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Lada A Adamic and Natalie Glance. The political blogosphere and the 2004 us election: divided they
blog. In Proceedings of the 3rd international workshop on Link discovery, pp. 36–43, 2005.

Edo M Airoldi, David Blei, Stephen Fienberg, and Eric Xing. Mixed membership stochastic
blockmodels. Advances in neural information processing systems, 21, 2008.

Avanti Athreya, Donniell E Fishkind, Minh Tang, Carey E Priebe, Youngser Park, Joshua T Vogelstein,
Keith Levin, Vince Lyzinski, Yichen Qin, and Daniel L Sussman. Statistical inference on random
dot product graphs: a survey. Journal of Machine Learning Research, 18(226):1–92, 2018.

Ed Bullmore and Olaf Sporns. Complex brain networks: graph theoretical analysis of structural and
functional systems. Nature reviews neuroscience, 10(3):186–198, 2009.

Sourav Chatterjee. Matrix estimation by universal singular value thresholding. The Annals of
Statistics, 43(1):177–214, 2015. ISSN 00905364.

Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score approximation, estimation and
distribution recovery of diffusion models on low-dimensional data. In International Conference on
Machine Learning, pp. 4672–4712. PMLR, 2023a.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as easy
as learning the score: theory for diffusion models with minimal data assumptions. arXiv preprint
arXiv:2209.11215, 2022.

Xiaohui Chen, Jiaxing He, Xu Han, and Li-Ping Liu. Efficient and degree-guided graph generation
via discrete diffusion modeling. arXiv preprint arXiv:2305.04111, 2023b.

Fan Chung and Linyuan Lu. The average distances in random graphs with given expected degrees.
Proceedings of the National Academy of Sciences, 99(25):15879–15882, 2002.

Fan Chung and Mary Radcliffe. On the spectra of general random graphs. the electronic journal of
combinatorics, pp. P215–P215, 2011.

Paul Erdos and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad.
Sci, 5:17–61, 1960.

Cong Fu, Keqiang Yan, Limei Wang, Wing Yee Au, Michael Curtis McThrow, Tao Komikado, Koji
Maruhashi, Kanji Uchino, Xiaoning Qian, and Shuiwang Ji. A latent diffusion model for protein
structure generation. In Learning on graphs conference, pp. 29–1. PMLR, 2024.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous
representation of molecules. ACS central science, 4(2):268–276, 2018.

Kilian Konstantin Haefeli, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Diffusion
models for graphs benefit from discrete state spaces. arXiv preprint arXiv:2210.01549, 2022.

Aric Hagberg, Pieter J Swart, and Daniel A Schult. Exploring network structure, dynamics, and
function using networkx. Technical report, Los Alamos National Laboratory (LANL), Los Alamos,
NM (United States), 2008.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Peter D Hoff, Adrian E Raftery, and Mark S Handcock. Latent space approaches to social network
analysis. Journal of the american Statistical association, 97(460):1090–1098, 2002.

Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First
steps. Social networks, 5(2):109–137, 1983.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations. In International conference on machine learning, pp.
10362–10383. PMLR, 2022.

Alexia Jolicoeur-Martineau, Kilian Fatras, and Tal Kachman. Generating and imputing tabular data
via diffusion and flow-based gradient-boosted trees. In International conference on artificial
intelligence and statistics, pp. 1288–1296. PMLR, 2024.

Brian Karrer and Mark EJ Newman. Stochastic blockmodels and community structure in networks.
Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 83(1):016107, 2011.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016.

Tamara G Kolda, Ali Pinar, Todd Plantenga, and Comandur Seshadhri. A scalable generative graph
model with community structure. SIAM Journal on Scientific Computing, 36(5):C424–C452, 2014.

Keith Levin and Elizaveta Levina. Bootstrapping networks with latent space structure. arXiv preprint
arXiv:1907.10821, 2019.

Jinming Li, Shihao Wu, Chengyu Cui, Gongjun Xu, and Ji Zhu. Statistical inference on latent space
models for network data. arXiv preprint arXiv:2312.06605v3, 2025.

Mufei Li, Eleonora Kreačić, Vamsi K Potluru, and Pan Li. Graphmaker: Can diffusion models
generate large attributed graphs? arXiv preprint arXiv:2310.13833, 2023.

Yibo Li, Liangren Zhang, and Zhenming Liu. Multi-objective de novo drug design with conditional
graph generative model. Journal of cheminformatics, 10(1):33, 2018a.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative
models of graphs. arXiv preprint arXiv:1803.03324, 2018b.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel
Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent attention networks.
Advances in neural information processing systems, 32, 2019.

Tianze Luo, Zhanfeng Mo, and Sinno Jialin Pan. Fast graph generation via spectral diffusion. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 46(5):3496–3508, 2023.

Zhuang Ma, Zongming Ma, and Hongsong Yuan. Universal latent space model fitting for large
networks with edge covariates. Journal of Machine Learning Research, 21(4):1–67, 2020.

Ross A Maller, Gernot Müller, and Alex Szimayer. Ornstein–uhlenbeck processes and extensions.
Handbook of financial time series, pp. 421–437, 2009.

Amil Merchant, Simon Batzner, Samuel S Schoenholz, Muratahan Aykol, Gowoon Cheon, and
Ekin Dogus Cubuk. Scaling deep learning for materials discovery. Nature, 624(7990):80–85,
2023.

Sebastian I Moreno, Jennifer Neville, and Sergey Kirshner. Learning mixed kronecker product
graph models with simulated method of moments. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 1052–1060, 2013.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Permu-
tation invariant graph generation via score-based generative modeling. In International conference
on artificial intelligence and statistics, pp. 4474–4484. PMLR, 2020.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Guillaume Salha, Romain Hennequin, Jean-Baptiste Remy, Manuel Moussallam, and Michalis
Vazirgiannis. Fastgae: Scalable graph autoencoders with stochastic subgraph decoding. Neural
Networks, 142:1–19, 2021.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Robin M Schmidt. Recurrent neural networks (rnns): A gentle introduction and overview. arXiv
preprint arXiv:1912.05911, 2019.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. pmlr, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Will Wei Sun and Lexin Li. Store: sparse tensor response regression and neuroimaging analysis.
Journal of Machine Learning Research, 18(135):1–37, 2017.

Amanda L Traud, Peter J Mucha, and Mason A Porter. Social structure of facebook networks. Physica
A: Statistical Mechanics and its Applications, 391(16):4165–4180, 2012.

Stephen Tu, Ross Boczar, Max Simchowitz, Mahdi Soltanolkotabi, and Ben Recht. Low-rank
solutions of linear matrix equations via procrustes flow. In International conference on machine
learning, pp. 964–973. PMLR, 2016.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
Advances in neural information processing systems, 34:11287–11302, 2021.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation. arXiv preprint arXiv:2209.14734,
2022.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computa-
tion, 23(7):1661–1674, 2011.

Yikai Wang and Ying Guo. Locus: A regularized blind source separation method with low-rank
structure for investigating brain connectivity. The annals of applied statistics, 17(2):1307, 2023.

Shihao Wu, Junyi Yang, Gongjun Xu, and Ji Zhu. Denoising diffused embeddings: a generative
approach for hypergraphs. arXiv preprint arXiv:2501.01541, 2025.

Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming He. Exploring randomly wired neural
networks for image recognition. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 1284–1293, 2019.

Minkai Xu, Alexander S Powers, Ron O Dror, Stefano Ermon, and Jure Leskovec. Geometric latent
diffusion models for 3d molecule generation. In International Conference on Machine Learning,
pp. 38592–38610. PMLR, 2023.

Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on ground-truth.
In Proceedings of the ACM SIGKDD workshop on mining data semantics, pp. 1–8, 2012.

Yelp. Yelp open dataset. Online resource, 2024. URL https://business.yelp.com/data/
resources/open-dataset/.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generating
realistic graphs with deep auto-regressive models. In International conference on machine learning,
pp. 5708–5717. PMLR, 2018.

13

https://business.yelp.com/data/resources/open-dataset/
https://business.yelp.com/data/resources/open-dataset/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Xuefei Zhang, Gongjun Xu, and Ji Zhu. Joint latent space models for network data with high-
dimensional node variables. Biometrika, 109(3):707–720, 2022.

Cai Zhou, Xiyuan Wang, and Muhan Zhang. Unifying generation and prediction on graphs with
latent graph diffusion. Advances in Neural Information Processing Systems, 37:61963–61999,
2024.

Yanqiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, and Shu Wu. A survey
on deep graph generation: Methods and applications. In Learning on Graphs Conference, pp. 47–1.
PMLR, 2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

APPENDIX

We provide experimental details, additional numerical results, and proofs of the theoretical results
in the appendix. Appendix A collects proofs of the theoretical results in Section 3. Appendix B
then discusses the connections between latent space models and several classcial network models.
Appendix C contains complete experimental details. Specifically, Appendix C.1 covers the details
of the estimation algorithms. Appendix C.2 specifies the setup for the simulated networks and
provides details on the real-world networks, as well as their preprocessing pipelines. Appendix C.3
includes the detailed description of the evaluation metrics in our experiments. Appendix C.4 contains
implementation details for both SyNGLER and the baselines, including the device environments
on which they are implemented and the hyperparameter configurations used. Appendix C.5 and
Appendix C.7 collect additional results for the simulated networks and the real-world networks,
respectively. Appendix C.8 provides additional numerical results on the efficiency analysis of
different methods. We also provide a heuristic analysis on the sample complexities of different
methods in Appendix C.9 The performance of the proposed method on large scale dataset is included
in Appendix D. In Appendix E, we illustrate how to extend the SyNGLER to the attributed networks
with demonstrations on the real-world datasets. In Appendix F, we introduce the pipeline of assessing
ML utilities of the generated networks with experimental results. Finally, in Appendix G, we present
a comprehensive visualization comparison of the generated networks from Section 4.

A PROOFS IN SECTION 3

A.1 PROOF OF THEOREM 3.1

Proof of Theorem 3.1. Note that the marginal distribution of the network A can be expressed as the
product of the conditional distribution and the marginal distribution of the latent positions. Because
of the identifiability issue of Z in model Section 2.1, we consider any transform T : Φ = (Z,α) 7→
(ZU,α) ∈ Rn×(r+1), where U is a r-dimensional rotation matrix. The transform T applied on Φ
does not change the conditional distribution of A. We define PT Φ∗ as the distribution of T Φ∗, then

dKL(PA ∥ PAÃ) = EPA |Φ×P⊗n
0

[
log

PA|T Φ∗

PÃ|Φ̃
(A |Φ) + log

PT Φ∗

PA
Φ̃

(Φ)
]

= EPA |Φ×Pn
0

[
2
∑
i<j

log
p(Aij | z⊤i zj + αi + αj + ρ∗)

p(Ãij | z⊤i zj + αi + αj + ρ̂)

]
+ dKL(PT Φ∗ ∥ PA

Φ̃
)

= n2 EPA12 |ϕ1,ϕ2

[
log

p(A12 | z⊤1 z2 + α1 + α2 + ρ∗)

p(A12 | z⊤1 z2 + α1 + α2 + ρ̂)

]
+ dKL(PT Φ∗ ∥ PA

Φ̃
).

Here the last equality holds because of the exchangeability of the distributions of (ϕ1, ϕ2, . . . , ϕn).
We decompose the K-L divergence in the right-hand side as follows

dKL(PT Φ∗ ∥ PA
Φ̃
) = n · EPT

0

[
log

PT
0

PA
ϕ̃

(ϕ)
]

= n · EPT
0

[
log

PT
0

Pϕ̂
(ϕ) + log

Pϕ̂
PA
ϕ̃

(ϕ)
]

= n ·
(
EPT

0

[
log

PT
0

Pϕ̂
(ϕ)

]
+ EPT

0

[
log

Pϕ̂
PA
ϕ̃

(ϕ)
]
− EPϕ̂

[
log

Pϕ̂
PA
ϕ̃

(ϕ)
]

+ EPϕ̂

[
log

Pϕ̂
PA
ϕ̃

(ϕ)
])
.

Here Pϕ̂ is the marginal distribution of ϕ̂i for each i, which is the same for all i because of the
exchangeability. Minimizing over all transform T concludes the proof of the theorem.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

A.2 PROOF OF THEOREM 3.2

Proof of Theorem 3.2. We denote θij = z⊤i zj + αi + αj . The Lipschitz continuity of lij(π) =
log p(Aij |π) in π implies that∣∣ log p(Aij | θij + ρ∗)− log p(Aij | θij + ρ̂)

∣∣ ≤M |ρ∗ − ρ̂|.
Now combining with Lemma A.4 implies the desired result.

A.3 PROOF OF THEOREM 3.3

Proof of Theorem 3.3. Fix ϕ ∈ Rr+1 and set ψ := projGγn
(ϕ) ∈ Gγn . By the definition of qγn , for

any grid point ψ ∈ Gγn we can write

qγn(ψ) =

∫
Rr+1

r+1∏
i=1

1{ui ∈ [ψi − γn/2, ψi + γn/2]} p0(u) du =

∫
C(ψ)

p0(u) du,

where C(ψ) :=
∏r+1
i=1 [ψi − γn/2, ψi + γn/2] is the hypercube that is centered at ψ and has side

length γn with volume γr+1
n . By the definition of pγn , we have

pγn(ϕ) = qγn
(
projGγn

(ϕ)
)
γ−(r+1)
n

= qγn(ψ) γ
−(r+1)
n

=
1

γr+1
n

∫
C(ψ)

p0(u) du.

Thus pγn(ϕ) is exactly the average of p0 over the cube C(ψ).

Next we bound the distance between ϕ and any point u ∈ C(ψ). Using the triangle inequality, we
have for any u ∈ C(ψ) that

∥u− ϕ∥ ≤ ∥u− ψ∥+ ∥ψi − ϕi∥ ≤
√
r + 1γn.

Since pγn(ϕ) is a local average of p0 over the cube C(ψ), we have by Lipschitz continuity of p0 that∣∣p0(ϕ)− pγn(ϕ)∣∣ =
∣∣∣∣∣p0(ϕ)− 1

γr+1
n

∫
C(ψ)

p0(u) du

∣∣∣∣∣
=

1

γr+1
n

∣∣∣∣∣
∫
C(ψ)

(
p0(ϕ)− p0(u)

)
du

∣∣∣∣∣
≤ 1

γr+1
n

∫
C(ψ)

|p0(ϕ)− p0(u)| du

≤ 1

γr+1
n

∫
C(ψ)

Lγn
√
r + 1 du

= Lγn
√
r + 1 · |(C(ψ))|

γr+1
n

= Lγn
√
r + 1.

Since ϕ was arbitrary, this completes the proof.

A.4 PROOF OF LEMMA 3.1

Proof of Lemma 3.1. For fixed ϕ ∈ G, using Hoeffding’s inequality yields that

P
(
|qγn(ϕ)− q̂γn(ϕ)| ≥ t

)
≤ 2 exp(−2nt2).

Using the union bound over all (R/γn)r+1 points in Gγn yields that

P
(

max
ϕ∈Gγn

|qγn(ϕ)− q̂γn(ϕ)| ≥ t
)
≤ 2(R/γn)

r+1 exp(−2nt2).

Therefore, setting t =
√
(r + 1) log(R/γn) + log(2/δ)/

√
2n yields the desired result.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

A.5 PROOF OF THEOREM 3.4

Proof of Theorem 3.4. Define the event En = {n−1
∑
i≤n ∥ϕ̂i − T ϕ∗i ∥22 ≤ γ′n

2}, where γ′n =

Ω((wnn)
−1/2+ϵ/2) for some fixed ϵ > 0. Then, we have that P(En) → 1 as n → ∞, as shown in

Lemma A.4. On the other hand, we have that

max
ϕ∈Gγn

|q̌γn − q̂γn | ≤
1

n

n∑
i=1

1{projGγn
(ϕ̂i) ̸= projGγn

(T ϕ∗i)}

≤ 1

n

n∑
i=1

1{∥ϕ̂i − T ϕ∗i ∥2 > 2γn}

≤ 1

n

n∑
i=1

∥ϕ̂i − T ϕ∗i ∥22/(4γ2n).

Here, the last inequality holds by Markov’s inequality. Therefore, we have that

P
(

max
ϕ∈Gγn

|q̌γn − q̂γn | > ϵ
)
≤ P

(1

n

n∑
i=1

∥ϕ̂i − T ϕ∗i ∥22 > 4ϵγ2n

)
≤ P(Ecn) + P

(1

n

n∑
i=1

∥ϕ̂i − T ϕ∗i ∥22 > 4ϵγ2n | En
)
P(En).

For sufficiently large n and fixed ϵ, we have that 4ϵγ2n > γ′2n , therefore the second term vanishes
for sufficiently large n. And the left-hand-side is upper bounded by P(Ecn), which goes to zero as
n→∞. This concludes the proof of Theorem 3.4.

A.6 SUPPORTING LEMMAS AND PROOFS

Lemma A.1 (Theorem 5 in Chung & Radcliffe (2011)). Let X1, . . . , Xm be independent random
n× n Hermitian matrices. Assume ∥Xi − EXi∥ ≤M for all i, and put

ν2 =
∥∥∥ m∑
i=1

Var(Xi)
∥∥∥.

Let X =
∑m
i=1Xi. Then for any a > 0,

P(∥X − EX∥ > a) ≤ 2n exp

(
− a2

2ν2 + 2
3Ma

)
.

Lemma A.2. Under the model in Section 2.1 and Assumption 2.1, let ∂l∗ ∈ Rn×n be the matrix
where each entry is ∂l∗ij = l′Aij

(π∗
ij). Then we have that

∥∂l∗∥ = Op
(
w1/2
n n1/2 (log n)1/2

)
.

Proof of Lemma A.2. Let Ei,j be the n × n matrix with 1 in the (i, j) and (j, i) positions and 0
elsewhere. Denote p∗ij = EA[l′Aij

(π∗
ij)]. To use Lemma A.1, write ∂l∗ as the sum of matrices Ai,j

defined as
Ai,j = (Aij − p∗ij)Ei,j , 1 ≤ i < j ≤ n,

so that ∂l∗ =
∑n
i=1

∑n
j=i+1A

i,j . Note that ∥Ai,j∥ ≤ 1, E[Ai,j] = 0n×n, and

E
[
(Ai,j)2

]
=

(
p∗ij − (p∗ij)

2
)
(Ei,i + Ej,j).

Let

ν2 =

∥∥∥∥∥∥
n∑
i=1

n∑
j=i+1

E
[
(Ai,j)2

]∥∥∥∥∥∥ =

∥∥∥∥∥∥
n∑
i=1

n∑
j=i+1

(
p∗ij − (p∗ij)

2
)
(Ei,i + Ej,j)

∥∥∥∥∥∥ .
17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Then

ν2 =

∥∥∥∥∥∥
n∑
i=1

(n∑
j=i+1

(
p∗ij − (p∗ij)

2
))
Ei,i +

n∑
j=2

(j−1∑
i=1

(
p∗ij − (p∗ij)

2
))
Ej,j

∥∥∥∥∥∥
≤ 2max

 max
i=1,...,n

n∑
j=1

(
p∗ij − (p∗ij)

2
) ≤ 2nmax

i,j

(
p∗ij − (p∗ij)

2
)
≤ 2nmax

i,j
p∗ij .

For ϵ′ > 0, we set a =
√

5nmaxi,j p∗ij log
(
2n/ϵ′

)
. By Assumption 2.1, for sufficiently large n, it

holds that

nmax
i,j

p∗ij ≥ 2
√

5
3 nmax

i,j
p∗ij log

(
2n/ϵ′

)
.

Applying Lemma A.1, we obtain

P(∥∂l∗∥ > a) ≤ 2n exp

− 5nmaxi,j p
∗
ij log(2n/ϵ

′)

4nmaxi,j p∗ij + 2
√

5
3 nmaxi,j p∗ij log(2n/ϵ

′)


≤ 2n exp{− log(2n/ϵ′)} = ϵ′.

Noting that maxi,j p
∗
ij ≍ wn as n→∞, there exists M ′ > 0 such that, for any ϵ′ > 0,

P
(
∥∂l∗∥ ≥M ′

√
nwn log(n/ϵ′)

)
≤ ϵ′,

which concludes the proof.

We need the following lemma to characterize the estimation error of the latent embedding from the
graph.

Lemma A.3 (Lemma 5.4 in Tu et al. (2016)). Suppose that Z1, Z2 ∈ Rn×r are two matrices such
that λmin(Z

⊤
1 Z1) > σ. Then we have

inf
U∈O(r)

∥Z1 − Z2U∥F ≤
1

2(
√
2− 1)σ2

∥Z1Z
⊤
1 − Z2Z

⊤
2 ∥F.

Lemma A.4. Suppose that each l′ij(π
∗
ij) is i.i.d. bounded with mean zero. Then for any ϵ > 0, there

exists a constant M > 0 such that with probability at least 1− ϵ, there exists a transform T such that

1

n

n∑
i=1

∥ϕ̂i − T ϕ∗i ∥22 = Op(w
−1
n n−1 log n), and |ρ̂− ρ∗| = Op(w

−1/2
n n−1/2 logn).

Proof of Lemma A.4. Let πij = z⊤i zj + αi + αj + ρ and π̂ be its estimated version. Applying
Taylor’s expansion to each lij at π∗

ij yields that∑
i<j

lij(π̂ij) =
∑
i<j

lij(π
∗
ij) +

∑
i<j

l′ij(π
∗
ij)(π̂ij − π∗

ij) +
1

2

∑
i<j

l′′ij(ξij)(π̂ij − π∗
ij)

2,

where each ξij ∈ [min{π̂ij , π∗
ij},max{π̂ij , π∗

ij}]. Using the optimality condition, it holds that∑
i<j lij(π̂ij) ≥

∑
i<j lij(π

∗
ij). And therefore∑

i<j

l′ij(π
∗
ij)(π̂ij − π∗

ij) ≥
∑
i<j

−l′′ij(ξij)(π̂ij − π∗
ij)

2

≥ 1

4
wn · e−2R2 ∑

i<j

|π̂ij − π∗
ij |2. (4)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

To facilitate the matrix inequalities, we define ∂l∗,Π∗, Π̂ ∈ Rn×n such that ∂l∗ij = l′Aij
(π∗
ij),

Π∗
ij = π∗

ij = z∗⊤i z∗j + α∗
i + α∗

j + ρ∗n, and Π̂ij = π̂ij = ẑ⊤i ẑj + α̂i + α̂∗
j + ρ̂. Then, we can upper

bound the left-handed-side in Eq. (4) as∑
i<j

l′ij(π
∗
ij)(π̂ij − π∗

ij) ≤ |⟨∂l∗, Π̂−Π∗⟩|

≤
√
2r + 3 · ∥∂l∗∥ · ∥Π̂−Π∗∥F. (5)

Last inequality holds since Π̂ − Π∗ has rank at most 2r + 3. Invoking Lemma A.2, we have
that ∥∂l∗∥ = Op(w

1/2
n n1/2 log n). Combining Eqs. (4) and (5) yields that ∥Π̂ − Π∗∥F =

Op(w
−1/2
n n1/2 log n).

Before obtaining the estimation error of ρ̂, we need to involve an identifiability transform over Z∗, α∗,
since their sample average is not necessarily zero. Define β = 1

nZ
∗⊤1n, g = Z∗Z∗⊤1n, a = 1⊤

nα
∗

and u = 1⊤
nZ

∗Z∗⊤1n. Then we further define Z† = Z∗−1nβ
⊤, α† = α∗+ 1

2ng−
a
n ·1n−

u
n2 ·1n,

and ρ† = ρ∗ + 2a
n + u

n2 . Then, it is evident that

Z†⊤Z† + α†1⊤
n + 1nα

†⊤ + ρ†1n1
⊤
n = Z∗Z∗⊤ + α∗1⊤

n + 1nα
∗⊤ + ρ∗1n1

⊤
n .

Additionally, we have that Z†⊤1n = 0n and 1⊤
nα

† = 0. It then follows that

∥Z† − Z∗∥F ≤
√
n · ∥β∥2 = Op(1), (6)

∥α† − α∗∥2 ≤
1

2n
∥g∥2 +

|a|
n
·
√
n+
|u|
n2
·
√
n = Op(1), (7)

|ρ† − ρ∗| ≤ 2|a|
n

+
|u|
n2

= Op(n
−1/2). (8)

On the other hand, we can expand ∥Π̂−Π∗∥2F as

∥Π̂−Π∗∥2F = ∥ẐẐ⊤ − Z†Z†⊤∥2F + ∥(α̂− α†)1⊤
n + 1n(α

† − α̂)⊤∥2F + n2|ρ̂− ρ†|2

+ 2⟨ẐẐ⊤ − Z†Z†⊤, (α̂− α†)1⊤
n + 1n(α̂− α†)⊤⟩

+ 2⟨ẐẐ⊤ − Z†Z†⊤, (ρ̂− ρ†)1n1⊤
n ⟩

+ 2⟨(α̂− α†)1⊤
n + 1n(α̂− α†)⊤, (ρ̂− ρ†)1n1⊤

n ⟩
= ∥ẐẐ⊤ − Z†Z†⊤∥2F + 2n∥α̂− α†∥2 + n2|ρ̂− ρ†|2.

Here the second line holds because Z†⊤1n = 0n and 1⊤
nα

† = 0. Combining with the fact that
∥Π̂−Π∗∥2F = Op(w

−1
n n logn), we have that

∥ẐẐ⊤ − Z†Z†⊤∥2F = Op(w
−1
n n log2 n)

n−1∥α̂− α†∥22 = Op(w
−1
n n−1 log2 n)

|ρ̂− ρ†|2 = Op(w
−1
n n−1 log2 n).

On the other hand, we have that λmin(Z
†⊤Z†) = Ωp(n) because of Assumption 2.1. Using

Lemma A.3, we have that n−1∥Z† − ẐU∥2F = Op(w
−1
n n−1 log2 n) for some rotation matrix U . In

this sense, the fluctuation in Eqs. (6) to (8) is always of smaller magnitude. Thus, the desired result
follows.

B CONNECTIONS BETWEEN CLASSICAL NETWORK GENERATIVE MODELS
AND THE LSM

We illustrate the connection between these models and the latent space model below. First of all, the
general latent space network model assumes that each Aij ∼ p(· | πij) where πij = z⊤i zj + αi + αj
and p(· | π) is a link function that can be chosen flexibly. Below, we explain its connection to several
classical network models with details. We remark that some classical node-embedding models already
belong to the latent space model. For example:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

• The Chung-Lu graph model (Chung & Lu, 2002) assumes that each node i is equipped
with a degree parameter wi > 0, and lets W :=

∑n
k=1 wk be the total ”weight”. This

model assumes independent edges with P(Aij = 1) = wiwj/W . We can then construct
the latent embedding for the i-th node as zi = wi√

W
∈ R, and collect them into the

embedding matrix Z = (z1, . . . , zn)
⊤ ∈ Rn×1. With this parametrization, we have that

E[A] = ZZ⊤. Therefore, the Chung–Lu model is a latent space model with a linear link
function p(· | π) = Bernoulli(π).

• The random dot product graph (RDPG) model (Athreya et al., 2018) assumes that each
node i has a latent position zi ∈ Rr such that z⊤i zj ∈ [0, 1] for all i, j. With the embedding
matrix Z = (z1, . . . , zn)

⊤ ∈ Rn×r, RDPG assumes that A ∼ Bernoulli(ZZ⊤), which is
exactly a latent space model with the linear link function p(· | π) = Bernoulli(π).

Besides, many block-structured graph models also fall into the scope of latent space network models.
For example:

• The (degree corrected) block model (DCBM/SBM) (Holland et al., 1983; Karrer & Newman,
2011), similar to the BTER model, assumes that each node is equipped with a cluster
label gi ∈ [K] and a degree parameter θi. Then it assumes that E[A]ij = θiθjBg(i)g(j)
where B ∈ [0, 1]K×K is symmetric and positive semi-definite, and θi ∈ [0, 1] is the degree
parameter for node i. Let B = UU⊤ be the symmetric decomposition of B, where Uk
is the k-th row of U . Then, we can construct the latent embedding for the i-th node as
zi = (θiU

⊤
gi) ∈ RK . Using the linear link function p(· | π) = Bernoulli(π), it can be

formulated as the latent space model A ∼ p(· | ZZ⊤)

• Mixed-Member ship block models (Airoldi et al., 2008). Beyond classical block models,
this model assumes that each node is associated with multiple blocks. Specifically, this
model assumes that E[A]ij = πiBπj , where each πi belongs to the probability simplex
∆K = {π : π ∈ [0, 1]K , ∥π∥1 = 1}. Whenever B is positive definite with symmetric
decomposition B = UU⊤ with U ∈ RK×r, we can construct Z = (z1, . . . , zn)

⊤ such that
its i-th row vector zi = U⊤πi ∈ RK . With the linear link function p(· | π) = Bernoulli(π),
we have that A ∼ Bernoulli(ZZ⊤), which is an instance of latent space model.

In general, we see that these classical methods can generally be approximated by the latent space
model with a suitable choice of the latent embedding and the link function. Therefore, we believe
that the latent space model is sufficiently general to cover classical network models.

C SUPPLEMENTAL MATERIALS FOR EXPERIMENTS

C.1 DEFERRED ALGORITHMS

Estimation in the latent space model. Suppose that we observe a network A, and we want to
fit a latent space network model on A with proper conditional model p(· | ·) and candidate latent
dimension r. We use the following Algorithm 2 to solve Eq. (1).

Algorithm 2 Projected Gradient Descent

Require: Network observation A ∈ Rn×n, model p(·|·), stepsizes ηZ , ηα > 0, number of iterations
N ∈ N;

1: for i = 0 to N − 1 do
2: Π← ZZ⊤ + α1⊤ + 1α⊤;
3: Z ← Z + 2ηZ ∂π p(A|Π)Z;
4: α← α+ 2ηα ∂π p(A|Π)1n;
5: Z ←

(
Z − n−11n1

⊤
nZ

)
R, where R ∈ Rr×r is the orthonormal matrix such that n−1(Z −

n−11n1
⊤
nZ)

⊤(Z − n−11n1
⊤
nZ).

6: end for
7: return Ẑ = Z, α̂ = α− α⊤1n/n, ρ̂ = α⊤1n.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

The convergence of Algorithm 2 in the well-specified setting can be found in Ma et al. (2020). In
practice, we need to use a proper initialization for Z and α. And we use the output of universal
singular value thresholding (USVT) (Chatterjee, 2015) as the initialization of Z and α. The detail of
this initialization algorithm can be found in Ma et al. (2020).

C.2 DATASETS DETAILS

Simulated Datasets. In the simulated datasets evaluation, we consider (n, r) ∈
{500, 1000, 1500} × {2, 3, 4}. For each (n, r) pair and each replicate t = 1, . . . , 200, we
generate an undirected sparse simple graph A ∈ {0, 1}n×n as follows.

We first draw the degree parameters αi
i.i.d.∼ Unif([−1/2, 1/2]) for i = 1, . . . , n and set α =

(α1, . . . , αn) . Let z̃i ∈ Rr be i.i.d. realizations of proj[−2/
√
r,2/

√
r]r#Nr(0, Ir/r) (i.e., a scaled

Gaussian distribution truncated to [−2/
√
r, 2/
√
r]r). We then independently draw two centers

v(1), v(2) ∈ Rr from Unif([−1, 1]r). For each node, we independently sample a label Li with
P(Li = 1) = P(Li = 2) = 1/2 for i = 1, . . . , n. Finally, we set z′i = z̃i + v(Li) and zi =
z′i · (n−1∥

∑
i z

′
iz

′⊤
i ∥F)−1/2.

Given the latent positions and the degree parameters, we generate the network edges. We set
the sparsity parameter ρ∗n = −0.4 log n. For each pair of nodes 1 ≤ i < j ≤ n, we calculate
pij = σ(αi + αj + z⊤i zj + ρ∗n). Then we independently sample Aij = Aij ∼ Bernoulli(pij) for
i < j and set Aii = 0 for all i ≤ n.

Table 4: Dataset statistics for Yelp, YouTube, DBLP and PolBlogs.

Dataset Original Dataset Subgraph Statistics

Nodes Edges Nodes Edges Density Clustering Coef. Triangle Density

Yelp 906,179 7,305,874 4,530 541,655 0.0527 0.1976 0.0010
YouTube 1,134,890 2,987,624 1,991 51,756 0.0261 0.1891 0.0002
DBLP 317,080 1,049,866 1,481 18,901 0.0172 0.9116 0.0008
PolBlogs 1,490 19,090 1,222 16,714 0.0224 0.2259 0.0003

0 500 1000 1500
Degree

0.000

0.001

0.002

0.003

0.004

D
en

si
ty

Degree Distribution

0 100 200 300 400
Spectrum

0.00

0.01

0.02

0.03

0.04

0.05

0.06

D
en

si
ty

Spectrum Distribution

(a) Yelp dataset.

0 200 400 600 800
Degree

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

D
en

si
ty

Degree Distribution

0 20 40 60 80 100
Spectrum

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

D
en

si
ty

Spectrum Distribution

(b) YouTube dataset.

0 20 40 60 80 100 120 140
Degree

0.00

0.01

0.02

0.03

0.04

0.05

0.06

D
en

si
ty

Degree Distribution

0 20 40 60 80 100
Spectrum

0.00

0.05

0.10

0.15

0.20

0.25

D
en

si
ty

Spectrum Distribution

(c) DBLP dataset.

0 50 100 150 200 250 300 350
Degree

0.00

0.01

0.02

0.03

0.04

0.05

D
en

si
ty

Degree Distribution

0 20 40 60
Spectrum

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
en

si
ty

Spectrum Distribution

(d) PolBlogs dataset..

Figure 4: Degree and eigenvalue distributions for four real-world datasets.

Real-world datasets. We evaluate on four networks spanning thousands to millions of nodes.
For Yelp, YouTube, and DBLP, whose full graphs are extremely large and highly sparse, we con-
struct tractable training sets by extracting high-degree nodes and then taking the largest connected
component (LCC).

In the Yelp and YouTube datasets, nodes represent users and an undirected edge between users
represents a social tie (friendship/subscription). In the DBLP dataset, nodes represent authors, and an

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

edge connects two authors if they have coauthored at least one paper. In the PolBlogs dataset, nodes
represent U.S. political blogs from the 2004 election blogosphere and two blogs are connected if one
of them contains a link to the other.

Since the Yelp, YouTube, and DBLP datasets are very large and contain many low-degree nodes, we
sample induced subgraphs for tractable evaluation. Our general procedure is to rank nodes by degree,
take the induced subgraph on the top-k nodes (for k between 1,000 and 5,000), and then extract the
largest connected component (LCC). For Yelp, we select the top 0.5% of users by degree, yielding an
LCC of 4,530 nodes and 541,655 edges. For YouTube and DBLP, we take the top 2,000 and 1,500
nodes, resulting in LCCs of 1,991 and 1,481 nodes, respectively. To avoid out-of-memory (OOM)
issues for some baseline methods, we cap most subgraphs at ≤ 2, 000 nodes. The PolBlogs network
is relatively smaller, so we use its full LCC of 1,222 nodes and 16,714 edges. For all networks, we
symmetrize edges and remove self-loops. Key statistics for the original and the extracted graphs are
in Table 4, with degree and eigenvalue(spectrum) distributions shown in Figure 4.

C.3 EVALUATION DETAILS

Metrics for similarity. We assess the quality of the generated networks by comparing some metrics
that capture both numerical and structural aspects of a network. For the numerical characteristics, we
use the triangle density and the global clustering coefficient. For the structural characteristics, we
consider the distribution of degree centralities and the eigenvalues of the adjacency matrix. For any
network adjacency A, we consider the following numerical characteristics:

• The triangle density: TD(A) = NT(A)/
(
n
3

)
where NT(A) = 1

6 tr(A
3) is the number of

triangles in the graph;

• The global clustering coefficient: GC(A) = 3NT(A)
/∑n

i=1

(
di
2

)
where di =

∑
j ̸=iAij is

the degree of node i.

For each input network and generative model, we generate S = 200 independent networks
Ã1, . . . , ÃS and compute the empirical distribution of each numerical characteristic. Specifically, for
a numerical characteristic f with f ∈ {TD,GC} and a collection of generated networks {Ã(s)}Ss=1,
we compute

RMSEf =
(1

S

S∑
s=1

(
f(A)− f(Ã(s))

)2)1/2

,

MAEf =
1

S

S∑
s=1

∣∣f(A)− f(Ã(s))
∣∣,

Biasf =
1

S

S∑
s=1

(
f(Ã(s))− f(A)

)
.

For the structural characteristics, we consider the following:

• The degree centrality: DC(A) = (d1, . . . , dn), where di =
∑
j ̸=iAij is the degree of node

i;

• The eigenvalues: EV(A) = (λ1, . . . , λn), where λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues
of A.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

For two vectors, we consider the Wasserstein distance 1-distance, the Kolmogorov–Smirnov distance,
energy distance and maximum mean discrepancy (MMD) as follows:

W 1(u, v) =
1

n

n∑
i=1

|u(i) − v(i)|,

KS(u, v) = sup
x∈R

∣∣ 1
n

n∑
i=1

1{ui ≤ x} −
1

n

n∑
i=1

1{vi ≤ x}
∣∣,

ED(u, v) =
2

n2

n∑
i,j=1

|ui − vj | −
1

n2

n∑
i,j=1

|ui − uj | −
1

n2

n∑
i,j=1

|vi − vj |,

MMD(u, v) =
1

n2

n∑
i,j=1

k(ui, uj) +
1

n2

n∑
i,j=1

k(vi, vj)−
2

n2

n∑
i,j=1

k(ui, vj),

where u(1) ≤ u(2) ≤ · · · ≤ u(n) are the order statistics of u, and k(x, y) = exp(−|x − y|2/2)
is the standard Gaussian RBF kernel. For a structural characteristic f with f ∈ {DC,EV} and a
discrepancy metric d with d ∈ {W 1,KS,ED,MMD}, we compute the average distance between the
original network and the generated networks as d̄f = 1

S

∑S
s=1 d

(
f(A), f(Ã(s))

)
.

We additionally consider the graphlet frequency as the structural distance and calculate the L1/L2

distances between the original graph and the generated graph. The graphlet frequency is defined
as follows. Let S4 :=

{
S ⊂ [n] : |S| = 4

}
be the collection of all 4-vertex subsets of V . For any

S = (i1, i2, i3, i4) with i1 < i2 < i3 < i4, we define the local degrees for r ≤ 4 as

dr(S) :=
∑
s∈S
s̸=ir

Airs, r = 1, 2, 3, 4.

Then we consider its order statistics d(1)(S) ≤ d(2)(S) ≤ d(3)(S) ≤ d(4)(S) and the total
edgese(S) := 1

2

∑4
r=1 dr(S).

The six connected 4-node graphlets are denoted as

G4 := {K1,3, P4, C4, T,D,K4},
where K1,3 is the 3-star, P4 is the 4-path, C4 is the 4-cycle, T is the triangled tail (a triangle with a
pendant vertex), D is the diamond (K4 with one edge removed), and K4 is the complete graph on 4
vertices. Each graphlet g ∈ G4 is uniquely characterized (by isomorphism type) by its edge count eg
and its ordered degree sequence δg = (δg,1, δg,2, δg,3, δg,4), namely

g = K1,3 ⇐⇒ eg = 3, δg = (1, 1, 1, 3),

g = P4 ⇐⇒ eg = 3, δg = (1, 1, 2, 2),

g = C4 ⇐⇒ eg = 4, δg = (2, 2, 2, 2),

g = T ⇐⇒ eg = 4, δg = (1, 2, 2, 3),

g = D ⇐⇒ eg = 5, δg = (2, 2, 3, 3),

g = K4 ⇐⇒ eg = 6, δg = (3, 3, 3, 3).

For each g ∈ G4, define the indicator

1g(S) := 1
{
e(S) = eg,

(
d(1)(S), d(2)(S), d(3)(S), d(4)(S)

)
= δg

}
, S ∈ S4.

We aggregate them to get the corresponding 4-node graphlet count: Cg(A) :=
∑
S∈S4

1g(S), and
normalize to get the 4-graphlet frequency GF4(A) such that the g-th coordinate is GF4(A)g :=

Cg(A)∑
g′∈G4

Cg′ (A) . We use L1 and L2 to measure the distance between two graphs, namely

GFDL1(A,A′) =
∑
g∈G4

|GF4(A)g −GF4(A
′)g|;

GFDL2(A,A′) =
(∑
g∈G4

|GF4(A)g −GF4(A
′)g|2

)1/2

.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Evaluation pipeline. For a single input network A, we generate S = 200 independent networks
and calculate the above metrics. In the real-world dataset setting, we directly report the averaged
metrics for each input network and its associated standard deviation.

C.4 IMPLEMENTATION DETAILS

Implementation of SyNGLER. For the SyNG-D, we use ForestDiffusion (Jolicoeur-
Martineau et al., 2024) to construct the score approximation. Table 5 lists all the hyperparameters for
ForestDiffusion throughout our experiments.

Table 5: ForestDiffusion Hyperparameters For Data Generation.

Category Hyperparameter Simulated Data Real-world data Description

ForestDiffusion
nt 50 100 Number of diffusion time steps.

duplicate K 100 100 Sample duplication factor for training data.
diffusion type vp vp Use variance-preserving (VP) diffusion.

XGBoost

max depth 7 7 Maximum tree depth.
number of estimators 100 100 Number of boosting trees.

eta 0.3 0.3 Learning rate.
tree method hist hist Histogram-based tree construction.

regression lambda 0.0 0.0 L2 regularization parameter.
regression alpha 0.0 0.0 L1 regularization parameter.

subsample 1.0 1.0 Row subsampling ratio per tree.

Experimental environment. All experiments are conducted on NVIDIA GeForce RTX 4090
(24 GB) GPUs and 384 CPU cores.

The ForestDiffusion module is parallelized on the CPU and executes entirely on host cores.
We deploy VGAE and SyNG-D models on CPUs. EDGE and GRAN are deployed on a single GPU,
according to the default configuration in the original codebase.

Implementation for baselines. For the VGAE, EDGE and GRAN, we use the codebases hosted in
gae, graph-generation-EDGE, GRAN, respectively. For each baseline method, we adopt the default
models in the corresponding codebase without further clarification. In the real data experiments,
we include the results for each method with several different configurations. For our SyNG-D and
SyNG-R, we vary the number of the latent dimension r from 2 to 6. For VGAE, we vary the number
of the embeddings consecutively from 2 to 6, and include the default setting 16. For GRAN, we
choose the dimension of the hidden layer from 128, 256 and 512. Other methods remain their default
configurations.

C.5 EVALUATION RESULTS ON NON-SPARSE SIMULATED NETWORK

Structural characteristics. The following Table 6 and Table 7 summarize the discrepancies
between the structural statistics of the generated networks and those of the input networks.

Table 6: Averaged distance between the degree centralities of the original network and the generated
output. All values are reported as ×10−1.

n = 500 n = 1000 n = 1500

Metric Method r=2 r=3 r=4 r=2 r=3 r=4 r=2 r=3 r=4

W1-dist
SyNG-D 0.08 ± 0.02 0.08 ± 0.02 0.08 ± 0.02 0.05 ± 0.01 0.05 ± 0.02 0.06 ± 0.02 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.01
SyNG-R 0.08 ± 0.02 0.08 ± 0.02 0.08 ± 0.02 0.05 ± 0.01 0.06 ± 0.02 0.06 ± 0.02 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.01
VGAE 0.49 ± 0.02 0.49 ± 0.03 0.50 ± 0.03 0.49 ± 0.02 0.50 ± 0.03 0.50 ± 0.03 0.50 ± 0.02 0.51 ± 0.02 0.51 ± 0.02

KS-dist
SyNG-D 0.69 ± 0.10 0.68 ± 0.10 0.70 ± 0.13 0.47 ± 0.07 0.47 ± 0.09 0.48 ± 0.09 0.38 ± 0.06 0.38 ± 0.07 0.38 ± 0.07
SyNG-R 0.72 ± 0.09 0.72 ± 0.09 0.73 ± 0.12 0.49 ± 0.06 0.49 ± 0.08 0.51 ± 0.08 0.39 ± 0.05 0.40 ± 0.06 0.40 ± 0.06
VGAE 4.56 ± 0.23 4.53 ± 0.24 4.57 ± 0.28 4.51 ± 0.19 4.51 ± 0.20 4.52 ± 0.21 4.52 ± 0.16 4.53 ± 0.16 4.55 ± 0.17

Energy-dist
SyNG-D 0.27 ± 0.06 0.27 ± 0.06 0.28 ± 0.07 0.19 ± 0.04 0.19 ± 0.05 0.19 ± 0.05 0.15 ± 0.03 0.15 ± 0.04 0.15 ± 0.04
SyNG-R 0.27 ± 0.05 0.28 ± 0.05 0.28 ± 0.07 0.19 ± 0.04 0.19 ± 0.05 0.19 ± 0.05 0.15 ± 0.03 0.15 ± 0.04 0.15 ± 0.04
VGAE 1.72 ± 0.06 1.72 ± 0.07 1.73 ± 0.07 1.72 ± 0.05 1.73 ± 0.06 1.73 ± 0.06 1.73 ± 0.05 1.75 ± 0.05 1.75 ± 0.05

Numerical characteristics. The following Table 8 and Table 9 summarize the distances between
the numerical characteristics of the generated networks and the input networks.

24

https://github.com/tkipf/gae
https://github.com/tufts-ml/graph-generation-EDGE
https://github.com/lrjconan/GRAN

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Table 7: Averaged distance between the eigenvalues of the original network and the generated output.
All values are reported as ×10−1.

n = 500 n = 1000 n = 1500

eigenvalues Distance Method r=2 r=3 r=4 r=2 r=3 r=4 r=2 r=3 r=4

W1-dist
SyNG-D 0.37 ± 0.04 0.43 ± 0.09 0.66 ± 0.37 0.24 ± 0.03 0.26 ± 0.04 0.36 ± 0.13 0.19 ± 0.02 0.20 ± 0.03 0.25 ± 0.05
SyNG-R 0.40 ± 0.04 0.59 ± 0.09 0.98 ± 0.18 0.25 ± 0.03 0.35 ± 0.05 0.56 ± 0.15 0.20 ± 0.02 0.25 ± 0.03 0.38 ± 0.06
VGAE 9.54 ± 0.51 9.70 ± 0.67 9.55 ± 0.78 9.55 ± 0.46 9.80 ± 0.69 9.91 ± 0.76 9.52 ± 0.50 9.80 ± 0.70 9.83 ± 0.82

KS-dist
SyNG-D 0.47 ± 0.06 0.48 ± 0.11 0.62 ± 0.29 0.32 ± 0.03 0.32 ± 0.06 0.38 ± 0.15 0.27 ± 0.03 0.26 ± 0.04 0.28 ± 0.06
SyNG-R 0.52 ± 0.06 0.65 ± 0.12 0.96 ± 0.22 0.35 ± 0.03 0.42 ± 0.08 0.59 ± 0.18 0.28 ± 0.02 0.32 ± 0.05 0.42 ± 0.09
VGAE 9.65 ± 0.01 9.61 ± 0.02 9.61 ± 0.04 9.81 ± 0.01 9.82 ± 0.01 9.81 ± 0.02 9.87 ± 0.01 9.88 ± 0.01 9.87 ± 0.01

Energy-dist
SyNG-D 0.28 ± 0.04 0.29 ± 0.07 0.41 ± 0.21 0.18 ± 0.02 0.18 ± 0.04 0.23 ± 0.11 0.15 ± 0.02 0.14 ± 0.03 0.16 ± 0.04
SyNG-R 0.30 ± 0.04 0.39 ± 0.08 0.64 ± 0.16 0.19 ± 0.02 0.23 ± 0.05 0.36 ± 0.12 0.15 ± 0.01 0.17 ± 0.03 0.25 ± 0.06
VGAE 10.15 ± 0.23 10.40 ± 0.31 10.48 ± 0.36 10.55 ± 0.20 10.78 ± 0.30 10.92 ± 0.32 10.70 ± 0.22 10.89 ± 0.28 10.99 ± 0.33

Table 8: Similarity between the the triangle densities of the original network and generated network.
All values are reported as ×10−2.

n Method RMSE MAE (×10−2) Bias (×10−2)

r=2 r=3 r=4 r=2 r=3 r=4 r=2 r=3 r=4

500
SyNG-D 0.45 0.44 0.50 0.37 ± 0.26 0.47 ± 0.34 0.50 ± 0.49 0.18 ± 0.42 0.10 ± 0.43 0.22 ± 0.66
SyNG-R 0.43 0.44 0.49 0.35 ± 0.26 0.51 ± 0.37 0.39 ± 0.30 0.17 ± 0.40 0.13 ± 0.42 0.18 ± 0.46
VGAE 0.68 0.73 0.71 0.58 ± 0.36 0.61 ± 0.39 0.58 ± 0.41 -0.54 ± 0.42 -0.57 ± 0.45 -0.52 ± 0.49

1000
SyNG-D 0.31 0.32 0.33 0.32 ± 0.17 0.31 ± 0.25 0.35 ± 0.29 0.09 ± 0.29 0.05 ± 0.32 0.06 ± 0.45
SyNG-R 0.30 0.43 0.34 0.25 ± 0.17 0.34 ± 0.26 0.27 ± 0.20 0.09 ± 0.28 0.19 ± 0.38 0.10 ± 0.32
VGAE 0.66 0.67 0.68 0.58 ± 0.32 0.59 ± 0.33 0.59 ± 0.33 -0.56 ± 0.35 -0.56 ± 0.38 -0.56 ± 0.38

1500
SyNG-D 0.31 0.31 0.32 0.25 ± 0.14 0.24 ± 0.19 0.25 ± 0.21 0.08 ± 0.30 0.03 ± 0.25 -0.03 ± 0.32
SyNG-R 0.24 0.32 0.34 0.20 ± 0.13 0.25 ± 0.20 0.27 ± 0.20 0.04 ± 0.23 0.13 ± 0.30 0.13 ± 0.31
VGAE 0.71 0.65 0.65 0.65 ± 0.29 0.59 ± 0.28 0.58 ± 0.31 -0.65 ± 0.29 -0.57 ± 0.32 -0.57 ± 0.33

Table 9: Similarity between the the global clustering coefficients of the original network and generated
network.

n Method RMSE MAE (×10−2) Bias (×10−2)

r=2 r=3 r=4 r=2 r=3 r=4 r=2 r=3 r=4

500
SyNG-D 0.62 0.58 0.70 0.51 ± 0.34 0.47 ± 0.34 0.50 ± 0.49 0.34 ± 0.51 0.21 ± 0.54 0.22 ± 0.66
SyNG-R 0.61 0.63 0.70 0.51 ± 0.34 0.51 ± 0.37 0.57 ± 0.41 0.37 ± 0.49 0.36 ± 0.52 0.43 ± 0.56
VGAE 2.59 2.60 2.58 2.49 ± 0.72 2.45 ± 0.86 2.40 ± 0.93 -2.49 ± 0.72 -2.45 ± 0.86 -2.40 ± 0.94

1000
SyNG-D 0.40 0.39 0.45 0.32 ± 0.23 0.31 ± 0.25 0.35 ± 0.29 0.17 ± 0.36 0.07 ± 0.39 0.06 ± 0.45
SyNG-R 0.40 0.43 0.52 0.32 ± 0.24 0.34 ± 0.26 0.41 ± 0.32 0.20 ± 0.35 0.19 ± 0.38 0.26 ± 0.45
VGAE 2.59 2.57 2.61 2.50 ± 0.70 2.43 ± 0.85 2.47 ± 0.85 -2.50 ± 0.70 -2.43 ± 0.85 -2.47 ± 0.85

1500
SyNG-D 0.31 0.31 0.32 0.25 ± 0.17 0.24 ± 0.19 0.25 ± 0.21 0.08 ± 0.30 0.03 ± 0.31 -0.03 ± 0.32
SyNG-R 0.30 0.32 0.34 0.24 ± 0.17 0.25 ± 0.20 0.27 ± 0.20 0.10 ± 0.28 0.13 ± 0.30 0.13 ± 0.31
VGAE 2.71 2.46 2.53 2.63 ± 0.64 2.35 ± 0.74 2.40 ± 0.82 -2.63 ± 0.64 -2.35 ± 0.74 -2.40 ± 0.82

C.6 EVALUATION RESULTS ON SPARSE SIMULATED NETWORK

Structural characteristics. Below, we present the quality of the synthetic networks on the sparse
simulated networks. The following Table 10 and Table 11 summarize the discrepancies between the
structural statistics of the generated networks and those of the input networks.

Table 10: Averaged distance between the degree centralities of the original network and the generated
output, sparse network. All values reported as ×10−1.

n = 500 n = 1000 n = 1500

Metric Method r=2 r=3 r=4 r=2 r=3 r=4 r=2 r=3 r=4

W1-dist
SyNG-D 0.07± 0.02 0.11± 0.11 0.51± 0.55 0.04± 0.01 0.04± 0.01 0.05± 0.09 0.03± 0.01 0.03± 0.01 0.03± 0.01
SyNG-R 0.08± 0.02 0.12± 0.03 0.24± 0.12 0.04± 0.01 0.05± 0.01 0.07± 0.02 0.03± 0.01 0.04± 0.01 0.05± 0.01
VGAE 0.21± 0.02 0.20± 0.02 0.19± 0.02 0.18± 0.02 0.17± 0.02 0.16± 0.02 0.16± 0.02 0.15± 0.02 0.15± 0.02

KS-dist
SyNG-D 1.11± 0.24 1.44± 0.88 3.75± 2.78 0.71± 0.16 0.75± 0.20 0.92± 0.60 0.55± 0.13 0.58± 0.15 0.64± 0.17
SyNG-R 1.25± 0.25 1.65± 0.39 2.93± 1.13 0.79± 0.16 0.99± 0.20 1.29± 0.27 0.60± 0.13 0.75± 0.15 0.96± 0.17
VGAE 4.45± 0.83 4.45± 0.83 4.50± 0.79 4.53± 0.83 4.57± 0.85 4.62± 0.85 4.62± 0.89 4.81± 0.79 4.82± 0.71

Energy-dist
SyNG-D 0.33± 0.08 0.46± 0.37 1.61± 1.47 0.19± 0.05 0.20± 0.06 0.26± 0.26 0.14± 0.04 0.14± 0.04 0.16± 0.05
SyNG-R 0.37± 0.08 0.52± 0.14 1.01± 0.45 0.21± 0.05 0.27± 0.06 0.37± 0.09 0.15± 0.04 0.19± 0.04 0.25± 0.05
VGAE 1.07± 0.11 1.06± 0.11 1.05± 0.11 0.98± 0.11 0.97± 0.11 0.96± 0.11 0.94± 0.11 0.93± 0.10 0.93± 0.08

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Table 11: Averaged distance between the eigenvalues of the original network and the generated
output, sparse network. All values reported as ×10−1.

n = 500 n = 1000 n = 1500

eigenvalues Distance Method r=2 r=3 r=4 r=2 r=3 r=4 r=2 r=3 r=4

W1-dist
SyNG-D 0.66± 0.12 1.38± 1.23 6.34 ± 6.01 0.36± 0.06 0.56± 0.12 1.05± 1.02 0.26± 0.04 0.37± 0.08 0.63± 0.16
SyNG-R 0.74± 0.11 1.46± 0.26 2.99± 0.72 0.40± 0.06 0.76± 0.11 1.38± 0.22 0.28± 0.04 0.51± 0.07 0.93± 0.14
VGAE 1.72± 0.49 1.60± 0.53 1.42± 0.47 1.86± 0.55 1.73± 0.61 1.66± 0.58 1.86± 0.57 1.79± 0.61 1.63± 0.59

KS-dist
SyNG-D 0.91± 0.23 1.53± 0.70 3.56 ± 1.85 0.57± 0.12 0.91± 0.28 1.53± 0.63 0.46± 0.10 0.70± 0.22 1.21± 0.41
SyNG-R 0.98± 0.24 1.65± 0.46 3.03± 0.85 0.62± 0.12 1.06± 0.29 1.81± 0.52 0.47± 0.10 0.80± 0.23 1.44± 0.42
VGAE 1.57± 0.27 1.55± 0.53 1.54± 0.58 2.15± 0.49 2.40± 0.83 2.61± 0.94 2.58± 0.64 3.12± 0.86 3.25± 0.94

Energy-dist
SyNG-D 0.59± 0.13 1.15± 0.71 3.69 ± 2.62 0.33± 0.06 0.56± 0.16 1.03± 0.58 0.24± 0.05 0.39± 0.11 0.71± 0.22
SyNG-R 0.64± 0.13 1.25± 0.28 2.49± 0.60 0.36± 0.06 0.71± 0.15 1.31± 0.29 0.26± 0.04 0.49± 0.11 0.94± 0.20
VGAE 1.02± 0.29 1.03± 0.44 0.98± 0.43 1.38± 0.46 1.45± 0.57 1.53± 0.61 1.56± 0.49 1.74± 0.56 1.73± 0.59

Numerical characteristics. The following Table 12 and Table 13 summarize the distances between
the numerical characteristics of the generated networks and the input networks.

Table 12: Similarity between the the triangle densities of the original network and generated network,
sparse network.

n Method RMSE (×10−4) MAE (×10−4) Bias (×10−4)

r=2 r=3 r=4 r=2 r=3 r=4 r=2 r=3 r=4

500
SyNG-D 4.60 18.34 157.01 4.37 ± 1.44 8.16 ± 16.47 90.99 ± 128.29 4.37 ± 1.44 8.16 ± 16.47 90.99 ± 128.29
SyNG-R 5.37 7.31 17.22 5.11 ± 1.66 6.94 ± 2.32 14.73 ± 8.94 5.11 ± 1.66 6.94 ± 2.32 14.73 ± 8.94
VGAE 9.70 8.46 7.63 9.16 ± 3.20 7.97 ± 2.85 7.19 ± 2.56 −9.16 ± 3.20 −7.97 ± 2.85 −7.19 ± 2.56

1000
SyNG-D 1.60 1.29 15.14 1.51 ± 0.53 1.21 ± 0.46 3.06 ± 14.87 1.51 ± 0.53 1.20 ± 0.46 3.06 ± 14.87
SyNG-R 1.88 2.22 2.91 1.77 ± 0.62 2.08 ± 0.77 2.75 ± 0.94 1.77 ± 0.62 2.08 ± 0.77 2.75 ± 0.94
VGAE 5.95 4.92 4.52 5.55 ± 2.14 4.53 ± 1.93 4.19 ± 1.70 −5.55 ± 2.14 −4.53 ± 1.93 −4.19 ± 1.70

1500
SyNG-D 0.87 0.62 0.63 0.80 ± 0.34 0.57 ± 0.22 0.58 ± 0.25 0.80 ± 0.34 0.57 ± 0.23 0.57 ± 0.27
SyNG-R 0.99 1.07 1.35 0.92 ± 0.36 1.00 ± 0.37 1.26 ± 0.48 0.92 ± 0.36 1.00 ± 0.37 1.26 ± 0.48
VGAE 4.59 3.34 3.05 4.26 ± 1.73 3.05 ± 1.36 2.78 ± 1.25 −4.26 ± 1.73 −3.05 ± 1.36 −2.78 ± 1.25

Table 13: Similarity between the the global clustering coefficients of the original network and
generated network, sparse network.

n Method RMSE (×10−2) MAE (×10−2) Bias (×10−2)

r=2 r=3 r=4 r=2 r=3 r=4 r=2 r=3 r=4

500
SyNG-D 1.57 4.62 19.69 1.52 ± 0.40 2.42 ± 3.95 13.33 ± 14.53 1.52 ± 0.40 2.42 ± 3.95 13.33 ± 14.53
SyNG-R 1.81 2.37 4.22 1.77 ± 0.38 2.33 ± 0.47 3.99 ± 1.39 1.77 ± 0.38 2.33 ± 0.47 3.99 ± 1.39
VGAE 5.31 4.51 4.09 5.03 ± 1.71 4.28 ± 1.45 3.89 ± 1.25 −5.02 ± 1.75 −4.26 ± 1.48 −3.87 ± 1.32

1000
SyNG-D 0.84 0.69 4.05 0.82 ± 0.20 0.65 ± 0.24 1.16 ± 3.89 0.82 ± 0.20 0.65 ± 0.24 1.15 ± 3.89
SyNG-R 0.98 1.18 1.52 0.96 ± 0.20 1.16 ± 0.21 1.50 ± 0.27 0.96 ± 0.20 1.16 ± 0.21 1.50 ± 0.27
VGAE 5.37 4.40 4.10 5.05 ± 1.81 4.10 ± 1.60 3.81 ± 1.52 −5.05 ± 1.81 −4.08 ± 1.65 −3.78 ± 1.58

1500
SyNG-D 0.59 0.46 0.46 0.57 ± 0.16 0.43 ± 0.16 0.42 ± 0.19 0.57 ± 0.16 0.43 ± 0.17 0.41 ± 0.21
SyNG-R 0.67 0.80 0.98 0.65 ± 0.14 0.79 ± 0.14 0.96 ± 0.17 0.65 ± 0.14 0.79 ± 0.14 0.96 ± 0.17
VGAE 5.43 4.06 3.74 5.09 ± 1.91 3.79 ± 1.45 3.50 ± 1.32 −5.09 ± 1.91 −3.79 ± 1.47 −3.50 ± 1.32

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

C.7 EVALUATION RESULTS ON REAL-WORLD DATASETS

In this subsection, we list all the experiment results on the real-world datasets. For each dataset, we
present three tables detailing the generation quality. The first table evaluates the similarity of degree
centrality distributions, the second assesses the similarity of eigenvalue distributions, and the third
reports on numerical characteristics such as global clustering coefficient and triangle density.

YouTube dataset. Tables 14 to 16 summarize the generation quality on the YouTube dataset.

Table 14: Generation quality in degree centralities distribution similarity on YouTube dataset. All
reported distance values are scaled by 10−2.

Method Config W1 dist. KS dist. Energy dist. MMD

SyNG-D

2 0.15 ± 0.07 3.76 ± 1.43 0.01 ± 0.01 2.13 ± 1.80
3 0.23 ± 0.09 5.61 ± 1.67 0.01 ± 0.01 4.46 ± 2.02
4 0.32 ± 0.10 7.42 ± 1.91 0.03 ± 0.02 6.71 ± 2.15
5 0.49 ± 0.09 11.79 ± 1.78 0.07 ± 0.02 11.49 ± 1.90
6 0.58 ± 0.09 13.92 ± 1.87 0.10 ± 0.03 13.80 ± 1.98

SyNG-D (MLP)

2 0.19 ± 0.05 6.05 ± 1.42 0.01 ± 0.00 4.24 ± 1.50
3 0.18 ± 0.05 5.91 ± 1.29 0.01 ± 0.00 4.06 ± 1.43
4 0.18 ± 0.05 5.88 ± 1.51 0.01 ± 0.01 3.89 ± 1.68
5 0.22 ± 0.05 8.00 ± 1.57 0.01 ± 0.01 6.34 ± 1.48
6 0.29 ± 0.08 9.82 ± 1.64 0.03 ± 0.01 8.13 ± 1.78

SyNG-R

2 0.13 ± 0.06 2.86 ± 1.13 0.00 ± 0.00 1.10 ± 1.43
3 0.13 ± 0.06 2.91 ± 1.16 0.00 ± 0.00 1.21 ± 1.47
4 0.13 ± 0.06 2.91 ± 1.11 0.00 ± 0.00 1.18 ± 1.50
5 0.13 ± 0.06 2.98 ± 1.16 0.00 ± 0.00 1.15 ± 1.47
6 0.13 ± 0.06 3.00 ± 1.21 0.00 ± 0.00 1.16 ± 1.52

VGAE

2 0.89 ± 0.01 23.74 ± 0.44 0.20 ± 0.00 33.85 ± 0.46
3 0.89 ± 0.01 23.49 ± 0.40 0.20 ± 0.00 33.39 ± 0.55
4 0.80 ± 0.01 20.10 ± 0.43 0.15 ± 0.00 27.83 ± 0.41
5 0.91 ± 0.01 24.40 ± 0.39 0.21 ± 0.00 34.96 ± 0.36
6 0.82 ± 0.01 20.33 ± 0.43 0.16 ± 0.00 28.78 ± 0.36

16 0.85 ± 0.01 21.76 ± 0.43 0.18 ± 0.00 31.03 ± 0.40

GRAN
128 0.78 ± 0.38 15.38 ± 5.47 0.12 ± 0.17 16.02 ± 4.24
256 5.71 ± 0.41 57.59 ± 3.00 3.87 ± 0.48 62.02 ± 3.20
512 0.76 ± 0.20 9.24 ± 2.00 0.08 ± 0.04 7.86 ± 1.72

EDGE – 0.41 ± 0.05 7.82 ± 0.86 0.04 ± 0.01 7.84 ± 0.95
GraphMaker – 1.35 ± 0.00 37.68 ± 0.47 0.55 ± 0.01 64.99 ± 0.47

E-R – 1.41 ± 0.01 47.08 ± 0.44 0.67 ± 0.01 69.22 ± 0.40
BTER – 0.04 ± 0.01 1.64 ± 0.32 0.00 ± 0.00 0.00 ± 0.00

mKPGM – 1.06 ± 0.01 31.71 ± 0.39 0.33 ± 0.01 44.86 ± 0.45

DBLP dataset. The following Tables 17 to 19 present the full experimental results for the DBLP
dataset.

Yelp dataset. Here we provide the detailed evaluation for the Yelp dataset. The results for degree
centrality, eigenvalue distribution, and other numerical characteristics are shown in the Tables 20
to 22 respectively.

PolBlogs dataset. Finally, we present the comprehensive results for the PolBlogs dataset. The
subsequent Tables 23 to 25 detail the performance of each method in capturing the structural and
numerical properties of the original network.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Table 15: Generation quality in eigenvalue distribution similarity on YouTube dataset. W1 dist. is
reported in its original scale, while KS dist., Energy dist., and MMD are scaled by 10−1.

Method Config W1 dist. KS dist. Energy dist. MMD

SyNG-D

2 0.31 ± 0.06 0.30 ± 0.07 0.11 ± 0.05 0.26 ± 0.09
3 0.23 ± 0.04 0.20 ± 0.06 0.05 ± 0.03 0.08 ± 0.10
4 0.19 ± 0.04 0.14 ± 0.04 0.03 ± 0.01 0.01 ± 0.03
5 0.30 ± 0.08 0.20 ± 0.06 0.07 ± 0.04 0.02 ± 0.05
6 0.40 ± 0.08 0.28 ± 0.07 0.14 ± 0.07 0.11 ± 0.11

SyNG-D (MLP)

2 0.30 ± 0.06 0.28 ± 0.06 0.10 ± 0.05 0.24 ± 0.09
3 0.28 ± 0.06 0.27 ± 0.07 0.09 ± 0.05 0.20 ± 0.11
4 0.19 ± 0.05 0.18 ± 0.06 0.04 ± 0.03 0.04 ± 0.07
5 0.17 ± 0.04 0.14 ± 0.04 0.03 ± 0.02 0.01 ± 0.04
6 0.19 ± 0.06 0.14 ± 0.04 0.03 ± 0.02 0.00 ± 0.01

SyNG-R

2 0.43 ± 0.07 0.44 ± 0.07 0.24 ± 0.09 0.45 ± 0.09
3 0.38 ± 0.06 0.39 ± 0.07 0.19 ± 0.07 0.39 ± 0.10
4 0.33 ± 0.06 0.36 ± 0.06 0.15 ± 0.06 0.34 ± 0.09
5 0.31 ± 0.06 0.36 ± 0.06 0.14 ± 0.06 0.32 ± 0.09
6 0.29 ± 0.05 0.35 ± 0.06 0.13 ± 0.05 0.31 ± 0.09

VGAE

2 1.27 ± 0.01 1.51 ± 0.01 2.35 ± 0.04 1.85 ± 0.01
3 1.26 ± 0.01 1.51 ± 0.01 2.33 ± 0.04 1.84 ± 0.01
4 1.15 ± 0.01 1.41 ± 0.01 1.94 ± 0.03 1.72 ± 0.01
5 1.29 ± 0.01 1.53 ± 0.01 2.41 ± 0.04 1.87 ± 0.01
6 1.17 ± 0.01 1.42 ± 0.01 2.02 ± 0.03 1.74 ± 0.01

16 1.21 ± 0.01 1.46 ± 0.01 2.14 ± 0.04 1.79 ± 0.01

GRAN
128 0.97 ± 0.46 0.70 ± 0.29 1.14 ± 1.25 0.71 ± 0.32
256 4.00 ± 0.23 2.40 ± 0.12 14.20 ± 1.53 2.58 ± 0.14
512 0.94 ± 0.17 0.76 ± 0.10 0.99 ± 0.33 0.79 ± 0.08

EDGE – 0.34 ± 0.04 0.39 ± 0.08 0.14 ± 0.05 0.44 ± 0.07
GraphMaker – 1.62 ± 0.01 1.81 ± 0.01 3.68 ± 0.04 2.31 ± 0.01

E-R – 1.95 ± 0.01 2.10 ± 0.01 5.54 ± 0.06 2.60 ± 0.01
BTER – 0.76 ± 0.01 0.60 ± 0.01 0.57 ± 0.02 0.64 ± 0.01

mKPGM – 1.72 ± 0.01 1.84 ± 0.01 4.19 ± 0.06 2.24 ± 0.01

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Table 16: Generation quality in numerical characteristics on YouTube dataset.

Method Config Clus (×10−2) Tri (×10−4)

RMSE MAE Bias RMSE MAE Bias

SyNG-D

2 2.28 2.15 -2.15 0.97 0.92 0.92
3 1.69 1.46 -1.41 0.89 0.84 0.84
4 1.34 1.08 -0.95 0.83 0.78 0.78
5 1.50 1.22 -1.09 0.58 0.52 0.52
6 1.42 1.19 -1.01 0.41 0.35 0.35

SyNG-D (MLP)

2 1.12 0.88 -0.46 1.35 1.30 1.30
3 1.87 1.63 1.54 1.47 1.43 1.43
4 1.58 1.34 1.15 1.62 1.58 1.58
5 2.98 2.83 2.80 1.40 1.36 1.36
6 3.13 2.93 2.88 1.18 1.14 1.14

SyNG-R

2 2.23 2.08 -2.07 1.15 1.11 1.11
3 1.07 0.87 -0.40 1.38 1.34 1.34
4 1.20 0.96 0.66 1.53 1.49 1.49
5 1.57 1.30 1.19 1.61 1.57 1.57
6 1.84 1.57 1.52 1.65 1.61 1.61

VGAE

2 11.80 11.80 -11.80 0.81 0.81 -0.81
3 11.66 11.66 -11.66 0.80 0.80 -0.80
4 8.00 8.00 -8.00 0.56 0.56 -0.56
5 12.07 12.07 -12.07 0.83 0.83 -0.83
6 9.24 9.24 -9.24 0.65 0.65 -0.65

16 9.87 9.87 -9.87 0.69 0.69 -0.69

GRAN
128 11.34 11.32 -11.32 0.85 0.56 0.54
256 5.30 5.29 -5.29 15.05 14.95 14.95
512 10.11 10.10 -10.10 1.13 1.08 1.08

EDGE – 14.45 13.81 -13.80 0.78 0.75 -0.50
GraphMaker – 16.71 16.71 -16.71 1.12 1.12 -1.12

E-R – 16.30 16.30 -16.30 1.05 1.05 -1.05
BTER – 9.73 9.73 -9.73 0.02 0.02 -0.01

mKPGM – 16.00 16.00 -16.00 1.03 1.03 -1.03

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Table 17: Generation quality in degree centralities distribution similarity on DBLP dataset. W1 dist.
and Energy dist. are scaled by 10−2; KS dist. and MMD are scaled by 10−1.

Method Config W1 dist. KS dist. Energy dist. MMD

SyNG-D

2 0.19 ± 0.08 0.75 ± 0.17 0.02 ± 0.01 0.93 ± 0.23
3 0.18 ± 0.06 0.91 ± 0.16 0.02 ± 0.01 1.03 ± 0.19
4 0.22 ± 0.07 1.22 ± 0.14 0.03 ± 0.01 1.29 ± 0.17
5 0.33 ± 0.09 1.74 ± 0.18 0.05 ± 0.02 1.78 ± 0.20
6 0.44 ± 0.10 2.19 ± 0.18 0.09 ± 0.02 2.22 ± 0.20

SyNG-D (MLP)

2 0.31 ± 0.07 1.81 ± 0.17 0.04 ± 0.01 1.50 ± 0.16
3 0.42 ± 0.06 1.33 ± 0.13 0.07 ± 0.02 1.67 ± 0.18
4 0.47 ± 0.15 1.19 ± 0.19 0.06 ± 0.03 1.40 ± 0.25
5 0.47 ± 0.10 1.36 ± 0.14 0.07 ± 0.02 1.72 ± 0.16
6 0.35 ± 0.06 1.53 ± 0.18 0.06 ± 0.01 1.73 ± 0.19

SyNG-R

2 0.15 ± 0.07 0.73 ± 0.18 0.01 ± 0.01 0.75 ± 0.28
3 0.15 ± 0.07 0.73 ± 0.18 0.01 ± 0.01 0.75 ± 0.28
4 0.15 ± 0.07 0.73 ± 0.18 0.01 ± 0.01 0.77 ± 0.28
5 0.16 ± 0.07 0.74 ± 0.18 0.01 ± 0.01 0.78 ± 0.27
6 0.16 ± 0.07 0.75 ± 0.17 0.01 ± 0.01 0.80 ± 0.27

VGAE

2 0.49 ± 0.01 2.33 ± 0.08 0.10 ± 0.00 2.84 ± 0.10
3 0.29 ± 0.00 2.65 ± 0.07 0.09 ± 0.00 2.80 ± 0.06
4 0.35 ± 0.01 3.20 ± 0.08 0.12 ± 0.00 3.28 ± 0.06
5 0.35 ± 0.01 3.16 ± 0.08 0.12 ± 0.00 3.23 ± 0.07
6 0.32 ± 0.00 2.96 ± 0.07 0.11 ± 0.00 3.02 ± 0.05
16 0.32 ± 0.00 2.96 ± 0.08 0.10 ± 0.00 2.96 ± 0.06

GRAN
128 1.48 ± 0.25 3.79 ± 0.88 0.41 ± 0.14 5.13 ± 0.96
256 1.25 ± 0.03 4.61 ± 0.12 0.54 ± 0.02 6.12 ± 0.14
512 1.06 ± 0.01 2.21 ± 0.08 0.31 ± 0.01 2.97 ± 0.09

EDGE – 0.23 ± 0.12 0.79 ± 0.11 0.02 ± 0.02 0.99 ± 0.23
GraphMaker – 1.37 ± 0.01 5.56 ± 0.07 0.68 ± 0.01 7.51 ± 0.07

E-R – 1.57 ± 0.01 6.63 ± 0.07 1.02 ± 0.02 8.72 ± 0.06
BTER – 0.08 ± 0.01 0.56 ± 0.05 0.00 ± 0.00 0.46 ± 0.05

mKPGM – 1.13 ± 0.01 3.25 ± 0.08 0.37 ± 0.00 4.57 ± 0.08

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Table 18: Generation quality in eigenvalue distribution similarity on DBLP dataset. W1, KS, and
MMD are scaled by 10−1; Energy dist. is scaled by 10−2.

Method Config W1 dist. KS dist. Energy dist. MMD

SyNG-D

2 3.02 ± 0.32 0.81 ± 0.06 2.35 ± 0.43 0.88 ± 0.06
3 2.13 ± 0.28 0.91 ± 0.07 1.57 ± 0.21 0.77 ± 0.05
4 1.73 ± 0.17 1.06 ± 0.07 1.65 ± 0.20 0.77 ± 0.05
5 2.56 ± 0.43 1.32 ± 0.08 2.99 ± 0.57 0.96 ± 0.08
6 3.80 ± 0.46 1.63 ± 0.08 5.62 ± 0.89 1.28 ± 0.08

SyNG-D (MLP)

2 2.85 ± 0.34 1.10 ± 0.07 2.37 ± 0.31 0.93 ± 0.05
3 6.09 ± 0.47 1.10 ± 0.08 8.94 ± 1.27 1.34 ± 0.07
4 4.46 ± 0.41 0.83 ± 0.05 5.05 ± 0.87 1.12 ± 0.07
5 5.75 ± 0.46 0.97 ± 0.07 7.42 ± 1.06 1.32 ± 0.06
6 5.92 ± 0.45 1.03 ± 0.08 8.06 ± 1.13 1.31 ± 0.06

SyNG-R

2 2.89 ± 0.33 0.63 ± 0.05 2.02 ± 0.50 0.80 ± 0.07
3 2.25 ± 0.33 0.58 ± 0.05 1.35 ± 0.39 0.65 ± 0.07
4 1.70 ± 0.29 0.50 ± 0.06 0.83 ± 0.25 0.49 ± 0.07
5 1.31 ± 0.30 0.46 ± 0.05 0.52 ± 0.18 0.37 ± 0.07
6 1.19 ± 0.32 0.41 ± 0.05 0.40 ± 0.15 0.27 ± 0.07

VGAE

2 12.38 ± 0.16 2.35 ± 0.03 37.67 ± 1.01 2.62 ± 0.03
3 4.04 ± 0.06 0.98 ± 0.03 3.47 ± 0.17 1.20 ± 0.04
4 3.83 ± 0.10 0.67 ± 0.03 2.81 ± 0.18 0.68 ± 0.03
5 3.76 ± 0.12 0.65 ± 0.03 2.69 ± 0.21 0.65 ± 0.03
6 3.51 ± 0.08 0.61 ± 0.02 2.30 ± 0.13 0.64 ± 0.03

16 3.57 ± 0.09 0.63 ± 0.03 2.48 ± 0.16 0.65 ± 0.03

GRAN
128 6.40 ± 1.61 1.61 ± 0.20 14.92 ± 6.20 1.87 ± 0.22
256 17.55 ± 0.48 3.06 ± 0.05 75.24 ± 3.29 3.54 ± 0.06
512 6.95 ± 0.24 1.49 ± 0.05 11.81 ± 1.00 1.76 ± 0.07

EDGE – 5.50 ± 1.34 1.22 ± 0.25 9.72 ± 4.23 1.39 ± 0.30
GraphMaker – 18.39 ± 0.14 3.32 ± 0.02 85.40 ± 1.14 3.93 ± 0.02

E-R – 22.55 ± 0.14 3.77 ± 0.02 121.43 ± 1.26 4.41 ± 0.02
BTER – 9.44 ± 0.11 1.14 ± 0.02 14.67 ± 0.35 1.48 ± 0.03

mKPGM – 13.13 ± 0.13 2.52 ± 0.02 43.78 ± 0.90 3.00 ± 0.03

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Table 19: Generation quality in numerical characteristics on DBLP dataset.

Method Config Clus (×10−2) Tri (×10−4)

RMSE MAE Bias RMSE MAE Bias

SyNG-D

2 6.22 5.87 -5.87 1.58 1.26 0.46
3 5.34 4.94 -4.94 1.61 1.37 -0.87
4 5.51 5.23 -5.23 1.81 1.57 -1.39
5 5.27 4.95 -4.95 2.34 2.13 -2.07
6 5.71 5.37 -5.37 3.01 2.86 -2.86

SyNG-D (MLP)

2 14.00 13.61 -13.61 2.91 2.67 -2.62
3 24.21 23.91 -23.91 3.74 3.64 -3.64
4 10.12 9.92 -9.92 3.63 3.20 3.13
5 14.38 14.14 -14.14 2.29 1.81 1.47
6 17.15 16.94 -16.94 1.80 1.54 -1.37

SyNG-R

2 3.78 3.28 -3.25 1.43 1.12 0.11
3 3.22 2.69 -2.64 1.44 1.12 0.19
4 2.63 2.10 -1.96 1.45 1.12 0.25
5 2.27 1.76 -1.51 1.46 1.13 0.28
6 2.14 1.66 -1.32 1.46 1.13 0.31

VGAE

2 63.28 63.28 -63.28 6.65 6.65 -6.65
3 1.36 1.34 -1.34 0.58 0.58 -0.58
4 2.94 2.93 2.93 0.28 0.28 0.28
5 3.01 3.00 3.00 0.26 0.26 0.26
6 3.32 3.31 3.31 0.11 0.10 0.10

16 3.10 3.10 3.10 0.05 0.05 0.05

GRAN
128 87.63 87.63 -87.63 6.78 6.73 -6.73
256 88.93 88.93 -88.93 7.93 7.93 -7.93
512 89.21 89.21 -89.21 7.99 7.99 -7.99

EDGE – 13.27 10.86 -10.86 2.20 1.77 -1.77
GraphMaker – 89.78 89.78 -89.78 7.98 7.98 -7.98

E-R – 89.43 89.43 -89.43 7.96 7.96 -7.96
BTER – 67.75 67.75 -67.75 6.09 6.09 -6.09

mKPGM – 89.97 89.97 -89.97 8.00 8.00 -8.00

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Table 20: Generation quality in degree centralities distribution similarity on Yelp dataset. All metrics
scaled by 10−2.

Method Config W1 dist. KS dist. Energy dist. MMD

SyNG-D

2 0.15 ± 0.05 2.49 ± 0.74 0.54 ± 0.19 1.28 ± 0.87
3 0.21 ± 0.10 3.55 ± 1.26 0.77 ± 0.34 2.36 ± 1.43
4 0.24 ± 0.10 4.54 ± 1.12 0.98 ± 0.33 3.46 ± 1.09
5 0.36 ± 0.11 6.02 ± 1.16 1.42 ± 0.37 5.03 ± 1.15
6 0.44 ± 0.13 7.72 ± 1.42 1.81 ± 0.44 6.72 ± 1.36

SyNG-D (MLP)

2 0.32 ± 0.12 4.68 ± 1.36 1.18 ± 0.43 3.26 ± 1.42
3 0.39 ± 0.12 5.40 ± 1.30 1.38 ± 0.40 4.32 ± 1.18
4 0.69 ± 0.15 8.56 ± 1.33 2.49 ± 0.46 7.82 ± 1.23
5 0.23 ± 0.08 5.22 ± 1.03 1.01 ± 0.26 4.17 ± 0.79
6 0.30 ± 0.09 4.80 ± 1.06 1.19 ± 0.33 4.51 ± 0.96

SyNG-R

2 0.13 ± 0.06 2.02 ± 0.80 0.47 ± 0.22 0.65 ± 0.94
3 0.13 ± 0.06 1.98 ± 0.78 0.47 ± 0.22 0.60 ± 0.90
4 0.13 ± 0.06 1.99 ± 0.82 0.47 ± 0.23 0.62 ± 0.92
5 0.14 ± 0.06 2.05 ± 0.80 0.48 ± 0.22 0.67 ± 0.94
6 0.13 ± 0.06 1.98 ± 0.78 0.47 ± 0.22 0.62 ± 0.91

VGAE

2 1.65 ± 0.00 22.12 ± 0.23 5.79 ± 0.02 32.23 ± 0.16
3 1.70 ± 0.00 23.14 ± 0.22 5.98 ± 0.02 33.32 ± 0.19
4 1.71 ± 0.00 23.50 ± 0.21 6.03 ± 0.02 33.67 ± 0.17
5 1.69 ± 0.00 22.81 ± 0.22 5.97 ± 0.02 33.38 ± 0.16
6 1.79 ± 0.00 24.47 ± 0.20 6.34 ± 0.02 35.49 ± 0.14

16 1.73 ± 0.00 23.37 ± 0.21 6.09 ± 0.02 33.74 ± 0.18

GraphMaker – 2.59 ± 0.00 41.44 ± 0.20 10.33 ± 0.01 69.26 ± 0.15
E-R – 2.81 ± 0.00 57.17 ± 0.18 12.09 ± 0.03 77.36 ± 0.13

BTER – 0.04 ± 0.00 0.97 ± 0.17 0.14 ± 0.01 0.00 ± 0.00
mKPGM – 3.10 ± 0.00 49.19 ± 0.18 13.07 ± 0.02 49.97 ± 0.14

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Table 21: Generation quality in eigenvalue distribution similarity on Yelp dataset. W1 unchanged;
KS, Energy, and MMD scaled by 10−1.

Method Config W1 dist. KS dist. Energy dist. MMD

SyNG-D

2 1.29 ± 0.09 0.53 ± 0.04 2.93 ± 0.24 0.61 ± 0.05
3 1.09 ± 0.10 0.44 ± 0.05 2.43 ± 0.27 0.51 ± 0.05
4 0.92 ± 0.08 0.38 ± 0.04 2.03 ± 0.23 0.43 ± 0.05
5 0.77 ± 0.08 0.30 ± 0.04 1.62 ± 0.22 0.34 ± 0.05
6 0.64 ± 0.09 0.23 ± 0.05 1.28 ± 0.25 0.25 ± 0.06

SyNG-D (MLP)

2 2.07 ± 0.10 0.84 ± 0.04 4.88 ± 0.25 0.96 ± 0.05
3 1.88 ± 0.10 0.75 ± 0.04 4.43 ± 0.25 0.87 ± 0.04
4 2.00 ± 0.11 0.82 ± 0.04 4.79 ± 0.26 0.94 ± 0.05
5 1.21 ± 0.10 0.51 ± 0.04 2.83 ± 0.25 0.57 ± 0.05
6 1.55 ± 0.09 0.66 ± 0.04 3.73 ± 0.23 0.75 ± 0.04

SyNG-R

2 1.32 ± 0.09 0.55 ± 0.04 3.04 ± 0.25 0.64 ± 0.05
3 1.22 ± 0.09 0.51 ± 0.04 2.82 ± 0.25 0.59 ± 0.05
4 1.10 ± 0.09 0.47 ± 0.04 2.55 ± 0.24 0.54 ± 0.05
5 1.00 ± 0.09 0.44 ± 0.04 2.33 ± 0.24 0.49 ± 0.05
6 0.94 ± 0.09 0.42 ± 0.04 2.21 ± 0.23 0.47 ± 0.05

VGAE

2 2.44 ± 0.01 1.40 ± 0.00 6.51 ± 0.02 1.73 ± 0.00
3 2.46 ± 0.01 1.41 ± 0.00 6.56 ± 0.02 1.76 ± 0.00
4 2.47 ± 0.01 1.41 ± 0.00 6.58 ± 0.02 1.76 ± 0.00
5 2.48 ± 0.01 1.42 ± 0.00 6.60 ± 0.02 1.75 ± 0.00
6 2.51 ± 0.01 1.44 ± 0.00 6.71 ± 0.02 1.79 ± 0.00

16 2.42 ± 0.01 1.40 ± 0.00 6.49 ± 0.02 1.76 ± 0.00

GraphMaker – 2.94 ± 0.01 1.60 ± 0.00 7.63 ± 0.02 2.07 ± 0.00
E-R – 3.83 ± 0.01 2.00 ± 0.00 10.22 ± 0.02 2.45 ± 0.00

BTER – 1.75 ± 0.01 0.70 ± 0.00 3.96 ± 0.02 0.83 ± 0.00
mKPGM – 2.06 ± 0.01 0.91 ± 0.00 4.77 ± 0.02 0.93 ± 0.00

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Table 22: Generation quality in numerical characteristics on Yelp dataset.

Method Config Clus (×10−2) Tri (×10−4)

RMSE MAE Bias RMSE MAE Bias

SyNG-D

2 2.56 2.52 -2.52 1.24 1.08 -1.05
3 2.65 2.61 -2.61 1.71 1.57 -1.56
4 2.01 1.96 -1.96 1.59 1.47 -1.46
5 1.83 1.77 -1.77 1.82 1.72 -1.71
6 1.77 1.70 -1.70 2.00 1.89 -1.88

SyNG-D (MLP)

2 2.35 2.31 -2.31 0.74 0.61 -0.22
3 1.05 0.96 -0.96 1.40 1.18 1.15
4 0.75 0.63 0.58 3.33 3.18 3.18
5 0.81 0.71 -0.68 0.98 0.84 -0.72
6 0.65 0.53 0.47 1.44 1.26 1.23

SyNG-R

2 2.79 2.76 -2.76 1.49 1.35 -1.34
3 2.40 2.36 -2.36 1.33 1.17 -1.15
4 1.56 1.50 -1.50 1.01 0.85 -0.73
5 0.99 0.90 -0.89 0.83 0.69 -0.43
6 0.76 0.65 -0.61 0.78 0.64 -0.30

VGAE

2 10.36 10.36 -10.36 7.36 7.36 -7.36
3 10.55 10.55 -10.55 7.45 7.45 -7.45
4 10.56 10.56 -10.56 7.46 7.46 -7.46
5 10.77 10.77 -10.77 7.49 7.49 -7.49
6 11.26 11.26 -11.26 7.67 7.67 -7.67

16 10.25 10.25 -10.25 7.41 7.41 -7.41

GraphMaker – 15.52 15.52 -15.52 8.82 8.82 -8.82
E-R – 14.48 14.48 -14.48 8.12 8.12 -8.12

BTER – 4.45 4.45 -4.45 2.27 2.27 -2.27
mKPGM – 15.98 15.98 -15.98 9.35 9.35 -9.35

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Table 23: Generation quality in degree centralities distribution similarity on PolBlogs dataset. All
metrics scaled by 10−2.

Method Config W1 dist. KS dist. Energy dist. MMD

SyNG-D

2 0.18 ± 0.08 4.53 ± 0.97 0.01 ± 0.01 0.97 ± 1.44
3 0.22 ± 0.11 5.02 ± 1.34 0.01 ± 0.01 1.95 ± 2.15
4 0.28 ± 0.13 5.74 ± 1.64 0.02 ± 0.02 3.18 ± 2.50
5 0.44 ± 0.14 8.29 ± 2.04 0.04 ± 0.02 6.49 ± 2.44
6 0.52 ± 0.15 9.98 ± 2.11 0.06 ± 0.03 8.31 ± 2.50

SyNG-D (MLP)

2 0.20 ± 0.07 9.59 ± 1.21 0.01 ± 0.01 1.47 ± 1.71
3 0.24 ± 0.10 9.81 ± 1.09 0.01 ± 0.01 3.05 ± 2.25
4 0.33 ± 0.15 10.06 ± 1.49 0.02 ± 0.02 3.20 ± 2.26
5 0.23 ± 0.07 8.99 ± 0.93 0.01 ± 0.01 2.79 ± 1.77
6 0.19 ± 0.08 9.16 ± 1.35 0.01 ± 0.01 1.41 ± 1.73

SyNG-R

2 0.18 ± 0.10 4.47 ± 0.92 0.01 ± 0.01 0.92 ± 1.45
3 0.18 ± 0.10 4.49 ± 1.11 0.01 ± 0.01 0.93 ± 1.50
4 0.18 ± 0.10 4.57 ± 1.23 0.01 ± 0.01 0.94 ± 1.50
5 0.18 ± 0.10 4.68 ± 1.30 0.01 ± 0.01 1.06 ± 1.62
6 0.18 ± 0.10 4.88 ± 1.49 0.01 ± 0.01 1.12 ± 1.67

VGAE

2 0.93 ± 0.01 35.38 ± 0.49 0.24 ± 0.01 35.42 ± 0.61
3 0.97 ± 0.01 36.24 ± 0.53 0.26 ± 0.01 37.16 ± 0.51
4 0.94 ± 0.01 35.65 ± 0.52 0.24 ± 0.01 36.02 ± 0.60
5 0.92 ± 0.01 35.31 ± 0.51 0.23 ± 0.01 35.33 ± 0.64
6 0.97 ± 0.01 36.35 ± 0.53 0.26 ± 0.01 37.42 ± 0.57

16 0.98 ± 0.01 36.56 ± 0.49 0.26 ± 0.01 37.82 ± 0.56

GRAN
128 0.56 ± 0.19 15.88 ± 2.70 0.08 ± 0.05 13.86 ± 2.01
256 2.25 ± 0.31 35.58 ± 3.15 0.64 ± 0.15 33.78 ± 3.61
512 9.30 ± 0.67 63.37 ± 2.38 6.36 ± 0.72 67.41 ± 2.69

EDGE – 0.06 ± 0.00 4.91 ± 0.44 0.00 ± 0.00 0.00 ± 0.00
GraphMaker – 1.72 ± 0.01 49.48 ± 0.60 0.82 ± 0.01 74.15 ± 0.75

E-R – 1.83 ± 0.01 56.70 ± 0.56 1.04 ± 0.01 79.24 ± 0.59
BTER – 0.06 ± 0.01 5.69 ± 0.62 0.00 ± 0.00 0.00 ± 0.00

mKPGM – 1.57 ± 0.01 33.09 ± 0.37 0.60 ± 0.01 50.67 ± 0.90

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Table 24: Generation quality in eigenvalue distribution similarity on PolBlogs dataset. W1 is unscaled;
KS, Energy, and MMD are scaled by 10−2.

Method Config W1 dist. KS dist. Energy dist. MMD

SyNG-D

2 0.21 ± 0.06 4.82 ± 0.94 0.92 ± 0.51 2.58 ± 1.37
3 0.20 ± 0.04 5.02 ± 1.03 0.90 ± 0.38 3.15 ± 1.16
4 0.20 ± 0.05 4.41 ± 0.96 0.74 ± 0.32 2.52 ± 1.22
5 0.25 ± 0.07 3.22 ± 0.77 0.80 ± 0.46 1.51 ± 1.18
6 0.30 ± 0.09 3.32 ± 0.89 1.19 ± 0.72 1.43 ± 1.36

SyNG-D (MLP)

2 0.46 ± 0.10 7.00 ± 0.89 3.36 ± 1.34 5.54 ± 1.05
3 0.37 ± 0.09 7.01 ± 0.76 2.51 ± 1.04 5.27 ± 0.90
4 0.65 ± 0.11 8.90 ± 0.90 6.88 ± 1.98 8.17 ± 1.11
5 0.38 ± 0.10 7.00 ± 0.89 2.81 ± 1.18 5.57 ± 1.08
6 0.39 ± 0.10 6.74 ± 0.92 2.80 ± 1.18 5.35 ± 1.12

SyNG-R

2 0.24 ± 0.08 5.04 ± 1.10 1.24 ± 0.82 3.01 ± 1.59
3 0.23 ± 0.07 5.45 ± 1.02 1.33 ± 0.76 3.64 ± 1.34
4 0.23 ± 0.07 5.58 ± 1.06 1.35 ± 0.79 3.86 ± 1.32
5 0.22 ± 0.07 5.68 ± 0.99 1.34 ± 0.77 3.98 ± 1.20
6 0.22 ± 0.06 5.69 ± 0.98 1.36 ± 0.73 4.15 ± 1.17

VGAE

2 1.23 ± 0.01 27.33 ± 0.18 42.20 ± 0.72 31.11 ± 0.20
3 1.27 ± 0.01 27.67 ± 0.18 44.05 ± 0.82 31.57 ± 0.21
4 1.24 ± 0.01 27.41 ± 0.18 42.65 ± 0.74 31.23 ± 0.20
5 1.23 ± 0.01 27.27 ± 0.18 41.88 ± 0.75 31.10 ± 0.22
6 1.27 ± 0.01 27.72 ± 0.18 44.16 ± 0.74 31.62 ± 0.19
16 1.28 ± 0.01 27.81 ± 0.18 44.70 ± 0.77 31.80 ± 0.20

GRAN
128 0.48 ± 0.18 10.91 ± 1.15 4.63 ± 2.88 9.04 ± 0.98
256 1.23 ± 0.16 10.89 ± 1.18 17.03 ± 4.31 9.39 ± 1.26
512 3.52 ± 0.19 24.55 ± 1.24 122.93 ± 12.78 26.84 ± 1.41

EDGE – 0.28 ± 0.04 8.21 ± 1.17 1.90 ± 0.59 4.69 ± 1.26
GraphMaker – 1.78 ± 0.01 32.20 ± 0.15 72.49 ± 0.85 38.28 ± 0.13

E-R – 2.03 ± 0.01 34.42 ± 0.12 93.20 ± 0.92 40.10 ± 0.11
BTER – 0.41 ± 0.02 4.53 ± 0.40 1.87 ± 0.17 3.04 ± 0.34

mKPGM – 1.31 ± 0.01 23.36 ± 0.22 31.95 ± 0.46 31.15 ± 0.22

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Table 25: Generation quality in numerical characteristics on PolBlogs dataset.

Method Config Clus (×10−2) Tri (×10−4)

RMSE MAE Bias RMSE MAE Bias

SyNG-D

2 1.90 1.51 1.15 0.71 0.55 0.13
3 1.56 1.23 0.54 0.68 0.56 -0.33
4 1.85 1.45 0.90 0.78 0.66 -0.43
5 1.66 1.33 0.49 1.09 1.00 -0.98
6 1.91 1.49 0.93 1.19 1.09 -1.07

SyNG-D (MLP)

2 3.58 3.26 3.23 0.91 0.69 0.56
3 2.23 1.88 1.73 0.59 0.48 -0.16
4 5.69 5.45 5.45 1.80 1.61 1.60
5 5.18 4.77 4.74 1.15 0.90 0.77
6 3.15 2.80 2.72 0.84 0.65 0.50

SyNG-B

2 2.45 2.00 1.83 0.83 0.62 0.39
3 2.68 2.23 2.12 0.85 0.64 0.44
4 2.88 2.44 2.37 0.87 0.66 0.49
5 2.91 2.50 2.44 0.89 0.68 0.51
6 3.13 2.74 2.69 0.92 0.71 0.55

VGAE

2 3.72 3.71 -3.71 2.10 2.10 -2.07
3 4.49 4.49 -4.49 2.20 2.20 -2.20
4 4.03 4.02 -4.02 2.14 2.14 -2.14
5 3.26 3.25 -3.25 2.07 2.07 -2.07
6 4.87 4.87 -4.87 2.22 2.22 -2.22
16 4.54 4.54 -4.54 2.22 2.22 -2.22

GRAN
128 11.42 11.38 -11.38 1.57 1.49 -1.41
256 10.82 10.78 -10.78 4.42 4.22 4.22
512 0.76 0.60 0.03 64.94 64.45 64.45

EDGE – 5.69 5.43 -5.43 0.79 0.75 -0.75
GraphMaker – 20.75 20.75 -20.75 3.27 3.27 -3.27

E-R – 20.36 20.36 -20.36 3.22 3.22 -3.22
BTER – 5.27 5.27 -5.27 0.88 0.88 -0.88

mKPGM – 21.43 21.43 -21.43 3.32 3.32 -3.32

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Table 26: 4-node graphlet frequency distance (GFD) results on the YouTube, DBLP, PolBlogs, and
Yelp datasets. We report both L1 and L2 distances as measures of similarity, and highlight the best
result for each method in bold. All entries are scaled by 10−1.

Method Config GFDL1 ↓ GFDL2 ↓
YouTube DBLP PolBlogs Yelp YouTube DBLP PolBlogs Yelp

SyNG-D

2 1.42 ± 0.91 3.80 ± 0.96 0.76 ± 0.39 0.38 ± 0.09 0.70 ± 0.48 1.97 ± 0.51 0.33 ± 0.19 0.16 ± 0.05
3 1.39 ± 0.97 3.03 ± 0.98 0.72 ± 0.42 0.42 ± 0.11 0.68 ± 0.51 1.58 ± 0.52 0.32 ± 0.21 0.17 ± 0.05
4 1.45 ± 0.98 3.35 ± 0.86 0.86 ± 0.46 0.30 ± 0.11 0.71 ± 0.50 1.75 ± 0.45 0.38 ± 0.23 0.13 ± 0.05
5 1.45 ± 0.97 3.17 ± 0.90 0.89 ± 0.52 0.32 ± 0.13 0.71 ± 0.50 1.67 ± 0.47 0.40 ± 0.26 0.14 ± 0.06
6 1.69 ± 1.05 3.46 ± 0.94 0.97 ± 0.51 0.31 ± 0.13 0.83 ± 0.54 1.83 ± 0.49 0.43 ± 0.25 0.14 ± 0.06

SyNG-D(MLP)

2 2.08 ± 0.98 6.92 ± 1.11 1.19 ± 0.52 0.35 ± 0.11 1.04 ± 0.50 3.60 ± 0.59 0.51 ± 0.26 0.14 ± 0.05
3 2.55 ± 1.03 9.51 ± 0.86 1.23 ± 0.52 0.37 ± 0.19 1.24 ± 0.50 5.04 ± 0.48 0.55 ± 0.25 0.17 ± 0.10
4 1.71 ± 0.86 6.17 ± 0.74 1.47 ± 0.38 0.34 ± 0.13 0.82 ± 0.43 3.19 ± 0.39 0.61 ± 0.18 0.13 ± 0.05
5 3.02 ± 0.96 7.22 ± 0.86 1.41 ± 0.55 0.23 ± 0.14 1.45 ± 0.46 3.73 ± 0.45 0.56 ± 0.26 0.11 ± 0.07
6 2.68 ± 1.14 7.86 ± 0.73 1.37 ± 0.74 0.27 ± 0.11 1.28 ± 0.55 4.08 ± 0.39 0.60 ± 0.38 0.11 ± 0.05

SyNG-R

2 1.38 ± 1.01 1.91 ± 0.91 0.81 ± 0.39 0.39 ± 0.11 0.67 ± 0.53 0.99 ± 0.51 0.35 ± 0.19 0.15 ± 0.04
3 1.33 ± 1.05 1.60 ± 0.89 0.83 ± 0.38 0.33 ± 0.11 0.65 ± 0.53 0.83 ± 0.49 0.36 ± 0.18 0.13 ± 0.04
4 1.34 ± 1.07 1.31 ± 0.80 0.86 ± 0.38 0.23 ± 0.12 0.65 ± 0.53 0.67 ± 0.44 0.36 ± 0.18 0.09 ± 0.05
5 1.36 ± 1.07 1.13 ± 0.72 0.87 ± 0.39 0.18 ± 0.11 0.65 ± 0.52 0.58 ± 0.39 0.37 ± 0.18 0.08 ± 0.05
6 1.37 ± 1.08 1.14 ± 0.81 0.88 ± 0.37 0.18 ± 0.11 0.66 ± 0.53 0.58 ± 0.44 0.37 ± 0.18 0.08 ± 0.05

VGAE

2 6.53 ± 0.04 13.69 ± 0.01 2.95 ± 0.09 3.66 ± 0.01 2.97 ± 0.01 7.39 ± 0.01 1.45 ± 0.04 1.53 ± 0.00
3 6.50 ± 0.04 2.54 ± 0.13 3.21 ± 0.08 3.85 ± 0.01 2.96 ± 0.01 1.14 ± 0.09 1.54 ± 0.04 1.61 ± 0.00
4 5.91 ± 0.03 1.57 ± 0.12 3.08 ± 0.08 3.86 ± 0.01 2.79 ± 0.01 0.68 ± 0.06 1.50 ± 0.04 1.61 ± 0.00
5 6.61 ± 0.03 1.57 ± 0.14 3.00 ± 0.08 3.80 ± 0.01 3.00 ± 0.01 0.69 ± 0.07 1.48 ± 0.04 1.58 ± 0.00
6 6.20 ± 0.03 1.69 ± 0.15 3.19 ± 0.09 4.09 ± 0.01 2.88 ± 0.01 0.85 ± 0.07 1.51 ± 0.04 1.70 ± 0.00
16 6.30 ± 0.03 1.51 ± 0.11 3.37 ± 0.08 3.93 ± 0.01 2.92 ± 0.01 0.80 ± 0.07 1.62 ± 0.04 1.64 ± 0.00

GRAN
128 1.90 ± 0.30 18.35 ± 0.14 1.95 ± 0.33 - 0.77 ± 0.14 9.92 ± 0.04 0.79 ± 0.19 -
256 2.42 ± 0.18 17.26 ± 0.15 3.88 ± 0.76 - 1.07 ± 0.10 8.49 ± 0.53 1.73 ± 0.37 -
512 1.67 ± 0.38 17.17 ± 0.08 3.04 ± 0.30 - 0.67 ± 0.17 8.22 ± 0.31 1.40 ± 0.16 -

EDGE - 5.35 ± 0.49 5.27 ± 2.28 1.14 ± 0.29 - 2.12 ± 0.19 2.57 ± 1.35 0.45 ± 0.11 -

GraphMaker - 7.97 ± 0.00 17.45 ± 0.01 7.88 ± 0.01 5.17 ± 0.00 3.48 ± 0.00 8.32 ± 0.00 3.23 ± 0.00 2.14 ± 0.00
ER - 7.90 ± 0.00 17.39 ± 0.01 7.80 ± 0.01 5.02 ± 0.00 3.47 ± 0.00 8.32 ± 0.00 3.22 ± 0.00 2.08 ± 0.00
BTER - 2.24 ± 0.10 13.84 ± 0.01 2.09 ± 0.09 0.73 ± 0.01 0.95 ± 0.05 7.54 ± 0.00 0.98 ± 0.04 0.30 ± 0.01
mKPGM - 7.57 ± 0.01 17.47 ± 0.01 7.83 ± 0.03 4.26 ± 0.01 3.32 ± 0.01 8.28 ± 0.00 3.09 ± 0.01 1.74 ± 0.01

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

C.8 SUPPLEMENTARY FOR THE EFFICIENCY COMPARISON

In this section, we begin with a note on e-FLOPs and then present a comparison of training and
sampling time across methods, specifying the device environment used for each.

A note on e-FLOPs. The definition of e-FLOPs considers two types of operations: the float-point
operations on neural nets, and node visit operations on trees. These two operations are not directly
comparable, as node visits involve comparison and branching which are different operations than the
float-point operations on neural nets. In Section 4.3, we use e-FLOPs for a comparison which is less
dependent on the implemented device environments. As a supplementary, we study the wall-block
training and sampling time of each methods with their implemented device environments specified.

102 103

#nodes

101

102

103

104

105
Tr

ai
ni

ng
 ti

m
e

(s
)

SyNG-D
EDGE
GRAN
VGAE

Figure 5: Wall-clock training time of different methods for datasets of different sizes.

Evaluation metrics and configuration. We compare training and sampling efficiency between
SyNG-D and the baseline methods through the time they spend during training and sampling. SyNG-
D and VGAE are trained on CPUs, while GRAN and EDGE are trained on a single NVIDIA GeForce
RTX 4090 with memory of 24GB. For each dataset, we train each model using the default training
schedule, sample 128 networks from each model, and record the wall-clock training time and average
sampling time.

Results and discussion. Figure 5 presents the training time comparisons between our method and
the baselines. In particular, our model can be trained in tens of seconds even for graphs with up
to 5,000 nodes, whereas deep learning based methods typically require on the order of hundreds
to thousands of seconds. As network size increases, the training time for our method grows at a
moderate rate, while the training time for VGAE increases much faster. This indicates that the
computational cost of SyNG-D remains relatively stable as network size grows, demonstrating its
advantages on large-scale networks. The training time of EDGE and GRAN remains high across all
dataset sizes.

For sampling speed, on networks with fewer than 1,000 nodes, both SyNG-D and VGAE complete a
single draw in under 0.1 s on average, whereas EDGE and GRAN require a few seconds. SyNG-D
requires only a small number of diffusion steps to generate high-quality latent embeddings. For larger
networks with 5,000 nodes, SyNG-D samples a synthetic network in only a few seconds, significantly
faster than GRAN and EDGE, which require tens of seconds. The sampling time of SyNG-D is also
more stable as network size increases, compared with the other methods.

These results highlight the scalability of SyNG-D and its advantage for large graphs.

C.9 ANALYSIS OF COMPLEXITY

We provide an analysis of the time complexity of the training process. As suggested by Ma et al.
(2020), each iteration of the projected gradient descent involves only matrix multiplication between
the adjacency matrix and the current latent embedding estimate. Therefore, the per-iteration time
complexity of the projected gradient descent in estimating the latent node embeddings is O(n2r),
where n is the number of nodes and r is the latent dimension. Meanwhile, the cost of generating a

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

new group of latent embeddings is O(nr), where the omitted constant depends on the model and
implementation. Since the latent embedding is typically low-dimensional, the overall time complexity
of the training and inference of our approach is O(n2r).

In the context of a large-scale sparse network dataset, the proposed SyNGLER framework remains
scalable with a simple adaptation. Concretely, under the Gaussian link function p(aij | πij) ∝
(2πσ2)−1/2 exp{−(aij −πij)2/(2σ2)}, the embedding estimation problem Eq. (1) can be efficiently
solved with top-r singular value decomposition. According to Saad (2003), the time complexity of
eigen-decomposition for a sparse adjacency matrix A is O(|E(A)|r + nr), where E(A) denotes the
edge set associated with the adjacency matrix A. When the total number of edges is O(nc) with
c < 2, the resulting time complexity grows more slowly than that of using a logistic link. In scenarios
involving very large-scale and sparse networks, this approach is highly computationally efficient. We
empirically study this approach on a network with one million nodes in Appendix D.

For other deep generative models, Zhu et al. (2022) suggests that the per-iteration time complexity to
train a deep generative model over a graph of size n is typically O(n2M), where M is the number
of parameters in the model. Note that deep generative models typically have a large number of
parameters M , which can be much larger than r. Therefore, we conclude that our method has a lower
time complexity than deep generative models, which is consistent with our empirical results.

D EVALUATION OF SYNGLER ON LARGE SCALE NETWORK DATASET

In this section, we evaluate the scalability and effectiveness of SyNGLER on a large-scale synthetic
network. To illustrate the capability of our framework under extreme graph sizes and sparsity levels,
we construct a massive benchmark using the Stochastic Block Model (SBM) and assess whether
SyNGLER is able to faithfully reproduce its structural patterns.

Large-Scale Network Simulation via SBM. We first generate a network with n = 106 nodes
from a three-block Stochastic Block Model. The network is designed to be extremely sparse, with an
average degree of approximately 5. This setup provides a controlled environment to examine whether
SyNGLER can recover community structure and degree behavior at scale.

Latent Space Estimation. We apply our latent space model to embed the one-million-node network
into a continuous low-dimensional space. To ensure computational feasibility at the one-million-node
scale, we apply a linear latent space model to obtain the embeddings.

Generative Resampling via SyNG-D (MLP). Using the estimated latent positions, we train our
SyNG-D (MLP) model to resample latent embeddings. The model learns the distribution of the latent
embeddings and enables resampling of synthetic latent vectors that preserve the structural structure
and cluster patterns present in the original data.

Direct visualization or adjacency-level comparison is infeasible for networks of this scale. Instead, we
validate the generative resampling by examining whether key structures are preserved. In particular,
Figure 6 shows that SyNG-D(MLP) successfully recovers the global community interaction patterns
and preserves important spectral characteristics of the graph.

0 1 2

0
1

2

1.60e-05 8.70e-07 1.17e-06

8.70e-07 1.58e-05 1.23e-06

1.17e-06 1.23e-06 6.79e-06

Real Block Probabilities

0 1 2

0
1

2

1.85e-05 -1.68e-07 1.49e-06

-1.68e-07 1.74e-05 1.11e-06

1.49e-06 1.11e-06 1.68e-06

Generated Block Probabilities

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

1e 5

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

1e 5

(a) Estimated 3× 3 block interaction matrix from the
generated network compared with the SBM ground
truth.

0.000 0.002 0.004 0.006 0.008 0.010

0.010

0.005

0.000

0.005

0.010

0.015
Original

0.000 0.002 0.004 0.006 0.008 0.010
0.010

0.005

0.000

0.005

0.010

Generated

(b) Scatter plot of the first two dimensions of the
eigenvectors of the original and generated networks.

Figure 6: Evaluation of SyNG-D(MLP) on the one-million-node SBM network.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

E DETAILS OF SYNGLER-ATTR AND ITS EVALUATION RESULTS

In this section, we provide additional details on the SyNGLER-Attr procedure and report its empirical
performance on several attributed network datasets. We first present the full algorithmic workflow of
SyNGLER-Attr, including latent factor estimation, attribute decomposition, and the joint mechanism
for network and node attributes generation. The complete procedure is summarized in Algorithm 3.
In practice, we use the sigmoid function as the link function when modeling binary networks, so that
Bernoulli(g(·)) reduces to a standard logistic formulation for edge probabilities.

Algorithm 3 Synthetic Network Generation via Latent Emedding Reconstruction for Attributed
Network

1: Input: Adjacency matrix A ∈ {0, 1}n×n, Attribute matrix Y ∈ Rn×p.
2: Fit the latent space likelihood model (Aij |z1i, z1j , αi, αj) ∼ Bernoulli

(
g(z⊤1iz1j + αi + αj)

)
to obtain the MLE (Ẑ1, α̂).

3: Regress Y on Z1 under Y = 1nµ̂
⊤ + Ẑ1Λ̂

⊤
1 +R, where R denotes the residual matrix.

4: Conduct an eigenvalue ratio test on residual R to determine d2, then fit R = Z2Λ
⊤
2 + E, Ei· ∼

N(0,Ψ) to obtain (Ẑ2, Λ̂2).
5: Form the full latent embedding Ẑ = (Ẑ1, Ẑ2) and train a generative model Sampler =

GenModel
(
{(ẑi, α̂i)}ni=1

)
.

6: Generate new latent samples (z̃i, α̃i) ∼ Sampler, i = 1, . . . , n, where z̃i = (z̃⊤1i, z̃
⊤
2i)

⊤.
7: With sampled latent variables z̃i, α̃i, generate network edges via Ãij = Ãji ∼ p

(
·
∣∣ z̃⊤1iz̃1j +

α̃i + α̃j
)
, and generate attributes via Ỹ = 1nµ̂

⊤ + Z̃1Λ̂
⊤
1 + Z̃2Λ̂

⊤
2 .

8: Output:Generated network Ã and generated attributes Ỹ .

Empirically, we evaluate the SyNGLER-Attr procedure on the Cora dataset, a widely used attributed
network benchmark.

Table 27: Generation performance of SyNG-Attr and GraphMaker on the Cora dataset.

Method RMSETri. ↓ RMSEClus. ↓ MMDEig. ↓ MMDDegC. ↓ ML-R

SyNG-AttrMLP 36.07 5.38 0.68 ± 0.00 2.61± 0.15 0.98± 0.01
SyNG-AttrForest 0.54 2.09 0.88 ±0.00 0.32 ± 0.05 0.99± 0.02
SyNG-AttrR 0.48 5.21 0.89 ± 0.01 0.50 ± 0.04 1.00 ±0.00
GraphMaker 0.58 7.72 1.03 ± 0.01 2.36 ± 0.01 1.00 ± 0.00

Table 28: KS and MMD distances between row sums
of generated and original attributes for SyNG-Attr and
GraphMaker on the Cora dataset.

Method dKS ↓ dW1
↓ MMD ↓

SyNG-AttrMLP 0.1398 2.8085 0.1676
SyNG-AttrForest 0.1225 1.9584 0.1681
SyNG-AttrR 0.1457 2.3231 0.1701

GraphMaker 0.1400 5.1615 0.1678

In comparison with GraphMaker (Li et al.,
2023), we observe that SyNGLER-Attr pro-
duces synthetic graphs with close struc-
tural statistics while maintaining compa-
rable attribute-level accuracy. Table 27
reports the structural and ML-utility met-
rics, showing that SyNGLER-Attr achieves
competitive or superior performance on tri-
angle density, clustering coefficient, and
spectral and centrality-based measures. For
the ML-utility metric, we adopt a link pre-
diction task, with the full evaluation pro-
tocol detailed in Appendix F. To further evaluate attribute quality, we compute the Kolmogorov–
Smirnov (KS) distance and Maximum Mean Discrepancy (MMD) between the generated and original
attributes. As reported in Table 28, SyNGLER-Attr achieves smaller discrepancies than GraphMaker,
confirming its ability to preserve attribute distributions.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

F EVALUATIONS FOR GENERATED GRAPHS ON DOWNSTREAM TASKS

To assess whether a generated graph can serve as a reliable surrogate for downstream machine learning
tasks, we employ a discriminative-model–based evaluation protocol adapted from Li et al. (2023). For
a given dataset, we train a GCN-based graph auto-encoder (GAE) on the training split of the original
graph, yielding a model with parameters Ŵ . We then train the same architecture on a generated graph
Ĝ to obtain a second model with parameters W̌ . Both models are subsequently evaluated on the same
held-out test split of the original graph, resulting in two AUC scores ACC(G | G) andACC(G | Ĝ),
corresponding to the model trained on the original graph and the one trained on the generated graph,
respectively. We use the ratio

ACC(G | Ĝ)
ACC(G | G)

as the utility metric. A ratio close to one indicates that the generated graph offers comparable
signal for training the GAE model, and therefore retains the structural information relevant for link
prediction. All hyperparameters are tuned consistently across both training procedures to ensure a
fair comparison. The results across all four datasets are summarized in Table 29.

Table 29: ML utility evaluation of SyNG-D, SyNG-R, EDGE, GRAN, and GraphMaker across four
datasets. Entries marked with “–” indicate OOM issues.

Method Config DBLP PolBlogs YouTube Yelp

SyNG-D

2 1.00 ± 0.00 0.98 ± 0.01 0.94 ± 0.02 0.98 ± 0.00
3 1.00 ± 0.00 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.00
4 1.00 ± 0.00 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.00
5 1.00 ± 0.00 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.00
6 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.01 0.99 ± 0.00

SyNG-D(MLP)

2 1.00 ± 0.00 0.98 ± 0.01 0.90 ± 0.02 0.98 ± 0.00
3 1.00 ± 0.00 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.00
4 1.00 ± 0.00 0.96 ± 0.01 0.96 ± 0.01 0.99 ± 0.00
5 1.00 ± 0.00 0.97 ± 0.01 0.99 ± 0.00 0.99 ± 0.00
6 1.00 ± 0.00 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.00

SyNG-R

2 1.00 ± 0.00 0.98 ± 0.01 0.96 ± 0.02 0.98 ± 0.00
3 1.00 ± 0.00 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.00
4 1.00 ± 0.00 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.00
5 1.00 ± 0.00 0.98 ± 0.01 0.99 ± 0.01 1.00 ± 0.00
6 1.00 ± 0.00 0.99 ± 0.01 0.99 ± 0.01 1.00 ± 0.00

VGAE

2 1.00 ± 0.00 1.01 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
3 1.00 ± 0.00 1.01 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
4 1.00 ± 0.00 1.01 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
5 1.00 ± 0.00 1.01 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
6 1.00 ± 0.00 1.01 ± 0.00 0.99 ± 0.00 1.00 ± 0.00
16 1.00 ± 0.00 1.01 ± 0.00 0.99 ± 0.00 1.00 ± 0.00

GRAN
128 0.98 ± 0.08 0.92 ± 0.08 1.00 ± 0.00 -
256 0.75 ± 0.00 1.04 ± 0.00 0.99 ± 0.00 -
512 0.83 ± 0.06 1.04 ± 0.00 0.98 ± 0.02 -

EDGE – 1.00 ± 0.00 0.98 ± 0.01 1.00 ± 0.00 -

GraphMaker – 0.95 ± 0.02 1.00 ± 0.00 0.99 ± 0.00 0.83 ± 0.01
ER – 0.90 ± 0.03 1.00 ± 0.00 0.99 ± 0.00 0.80 ± 0.01
BTER – 0.85 ± 0.05 0.95 ± 0.01 0.91 ± 0.01 0.94 ± 0.01
mKPGM – 0.96 ± 0.02 1.01 ± 0.00 0.92 ± 0.01 0.89 ± 0.02

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

We observe that both SyNG-D and SyNG-R consistently produce AUC ratios extremely close to
one, indicating that the generated graphs preserve the predictive signal necessary for training link
prediction models. In particular, SyNG-D achieves stable performance across all latent dimensions,
and SyNG-R demonstrates similarly strong results with small variance. Compared with existing
baselines such as EDGE, GRAN, and GraphMaker, SyNGLER exhibits both higher accuracy and
greater robustness across datasets, further validating its effectiveness as a general-purpose synthetic
graph generator for downstream ML tasks.

G VISUALIZATIONS

Visualization of generated networks. We visualize the YouTube dataset with different layout
algorithms to provide an intuitive comparison of graph generation quality across methods. In
the main text, Figure 2 shows the visualization produced by the spring layout method in
networkx(Hagberg et al., 2008), which utilize the Fruchterman-Reingold force-directed algorithm
to highlight the structural patterns of network. Since different visualization algorithms may reveal
different aspects of a network’s geometry, we include additional visualizations in this section under
multiple layout schemes to offer a more comprehensive comparison of the generated graphs.

Training graph

SyNG-D(ours) SyNG-D(MLP)(ours) SyNG-R(ours)

VGAE EDGE GRAN ER

GraphMaker

Figure 7: Visualization via the Spring layout.

Training graph

SyNG-D(ours) SyNG-D(MLP)(ours) SyNG-R(ours)

VGAE EDGE GRAN ER

GraphMaker

Figure 8: Visualization via the Spectral layout.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

SyNG-D(ours) SyNG-D(MLP)(ours) SyNG-R(ours)

VGAE EDGE GRAN ER

Training graph

GraphMaker

Figure 9: Visualization via the Kamada kawai layout.

45

	Introduction
	Synthetic Network Generation via Latent Embedding Reconstruction
	Latent Space Network Models and Network Embedding
	Latent Embedding Reconstruction
	SyNGLER-Attr: Synthetic Network Generation via Latent Embedding Reconstruction for Attributed Network

	Theoretical Analysis
	Experiments
	Structural property recovery
	ML utility evaluation
	Efficiency

	Conclusion
	Proofs in Section 3
	Proof of Section 3.1
	Proof of Section 3.2
	Proof of Section 3.3
	Proof of Section 3.1
	Proof of Section 3.4
	Supporting Lemmas and Proofs

	Connections between Classical Network Generative Models and the LSM
	Supplemental Materials for Experiments
	Deferred Algorithms
	Datasets Details
	Evaluation Details
	Implementation Details
	Evaluation Results on Non-sparse Simulated Network
	Evaluation Results on Sparse Simulated Network
	Evaluation Results on Real-world Datasets
	Supplementary for the Efficiency Comparison
	Analysis of Complexity

	Evaluation of SyNGLER on Large Scale Network Dataset
	Details of SyNGLER-Attr and its Evaluation Results
	Evaluations for Generated Graphs on Downstream Tasks
	Visualizations

