
EFFICIENT SYNTHETIC NETWORK GENERATION VIA LATENT EMBEDDING RECONSTRUCTION

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

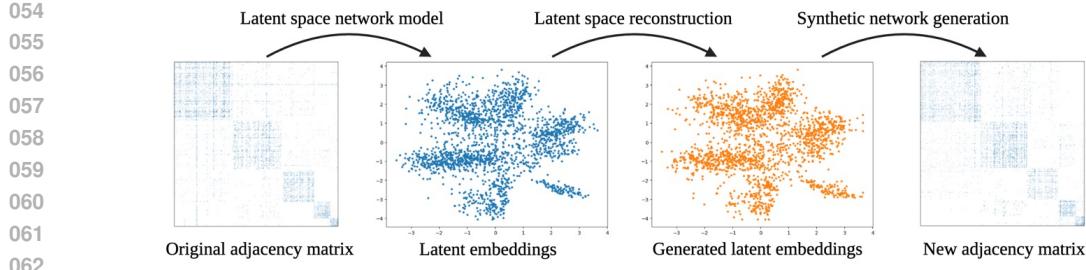
ABSTRACT

011 Network data are ubiquitous across the social sciences, biology, and information
012 systems. Generating realistic synthetic network data has broad applications from
013 network simulation to scientific discovery. However, many existing black-box
014 approaches for network generation tend to overfit observed data while overlooking
015 characteristic network structure, and incur substantial computational overhead at
016 scale. These practical challenges call for synthetic network generation methods
017 that are both efficient and capable of capturing structural properties of networks.
018 In this paper, we introduce Synthetic Network Generation via Latent Embedding
019 Reconstruction (SyNGLER), a general and efficient framework for synthetic net-
020 work generation that builds on latent space network models. Given an observed
021 network, SyNGLER first learns low-dimensional latent node embeddings via a
022 latent space network model and then reconstructs the latent space by building a
023 distribution-free generator over these embeddings. For generation, SyNGLER
024 first samples (or resamples) node embeddings from the generator in the latent
025 space and then produces synthetic networks using the latent space network model.
026 Through the latent space framework, SyNGLER preserves unique characteristics
027 in networks such as sparsity and node degree heterogeneity, while allowing for effi-
028 cient training with lower computational cost than many existing deep architectures.
029 We provide theoretical guarantees by developing consistency results regarding
030 the distance between the true and synthetic edge distributions. Empirical studies
031 further demonstrate the effectiveness of SyNGLER, where SyNGLER efficiently
032 produces networks that better preserve key network characteristics such as network
033 moments and degree distributions compared with existing approaches.
034

1 INTRODUCTION

035 Graph network data capture interactions among entities in complex systems. Examples include social
036 networks (Traud et al., 2012), molecular interaction networks (Gómez-Bombarelli et al., 2018), and
037 brain connectivity networks (Bullmore & Sporns, 2009). Generating realistic synthetic network
038 data (Zhu et al., 2022) has broad applications, spanning drug discovery (Li et al., 2018a), material
039 discovery (Merchant et al., 2023), and image recognition (Xie et al., 2019). Designing efficient
040 generative models that produce realistic network data while preserving characteristic structural
041 network properties remains a long-standing and active research challenge.
042

043 Recent years have witnessed a growing line of work on data-driven graph network generation using
044 deep learning. For example, Li et al. (2018b) proposed an autoregressive generation scheme, in which
045 a graph neural network (GNN; Scarselli et al. (2008)) sequentially adds nodes and edges based on the
046 current graph. You et al. (2018) later adopted recurrent neural networks (Schmidt, 2019) that summa-
047 rize nodes and edges and generate, at each step, the next node and its associated edges. Liao et al.
048 (2019) introduced a block-wise autoregressive model with graph attention mechanism (Veličković
049 et al., 2017), reducing serial computation while preserving long-range dependencies. Nevertheless,
050 for large graphs, training and sampling in deep autoregressive models remain computationally heavy
051 due to sequential modeling of a large graph (Salha et al., 2021). Another line of research devel-
052 ops diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) for graphs.
053 Early methods (Niu et al., 2020; Jo et al., 2022) applied continuous diffusion processes directly in
adjacency-matrix space, which neglected discreteness in graphs. Vignac et al. (2022) and Haefeli
et al. (2022) studied discrete Markov processes over adjacency matrices. However, while operating



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
Figure 1: An illustrative SyNGLER pipeline using the YOUTUBE dataset (Yang & Leskovec, 2012) with a two-dimensional latent space. From left to right: observed network in the form of an adjacency matrix; learned latent embeddings; synthetic embeddings from the generator in the latent space; synthetic network.

on a discrete state space, applying diffusion directly in adjacency-matrix space still overlooks the low-rank structure often present in large-scale network data (Luo et al., 2023). Vahdat et al. (2021) and Rombach et al. (2022) combined diffusion modeling with encoder-decoder architectures by applying diffusion in a continuous latent space. The resulting latent-diffusion approach has been used for molecular and protein graph generation (Xu et al., 2023; Fu et al., 2024) and extended to general graph generation (Zhou et al., 2024), covering both conditional and unconditional settings. Nevertheless, most of the methods typically rely on variational training to connect the graphs and the latent space, which becomes computationally demanding for large-scale networks. Overall, existing methods tend to face computational challenges on large graphs due to deep neural network training on large-dimensional data and/or variational procedures, while characteristic network structure is often neglected. A recent work Li et al. (2023) uses a message-passing neural network (MPNN) as the encoder and is able to efficiently generate networks from a single large observation, but a theoretical analysis of the algorithm is lacking. These limitations underscore the need for graph generation models that can capture complex network structure while staying computationally tractable and scalable to large graphs, with accompanying theoretical guarantees.

In this work, we introduce Synthetic Network Generation via Latent Embedding Reconstruction (SyNGLER), an efficient synthetic network generation framework that leverages latent space network models (Hoff et al., 2002; Ma et al., 2020) to address these challenges. During training, SyNGLER first fits a likelihood-based latent space model to the observed network to learn a set of low-dimensional node embeddings. Using these embeddings, it then trains a distribution-free generator in the latent space. For generation, SyNGLER samples (or resamples) node embeddings from the generator and produces synthetic networks from these node embeddings via the latent space model. An illustrative pipeline is in Figure 1. Via the latent space approach, SyNGLER avoids training deep models directly on the high-dimensional network space by learning low-dimensional node embeddings with flexibly chosen likelihood models and requiring only lightweight generative model training in the latent space, thereby reducing computational cost. Moreover, the geometry of in the latent space enables SyNGLER to preserve key structural properties of the network that reflect latent node-node interactions. We provide a theoretical analysis of SyNGLER and establish its consistency and generalization guarantees under a hierarchical latent space network model. Extensive experiments on synthetic and real-world datasets further demonstrate its strong performance in comparison to existing approaches, with significantly reduced computational cost.

The remainder of the paper is organized as follows. In Section 2, we formally introduce the SyNGLER framework. Section 3 presents the theoretical results. Section 4 reports empirical results on simulated and real-world data. Section 5 concludes the paper with a discussion. Additional numerical results, experimental details, and proofs are provided in the Appendix.

2 SYNTHETIC NETWORK GENERATION VIA LATENT EMBEDDING RECONSTRUCTION

Given an observed network with n nodes, our goal is to train a generative model that can produce networks that preserves key structural properties of the original network. The synthetic node set may

108 comprise the original nodes, newly generated nodes with distributional characteristics similar to the
 109 originals, or any mixture of the two. Specifically, we represent the observed network by an adjacency
 110 matrix $A \in \mathbb{R}^{n \times n}$ with $A_{ij} = A_{ji}$ for $i \neq j$ and $A_{ii} = 0$ for all $i \in [n]$, where the observation
 111 A_{ij} can be binary observations in $\{0, 1\}$, count-valued observations in \mathbb{N} , or general continuous
 112 observations in \mathbb{R} . Given the observation A , our goal is to generate a synthetic network $\tilde{A} \in \mathbb{R}^{n \times n}$.
 113

114 We introduce Synthetic Network Generation via Latent Embedding Reconstruction (SyNGLER) to
 115 achieve this goal. During training, SyNGLER first learns a set of node embeddings from the observed
 116 network using a likelihood model $p(\cdot | \cdot)$ compatible with edge types of A_{ij} , and then reconstructs
 117 the latent space by training a distribution-free generator over the learned embeddings. For data
 118 generation, SyNGLER samples a set of node embeddings from the latent generator and produces
 119 synthetic networks using these embeddings via $p(\cdot | \cdot)$. Algorithm 1 summarizes the procedure.
 120

Algorithm 1 Synthetic Network Generation via Latent Embedding Reconstruction

```

1: Input: Latent dimension  $r$ , input network  $A \in \{0, 1\}^{n \times n}$ .
2: Fit the likelihood model to get  $(\hat{Z}, \hat{\alpha}) \in \mathbb{R}^{n \times r} \times \mathbb{R}^n$ ;
3: Train a generative model using the fitted data:  $\text{Sampler} = \text{GenModel}(\{(\hat{z}_i, \hat{\alpha}_i)\}_{i=1}^n)$ ;
4: for each  $i = 1, \dots, n$  do
5:   Sample  $(\tilde{z}_i, \tilde{\alpha}_i) \in \mathbb{R}^{r+1}$  from  $\text{Sampler}$ .
6: end for
7: for each pair of nodes  $(i, j)$  with  $1 \leq i < j \leq n$  do
8:   Independently generate the edge observation  $\tilde{A}_{ij} = \tilde{A}_{ji}$  from the conditional model
    $p(\cdot | \tilde{z}_i^\top \tilde{z}_j + \tilde{\alpha}_i + \tilde{\alpha}_j)$ 
9: end for
10: Output: Generated network  $\tilde{A}$ .

```

133 In Algorithm 1, $\hat{Z} = (\hat{z}_1, \dots, \hat{z}_n)^\top$ denotes the learned latent node embeddings and $\hat{\alpha} =$
 134 $(\hat{\alpha}_1, \dots, \hat{\alpha}_n)^\top$ the learned node degree parameters. GenModel denotes the generator architec-
 135 ture in latent space. We specify the likelihood $p(\cdot | \cdot)$ and formally introduce the model parameters in
 136 Section 2.1, and we detail GenModel in Section 2.2.
 137

138 **2.1 LATENT SPACE NETWORK MODELS AND NETWORK EMBEDDING**

140 Latent space network models (Hoff et al., 2002; Ma et al., 2020; Li et al., 2025) provide a flexible and
 141 efficient network embedding framework. Associate each node i with a latent position $z_i \in \mathbb{R}^r$ and a
 142 degree parameter $\alpha_i \in \mathbb{R}$. Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{R}^n$ and define $\Phi \in \mathbb{R}^{n \times (r+1)}$, where each
 143 row of Φ is given by $\Phi_i = (z_i^\top, \alpha_i)^\top \in \mathbb{R}^{r+1}$, $i = 1, \dots, n$. Latent space network models specify
 144 that given Φ , each edge observation $A_{ij} = A_{ji}$ for $1 \leq i < j \leq n$ is independently generated from
 145 $\mathbb{P}(A_{ij} \in \mathcal{A} | \Phi) = \int_{\mathcal{A}} p(a | z_i^\top z_j + \alpha_i + \alpha_j) d\mu(a)$, where $p(\cdot | \cdot)$ is the conditional density of A_{ij}
 146 given Φ , μ is some measure on \mathbb{R} (e.g., counting measures for discrete-valued edges or Lebesgue
 147 measures for continuous-valued edges), and \mathcal{A} is the corresponding Borel set. Given Φ , we use $\mathbb{P}_{A|\Phi}$
 148 to denote the conditional distribution of A given Φ .

149 **Assumption 2.1** (embedding distribution). $\{(z_i, \alpha_i)\}_{i=1}^n$ are independently generated from some
 150 distribution \mathbb{P}_0 on \mathbb{R}^{r+1} such that $\mathbb{E}_{\mathbb{P}_0}[z_i] = 0_r$. Moreover, there exists $R > 0$ such that $\|z\|_2 \leq R$
 151 for all $(z, \alpha) \in \text{supp}(\mathbb{P}_0)$.

152 Assumption 2.1 guarantees the boundedness of the embedding space and the identifiability of the
 153 node degree distribution, since joint shifts in α and z can leave the edge distribution unchanged.
 154 Specifically, in (2.1), for all $i \in [n]$, let $\tilde{z}_i = z_i + a$ and $\tilde{\alpha}_i = \alpha_i - a^\top z_i - a^\top a/2$ for some $a \in \mathbb{R}^r$.
 155 Then $\tilde{z}_i^\top \tilde{z}_j + \tilde{\alpha}_i + \tilde{\alpha}_j = z_i^\top z_j + \alpha_i + \alpha_j$ for all $i, j \in [n]$, and the likelihood remains unchanged.
 156 Assumption 2.1 thus fixes this shift as $a = -\mathbb{E}_{\mathbb{P}_0}[z_i]$ to ensure node-degree identifiability. Similar
 157 conditions have been commonly considered in the latent space literature for node degree identifiability,
 158 for example, in Ma et al. (2020) and Zhang et al. (2022).

159 **Network embedding for general edge types.** Based on the observed edge type of A_{ij} , the
 160 likelihood model $p(\cdot | \cdot)$ can be chosen flexibly. Define $\pi_{ij} = z_i^\top z_j + \alpha_i + \alpha_j$, which determines the
 161 distribution of A_{ij} . If A_{ij} 's are binary, one can choose the Bernoulli model as further introduced

162 in the next paragraph. If A_{ij} 's are continuously measured, one can use a Gaussian noise model
 163 $p(a_{ij} | \pi_{ij}) = (2\pi\sigma^2)^{-1/2} \exp\{-(a_{ij} - \pi_{ij})^2/(2\sigma^2)\}$ for some $\sigma^2 > 0$ (Sun & Li, 2017; Wang &
 164 Guo, 2023). Once the conditional model is determined, degree parameters and latent embeddings
 165 can be estimated by maximizing the following likelihood function over the parameters (Z, α) , where
 166 $Z = (z_1^\top, z_2^\top, \dots, z_n^\top)^\top$ is the latent position matrix with rows z_1, z_2, \dots, z_n and $\alpha = (\alpha_1, \dots, \alpha_n)$
 167 is the vector of degree parameters:

$$168 \quad (\hat{Z}, \hat{\alpha}) = \arg \max_{(Z, \alpha) \in \mathbb{R}^{n \times (r+1)} : Z^\top \mathbf{1}_n = \mathbf{0}_r} \sum_{1 \leq i < j \leq n} \log p(A_{ij} | z_i^\top z_j + \alpha_i + \alpha_j). \quad (1)$$

171 The constraint in Eq. (1) ensures identifiability of the degree parameters and is designed based on
 172 Assumption 2.1. A projected gradient descent algorithm can be employed to efficiently solve Eq. (1)
 173 with provable convergence guarantees (Ma et al., 2020). We leave the details of the optimization
 174 algorithm to Appendix C.1.

175 **Sparse networks for binary edges.** For binary networks, let $\mu = \delta_0 + \delta_1$, where δ_0 and δ_1 are
 176 Dirac measures at 0 and 1, and specify $p(a_{ij} | \pi_{ij}) = \exp\{\pi_{ij}\} (1 + \exp\{\pi_{ij}\})^{-1}$, i.e., $\mathbb{P}(A_{ij} = 1 | \pi_{ij}) = \sigma(\pi_{ij})$, where $\sigma(\cdot) = \exp(\cdot)/(1 + \exp(\cdot))$. Recall that $\pi_{ij} = z_i^\top z_j + \alpha_i + \alpha_j$ with
 177 $\mathbb{E}_{\mathbb{P}_0}[z_i] = 0$. We further define $\rho_n = 2\mathbb{E}_{\mathbb{P}_0}[\alpha_i]$ and let $w_n = \exp(\rho_n)$. Then we can reparameterize
 178 $\pi_{ij} = z_i^\top z_j + \alpha_i + \alpha_j + \rho_n$, where the α_i have been centered by their expectation $\mathbb{E}_{\mathbb{P}_0}[\alpha_i]$. Accordingly,
 179 Eq. (1) is modified by introducing an additional parameter ρ and an additional constraint $\alpha^\top \mathbf{1}_n = 0$,
 180 which we empirically find to facilitate the embedding process. Under the logistic link, note that
 181 $\sigma(\pi_{ij}) \asymp w_n \rightarrow 0$ as $\rho_n \rightarrow -\infty$, assuming the variance of α_i is bounded. The quantity w_n thus
 182 serves to quantify the global edge sparsity, which is commonly observed in large networks. In our
 183 theoretical analysis in Section 3, we provide a more detailed discussion of sparsity.
 184

185 **Remark 1.** *The latent space network model also covers a wide class of classical network reconstruction models given appropriate choices of link functions and parametrizations of the node embeddings, including the Erdős–Rényi graph (Erdős & Rényi, 1960), the Chung–Lu graph (Chung & Lu, 2002), and the stochastic block model and its mixed-membership variants (Holland et al., 1983; Karrer & Newman, 2011; Airoldi et al., 2008). Further discussion is provided in Appendix B.*

191 2.2 LATENT EMBEDDING RECONSTRUCTION

192 In this section, we introduce two implementations of `GenModel` in Algorithm 1. Both implementations
 193 reconstruct the latent space from the learned embeddings. The first approach resamples from
 194 the empirical distribution on $\hat{\Phi}$, which is suitable when the synthetic network should include some
 195 original nodes from the observed network. The second approach trains a score-based generator using
 196 the learned embeddings and is appropriate when new nodes need to be generated in the network. The
 197 final `GenModel` can be a mixture of the two, producing networks that include both original nodes
 198 and new nodes. This choice is flexible and can be adapted to practitioners' needs.

200 **Resampling based latent space reconstruction.** Given the learned embeddings $\hat{\Phi}$, we set
 201 `GenModel` to be the uniform distribution over the discrete set $\hat{\Phi}$. At each call, this sampler returns
 202 one of the row vectors of $\hat{\Phi}$, with replacement. The resampled latent embeddings, denoted $\tilde{\Phi}$, are used
 203 later to construct the synthetic network. The idea of resampling latent embeddings in networks has
 204 been used for bootstrap inference of network statistics (see Levin & Levina, 2019), but it has not been
 205 systematically studied for network generation tasks. In scenarios where duplicate embeddings exist
 206 in $\tilde{\Phi}$ due to sampling with replacement, we suggest removing the duplicate embeddings. Meanwhile,
 207 any nodes that must remain in the network can have their embeddings preserved in $\tilde{\Phi}$ as needed.

208 **Score-based generator in the latent space.** To sample novel node embeddings that are close in
 209 distribution to the learned embeddings, we consider a score-based generative model formulated via
 210 stochastic differential equations (Song et al., 2020), in which a forward noising process gradually
 211 adds noise to the training samples and a backward denoising process recovers the distribution of the
 212 original samples from pure noise using information from the forward process. In our setup, a key
 213 difference from existing work is that we train the score network based on the learned embeddings.
 214 Specifically, let $s_\theta(x, t) : \mathbb{R}^d \times [0, 1] \rightarrow \mathbb{R}^d$ be a prediction model parameterized by θ . We use both

the XGBoost, following ForestDiffusion (Jolicoeur-Martineau et al., 2024) and multilayer perceptrons (MLP), to approximate the score function. Consider a variance-preserving Ornstein-Uhlenbeck (OU) (Maller et al., 2009) forward process. Given the fitted embeddings $\hat{\Phi}$, the forward process ϕ_t follows $d\phi_t = -\phi_t dt + \sqrt{2} dB_t$, where ϕ_0 is randomly sampled from the row vectors of $\hat{\Phi}$ and B_t is a standard Wiener process. Given the forward process, the parameter θ in $s_\theta(x, t)$ is optimized by minimizing the denoising score-matching objective (Vincent, 2011) constructed using the learned embeddings (Wu et al., 2025):

$$\hat{\theta} = \arg \min_{\theta} \mathbb{E}_{t \sim \mathcal{U}[0, 1], z \sim \mathcal{N}(0, I_{r+1})} \left[\frac{1}{n} \sum_{i=1}^n \left\| s_\theta \left(e^{-t} \hat{\phi}_i + \sqrt{1 - e^{-2t}} z, t \right) + \frac{z}{\sqrt{1 - e^{-2t}}} \right\|^2 \right].$$

To sample from the generator, we simulate the following process initialized at $\tilde{\phi}^{(0)} \sim \mathcal{N}(0, I_{r+1})$, using the trained network $s_{\hat{\theta}}$:

$$\tilde{\phi}^{(k+1)} = \tilde{\phi}^{(k)} + h \left(\tilde{\phi}^{(k)} + 2 s_{\hat{\theta}}(\tilde{\phi}^{(k)}, 1 - kh) \right) + \sqrt{2h} \xi_k, \quad \xi_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, I_{r+1}).$$

When T is large (equivalently, h is small) and s_θ sufficiently approximates the true score, the distribution of $\tilde{\phi}^{(\lceil 1/h \rceil)}$ is close to the distribution of the learned embeddings. This approach enables us to sample novel node embeddings, thereby including novel nodes in the synthetic network.

2.3 SYNGLER-ATTR: SYNTHETIC NETWORK GENERATION VIA LATENT EMBEDDING RECONSTRUCTION FOR ATTRIBUTED NETWORK

In the main body of this work, we study the task of generating networks when only network structures are observed and needed in downstream tasks, using the vanilla SyNGLER. Meanwhile, generating attributed networks that preserve feature-network interactions is also an important problem. The classical VGAE (Kipf & Welling, 2016) approaches this problem in the setting of fixed attributes, where the attributes of the generated graph remain the same as those of the input graph. Using continuous diffusion models, Jo et al. (2022) developed a pipeline that successfully generates attributed graphs with new features, although its design and training are tailored to multiple small-scale graphs. Li et al. (2023) uses a message-passing neural network (MPNN) as the encoder and is able to efficiently generate attributed graphs from a single large observation. In our paper, to address this task, we introduce SyNGLER-Attr, a generalization of SyNGLER for generating attributed networks. Specifically, SyNGLER-Attr jointly embeds and reconstructs the latent embeddings of the network and its associated attributes, allowing the synthetic data to preserve the joint latent structures of the network and its attributes. Due to page limits, we present the detailed algorithmic description and implementation, along with an empirical study of SyNGLER-Attr to assess its utility in downstream machine learning tasks in Appendix E.

3 THEORETICAL ANALYSIS

In this section, we study generation consistency of SyNGLER via the distance between the distributions of the synthetic and original networks. We consider the logistic link model for sparse binary networks introduced in Section 2.1 with logistic link. Throughout this section, we treat the global sparsity parameter $\rho_n^* = \mathbb{E}_{\mathbb{P}_0}[\alpha_1]/2$ as a fixed parameter, where a superscript $*$ denotes the true parameters, and we assume that the observed network A is generated from the latent space model in Section 2.1 with global sparsity parameter ρ_n^* and some Φ^* whose rows are independent realizations from \mathbb{P}_0 in Assumption 2.1. In this section, we study generation consistency of SyNGLER via the distance between the distributions of the synthetic and original networks. We consider the model for sparse binary networks introduced in Section 2.1 with logistic link. Throughout this section, we treat the global sparsity parameter $\rho_n^* = \mathbb{E}_{\mathbb{P}_0}[\alpha_1]/2$ as a fixed parameter, where a superscript $*$ denotes the true parameters, and we assume that the observed network A is generated from the latent space model in Section 2.1 with global sparsity parameter ρ_n^* and some Φ^* whose rows are independent realizations from \mathbb{P}_0 in Assumption 2.1. Note that the distribution of the synthetic network \tilde{A} is based on the model trained on the observed network A . We denote the distribution of \tilde{A} given A as $\mathbb{P}_{\tilde{A}}^A$, which can be viewed as a random measure where the randomness comes from the observed network A generated under model Section 2.1 with embeddings Φ^* and sparsity parameter ρ_n^* . Similarly, we

270 define $\mathbb{P}_{\tilde{\Phi}}^A$ as the random measure for the group of latent embeddings on $\mathbb{R}^{n \times (r+1)}$. We also denote
271 the individual distribution of $\tilde{\phi}$ given A as $\mathbb{P}_{\tilde{\phi}}^A$. Similarly, we denote the marginal distribution of each
272 $\hat{\phi}_i$ as $\mathbb{P}_{\hat{\phi}}$, where the subscript i in $\hat{\phi}_i$ is omitted due to the exchangeability of the nodes. Our first
273 theorem decomposes the Kullback-Leibler (KL) divergence between \mathbb{P}_A and $\mathbb{P}_{\tilde{A}}^A$.
274

275 **Theorem 3.1.** *Under Assumption 2.1, the average KL divergence between the distribution of A and
276 \tilde{A} given A admits the following decomposition:*

$$278 \quad \frac{1}{n^2} d_{\text{KL}}(\mathbb{P}_A \| \mathbb{P}_{\tilde{A}}^A) = E_\rho + E_\Phi + E_{\text{gen}}. \quad (2)$$

280 where the three error terms are defined as follows:

$$281 \quad E_\rho = \mathbb{E}_{\mathbb{P}_{A|\Phi} \times \mathbb{P}_0^{\otimes n}} \left[\log \frac{p(A_{12} | z_1^\top z_2 + \alpha_1 + \alpha_2 + \rho_n^*)}{p(A_{12} | z_1^\top z_2 + \alpha_1 + \alpha_2 + \hat{\rho})} \right];$$

$$282 \quad E_\Phi = \min_{\mathcal{T}} \frac{1}{n} \left(\mathbb{E}_{\mathbb{P}_0^{\mathcal{T}}} \left[\log \frac{\mathbb{P}_0^{\mathcal{T}}}{\mathbb{P}_{\tilde{\phi}}^A}(\phi) \right] + \mathbb{E}_{\mathbb{P}_0^{\mathcal{T}}} \left[\log \frac{\mathbb{P}_{\hat{\phi}}}{\mathbb{P}_{\tilde{\phi}}^A}(\phi) \right] - \mathbb{E}_{\mathbb{P}_{\tilde{\phi}}} \left[\log \frac{\mathbb{P}_{\hat{\phi}}}{\mathbb{P}_{\tilde{\phi}}^A}(\phi) \right] \right); \quad (3)$$

$$286 \quad E_{\text{gen}} = \frac{1}{n} d_{\text{KL}}(\mathbb{P}_{\hat{\phi}} \| \mathbb{P}_{\tilde{\phi}}^A).$$

288 Here the minimization in Eq. (3) is over all orthogonal transforms $\mathcal{T} : \Phi = (Z, \alpha) \mapsto (ZU, \alpha)$,
289 where U is a r -dimensional rotation matrix, and $\mathbb{P}_0^{\mathcal{T}}$ is the distribution of $\mathcal{T}(\phi)$ when $\phi \sim \mathbb{P}_0$.
290

291 The first term in Theorem 3.1 is referred to as E_ρ since $p(A_{ij} | z_i^\top z_j + \alpha_i + \alpha_j + \rho_n^*)$ differs from
292 $p(A_{ij} | z_i^\top z_j + \alpha_i + \alpha_j + \hat{\rho})$ only in the global sparsity parameter ρ_n . The second term is denoted
293 as E_Φ , since it primarily depends on the distance between $\mathbb{P}_{\hat{\phi}}$ and \mathbb{P}_0 . The third term E_{gen} denotes
294 the KL divergence between the conditional distributions of $\hat{\phi}$ and $\tilde{\phi}$ given A , and is determined
295 by the generative model in Algorithm 1. Error analysis of such terms has been considered in the
296 literature, for example, Chen et al. (2022; 2023a) for score-based generative models. In this analysis,
297 we focus on characterizing the first two terms in Eq. (2), while noting that the third term concerns the
298 generative error in a low-dimensional space rather than in the original large-scale network space.

299 We first consider the sparsity regime in the following assumption.

300 **Assumption 3.1** (network sparsity). $w_n = \exp(\rho_n^*) = \Omega(\log n/n)$.
301

302 Assumption 3.1 states that the edge density is bounded below by $\Omega(\log n/n)$, and accordingly the
303 expected node degrees are at least of order $\log n$ as n grows. Such a sparsity regime is consistent
304 with the network analysis literature; see, for example, Athreya et al. (2018) and Ma et al. (2020).

305 In the sequel, we analyze E_ρ and E_Φ under the asymptotic regime where $n \rightarrow \infty$. We first have the
306 following theorem on E_ρ .

307 **Theorem 3.2.** *Under Assumptions 2.1 and 3.1, it holds that $E_\rho = O_p((w_n \cdot n)^{-1/2} \log n)$.*

309 Theorem 3.2 demonstrates that as long as $w_n \gg (\log n)^2/n$, the first error term satisfies $E_\rho = o_p(1)$.
310 This requirement on w_n is consistent with Assumption 3.1 up to a logarithmic factor. Analyzing the
311 second term is challenging since it involves the marginal distribution of the estimated latent positions,
312 which is practically hard to be compared with the true distribution \mathbb{P}_0 . Following Wu et al. (2025),
313 we use the technique of discretizing the underlying distribution to understand the approximation error
314 between $\mathbb{P}_{\hat{\phi}}$ and $\mathbb{P}_0^{\mathcal{T}}$ for some transform \mathcal{T} . Suppose that \mathbb{P}_0 is a continuous distribution of the latent
315 embeddings with density p_0 that follows Assumption 2.1. Since the support of \mathbb{P}_0 is bounded, we
316 discretize the support of \mathbb{P}_0 into the following grid: $\mathcal{G}_{\gamma_n} = \{\phi \in \mathbb{R}^{r+1} : \phi_i/\gamma_n \in \mathbb{Z}, |\phi_i| \leq R + \gamma_n\}$,
317 where $\{\gamma_n\}$ is a sequence of discretization scales that converge to zero. Then for any $\phi \in \mathcal{G}_{\gamma_n}$, we
318 define the following mass function $q_{\gamma_n}(\phi) = \int_{\mathbb{R}^{r+1}} \prod_{i < r+1} \mathbb{1}\{\phi'_i \in [\phi_i - \gamma_n/2, \phi_i + \gamma_n/2]\} p_0(\phi') d\phi'$.
319 Using the linearity of expectation, we conclude that $\sum_{\phi \in \mathcal{G}_{\gamma_n}} q_{\gamma_n}(\phi) = 1$. Therefore, q_{γ_n} is a
320 probability mass function. We claim that, as long as the original density function is sufficiently
321 smooth, this discretized mass function is able to capture the structure of the original density function
322 well. To this end, we define the projection operator associated with the grid as $\text{proj}_{\mathcal{G}_{\gamma_n}}(\phi) =$
323 $\arg \min_{\phi' \in \mathcal{G}_{\gamma_n}} \|\phi' - \phi\|_2$, and consider $p_{\gamma_n}(\phi) = q_{\gamma_n}(\text{proj}_{\mathcal{G}_{\gamma_n}}(\phi)) \gamma_n^{-(r+1)}$. Then we have the
324 following theorem.

324 **Theorem 3.3.** Suppose that $p_0 : \mathbb{R}^{r+1} \rightarrow \mathbb{R}^+$ is L -Lipschitz, then it holds that $|p_0(\phi) - p_{\gamma_n}(\phi)| \leq$
325 $L\gamma_n\sqrt{r+1}$.
326

327 This theorem indicates that sampling from the original distribution is almost the same as sampling
328 from q_{γ_n} . We consider $\Phi^\dagger = (\phi_1^\dagger, \dots, \phi_n^\dagger)^\top \in \mathbb{R}^{n \times (r+1)}$ where the rows are independent realizations
329 from q_{γ_n} . We denote the corresponding empirical mass function as $\hat{q}_{\gamma_n}(\phi) = n^{-1} \sum_{i \leq n} \mathbb{1}\{\phi_i^\dagger = \phi\}$
330 for $\phi \in \mathcal{G}_{\gamma_n}$. Then the following result indicates that \hat{q}_{γ_n} is close to q_{γ_n} .
331

332 **Lemma 3.1.** For any small $\delta > 0$, it holds that $\max_{\phi \in \mathcal{G}_{\gamma_n}} |q_{\gamma_n}(\phi) - \hat{q}_{\gamma_n}(\phi)| \leq$
333 $\sqrt{\log(1/\delta) + \log(R/\gamma_n)}/\sqrt{n}$ with probability $1 - \delta$.
334

335 When Φ^* is replaced by Φ^\dagger , we need to modify the estimators in Eq. (1) accordingly using the
336 projection operator $\text{proj}_{\mathcal{G}_{\gamma_n}}$. Given $\hat{\Phi}$ and a rotation transform \mathcal{T} , we define the corresponding
337 empirical distribution on the grid \mathcal{G}_{γ_n} as follows: $\check{q}_{\gamma_n}(\phi) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{\phi_i = \text{proj}_{\mathcal{G}_{\gamma_n}}(\mathcal{T}\hat{\phi}_i)\}$, $\phi \in$
338 \mathcal{G}_{γ_n} . Next theorem shows that \check{q}_{γ_n} is close to \hat{q}_{γ_n} , which is a direct consequence of the uniform
339 consistency of the estimated latent embeddings.
340

341 **Theorem 3.4.** Suppose that each ϕ is sampled from a discrete mass function q_{γ_n} on \mathcal{G}_{γ_n} . Fix a
342 sequence of discretization levels $\gamma_n = \Omega((w_n \cdot n)^{-1/2+\epsilon})$ where $\epsilon > 0$ is fixed. Under Assumption 2.1
343 and Assumption 3.1, there exists a transform $\mathcal{T} : \phi = (Z, \alpha) \mapsto (ZU, \alpha)$ for some rotation matrix U ,
344 such that $\max_{\phi \in \mathcal{G}_{\gamma_n}} |\hat{q}_{\gamma_n}(\phi) - \check{q}_{\gamma_n}(\phi)| \rightarrow 0$, in probability as $n \rightarrow \infty$. Here, the randomness comes
345 from the realizations of A .
346

347 This result shows that the marginal distribution of any single point from $\{\text{proj}_{\gamma_n}(\hat{\phi}_i)\}_{i \leq n}$ is close to
348 the discretized distribution q_{γ_n} , up to a rotation, and consequently controls E_Φ . Proofs of all results
349 in this section are provided in Appendix A.
350

4 EXPERIMENTS

352 In this section, we empirically evaluate the effectiveness and efficiency of the proposed SyNGLER
353 framework using both simulated and real-world network datasets.
354

355 **Simulated network dataset.** We consider simulated sparse networks with sizes and latent dimensions
356 $(n, r) \in \{500, 1000, 1500\} \times \{2, 3, 4\}$. For each (n, r) , we independently sample latent node
357 embeddings $\{z_i^*\}_{i=1}^n$ from a truncated Gaussian mixture in \mathbb{R}^r and degree parameters $\{\alpha_i^*\}_{i=1}^n$ from
358 a uniform distribution. We adopt a logarithmic sparsity $\rho_n = -0.4 \log(n)$, which results in an edge
359 density that scales as $O(n^{-0.4})$. Such sparse configuration is able to closely characterize real-world
360 network dataset. Based on the sampled latent embeddings, we generate a network from the binary
361 logistic network model in Section 2.1. Each result is based on 200 Monte Carlo repetitions. Please
362 see more details in Appendix C.2.
363

364 **Real-world datasets.** We use four large real-world networks: (i) the user-user friendship network
365 from the Yelp Open Dataset (Yelp, 2024); (ii) the YouTube social network dataset (Yang & Leskovec,
366 2012); (iii) the DBLP co-authorship network (Yang & Leskovec, 2012); and (iv) the PolBlogs network
367 (Adamic & Glance, 2005). Details regarding the preprocessing of these datasets are in Appendix C.4.
368

369 **Baselines and implementations.** We consider two diffusion-based approaches, SyNG-D and SyNG-
370 D (MLP), where SyNG-D (MLP) uses a multilayer perceptron to approximate the score instead
371 of the tree-based estimator in SyNG-D, and a resampling-based approach, SyNG-R, as defined in
372 Section 2.2. SyNG-D and SyNG-R are included in all experiments, whereas SyNG-D (MLP) is
373 evaluated only on real-world datasets. For baselines, VGAE (Kipf & Welling, 2016) is compared
374 across all experiments evaluating structural recovery and efficiency. In the real-data evaluations, we
375 also compare to GRAN (Liao et al., 2019), EDGE (Chen et al., 2023b), GraphMaker (Li et al., 2023),
376 and the classical Erdős–Rényi model (Erdos & Rényi, 1960). Implementation details for our methods
377 are provided in Appendix C.4. We also cover mKPGM (Moreno et al., 2013) and BTER (Kolda et al.,
378 2014) for baselines. The implementations of the baselines on simulated and real-world datasets are
379 provided separately in Appendix C.5 and Appendix C.7, respectively.
380

378 Table 1: Simulated sparse networks. Eigenvalues and degree centrality are evaluated by
 379 energy (En.) and Kolmogorov–Smirnov (KS) distances. Best results are in **bold**.

(n, r)	Method	Tri. ($\times 10^{-4}$)		Clus. ($\times 10^{-3}$)		Eig. ($\times 10^{-2}$)		DegC. ($\times 10^{-2}$)	
		RMSE	Bias	RMSE	Bias	En.	KS	En.	KS
(500, 2)	SyNG-D	4.60	4.37	15.7	15.2	5.88	9.07	3.34	11.07
	SyNG-R	5.37	5.11	18.1	17.7	6.38	9.78	3.69	12.45
	VGAE	9.70	-9.16	53.1	-50.2	10.18	15.67	10.69	44.45
(1500, 4)	SyNG-D	0.63	0.57	4.58	4.07	7.09	12.09	1.59	6.42
	SyNG-R	1.35	1.26	9.80	9.65	9.41	14.45	2.52	9.58
	VGAE	3.05	-2.78	37.4	-35.0	17.26	32.46	9.25	48.18

390 4.1 STRUCTURAL PROPERTY RECOVERY

392 To evaluate the quality of the synthetic networks, we consider the distance between network statistics
 393 of the synthetic and the observed networks. Specifically, we evaluate triangle density (Tri., measuring
 394 the prevalence of triangle motifs / three-node interactions), clustering coefficient (Clus., summarizing
 395 local transitivity), eigenvalue distributions (Eig., reflecting global spectral structure), and degree
 396 centrality (DegC., describing node connectivity). For Tri. and Clus., which are single values for
 397 each network, we compute the root-mean-square error (RMSE) and bias relative to the observed
 398 network. For Eig. and DegC., which are vectors for each network, we compute the maximum mean
 399 discrepancy (MMD), the Kolmogorov–Smirnov (KS) statistic, and the energy distance. In addition,
 400 we also include the 4-graphlet frequency distance in the real-data experiment. More details are in
 401 Appendix C.3.

402 Table 1 summarizes the results for simulated networks. Our methods exhibit overall superior
 403 performance compared to the baseline VGAE model, reasonably due to the fact that the data are
 404 simulated from sparse latent space network models with a mixture distribution over latent embeddings.
 405 In the relatively large-scale setting with $(n, r) = (1500, 4)$, we note that SyNG-D outperforms SyNG-
 406 R on all metrics, indicating the effectiveness of generating novel node embeddings while capturing
 407 network structures. Here, we report only the results for $(n, r) \in \{(500, 2), (1500, 4)\}$ due to page
 408 constraints. More results on simulated networks are provided in Appendix C.5.

409 Real-world datasets allow a fairer comparison. For each method, we select the configuration that
 410 yields the best average performance across all four metrics. The results are summarized in Table 2.
 411 EDGE and GRAN ran out of memory on the Yelp dataset on a single NVIDIA GeForce RTX 4090 with
 412 memory of 24GB, and are marked “-” at the corresponding entries. This reflects that these methods
 413 are computationally expensive at scale and pose challenges when computational resources are limited.
 414 For most metrics, SyNG-D and SyNG-R produce networks with better-preserved characteristics. In
 415 Figure 2, we visualize the YouTube network alongside synthetic networks produced by different
 416 methods using the Fruchterman-Reingold force-directed algorithm. We also provide additional
 417 visualization results obtained using alternative tools in Appendix G. SyNG-D and SyNG-R preserve
 418 the clustering patterns in the observed network evidently better in comparison with other methods.
 419 More results and details are in Appendix C.7. Our proposed approach shows superior performances
 420 on all four networks. The improvements on Yelp and PolBlogs networks are clear.

421 4.2 ML UTILITY EVALUATION

422 We also evaluate the machine learning utility of the generated graphs, that is, whether synthetic graphs
 423 can effectively support downstream predictive tasks. Following the evaluation protocol proposed by
 424 Li et al. (2023), we adopt a discriminative-model-based framework to quantify utility. In this setting,
 425 a predictive model is first trained on the original graph G and then separately on a generated graph \hat{G} .
 426 Both models are then evaluated on the test set of the original graph to obtain performance measures
 427 $ACC(G | G)$ and $ACC(G | \hat{G})$ (Li et al., 2023). A generated graph is regarded as having high ML
 428 utility if $\frac{ACC(G | \hat{G})}{ACC(G | G)} \approx 1$, indicating that training on the synthetic graph yields predictive performance
 429 comparable to training on the real graph. We consider the link prediction task, which aims to infer
 430 missing edges in a partially observed graph and may utilize node features and node labels where
 431 available. For this task, we adopt the Graph Autoencoder (GAE) model of Kipf & Welling (2016),

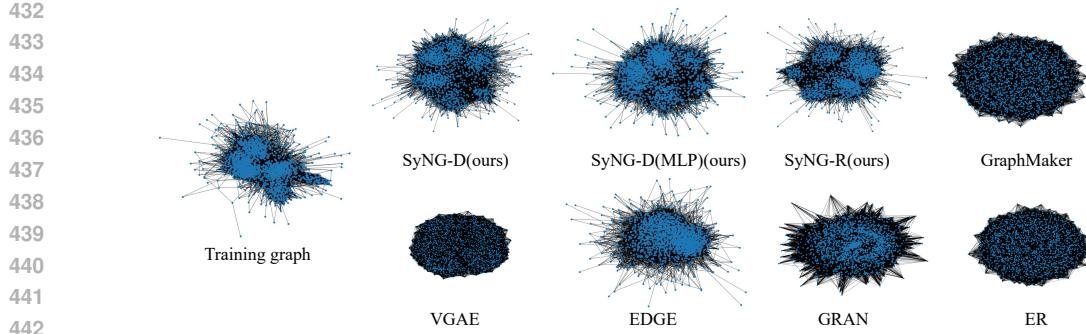


Figure 2: Visualization of the YouTube network and synthetic networks by different methods.

Table 2: Results on real-world networks. Eigenvalues and degree centrality are evaluated using MMD. Each entry is the average over 200 generated networks. Best performances are in **bold**.

(a) YouTube					(b) DBLP				
Method	Tri ($\times 10^{-4}$)	Clus ($\times 10^{-2}$)	Eig ($\times 10^{-2}$)	DegC ($\times 10^{-2}$)	Method	Tri ($\times 10^{-4}$)	Clus ($\times 10^{-1}$)	Eig ($\times 10^{-1}$)	DegC ($\times 10^{-1}$)
E-R	1.05	16.3	25.96	69.22	E-R	7.96	8.94	4.409	8.716
BTTER	0.02	9.7	6.42	0.00	BTTER	6.09	6.78	1.484	0.462
mKPGM	1.03	16.0	22.38	44.86	mKPGM	8.00	9.00	3.003	4.568
VGAE	0.559	8.0	17.20	27.83	VGAE	0.578	0.136	1.196	2.797
GRAN	1.13	10.1	7.88	7.86	GRAN	7.99	8.92	1.757	2.973
EDGE	0.785	14.4	4.44	7.84	EDGE	2.20	1.33	1.387	0.992
GraphMaker	1.12	16.7	23.13	64.99	GraphMaker	7.98	8.98	3.931	7.512
SyNG-D	0.967	2.28	2.61	2.13	SyNG-D	1.58	0.622	0.879	0.926
SyNG-D(MLP)	1.62	1.58	0.378	3.89	SyNG-D(MLP)	3.63	1.01	1.116	1.401
SyNG-R	1.11	2.23	4.47	1.10	SyNG-R	1.43	0.378	0.799	0.748
(c) Yelp					(d) PolBlogs				
Method	Tri ($\times 10^{-4}$)	Clus ($\times 10^{-2}$)	Eig ($\times 10^{-2}$)	DegC ($\times 10^{-2}$)	Method	Tri ($\times 10^{-4}$)	Clus ($\times 10^{-2}$)	Eig ($\times 10^{-2}$)	DegC ($\times 10^{-2}$)
E-R	8.12	14.5	24.53	77.36	E-R	3.22	20.4	40.10	79.24
BTTER	2.27	4.45	8.26	0.00	BTTER	0.88	5.27	3.04	0.00
mKPGM	9.35	16.0	9.26	49.97	mKPGM	3.32	21.4	31.15	50.67
VGAE	7.41	10.3	17.58	33.74	VGAE	2.07	3.26	31.10	35.33
GRAN	-	-	-	-	GRAN	1.57	11.4	9.04	13.86
EDGE	-	-	-	-	EDGE	0.790	5.69	4.69	0.00
GraphMaker	8.82	15.5	20.70	69.26	GraphMaker	3.27	20.8	38.28	74.15
SyNG-D	2.00	1.77	2.50	6.72	SyNG-D	0.710	1.90	2.58	0.97
SyNG-D(MLP)	0.745	2.35	9.62	3.26	SyNG-D(MLP)	0.594	2.23	5.27	3.05
SyNG-R	0.778	0.756	4.69	0.62	SyNG-R	0.830	2.45	3.01	0.92

and use AUROC as the performance measure ACC. Additional implementation details are provided in Appendix F.

Table 3 summarizes the results for ML utility ratios. Our SyNGLER-based methods consistently achieve ratios close to one, indicating strong preservation of the learning signal necessary for downstream ML tasks. These results suggest that SyNGLER not only captures structural characteristics but also maintains the discriminative information required for effective model training.

4.3 EFFICIENCY

Evaluation metrics and configuration. We compare training efficiency between SyNG-D and the baseline methods through a computational workload metric we define as the equivalent floating-point operations (e-FLOPs). To evaluate the training efficiency of different methods, the e-FLOPs metric

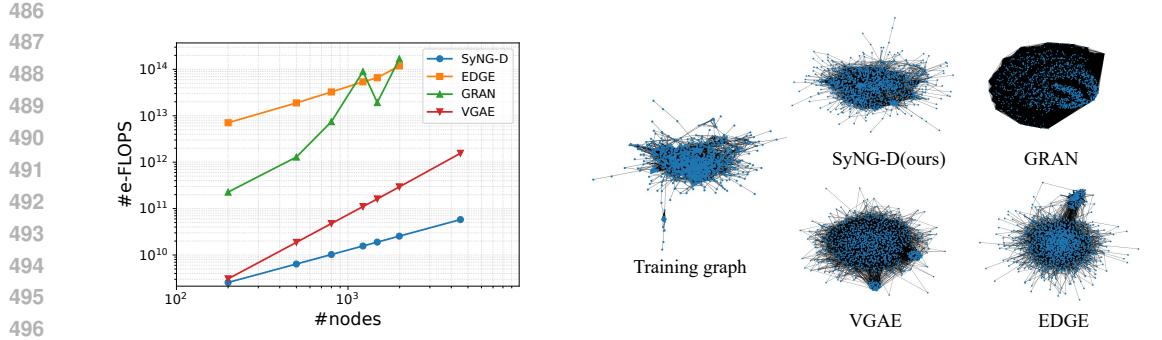


Figure 3: Efficiency comparison. Left: number of e-FLOPS versus the number of nodes in the observed graph. Right: Synthetic networks from different methods on the DBLP dataset.

counts the total number of floating-point operations or their approximate equivalents during the training process.

Note that SyNG-D and the baseline methods consist of neural nets and tree structures in their model architecture. For neural nets, e-FLOPs counts floating-point operations, whereas for tree structures, e-FLOPs counts node visits. We use e-FLOPs to evaluate the efficiency of different methods, since they are less dependent on the hardware environment. For the more straightforward wall-clock training time, we present the results along with the hardware environment used by each method in Appendix C.8. In addition to four real-world datasets, we also compare these methods on a group of simulated networks with sizes of 200, 500, and 800. For a fair comparison, we keep the latent dimension of all models at 4. Specifically, for SyNG-D and VGAE, the latent dimension corresponds to the dimension of the latent space. For GRAN, it is the output dimension of the attention layers. For EDGE, it is the dimension of the hidden layer in the score network.

Results. Figure 3 summarizes the results. We have several observations. In terms of e-FLOPs, SyNG-D attains the lowest cost across all settings and remains stable as network size grows. In terms of synthetic network quality, SyNG-D best preserves the overall structure of the observed networks; VGAE, while computationally comparable to SyNG-D, does not match its quality. Third, GRAN and EDGE require substantially longer training times, yet their performance is not as satisfactory, especially for GRAN. Overall, SyNG-D is both effective and efficient for this task, producing realistic synthetic networks with a computationally lightweight training process. Additional results regarding efficiency comparisons, along with further details, are provided in Appendix C.8.

5 CONCLUSION

In this work, we address the challenge of synthesizing realistic networks at scale while preserving salient structural properties using Synthetic Network Generation via Latent Embedding Reconstruction (SyNGLER), a general and efficient framework that learns low-dimensional latent node embeddings from a single observed network and then trains a distribution-free generator in the learned latent space. By separating representation learning via a likelihood-based latent space approach from generative modeling, SyNGLER preserves structural information with latent space geometry where lightweight generators suffice, enabling fast training and sampling. Theoretical and empirical results both demonstrate the effectiveness of SyNGLER. Future research directions include incorporating richer supervision for conditional generation (e.g., node/edge attributes and constraints), extending to directed, dynamic, and multilayer networks, and developing rigorous privacy-preserving training and release mechanisms.

540 REFERENCES
541

542 Lada A Adamic and Natalie Glance. The political blogosphere and the 2004 us election: divided they
543 blog. In *Proceedings of the 3rd international workshop on Link discovery*, pp. 36–43, 2005.

544 Edo M Airoldi, David Blei, Stephen Fienberg, and Eric Xing. Mixed membership stochastic
545 blockmodels. *Advances in neural information processing systems*, 21, 2008.

546 Avanti Athreya, Donniell E Fishkind, Minh Tang, Carey E Priebe, Youngser Park, Joshua T Vogelstein,
547 Keith Levin, Vince Lyzinski, Yichen Qin, and Daniel L Sussman. Statistical inference on random
548 dot product graphs: a survey. *Journal of Machine Learning Research*, 18(226):1–92, 2018.

549

550 Ed Bullmore and Olaf Sporns. Complex brain networks: graph theoretical analysis of structural and
551 functional systems. *Nature reviews neuroscience*, 10(3):186–198, 2009.

552

553 Sourav Chatterjee. Matrix estimation by universal singular value thresholding. *The Annals of
554 Statistics*, 43(1):177–214, 2015. ISSN 00905364.

555

556 Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score approximation, estimation and
557 distribution recovery of diffusion models on low-dimensional data. In *International Conference on
558 Machine Learning*, pp. 4672–4712. PMLR, 2023a.

559

560 Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as easy
561 as learning the score: theory for diffusion models with minimal data assumptions. *arXiv preprint
562 arXiv:2209.11215*, 2022.

563

564 Xiaohui Chen, Jiaxing He, Xu Han, and Li-Ping Liu. Efficient and degree-guided graph generation
565 via discrete diffusion modeling. *arXiv preprint arXiv:2305.04111*, 2023b.

566

567 Fan Chung and Linyuan Lu. The average distances in random graphs with given expected degrees.
568 *Proceedings of the National Academy of Sciences*, 99(25):15879–15882, 2002.

569

570 Fan Chung and Mary Radcliffe. On the spectra of general random graphs. *the electronic journal of
571 combinatorics*, pp. P215–P215, 2011.

572

573 Paul Erdos and Alfréd Rényi. On the evolution of random graphs. *Publ. Math. Inst. Hungar. Acad.
574 Sci.*, 5:17–61, 1960.

575

576 Cong Fu, Keqiang Yan, Limei Wang, Wing Yee Au, Michael Curtis McThrow, Tao Komikado, Koji
577 Maruhashi, Kanji Uchino, Xiaoning Qian, and Shuiwang Ji. A latent diffusion model for protein
578 structure generation. In *Learning on graphs conference*, pp. 29–1. PMLR, 2024.

579

580 Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
581 Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
582 Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous
583 representation of molecules. *ACS central science*, 4(2):268–276, 2018.

584

585 Kilian Konstantin Haefeli, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Diffusion
586 models for graphs benefit from discrete state spaces. *arXiv preprint arXiv:2210.01549*, 2022.

587

588 Aric Hagberg, Pieter J Swart, and Daniel A Schult. Exploring network structure, dynamics, and
589 function using networkx. Technical report, Los Alamos National Laboratory (LANL), Los Alamos,
NM (United States), 2008.

590

591 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
592 neural information processing systems*, 33:6840–6851, 2020.

593

594 Peter D Hoff, Adrian E Raftery, and Mark S Handcock. Latent space approaches to social network
595 analysis. *Journal of the american Statistical association*, 97(460):1090–1098, 2002.

596

597 Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First
598 steps. *Social networks*, 5(2):109–137, 1983.

594 Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
595 system of stochastic differential equations. In *International conference on machine learning*, pp.
596 10362–10383. PMLR, 2022.

597

598 Alexia Jolicoeur-Martineau, Kilian Fatras, and Tal Kachman. Generating and imputing tabular data
599 via diffusion and flow-based gradient-boosted trees. In *International conference on artificial
600 intelligence and statistics*, pp. 1288–1296. PMLR, 2024.

601 Brian Karrer and Mark EJ Newman. Stochastic blockmodels and community structure in networks.
602 *Physical Review E—Statistical, Nonlinear, and Soft Matter Physics*, 83(1):016107, 2011.

603

604 Thomas N Kipf and Max Welling. Variational graph auto-encoders. *arXiv preprint arXiv:1611.07308*,
605 2016.

606

607 Tamara G Kolda, Ali Pinar, Todd Plantenga, and Comandur Seshadhri. A scalable generative graph
608 model with community structure. *SIAM Journal on Scientific Computing*, 36(5):C424–C452, 2014.

609

610 Keith Levin and Elizaveta Levina. Bootstrapping networks with latent space structure. *arXiv preprint
arXiv:1907.10821*, 2019.

611

612 Jinming Li, Shihao Wu, Chengyu Cui, Gongjun Xu, and Ji Zhu. Statistical inference on latent space
613 models for network data. *arXiv preprint arXiv:2312.06605v3*, 2025.

614

615 Mufei Li, Eleonora Kreačić, Vamsi K Potluru, and Pan Li. Graphmaker: Can diffusion models
616 generate large attributed graphs? *arXiv preprint arXiv:2310.13833*, 2023.

617

618 Yibo Li, Liangren Zhang, and Zhenming Liu. Multi-objective de novo drug design with conditional
619 graph generative model. *Journal of cheminformatics*, 10(1):33, 2018a.

620

621 Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative
622 models of graphs. *arXiv preprint arXiv:1803.03324*, 2018b.

623

624 Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel
625 Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent attention networks.
626 *Advances in neural information processing systems*, 32, 2019.

627

628 Tianze Luo, Zhanfeng Mo, and Sinno Jialin Pan. Fast graph generation via spectral diffusion. *IEEE
Transactions on Pattern Analysis and Machine Intelligence*, 46(5):3496–3508, 2023.

629

630 Zhuang Ma, Zongming Ma, and Hongsong Yuan. Universal latent space model fitting for large
631 networks with edge covariates. *Journal of Machine Learning Research*, 21(4):1–67, 2020.

632

633 Ross A Maller, Gernot Müller, and Alex Szimayer. Ornstein–uhlenbeck processes and extensions.
634 *Handbook of financial time series*, pp. 421–437, 2009.

635

636 Amil Merchant, Simon Batzner, Samuel S Schoenholz, Muratahan Aykol, Gowoon Cheon, and
637 Ekin Dogus Cubuk. Scaling deep learning for materials discovery. *Nature*, 624(7990):80–85,
638 2023.

639

640 Sebastian I Moreno, Jennifer Neville, and Sergey Kirshner. Learning mixed kronecker product
641 graph models with simulated method of moments. In *Proceedings of the 19th ACM SIGKDD
642 international conference on Knowledge discovery and data mining*, pp. 1052–1060, 2013.

643

644 Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Permu-
645 tation invariant graph generation via score-based generative modeling. In *International conference
646 on artificial intelligence and statistics*, pp. 4474–4484. PMLR, 2020.

647

648 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
649 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
650 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

651

652 Yousef Saad. *Iterative methods for sparse linear systems*. SIAM, 2003.

648 Guillaume Salha, Romain Hennequin, Jean-Baptiste Remy, Manuel Moussallam, and Michalis
649 Vazirgiannis. Fastgae: Scalable graph autoencoders with stochastic subgraph decoding. *Neural*
650 *Networks*, 142:1–19, 2021.

651

652 Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
653 graph neural network model. *IEEE transactions on neural networks*, 20(1):61–80, 2008.

654

655 Robin M Schmidt. Recurrent neural networks (rnns): A gentle introduction and overview. *arXiv*
656 *preprint arXiv:1912.05911*, 2019.

657

658 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
659 learning using nonequilibrium thermodynamics. In *International conference on machine learning*,
pp. 2256–2265. pmlr, 2015.

660

661 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
662 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*
663 *arXiv:2011.13456*, 2020.

664

665 Will Wei Sun and Lexin Li. Store: sparse tensor response regression and neuroimaging analysis.
666 *Journal of Machine Learning Research*, 18(135):1–37, 2017.

667

668 Amanda L Traud, Peter J Mucha, and Mason A Porter. Social structure of facebook networks. *Physica*
669 *A: Statistical Mechanics and its Applications*, 391(16):4165–4180, 2012.

670

671 Stephen Tu, Ross Boczar, Max Simchowitz, Mahdi Soltanolkotabi, and Ben Recht. Low-rank
solutions of linear matrix equations via procrustes flow. In *International conference on machine*
672 *learning*, pp. 964–973. PMLR, 2016.

673

674 Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
675 *Advances in neural information processing systems*, 34:11287–11302, 2021.

676

677 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
678 Bengio. Graph attention networks. *arXiv preprint arXiv:1710.10903*, 2017.

679

680 Clement Vignac, Igor Krawczuk, Antoine Sraordin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
681 Digress: Discrete denoising diffusion for graph generation. *arXiv preprint arXiv:2209.14734*,
682 2022.

683

684 Pascal Vincent. A connection between score matching and denoising autoencoders. *Neural computation*,
685 23(7):1661–1674, 2011.

686

687 Yikai Wang and Ying Guo. Locus: A regularized blind source separation method with low-rank
structure for investigating brain connectivity. *The annals of applied statistics*, 17(2):1307, 2023.

688

689 Shihao Wu, Junyi Yang, Gongjun Xu, and Ji Zhu. Denoising diffused embeddings: a generative
690 approach for hypergraphs. *arXiv preprint arXiv:2501.01541*, 2025.

691

692 Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming He. Exploring randomly wired neural
693 networks for image recognition. In *Proceedings of the IEEE/CVF international conference on*
694 *computer vision*, pp. 1284–1293, 2019.

695

696 Minkai Xu, Alexander S Powers, Ron O Dror, Stefano Ermon, and Jure Leskovec. Geometric latent
697 diffusion models for 3d molecule generation. In *International Conference on Machine Learning*,
698 pp. 38592–38610. PMLR, 2023.

699

700 Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on ground-truth.
701 In *Proceedings of the ACM SIGKDD workshop on mining data semantics*, pp. 1–8, 2012.

702

703 Yelp. Yelp open dataset. Online resource, 2024. URL <https://business.yelp.com/data/resources/open-dataset/>.

704

705 Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generating
706 realistic graphs with deep auto-regressive models. In *International conference on machine learning*,
707 pp. 5708–5717. PMLR, 2018.

702 Xuefei Zhang, Gongjun Xu, and Ji Zhu. Joint latent space models for network data with high-
703 dimensional node variables. *Biometrika*, 109(3):707–720, 2022.
704

705 Cai Zhou, Xiyuan Wang, and Muhan Zhang. Unifying generation and prediction on graphs with
706 latent graph diffusion. *Advances in Neural Information Processing Systems*, 37:61963–61999,
707 2024.

708 Yanqiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, and Shu Wu. A survey
709 on deep graph generation: Methods and applications. In *Learning on Graphs Conference*, pp. 47–1.
710 PMLR, 2022.

711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 APPENDIX
 757

758 We provide experimental details, additional numerical results, and proofs of the theoretical results
 759 in the appendix. Appendix A collects proofs of the theoretical results in Section 3. Appendix B
 760 then discusses the connections between latent space models and several classical network models.
 761 Appendix C contains complete experimental details. Specifically, Appendix C.1 covers the details
 762 of the estimation algorithms. Appendix C.2 specifies the setup for the simulated networks and
 763 provides details on the real-world networks, as well as their preprocessing pipelines. Appendix C.3
 764 includes the detailed description of the evaluation metrics in our experiments. Appendix C.4 contains
 765 implementation details for both SyNGLER and the baselines, including the device environments
 766 on which they are implemented and the hyperparameter configurations used. Appendix C.5 and
 767 Appendix C.7 collect additional results for the simulated networks and the real-world networks,
 768 respectively. Appendix C.8 provides additional numerical results on the efficiency analysis of
 769 different methods. We also provide a heuristic analysis on the sample complexities of different
 770 methods in Appendix C.9. The performance of the proposed method on large scale dataset is included
 771 in Appendix D. In Appendix E, we illustrate how to extend the SyNGLER to the attributed networks
 772 with demonstrations on the real-world datasets. In Appendix F, we introduce the pipeline of assessing
 773 ML utilities of the generated networks with experimental results. Finally, in Appendix G, we present
 774 a comprehensive visualization comparison of the generated networks from Section 4.
 775

776 A PROOFS IN SECTION 3
 777

778 A.1 PROOF OF THEOREM 3.1
 779

780 *Proof of Theorem 3.1.* Note that the marginal distribution of the network A can be expressed as the
 781 product of the conditional distribution and the marginal distribution of the latent positions. Because
 782 of the identifiability issue of Z in model Section 2.1, we consider any transform $\mathcal{T} : \Phi = (Z, \alpha) \mapsto$
 783 $(ZU, \alpha) \in \mathbb{R}^{n \times (r+1)}$, where U is a r -dimensional rotation matrix. The transform \mathcal{T} applied on Φ
 784 does not change the conditional distribution of A . We define $\mathbb{P}_{\mathcal{T}\Phi^*}$ as the distribution of $\mathcal{T}\Phi^*$, then
 785

$$\begin{aligned} d_{\text{KL}}(\mathbb{P}_A \parallel \mathbb{P}_A^A) &= \mathbb{E}_{\mathbb{P}_{A \mid \Phi} \times \mathbb{P}_0^{\otimes n}} \left[\log \frac{\mathbb{P}_{A \mid \mathcal{T}\Phi^*}}{\mathbb{P}_{\tilde{A} \mid \tilde{\Phi}}}(\Phi) + \log \frac{\mathbb{P}_{\mathcal{T}\Phi^*}}{\mathbb{P}_{\tilde{\Phi}}^A}(\Phi) \right] \\ &= \mathbb{E}_{\mathbb{P}_{A \mid \Phi} \times \mathbb{P}_0^n} \left[2 \sum_{i < j} \log \frac{p(A_{ij} \mid z_i^\top z_j + \alpha_i + \alpha_j + \rho^*)}{p(\tilde{A}_{ij} \mid z_i^\top z_j + \alpha_i + \alpha_j + \hat{\rho})} \right] + d_{\text{KL}}(\mathbb{P}_{\mathcal{T}\Phi^*} \parallel \mathbb{P}_{\tilde{\Phi}}^A) \\ &= n^2 \mathbb{E}_{\mathbb{P}_{A_{12} \mid \phi_1, \phi_2}} \left[\log \frac{p(A_{12} \mid z_1^\top z_2 + \alpha_1 + \alpha_2 + \rho^*)}{p(A_{12} \mid z_1^\top z_2 + \alpha_1 + \alpha_2 + \hat{\rho})} \right] + d_{\text{KL}}(\mathbb{P}_{\mathcal{T}\Phi^*} \parallel \mathbb{P}_{\tilde{\Phi}}^A). \end{aligned}$$

794 Here the last equality holds because of the exchangeability of the distributions of $(\phi_1, \phi_2, \dots, \phi_n)$.
 795 We decompose the K-L divergence in the right-hand side as follows
 796

$$\begin{aligned} d_{\text{KL}}(\mathbb{P}_{\mathcal{T}\Phi^*} \parallel \mathbb{P}_{\tilde{\Phi}}^A) &= n \cdot \mathbb{E}_{\mathbb{P}_0^{\mathcal{T}}} \left[\log \frac{\mathbb{P}_0^{\mathcal{T}}}{\mathbb{P}_{\tilde{\Phi}}^A}(\phi) \right] \\ &= n \cdot \mathbb{E}_{\mathbb{P}_0^{\mathcal{T}}} \left[\log \frac{\mathbb{P}_0^{\mathcal{T}}}{\mathbb{P}_{\hat{\phi}}^A}(\phi) + \log \frac{\mathbb{P}_{\hat{\phi}}^A}{\mathbb{P}_{\tilde{\Phi}}^A}(\phi) \right] \\ &= n \cdot \left(\mathbb{E}_{\mathbb{P}_0^{\mathcal{T}}} \left[\log \frac{\mathbb{P}_0^{\mathcal{T}}}{\mathbb{P}_{\hat{\phi}}^A}(\phi) \right] + \mathbb{E}_{\mathbb{P}_0^{\mathcal{T}}} \left[\log \frac{\mathbb{P}_{\hat{\phi}}^A}{\mathbb{P}_{\tilde{\Phi}}^A}(\phi) \right] - \mathbb{E}_{\mathbb{P}_{\hat{\phi}}} \left[\log \frac{\mathbb{P}_{\hat{\phi}}^A}{\mathbb{P}_{\tilde{\Phi}}^A}(\phi) \right] \right. \\ &\quad \left. + \mathbb{E}_{\mathbb{P}_{\hat{\phi}}} \left[\log \frac{\mathbb{P}_{\hat{\phi}}^A}{\mathbb{P}_{\tilde{\Phi}}^A}(\phi) \right] \right). \end{aligned}$$

808 Here $\mathbb{P}_{\hat{\phi}}$ is the marginal distribution of $\hat{\phi}_i$ for each i , which is the same for all i because of the
 809 exchangeability. Minimizing over all transform \mathcal{T} concludes the proof of the theorem. \square

810 A.2 PROOF OF THEOREM 3.2
811

812 *Proof of Theorem 3.2.* We denote $\theta_{ij} = z_i^\top z_j + \alpha_i + \alpha_j$. The Lipschitz continuity of $l_{ij}(\pi) =$
813 $\log p(A_{ij} | \pi)$ in π implies that

$$814 \quad 815 \quad \left| \log p(A_{ij} | \theta_{ij} + \rho^*) - \log p(A_{ij} | \theta_{ij} + \hat{\rho}) \right| \leq M|\rho^* - \hat{\rho}|.$$

816 Now combining with Lemma A.4 implies the desired result. \square

817 A.3 PROOF OF THEOREM 3.3
818

819 *Proof of Theorem 3.3.* Fix $\phi \in \mathbb{R}^{r+1}$ and set $\psi := \text{proj}_{\mathcal{G}_{\gamma_n}}(\phi) \in \mathcal{G}_{\gamma_n}$. By the definition of q_{γ_n} , for
820 any grid point $\psi \in \mathcal{G}_{\gamma_n}$ we can write
821

$$822 \quad 823 \quad q_{\gamma_n}(\psi) = \int_{\mathbb{R}^{r+1}} \prod_{i=1}^{r+1} \mathbf{1}\{u_i \in [\psi_i - \gamma_n/2, \psi_i + \gamma_n/2]\} p_0(u) du = \int_{C(\psi)} p_0(u) du,$$

825 where $C(\psi) := \prod_{i=1}^{r+1} [\psi_i - \gamma_n/2, \psi_i + \gamma_n/2]$ is the hypercube that is centered at ψ and has side
826 length γ_n with volume γ_n^{r+1} . By the definition of p_{γ_n} , we have

$$827 \quad 828 \quad p_{\gamma_n}(\phi) = q_{\gamma_n}(\text{proj}_{\mathcal{G}_{\gamma_n}}(\phi)) \gamma_n^{-(r+1)} \\ 829 \quad = q_{\gamma_n}(\psi) \gamma_n^{-(r+1)} \\ 830 \quad = \frac{1}{\gamma_n^{r+1}} \int_{C(\psi)} p_0(u) du.$$

832 Thus $p_{\gamma_n}(\phi)$ is exactly the average of p_0 over the cube $C(\psi)$.
833

834 Next we bound the distance between ϕ and any point $u \in C(\psi)$. Using the triangle inequality, we
835 have for any $u \in C(\psi)$ that

$$836 \quad \|u - \phi\| \leq \|u - \psi\| + \|\psi - \phi\| \leq \sqrt{r+1} \gamma_n.$$

838 Since $p_{\gamma_n}(\phi)$ is a local average of p_0 over the cube $C(\psi)$, we have by Lipschitz continuity of p_0 that

$$839 \quad 840 \quad |p_0(\phi) - p_{\gamma_n}(\phi)| = \left| p_0(\phi) - \frac{1}{\gamma_n^{r+1}} \int_{C(\psi)} p_0(u) du \right| \\ 841 \quad = \frac{1}{\gamma_n^{r+1}} \left| \int_{C(\psi)} (p_0(\phi) - p_0(u)) du \right| \\ 842 \quad \leq \frac{1}{\gamma_n^{r+1}} \int_{C(\psi)} |p_0(\phi) - p_0(u)| du \\ 843 \quad \leq \frac{1}{\gamma_n^{r+1}} \int_{C(\psi)} L \gamma_n \sqrt{r+1} du \\ 844 \quad = L \gamma_n \sqrt{r+1} \cdot \frac{|C(\psi)|}{\gamma_n^{r+1}} \\ 845 \quad = L \gamma_n \sqrt{r+1}.$$

853 Since ϕ was arbitrary, this completes the proof. \square
854

855 A.4 PROOF OF LEMMA 3.1
856

857 *Proof of Lemma 3.1.* For fixed $\phi \in \mathcal{G}$, using Hoeffding's inequality yields that

$$858 \quad 859 \quad \mathbb{P}(|q_{\gamma_n}(\phi) - \hat{q}_{\gamma_n}(\phi)| \geq t) \leq 2 \exp(-2nt^2).$$

860 Using the union bound over all $(R/\gamma_n)^{r+1}$ points in \mathcal{G}_{γ_n} yields that

$$861 \quad 862 \quad \mathbb{P}\left(\max_{\phi \in \mathcal{G}_{\gamma_n}} |q_{\gamma_n}(\phi) - \hat{q}_{\gamma_n}(\phi)| \geq t\right) \leq 2(R/\gamma_n)^{r+1} \exp(-2nt^2).$$

863 Therefore, setting $t = \sqrt{(r+1) \log(R/\gamma_n) + \log(2/\delta)} / \sqrt{2n}$ yields the desired result. \square

864 A.5 PROOF OF THEOREM 3.4
865

866 *Proof of Theorem 3.4.* Define the event $\mathcal{E}_n = \{n^{-1} \sum_{i \leq n} \|\hat{\phi}_i - \mathcal{T}\phi_i^*\|_2^2 \leq \gamma_n'^2\}$, where $\gamma_n' =$
867 $\Omega((w_n n)^{-1/2 + \epsilon/2})$ for some fixed $\epsilon > 0$. Then, we have that $\mathbb{P}(\mathcal{E}_n) \rightarrow 1$ as $n \rightarrow \infty$, as shown in
868 Lemma A.4. On the other hand, we have that
869

870
$$\max_{\phi \in \mathcal{G}_{\gamma_n}} |\check{q}_{\gamma_n} - \hat{q}_{\gamma_n}| \leq \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{\text{proj}_{\mathcal{G}_{\gamma_n}}(\hat{\phi}_i) \neq \text{proj}_{\mathcal{G}_{\gamma_n}}(\mathcal{T}\phi_i^*)\}$$

871
872
$$\leq \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{\|\hat{\phi}_i - \mathcal{T}\phi_i^*\|_2 > 2\gamma_n\}$$

873
874
$$\leq \frac{1}{n} \sum_{i=1}^n \|\hat{\phi}_i - \mathcal{T}\phi_i^*\|_2^2 / (4\gamma_n^2).$$

875
876
877

878 Here, the last inequality holds by Markov's inequality. Therefore, we have that
879

880
$$\mathbb{P}\left(\max_{\phi \in \mathcal{G}_{\gamma_n}} |\check{q}_{\gamma_n} - \hat{q}_{\gamma_n}| > \epsilon\right) \leq \mathbb{P}\left(\frac{1}{n} \sum_{i=1}^n \|\hat{\phi}_i - \mathcal{T}\phi_i^*\|_2^2 > 4\epsilon\gamma_n^2\right)$$

881
882
$$\leq \mathbb{P}(\mathcal{E}_n^c) + \mathbb{P}\left(\frac{1}{n} \sum_{i=1}^n \|\hat{\phi}_i - \mathcal{T}\phi_i^*\|_2^2 > 4\epsilon\gamma_n^2 \mid \mathcal{E}_n\right) \mathbb{P}(\mathcal{E}_n).$$

883
884
885

886 For sufficiently large n and fixed ϵ , we have that $4\epsilon\gamma_n^2 > \gamma_n'^2$, therefore the second term vanishes
887 for sufficiently large n . And the left-hand-side is upper bounded by $\mathbb{P}(\mathcal{E}_n^c)$, which goes to zero as
888 $n \rightarrow \infty$. This concludes the proof of Theorem 3.4. \square
889

890 A.6 SUPPORTING LEMMAS AND PROOFS
891

892 **Lemma A.1** (Theorem 5 in Chung & Radcliffe (2011)). *Let X_1, \dots, X_m be independent random
893 $n \times n$ Hermitian matrices. Assume $\|X_i - \mathbb{E}X_i\| \leq M$ for all i , and put*
894

895
$$\nu^2 = \left\| \sum_{i=1}^m \text{Var}(X_i) \right\|.$$

896

897 Let $X = \sum_{i=1}^m X_i$. Then for any $a > 0$,
898

899
$$\mathbb{P}(\|X - \mathbb{E}X\| > a) \leq 2n \exp\left(-\frac{a^2}{2\nu^2 + \frac{2}{3}Ma}\right).$$

900

901 **Lemma A.2.** *Under the model in Section 2.1 and Assumption 2.1, let $\partial l^* \in \mathbb{R}^{n \times n}$ be the matrix
902 where each entry is $\partial l_{ij}^* = l'_{A_{ij}}(\pi_{ij}^*)$. Then we have that*
903

904
$$\|\partial l^*\| = O_p(w_n^{1/2} n^{1/2} (\log n)^{1/2}).$$

905

906 *Proof of Lemma A.2.* Let $E^{i,j}$ be the $n \times n$ matrix with 1 in the (i, j) and (j, i) positions and 0
907 elsewhere. Denote $p_{ij}^* = \mathbb{E}_A[l'_{A_{ij}}(\pi_{ij}^*)]$. To use Lemma A.1, write ∂l^* as the sum of matrices $A^{i,j}$
908 defined as
909

910
$$A^{i,j} = (A_{ij} - p_{ij}^*) E^{i,j}, \quad 1 \leq i < j \leq n,$$

911 so that $\partial l^* = \sum_{i=1}^n \sum_{j=i+1}^n A^{i,j}$. Note that $\|A^{i,j}\| \leq 1$, $\mathbb{E}[A^{i,j}] = 0_{n \times n}$, and
912

913
$$\mathbb{E}[(A^{i,j})^2] = (p_{ij}^* - (p_{ij}^*)^2)(E^{i,i} + E^{j,j}).$$

914

915 Let
916

917
$$\nu^2 = \left\| \sum_{i=1}^n \sum_{j=i+1}^n \mathbb{E}[(A^{i,j})^2] \right\| = \left\| \sum_{i=1}^n \sum_{j=i+1}^n (p_{ij}^* - (p_{ij}^*)^2)(E^{i,i} + E^{j,j}) \right\|.$$

918 Then

$$\begin{aligned}
919 \quad \nu^2 &= \left\| \sum_{i=1}^n \left(\sum_{j=i+1}^n (p_{ij}^* - (p_{ij}^*)^2) \right) E^{i,i} + \sum_{j=2}^n \left(\sum_{i=1}^{j-1} (p_{ij}^* - (p_{ij}^*)^2) \right) E^{j,j} \right\| \\
920 \quad &\leq 2 \max \left\{ \max_{i=1, \dots, n} \sum_{j=1}^n (p_{ij}^* - (p_{ij}^*)^2) \right\} \leq 2n \max_{i,j} (p_{ij}^* - (p_{ij}^*)^2) \leq 2n \max_{i,j} p_{ij}^*.
\end{aligned}$$

927 For $\epsilon' > 0$, we set $a = \sqrt{5n \max_{i,j} p_{ij}^* \log(2n/\epsilon')}$. By Assumption 2.1, for sufficiently large n , it
928 holds that

$$929 \quad n \max_{i,j} p_{ij}^* \geq 2 \sqrt{\frac{5}{3} n \max_{i,j} p_{ij}^* \log(2n/\epsilon')}.$$

930 Applying Lemma A.1, we obtain

$$\begin{aligned}
931 \quad \mathbb{P}(\|\partial l^*\| > a) &\leq 2n \exp \left\{ -\frac{5n \max_{i,j} p_{ij}^* \log(2n/\epsilon')}{4n \max_{i,j} p_{ij}^* + 2\sqrt{\frac{5}{3} n \max_{i,j} p_{ij}^* \log(2n/\epsilon')}} \right\} \\
932 \quad &\leq 2n \exp\{-\log(2n/\epsilon')\} = \epsilon'.
\end{aligned}$$

933 Noting that $\max_{i,j} p_{ij}^* \asymp w_n$ as $n \rightarrow \infty$, there exists $M' > 0$ such that, for any $\epsilon' > 0$,

$$934 \quad \mathbb{P}(\|\partial l^*\| \geq M' \sqrt{nw_n \log(n/\epsilon')}) \leq \epsilon',$$

935 which concludes the proof. \square

936 We need the following lemma to characterize the estimation error of the latent embedding from the
937 graph.

938 **Lemma A.3** (Lemma 5.4 in Tu et al. (2016)). *Suppose that $Z_1, Z_2 \in \mathbb{R}^{n \times r}$ are two matrices such
939 that $\lambda_{\min}(Z_1^\top Z_1) > \sigma$. Then we have*

$$940 \quad \inf_{U \in \mathcal{O}(r)} \|Z_1 - Z_2 U\|_F \leq \frac{1}{2(\sqrt{2} - 1)\sigma^2} \|Z_1 Z_1^\top - Z_2 Z_2^\top\|_F.$$

941 **Lemma A.4.** *Suppose that each $l'_{ij}(\pi_{ij}^*)$ is i.i.d. bounded with mean zero. Then for any $\epsilon > 0$, there
942 exists a constant $M > 0$ such that with probability at least $1 - \epsilon$, there exists a transform \mathcal{T} such that*

$$943 \quad \frac{1}{n} \sum_{i=1}^n \|\hat{\phi}_i - \mathcal{T}\phi_i^*\|_2^2 = O_p(w_n^{-1} n^{-1} \log n), \quad \text{and} \quad |\hat{\rho} - \rho^*| = O_p(w_n^{-1/2} n^{-1/2} \log n).$$

944 **Proof of Lemma A.4.** Let $\pi_{ij} = z_i^\top z_j + \alpha_i + \alpha_j + \rho$ and $\hat{\pi}$ be its estimated version. Applying
945 Taylor's expansion to each l_{ij} at π_{ij}^* yields that

$$946 \quad \sum_{i < j} l_{ij}(\hat{\pi}_{ij}) = \sum_{i < j} l_{ij}(\pi_{ij}^*) + \sum_{i < j} l'_{ij}(\pi_{ij}^*)(\hat{\pi}_{ij} - \pi_{ij}^*) + \frac{1}{2} \sum_{i < j} l''_{ij}(\xi_{ij})(\hat{\pi}_{ij} - \pi_{ij}^*)^2,$$

947 where each $\xi_{ij} \in [\min\{\hat{\pi}_{ij}, \pi_{ij}^*\}, \max\{\hat{\pi}_{ij}, \pi_{ij}^*\}]$. Using the optimality condition, it holds that
948 $\sum_{i < j} l_{ij}(\hat{\pi}_{ij}) \geq \sum_{i < j} l_{ij}(\pi_{ij}^*)$. And therefore

$$\begin{aligned}
949 \quad \sum_{i < j} l'_{ij}(\pi_{ij}^*)(\hat{\pi}_{ij} - \pi_{ij}^*) &\geq \sum_{i < j} -l''_{ij}(\xi_{ij})(\hat{\pi}_{ij} - \pi_{ij}^*)^2 \\
950 \quad &\geq \frac{1}{4} w_n \cdot e^{-2R^2} \sum_{i < j} |\hat{\pi}_{ij} - \pi_{ij}^*|^2. \tag{4}
\end{aligned}$$

To facilitate the matrix inequalities, we define $\partial l^*, \Pi^*, \hat{\Pi} \in \mathbb{R}^{n \times n}$ such that $\partial l_{ij}^* = l'_{A_{ij}}(\pi_{ij}^*)$, $\Pi_{ij}^* = \pi_{ij}^* = z_i^{*\top} z_j^* + \alpha_i^* + \alpha_j^* + \rho_n^*$, and $\hat{\Pi}_{ij} = \hat{\pi}_{ij} = \hat{z}_i^\top \hat{z}_j + \hat{\alpha}_i + \hat{\alpha}_j + \hat{\rho}$. Then, we can upper bound the left-handed-side in Eq. (4) as

$$\begin{aligned} \sum_{i < j} l'_{ij}(\pi_{ij}^*)(\hat{\pi}_{ij} - \pi_{ij}^*) &\leq |\langle \partial l^*, \hat{\Pi} - \Pi^* \rangle| \\ &\leq \sqrt{2r+3} \cdot \|\partial l^*\| \cdot \|\hat{\Pi} - \Pi^*\|_{\text{F}}. \end{aligned} \quad (5)$$

Last inequality holds since $\hat{\Pi} - \Pi^*$ has rank at most $2r+3$. Invoking Lemma A.2, we have that $\|\partial l^*\| = O_p(w_n^{1/2} n^{1/2} \log n)$. Combining Eqs. (4) and (5) yields that $\|\hat{\Pi} - \Pi^*\|_{\text{F}} = O_p(w_n^{-1/2} n^{1/2} \log n)$.

Before obtaining the estimation error of $\hat{\rho}$, we need to involve an identifiability transform over Z^*, α^* , since their sample average is not necessarily zero. Define $\beta = \frac{1}{n} Z^{*\top} \mathbf{1}_n$, $g = Z^* Z^{*\top} \mathbf{1}_n$, $a = \mathbf{1}_n^\top \alpha^*$ and $u = \mathbf{1}_n^\top Z^* Z^{*\top} \mathbf{1}_n$. Then we further define $Z^\dagger = Z^* - \mathbf{1}_n \beta^\top$, $\alpha^\dagger = \alpha^* + \frac{1}{2n} g - \frac{a}{n} \cdot \mathbf{1}_n - \frac{u}{n^2} \cdot \mathbf{1}_n$, and $\rho^\dagger = \rho^* + \frac{2a}{n} + \frac{u}{n^2}$. Then, it is evident that

$$Z^{\dagger\top} Z^\dagger + \alpha^\dagger \mathbf{1}_n^\top + \mathbf{1}_n \alpha^{\dagger\top} + \rho^\dagger \mathbf{1}_n \mathbf{1}_n^\top = Z^* Z^{*\top} + \alpha^* \mathbf{1}_n^\top + \mathbf{1}_n \alpha^{*\top} + \rho^* \mathbf{1}_n \mathbf{1}_n^\top.$$

Additionally, we have that $Z^\dagger \mathbf{1}_n = 0_n$ and $\mathbf{1}_n^\top \alpha^\dagger = 0$. It then follows that

$$\|Z^\dagger - Z^*\|_{\text{F}} \leq \sqrt{n} \cdot \|\beta\|_2 = O_p(1), \quad (6)$$

$$\|\alpha^\dagger - \alpha^*\|_2 \leq \frac{1}{2n} \|g\|_2 + \frac{|a|}{n} \cdot \sqrt{n} + \frac{|u|}{n^2} \cdot \sqrt{n} = O_p(1), \quad (7)$$

$$|\rho^\dagger - \rho^*| \leq \frac{2|a|}{n} + \frac{|u|}{n^2} = O_p(n^{-1/2}). \quad (8)$$

On the other hand, we can expand $\|\hat{\Pi} - \Pi^*\|_{\text{F}}^2$ as

$$\begin{aligned} \|\hat{\Pi} - \Pi^*\|_{\text{F}}^2 &= \|\hat{Z} \hat{Z}^\top - Z^\dagger Z^{\dagger\top}\|_{\text{F}}^2 + \|(\hat{\alpha} - \alpha^\dagger) \mathbf{1}_n^\top + \mathbf{1}_n (\alpha^\dagger - \hat{\alpha})^\top\|_{\text{F}}^2 + n^2 |\hat{\rho} - \rho^\dagger|^2 \\ &\quad + 2 \langle \hat{Z} \hat{Z}^\top - Z^\dagger Z^{\dagger\top}, (\hat{\alpha} - \alpha^\dagger) \mathbf{1}_n^\top + \mathbf{1}_n (\alpha^\dagger - \hat{\alpha})^\top \rangle \\ &\quad + 2 \langle \hat{Z} \hat{Z}^\top - Z^\dagger Z^{\dagger\top}, (\hat{\rho} - \rho^\dagger) \mathbf{1}_n \mathbf{1}_n^\top \rangle \\ &\quad + 2 \langle (\hat{\alpha} - \alpha^\dagger) \mathbf{1}_n^\top + \mathbf{1}_n (\alpha^\dagger - \hat{\alpha})^\top, (\hat{\rho} - \rho^\dagger) \mathbf{1}_n \mathbf{1}_n^\top \rangle \\ &= \|\hat{Z} \hat{Z}^\top - Z^\dagger Z^{\dagger\top}\|_{\text{F}}^2 + 2n \|\hat{\alpha} - \alpha^\dagger\|^2 + n^2 |\hat{\rho} - \rho^\dagger|^2. \end{aligned}$$

Here the second line holds because $Z^\dagger \mathbf{1}_n = 0_n$ and $\mathbf{1}_n^\top \alpha^\dagger = 0$. Combining with the fact that $\|\hat{\Pi} - \Pi^*\|_{\text{F}}^2 = O_p(w_n^{-1} n \log n)$, we have that

$$\|\hat{Z} \hat{Z}^\top - Z^\dagger Z^{\dagger\top}\|_{\text{F}}^2 = O_p(w_n^{-1} n \log^2 n)$$

$$n^{-1} \|\hat{\alpha} - \alpha^\dagger\|_2^2 = O_p(w_n^{-1} n^{-1} \log^2 n)$$

$$|\hat{\rho} - \rho^\dagger|^2 = O_p(w_n^{-1} n^{-1} \log^2 n).$$

On the other hand, we have that $\lambda_{\min}(Z^\dagger Z^\dagger) = \Omega_p(n)$ because of Assumption 2.1. Using Lemma A.3, we have that $n^{-1} \|Z^\dagger - \hat{Z} U\|_{\text{F}}^2 = O_p(w_n^{-1} n^{-1} \log^2 n)$ for some rotation matrix U . In this sense, the fluctuation in Eqs. (6) to (8) is always of smaller magnitude. Thus, the desired result follows. \square

B CONNECTIONS BETWEEN CLASSICAL NETWORK GENERATIVE MODELS AND THE LSM

We illustrate the connection between these models and the latent space model below. First of all, the general latent space network model assumes that each $A_{ij} \sim p(\cdot | \pi_{ij})$ where $\pi_{ij} = z_i^\top z_j + \alpha_i + \alpha_j$ and $p(\cdot | \pi)$ is a link function that can be chosen flexibly. Below, we explain its connection to several classical network models with details. We remark that some classical node-embedding models already belong to the latent space model. For example:

1026 • The Chung-Lu graph model (Chung & Lu, 2002) assumes that each node i is equipped
 1027 with a degree parameter $w_i > 0$, and lets $W := \sum_{k=1}^n w_k$ be the total "weight". This
 1028 model assumes independent edges with $\mathbb{P}(A_{ij} = 1) = w_i w_j / W$. We can then construct
 1029 the latent embedding for the i -th node as $z_i = \frac{w_i}{\sqrt{W}} \in \mathbb{R}$, and collect them into the
 1030 embedding matrix $Z = (z_1, \dots, z_n)^\top \in \mathbb{R}^{n \times 1}$. With this parametrization, we have that
 1031 $\mathbb{E}[A] = ZZ^\top$. Therefore, the Chung-Lu model is a latent space model with a linear link
 1032 function $p(\cdot | \pi) = \text{Bernoulli}(\pi)$.
 1033
 1034 • The random dot product graph (RDPG) model (Athreya et al., 2018) assumes that each
 1035 node i has a latent position $z_i \in \mathbb{R}^r$ such that $z_i^\top z_j \in [0, 1]$ for all i, j . With the embedding
 1036 matrix $Z = (z_1, \dots, z_n)^\top \in \mathbb{R}^{n \times r}$, RDPG assumes that $A \sim \text{Bernoulli}(ZZ^\top)$, which is
 1037 exactly a latent space model with the linear link function $p(\cdot | \pi) = \text{Bernoulli}(\pi)$.
 1038

1038 Besides, many block-structured graph models also fall into the scope of latent space network models.
 1039 For example:

1040
 1041 • The (degree corrected) block model (DCBM/SBM) (Holland et al., 1983; Karrer & Newman,
 1042 2011), similar to the BTER model, assumes that each node is equipped with a cluster
 1043 label $g_i \in [K]$ and a degree parameter θ_i . Then it assumes that $\mathbb{E}[A]_{ij} = \theta_i \theta_j B_{g(i)g(j)}$
 1044 where $B \in [0, 1]^{K \times K}$ is symmetric and positive semi-definite, and $\theta_i \in [0, 1]$ is the degree
 1045 parameter for node i . Let $B = UU^\top$ be the symmetric decomposition of B , where U_k
 1046 is the k -th row of U . Then, we can construct the latent embedding for the i -th node as
 1047 $z_i = (\theta_i U_{g_i}^\top) \in \mathbb{R}^K$. Using the linear link function $p(\cdot | \pi) = \text{Bernoulli}(\pi)$, it can be
 1048 formulated as the latent space model $A \sim p(\cdot | ZZ^\top)$
 1049
 1050 • Mixed-Membership block models (Airoldi et al., 2008). Beyond classical block models,
 1051 this model assumes that each node is associated with multiple blocks. Specifically, this
 1052 model assumes that $\mathbb{E}[A]_{ij} = \pi_i B \pi_j$, where each π_i belongs to the probability simplex
 1053 $\Delta_K = \{\pi : \pi \in [0, 1]^K, \|\pi\|_1 = 1\}$. Whenever B is positive definite with symmetric
 1054 decomposition $B = UU^\top$ with $U \in \mathbb{R}^{K \times r}$, we can construct $Z = (z_1, \dots, z_n)^\top$ such that
 1055 its i -th row vector $z_i = U^\top \pi_i \in \mathbb{R}^K$. With the linear link function $p(\cdot | \pi) = \text{Bernoulli}(\pi)$,
 1056 we have that $A \sim \text{Bernoulli}(ZZ^\top)$, which is an instance of latent space model.
 1057

1057 In general, we see that these classical methods can generally be approximated by the latent space
 1058 model with a suitable choice of the latent embedding and the link function. Therefore, we believe
 1059 that the latent space model is sufficiently general to cover classical network models.

1061 C SUPPLEMENTAL MATERIALS FOR EXPERIMENTS

1062 C.1 DEFERRED ALGORITHMS

1063 **Estimation in the latent space model.** Suppose that we observe a network A , and we want to
 1064 fit a latent space network model on A with proper conditional model $p(\cdot | \cdot)$ and candidate latent
 1065 dimension r . We use the following Algorithm 2 to solve Eq. (1).

1069 **Algorithm 2** Projected Gradient Descent

1070 **Require:** Network observation $A \in \mathbb{R}^{n \times n}$, model $p(\cdot | \cdot)$, stepsizes $\eta_Z, \eta_\alpha > 0$, number of iterations
 1071 $N \in \mathbb{N}$;
 1072 1: **for** $i = 0$ **to** $N - 1$ **do**
 1073 2: $\Pi \leftarrow ZZ^\top + \alpha \mathbf{1}^\top + \mathbf{1}\alpha^\top$;
 1074 3: $Z \leftarrow Z + 2\eta_Z \partial_\pi p(A|\Pi)Z$;
 1075 4: $\alpha \leftarrow \alpha + 2\eta_\alpha \partial_\pi p(A|\Pi)\mathbf{1}_n$;
 1076 5: $Z \leftarrow (Z - n^{-1}\mathbf{1}_n \mathbf{1}_n^\top Z)R$, where $R \in \mathbb{R}^{r \times r}$ is the orthonormal matrix such that $n^{-1}(Z -$
 1077 $n^{-1}\mathbf{1}_n \mathbf{1}_n^\top Z)^\top (Z - n^{-1}\mathbf{1}_n \mathbf{1}_n^\top Z)$.
 1078 6: **end for**
 1079 7: **return** $\hat{Z} = Z, \hat{\alpha} = \alpha - \alpha^\top \mathbf{1}_n / n, \hat{\rho} = \alpha^\top \mathbf{1}_n$.

1080 The convergence of Algorithm 2 in the well-specified setting can be found in [Ma et al. \(2020\)](#). In
 1081 practice, we need to use a proper initialization for Z and α . And we use the output of universal
 1082 singular value thresholding (USVT) ([Chatterjee, 2015](#)) as the initialization of Z and α . The detail of
 1083 this initialization algorithm can be found in [Ma et al. \(2020\)](#).
 1084

1085 **C.2 DATASETS DETAILS**

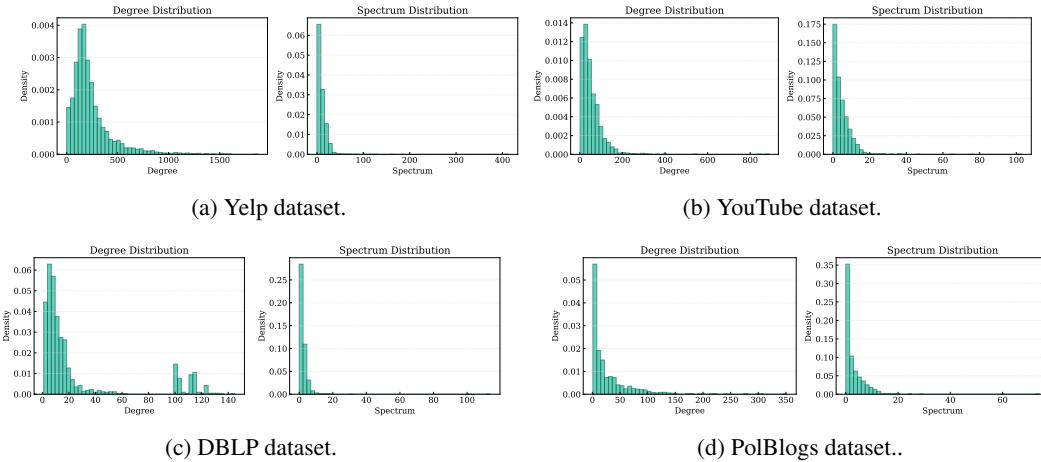
1087 **Simulated Datasets.** In the simulated datasets evaluation, we consider $(n, r) \in$
 1088 $\{500, 1000, 1500\} \times \{2, 3, 4\}$. For each (n, r) pair and each replicate $t = 1, \dots, 200$, we
 1089 generate an undirected sparse simple graph $A \in \{0, 1\}^{n \times n}$ as follows.

1090 We first draw the degree parameters $\alpha_i \stackrel{\text{i.i.d.}}{\sim} \text{Unif}([-1/2, 1/2])$ for $i = 1, \dots, n$ and set $\alpha =$
 1091 $(\alpha_1, \dots, \alpha_n)$. Let $\tilde{z}_i \in \mathbb{R}^r$ be i.i.d. realizations of $\text{proj}_{[-2/\sqrt{r}, 2/\sqrt{r}]^r} \# \mathcal{N}_r(0, I_r/r)$ (i.e., a scaled
 1092 Gaussian distribution truncated to $[-2/\sqrt{r}, 2/\sqrt{r}]^r$). We then independently draw two centers
 1093 $v^{(1)}, v^{(2)} \in \mathbb{R}^r$ from $\text{Unif}([-1, 1]^r)$. For each node, we independently sample a label L_i with
 1094 $\mathbb{P}(L_i = 1) = \mathbb{P}(L_i = 2) = 1/2$ for $i = 1, \dots, n$. Finally, we set $z'_i = \tilde{z}_i + v^{(L_i)}$ and $z_i =$
 1095 $z'_i \cdot (n^{-1} \|\sum_i z'_i z'_i^\top\|_F)^{-1/2}$.
 1096

1097 Given the latent positions and the degree parameters, we generate the network edges. We set
 1098 the sparsity parameter $\rho_n^* = -0.4 \log n$. For each pair of nodes $1 \leq i < j \leq n$, we calculate
 1099 $p_{ij} = \sigma(\alpha_i + \alpha_j + z_i^\top z_j + \rho_n^*)$. Then we independently sample $A_{ij} = A_{ij} \sim \text{Bernoulli}(p_{ij})$ for
 1100 $i < j$ and set $A_{ii} = 0$ for all $i \leq n$.

1101
 1102 **Table 4: Dataset statistics for Yelp, YouTube, DBLP and PolBlogs.**
 1103

Dataset	Original Dataset		Subgraph		Statistics		
	Nodes	Edges	Nodes	Edges	Density	Clustering Coef.	Triangle Density
Yelp	906,179	7,305,874	4,530	541,655	0.0527	0.1976	0.0010
YouTube	1,134,890	2,987,624	1,991	51,756	0.0261	0.1891	0.0002
DBLP	317,080	1,049,866	1,481	18,901	0.0172	0.9116	0.0008
PolBlogs	1,490	19,090	1,222	16,714	0.0224	0.2259	0.0003



1111
 1112 **Figure 4: Degree and eigenvalue distributions for four real-world datasets.**
 1113

1114 **Real-world datasets.** We evaluate on four networks spanning thousands to millions of nodes.
 1115 For Yelp, YouTube, and DBLP, whose full graphs are extremely large and highly sparse, we
 1116 construct tractable training sets by extracting high-degree nodes and then taking the largest connected
 1117 component (LCC).
 1118

1119 In the Yelp and YouTube datasets, nodes represent users and an undirected edge between users
 1120 represents a social tie (friendship/subscription). In the DBLP dataset, nodes represent authors, and an
 1121

1134 edge connects two authors if they have coauthored at least one paper. In the PolBlogs dataset, nodes
 1135 represent U.S. political blogs from the 2004 election blogosphere and two blogs are connected if one
 1136 of them contains a link to the other.

1137 Since the Yelp, YouTube, and DBLP datasets are very large and contain many low-degree nodes, we
 1138 sample induced subgraphs for tractable evaluation. Our general procedure is to rank nodes by degree,
 1139 take the induced subgraph on the top- k nodes (for k between 1,000 and 5,000), and then extract the
 1140 largest connected component (LCC). For Yelp, we select the top 0.5% of users by degree, yielding an
 1141 LCC of 4,530 nodes and 541,655 edges. For YouTube and DBLP, we take the top 2,000 and 1,500
 1142 nodes, resulting in LCCs of 1,991 and 1,481 nodes, respectively. To avoid out-of-memory (OOM)
 1143 issues for some baseline methods, we cap most subgraphs at $\leq 2,000$ nodes. The PolBlogs network
 1144 is relatively smaller, so we use its full LCC of 1,222 nodes and 16,714 edges. For all networks, we
 1145 symmetrize edges and remove self-loops. Key statistics for the original and the extracted graphs are
 1146 in Table 4, with degree and eigenvalue(spectrum) distributions shown in Figure 4.

1147 1148 C.3 EVALUATION DETAILS

1149 **Metrics for similarity.** We assess the quality of the generated networks by comparing some metrics
 1150 that capture both numerical and structural aspects of a network. For the *numerical* characteristics, we
 1151 use the triangle density and the global clustering coefficient. For the *structural* characteristics, we
 1152 consider the distribution of degree centralities and the eigenvalues of the adjacency matrix. For any
 1153 network adjacency A , we consider the following numerical characteristics:

- 1154 • The triangle density: $\text{TD}(A) = \text{NT}(A)/\binom{n}{3}$ where $\text{NT}(A) = \frac{1}{6} \text{tr}(A^3)$ is the number of
 1155 triangles in the graph;
- 1156
- 1157 • The global clustering coefficient: $\text{GC}(A) = 3 \text{NT}(A) / \sum_{i=1}^n \binom{d_i}{2}$ where $d_i = \sum_{j \neq i} A_{ij}$ is
 1158 the degree of node i .

1159 For each input network and generative model, we generate $S = 200$ independent networks
 1160 $\tilde{A}_1, \dots, \tilde{A}_S$ and compute the empirical distribution of each numerical characteristic. Specifically, for
 1161 a numerical characteristic f with $f \in \{\text{TD}, \text{GC}\}$ and a collection of generated networks $\{\tilde{A}^{(s)}\}_{s=1}^S$,
 1162 we compute

$$1163 \text{RMSE}_f = \left(\frac{1}{S} \sum_{s=1}^S (f(A) - f(\tilde{A}^{(s)}))^2 \right)^{1/2},$$

$$1164 \text{MAE}_f = \frac{1}{S} \sum_{s=1}^S |f(A) - f(\tilde{A}^{(s)})|,$$

$$1165 \text{Bias}_f = \frac{1}{S} \sum_{s=1}^S (f(\tilde{A}^{(s)}) - f(A)).$$

1166 For the structural characteristics, we consider the following:

- 1167 • The degree centrality: $\text{DC}(A) = (d_1, \dots, d_n)$, where $d_i = \sum_{j \neq i} A_{ij}$ is the degree of node
 1168 i ;
- 1169
- 1170 • The eigenvalues: $\text{EV}(A) = (\lambda_1, \dots, \lambda_n)$, where $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$ are the eigenvalues
 1171 of A .

For two vectors, we consider the Wasserstein distance 1-distance, the Kolmogorov–Smirnov distance, energy distance and maximum mean discrepancy (MMD) as follows:

$$\begin{aligned}
W^1(u, v) &= \frac{1}{n} \sum_{i=1}^n |u_{(i)} - v_{(i)}|, \\
\text{KS}(u, v) &= \sup_{x \in \mathbb{R}} \left| \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{u_i \leq x\} - \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{v_i \leq x\} \right|, \\
\text{ED}(u, v) &= \frac{2}{n^2} \sum_{i,j=1}^n |u_i - v_j| - \frac{1}{n^2} \sum_{i,j=1}^n |u_i - u_j| - \frac{1}{n^2} \sum_{i,j=1}^n |v_i - v_j|, \\
\text{MMD}(u, v) &= \frac{1}{n^2} \sum_{i,j=1}^n k(u_i, u_j) + \frac{1}{n^2} \sum_{i,j=1}^n k(v_i, v_j) - \frac{2}{n^2} \sum_{i,j=1}^n k(u_i, v_j),
\end{aligned}$$

where $u_{(1)} \leq u_{(2)} \leq \dots \leq u_{(n)}$ are the order statistics of u , and $k(x, y) = \exp(-|x - y|^2/2)$ is the standard Gaussian RBF kernel. For a structural characteristic f with $f \in \{\text{DC, EV}\}$ and a discrepancy metric d with $d \in \{W^1, \text{KS, ED, MMD}\}$, we compute the average distance between the original network and the generated networks as $\bar{d}_f = \frac{1}{S} \sum_{s=1}^S d(f(A), f(\tilde{A}^{(s)}))$.

We additionally consider the graphlet frequency as the structural distance and calculate the L^1/L^2 distances between the original graph and the generated graph. The graphlet frequency is defined as follows. Let $\mathcal{S}_4 := \{S \subset [n] : |S| = 4\}$ be the collection of all 4-vertex subsets of V . For any $S = (i_1, i_2, i_3, i_4)$ with $i_1 < i_2 < i_3 < i_4$, we define the local degrees for $r \leq 4$ as

$$d_r(S) := \sum_{\substack{s \in S \\ s \neq i_r}} A_{i_r s}, \quad r = 1, 2, 3, 4.$$

Then we consider its order statistics $d_{(1)}(S) \leq d_{(2)}(S) \leq d_{(3)}(S) \leq d_{(4)}(S)$ and the total edge set $\text{edges}(S) := \frac{1}{2} \sum_{r=1}^4 d_r(S)$.

The six connected 4-node graphlets are denoted as

$$\mathcal{G}_4 := \{K_{1,3}, P_4, C_4, T, D, K_4\},$$

where $K_{1,3}$ is the 3-star, P_4 is the 4-path, C_4 is the 4-cycle, T is the *triangled tail* (a triangle with a pendant vertex), D is the *diamond* (K_4 with one edge removed), and K_4 is the complete graph on 4 vertices. Each graphlet $g \in \mathcal{G}_4$ is uniquely characterized (by isomorphism type) by its edge count e_g and its ordered degree sequence $\delta_g = (\delta_{g,1}, \delta_{g,2}, \delta_{g,3}, \delta_{g,4})$, namely

$$\begin{aligned}
g = K_{1,3} &\iff e_g = 3, \delta_g = (1, 1, 1, 3), \\
g = P_4 &\iff e_g = 3, \delta_g = (1, 1, 2, 2), \\
g = C_4 &\iff e_g = 4, \delta_g = (2, 2, 2, 2), \\
g = T &\iff e_g = 4, \delta_g = (1, 2, 2, 3), \\
g = D &\iff e_g = 5, \delta_g = (2, 2, 3, 3), \\
g = K_4 &\iff e_g = 6, \delta_g = (3, 3, 3, 3).
\end{aligned}$$

For each $g \in \mathcal{G}_4$, define the indicator

$$\mathbf{1}_g(S) := \mathbf{1}\{e(S) = e_g, (d_{(1)}(S), d_{(2)}(S), d_{(3)}(S), d_{(4)}(S)) = \delta_g\}, \quad S \in \mathcal{S}_4.$$

We aggregate them to get the corresponding 4-node graphlet count: $C_g(A) := \sum_{S \in \mathcal{S}_4} \mathbf{1}_g(S)$, and normalize to get the 4-graphlet frequency $\text{GF}_4(A)$ such that the g -th coordinate is $\text{GF}_4(A)_g := \frac{C_g(A)}{\sum_{g' \in \mathcal{G}_4} C_{g'}(A)}$. We use L^1 and L^2 to measure the distance between two graphs, namely

$$\text{GFD}_{L^1}(A, A') = \sum_{g \in \mathcal{G}_4} |\text{GF}_4(A)_g - \text{GF}_4(A')_g|;$$

$$\text{GFD}_{L^2}(A, A') = \left(\sum_{g \in \mathcal{G}_4} |\text{GF}_4(A)_g - \text{GF}_4(A')_g|^2 \right)^{1/2}.$$

1242 **Evaluation pipeline.** For a single input network A , we generate $S = 200$ independent networks
 1243 and calculate the above metrics. In the real-world dataset setting, we directly report the averaged
 1244 metrics for each input network and its associated standard deviation.
 1245

1246 C.4 IMPLEMENTATION DETAILS

1248 **Implementation of SyNGLER.** For the SyNG-D, we use `ForestDiffusion` (Jolicoeur-
 1249 Martineau et al., 2024) to construct the score approximation. Table 5 lists all the hyperparameters for
 1250 `ForestDiffusion` throughout our experiments.

1251 Table 5: `ForestDiffusion` Hyperparameters For Data Generation.

1253 Category	1254 Hyperparameter	1255 Simulated Data	1256 Real-world data	1257 Description
1255 ForestDiffusion	1256 nt	1257 50	1258 100	1259 Number of diffusion time steps.
	1256 duplicate K	1257 100	1258 100	1259 Sample duplication factor for training data.
	1256 diffusion type	1257 vp	1258 vp	1259 Use variance-preserving (VP) diffusion.
1257 XGBoost	1258 max depth	1259 7	1260 7	1261 Maximum tree depth.
	1258 number of estimators	1259 100	1260 100	1261 Number of boosting trees.
	1258 eta	1259 0.3	1260 0.3	1261 Learning rate.
	1258 tree method	1259 hist	1260 hist	1261 Histogram-based tree construction.
	1258 regression lambda	1259 0.0	1260 0.0	1261 L2 regularization parameter.
	1258 regression alpha	1259 0.0	1260 0.0	1261 L1 regularization parameter.
	1258 subsample	1259 1.0	1260 1.0	1261 Row subsampling ratio per tree.

1262
 1263
 1264 **Experimental environment.** All experiments are conducted on NVIDIA GeForce RTX 4090
 1265 (24 GB) GPUs and 384 CPU cores.

1266 The `ForestDiffusion` module is parallelized on the CPU and executes entirely on host cores.
 1267 We deploy VGAE and SyNG-D models on CPUs. EDGE and GRAN are deployed on a single GPU,
 1268 according to the default configuration in the original codebase.
 1269

1270 **Implementation for baselines.** For the VGAE, EDGE and GRAN, we use the codebases hosted in
 1271 [gae](#), [graph-generation-EDGE](#), [GRAN](#), respectively. For each baseline method, we adopt the default
 1272 models in the corresponding codebase without further clarification. In the real data experiments,
 1273 we include the results for each method with several different configurations. For our SyNG-D and
 1274 SyNG-R, we vary the number of the latent dimension r from 2 to 6. For VGAE, we vary the number
 1275 of the embeddings consecutively from 2 to 6, and include the default setting 16. For GRAN, we
 1276 choose the dimension of the hidden layer from 128, 256 and 512. Other methods remain their default
 1277 configurations.

1278 C.5 EVALUATION RESULTS ON NON-SPARSE SIMULATED NETWORK

1280 **Structural characteristics.** The following Table 6 and Table 7 summarize the discrepancies
 1281 between the structural statistics of the generated networks and those of the input networks.
 1282

1283 Table 6: Averaged distance between the *degree centralities* of the original network and the generated
 1284 output. All values are reported as $\times 10^{-1}$.

1286 Metric	1287 Method	1288 $n = 500$			1289 $n = 1000$			1290 $n = 1500$		
		1288 r=2	1288 r=3	1288 r=4	1289 r=2	1289 r=3	1289 r=4	1290 r=2	1290 r=3	1290 r=4
1288 W1-dist	SyNG-D	0.08 ± 0.02	0.08 ± 0.02	0.08 ± 0.02	0.05 ± 0.01	0.05 ± 0.02	0.06 ± 0.02	0.04 ± 0.01	0.04 ± 0.01	0.04 ± 0.01
	SyNG-R	0.08 ± 0.02	0.08 ± 0.02	0.08 ± 0.02	0.05 ± 0.01	0.06 ± 0.02	0.06 ± 0.02	0.04 ± 0.01	0.04 ± 0.01	0.04 ± 0.01
	VGAE	0.49 ± 0.02	0.49 ± 0.03	0.50 ± 0.03	0.49 ± 0.02	0.50 ± 0.03	0.50 ± 0.03	0.50 ± 0.02	0.51 ± 0.02	0.51 ± 0.02
1288 KS-dist	SyNG-D	0.69 ± 0.10	0.68 ± 0.10	0.70 ± 0.13	0.47 ± 0.07	0.47 ± 0.09	0.48 ± 0.09	0.38 ± 0.06	0.38 ± 0.07	0.38 ± 0.07
	SyNG-R	0.72 ± 0.09	0.72 ± 0.09	0.73 ± 0.12	0.49 ± 0.06	0.49 ± 0.08	0.51 ± 0.08	0.39 ± 0.05	0.40 ± 0.06	0.40 ± 0.06
	VGAE	4.56 ± 0.23	4.53 ± 0.24	4.57 ± 0.28	4.51 ± 0.19	4.51 ± 0.20	4.52 ± 0.21	4.52 ± 0.16	4.53 ± 0.16	4.55 ± 0.17
1288 Energy-dist	SyNG-D	0.27 ± 0.06	0.27 ± 0.06	0.28 ± 0.07	0.19 ± 0.04	0.19 ± 0.05	0.19 ± 0.05	0.15 ± 0.03	0.15 ± 0.04	0.15 ± 0.04
	SyNG-R	0.27 ± 0.05	0.28 ± 0.05	0.28 ± 0.07	0.19 ± 0.04	0.19 ± 0.05	0.19 ± 0.05	0.15 ± 0.03	0.15 ± 0.04	0.15 ± 0.04
	VGAE	1.72 ± 0.06	1.72 ± 0.07	1.73 ± 0.07	1.72 ± 0.05	1.73 ± 0.06	1.73 ± 0.06	1.73 ± 0.05	1.75 ± 0.05	1.75 ± 0.05

1293 **Numerical characteristics.** The following Table 8 and Table 9 summarize the distances between
 1294 the numerical characteristics of the generated networks and the input networks.
 1295

1296 Table 7: Averaged distance between the *eigenvalues* of the original network and the generated output.
1297 All values are reported as $\times 10^{-1}$.

eigenvalues	Distance	Method	n = 500			n = 1000			n = 1500		
			r=2	r=3	r=4	r=2	r=3	r=4	r=2	r=3	r=4
W1-dist	SyNG-D	0.37 \pm 0.04	0.43 \pm 0.09	0.66 \pm 0.37	0.24 \pm 0.03	0.26 \pm 0.04	0.36 \pm 0.13	0.19 \pm 0.02	0.20 \pm 0.03	0.25 \pm 0.05	
	SyNG-R	0.40 \pm 0.04	0.59 \pm 0.09	0.98 \pm 0.18	0.25 \pm 0.03	0.35 \pm 0.05	0.56 \pm 0.15	0.20 \pm 0.02	0.25 \pm 0.03	0.38 \pm 0.06	
	VGAE	9.54 \pm 0.51	9.70 \pm 0.67	9.55 \pm 0.78	9.55 \pm 0.46	9.80 \pm 0.69	9.91 \pm 0.76	9.52 \pm 0.50	9.80 \pm 0.70	9.83 \pm 0.82	
KS-dist	SyNG-D	0.47 \pm 0.06	0.48 \pm 0.11	0.62 \pm 0.29	0.32 \pm 0.03	0.32 \pm 0.06	0.38 \pm 0.15	0.27 \pm 0.03	0.26 \pm 0.04	0.28 \pm 0.06	
	SyNG-R	0.52 \pm 0.06	0.65 \pm 0.12	0.96 \pm 0.22	0.35 \pm 0.03	0.42 \pm 0.08	0.59 \pm 0.18	0.28 \pm 0.02	0.32 \pm 0.05	0.42 \pm 0.09	
	VGAE	9.65 \pm 0.01	9.61 \pm 0.02	9.61 \pm 0.04	9.81 \pm 0.01	9.82 \pm 0.01	9.81 \pm 0.02	9.87 \pm 0.01	9.88 \pm 0.01	9.87 \pm 0.01	
Energy-dist	SyNG-D	0.28 \pm 0.04	0.29 \pm 0.07	0.41 \pm 0.21	0.18 \pm 0.02	0.18 \pm 0.04	0.23 \pm 0.11	0.15 \pm 0.02	0.14 \pm 0.03	0.16 \pm 0.04	
	SyNG-R	0.30 \pm 0.04	0.39 \pm 0.08	0.64 \pm 0.16	0.19 \pm 0.02	0.23 \pm 0.05	0.36 \pm 0.12	0.15 \pm 0.01	0.17 \pm 0.03	0.25 \pm 0.06	
	VGAE	10.15 \pm 0.23	10.40 \pm 0.31	10.48 \pm 0.36	10.55 \pm 0.20	10.78 \pm 0.30	10.92 \pm 0.32	10.70 \pm 0.22	10.89 \pm 0.28	10.99 \pm 0.33	

1306 Table 8: Similarity between the the *triangle densities* of the original network and generated network.
1307 All values are reported as $\times 10^{-2}$.

n	Method	RMSE			MAE ($\times 10^{-2}$)			Bias ($\times 10^{-2}$)		
		r=2	r=3	r=4	r=2	r=3	r=4	r=2	r=3	r=4
500	SyNG-D	0.45	0.44	0.50	0.37 \pm 0.26	0.47 \pm 0.34	0.50 \pm 0.49	0.18 \pm 0.42	0.10 \pm 0.43	0.22 \pm 0.66
	SyNG-R	0.43	0.44	0.49	0.35 \pm 0.26	0.51 \pm 0.37	0.39 \pm 0.30	0.17 \pm 0.40	0.13 \pm 0.42	0.18 \pm 0.46
	VGAE	0.68	0.73	0.71	0.58 \pm 0.36	0.61 \pm 0.39	0.58 \pm 0.41	-0.54 \pm 0.42	-0.57 \pm 0.45	-0.52 \pm 0.49
1000	SyNG-D	0.31	0.32	0.33	0.32 \pm 0.17	0.31 \pm 0.25	0.35 \pm 0.29	0.09 \pm 0.29	0.05 \pm 0.32	0.06 \pm 0.45
	SyNG-R	0.30	0.43	0.34	0.25 \pm 0.17	0.34 \pm 0.26	0.27 \pm 0.20	0.09 \pm 0.28	0.19 \pm 0.38	0.10 \pm 0.32
	VGAE	0.66	0.67	0.68	0.58 \pm 0.32	0.59 \pm 0.33	0.59 \pm 0.33	-0.56 \pm 0.35	-0.56 \pm 0.38	-0.56 \pm 0.38
1500	SyNG-D	0.31	0.31	0.32	0.25 \pm 0.14	0.24 \pm 0.19	0.25 \pm 0.21	0.08 \pm 0.30	0.03 \pm 0.25	-0.03 \pm 0.32
	SyNG-R	0.24	0.32	0.34	0.20 \pm 0.13	0.25 \pm 0.20	0.27 \pm 0.20	0.04 \pm 0.23	0.13 \pm 0.30	0.13 \pm 0.31
	VGAE	0.71	0.65	0.65	0.65 \pm 0.29	0.59 \pm 0.28	0.58 \pm 0.31	-0.65 \pm 0.29	-0.57 \pm 0.32	-0.57 \pm 0.33

1320 Table 9: Similarity between the the *global clustering coefficients* of the original network and generated
1321 network.

n	Method	RMSE			MAE ($\times 10^{-2}$)			Bias ($\times 10^{-2}$)		
		r=2	r=3	r=4	r=2	r=3	r=4	r=2	r=3	r=4
500	SyNG-D	0.62	0.58	0.70	0.51 \pm 0.34	0.47 \pm 0.34	0.50 \pm 0.49	0.34 \pm 0.51	0.21 \pm 0.54	0.22 \pm 0.66
	SyNG-R	0.61	0.63	0.70	0.51 \pm 0.34	0.51 \pm 0.37	0.57 \pm 0.41	0.37 \pm 0.49	0.36 \pm 0.52	0.43 \pm 0.56
	VGAE	2.59	2.60	2.58	2.49 \pm 0.72	2.45 \pm 0.86	2.40 \pm 0.93	-2.49 \pm 0.72	-2.45 \pm 0.86	-2.40 \pm 0.94
1000	SyNG-D	0.40	0.39	0.45	0.32 \pm 0.23	0.31 \pm 0.25	0.35 \pm 0.29	0.17 \pm 0.36	0.07 \pm 0.39	0.06 \pm 0.45
	SyNG-R	0.40	0.43	0.52	0.32 \pm 0.24	0.34 \pm 0.26	0.41 \pm 0.32	0.20 \pm 0.35	0.19 \pm 0.38	0.26 \pm 0.45
	VGAE	2.59	2.57	2.61	2.50 \pm 0.70	2.43 \pm 0.85	2.47 \pm 0.85	-2.50 \pm 0.70	-2.43 \pm 0.85	-2.47 \pm 0.85
1500	SyNG-D	0.31	0.31	0.32	0.25 \pm 0.17	0.24 \pm 0.19	0.25 \pm 0.21	0.08 \pm 0.30	0.03 \pm 0.31	-0.03 \pm 0.32
	SyNG-R	0.30	0.32	0.34	0.24 \pm 0.17	0.25 \pm 0.20	0.27 \pm 0.20	0.10 \pm 0.28	0.13 \pm 0.30	0.13 \pm 0.31
	VGAE	2.71	2.46	2.53	2.63 \pm 0.64	2.35 \pm 0.74	2.40 \pm 0.82	-2.63 \pm 0.64	-2.35 \pm 0.74	-2.40 \pm 0.82

C.6 EVALUATION RESULTS ON SPARSE SIMULATED NETWORK

1336 **Structural characteristics.** Below, we present the quality of the synthetic networks on the sparse
1337 simulated networks. The following Table 10 and Table 11 summarize the discrepancies between the
1338 structural statistics of the generated networks and those of the input networks.

1340 Table 10: Averaged distance between the *degree centralities* of the original network and the generated
1341 output, sparse network. All values reported as $\times 10^{-1}$.

Metric	Method	n = 500			n = 1000			n = 1500		
		r=2	r=3	r=4	r=2	r=3	r=4	r=2	r=3	r=4
W1-dist	SyNG-D	0.07 \pm 0.02	0.11 \pm 0.11	0.51 \pm 0.55	0.04 \pm 0.01	0.04 \pm 0.01	0.05 \pm 0.09	0.03 \pm 0.01	0.03 \pm 0.01	0.03 \pm 0.01
	SyNG-R	0.08 \pm 0.02	0.12 \pm 0.03	0.24 \pm 0.12	0.04 \pm 0.01	0.05 \pm 0.01	0.07 \pm 0.02	0.03 \pm 0.01	0.04 \pm 0.01	0.05 \pm 0.01
	VGAE	0.21 \pm 0.02	0.20 \pm 0.02	0.19 \pm 0.02	0.18 \pm 0.02	0.17 \pm 0.02	0.16 \pm 0.02	0.16 \pm 0.02	0.15 \pm 0.02	0.15 \pm 0.02
KS-dist	SyNG-D	1.11 \pm 0.24	1.44 \pm 0.88	3.75 \pm 2.78	0.71 \pm 0.16	0.75 \pm 0.20	0.92 \pm 0.60	0.55 \pm 0.13	0.58 \pm 0.15	0.64 \pm 0.17
	SyNG-R	1.25 \pm 0.25	1.65 \pm 0.39	2.93 \pm 1.13	0.79 \pm 0.16	0.99 \pm 0.20	1.29 \pm 0.27	0.60 \pm 0.13	0.75 \pm 0.15	0.96 \pm 0.17
	VGAE	4.45 \pm 0.83	4.45 \pm 0.83	4.50 \pm 0.79	4.53 \pm 0.83	4.57 \pm 0.85	4.62 \pm 0.85	4.62 \pm 0.89	4.81 \pm 0.79	4.82 \pm 0.71
Energy-dist	SyNG-D	0.33 \pm 0.08	0.46 \pm 0.37	1.61 \pm 1.47	0.19 \pm 0.05	0.20 \pm 0.06	0.26 \pm 0.26	0.14 \pm 0.04	0.14 \pm 0.04	0.16 \pm 0.05
	SyNG-R	0.37 \pm 0.08	0.52 \pm 0.14	1.01 \pm 0.45	0.21 \pm 0.05	0.27 \pm 0.06	0.37 \pm 0.09	0.15 \pm 0.04	0.19 \pm 0.04	0.25 \pm 0.05
	VGAE	1.07 \pm 0.11	1.06 \pm 0.11	1.05 \pm 0.11	0.98 \pm 0.11	0.97 \pm 0.11	0.96 \pm 0.11	0.94 \pm 0.11	0.93 \pm 0.10	0.93 \pm 0.08

1350 Table 11: Averaged distance between the *eigenvalues* of the original network and the generated
 1351 output, sparse network. All values reported as $\times 10^{-1}$.

eigenvalues	Distance	Method	n = 500			n = 1000			n = 1500		
			r=2	r=3	r=4	r=2	r=3	r=4	r=2	r=3	r=4
W1-dist	SyNG-D	0.66 \pm 0.12	1.38 \pm 1.23	6.34 \pm 6.01	0.36 \pm 0.06	0.56 \pm 0.12	1.05 \pm 1.02	0.26 \pm 0.04	0.37 \pm 0.08	0.63 \pm 0.16	
	SyNG-R	0.74 \pm 0.11	1.46 \pm 0.26	2.99 \pm 0.72	0.40 \pm 0.06	0.76 \pm 0.11	1.38 \pm 0.22	0.28 \pm 0.04	0.51 \pm 0.07	0.93 \pm 0.14	
	VGAE	1.72 \pm 0.49	1.60 \pm 0.53	1.42 \pm 0.47	1.86 \pm 0.55	1.73 \pm 0.61	1.66 \pm 0.58	1.86 \pm 0.57	1.79 \pm 0.61	1.63 \pm 0.59	
KS-dist	SyNG-D	0.91 \pm 0.23	1.53 \pm 0.70	3.56 \pm 1.85	0.57 \pm 0.12	0.91 \pm 0.28	1.53 \pm 0.63	0.46 \pm 0.10	0.70 \pm 0.22	1.21 \pm 0.41	
	SyNG-R	0.98 \pm 0.24	1.65 \pm 0.46	3.03 \pm 0.85	0.62 \pm 0.12	1.06 \pm 0.29	1.81 \pm 0.52	0.47 \pm 0.10	0.80 \pm 0.23	1.44 \pm 0.42	
	VGAE	1.57 \pm 0.27	1.55 \pm 0.53	1.54 \pm 0.58	2.15 \pm 0.49	2.40 \pm 0.83	2.61 \pm 0.94	2.58 \pm 0.64	3.12 \pm 0.86	3.25 \pm 0.94	
Energy-dist	SyNG-D	0.59 \pm 0.13	1.15 \pm 0.71	3.69 \pm 2.62	0.33 \pm 0.06	0.56 \pm 0.16	1.03 \pm 0.58	0.24 \pm 0.05	0.39 \pm 0.11	0.71 \pm 0.22	
	SyNG-R	0.64 \pm 0.13	1.25 \pm 0.28	2.49 \pm 0.60	0.36 \pm 0.06	0.71 \pm 0.15	1.31 \pm 0.29	0.26 \pm 0.04	0.49 \pm 0.11	0.94 \pm 0.20	
	VGAE	1.02 \pm 0.29	1.03 \pm 0.44	0.98 \pm 0.43	1.38 \pm 0.46	1.45 \pm 0.57	1.53 \pm 0.61	1.56 \pm 0.49	1.74 \pm 0.56	1.73 \pm 0.59	

1360
 1361 **Numerical characteristics.** The following Table 12 and Table 13 summarize the distances between
 1362 the numerical characteristics of the generated networks and the input networks.

1364 Table 12: Similarity between the the *triangle densities* of the original network and generated network,
 1365 sparse network.

n	Method	RMSE ($\times 10^{-4}$)			MAE ($\times 10^{-4}$)			Bias ($\times 10^{-4}$)		
		r=2	r=3	r=4	r=2	r=3	r=4	r=2	r=3	r=4
500	SyNG-D	4.60	18.34	157.01	4.37 \pm 1.44	8.16 \pm 16.47	90.99 \pm 128.29	4.37 \pm 1.44	8.16 \pm 16.47	90.99 \pm 128.29
	SyNG-R	5.37	7.31	17.22	5.11 \pm 1.66	6.94 \pm 2.32	14.73 \pm 8.94	5.11 \pm 1.66	6.94 \pm 2.32	14.73 \pm 8.94
	VGAE	9.70	8.46	7.63	9.16 \pm 3.20	7.97 \pm 2.85	7.19 \pm 2.56	-9.16 \pm 3.20	-7.97 \pm 2.85	-7.19 \pm 2.56
1000	SyNG-D	1.60	1.29	15.14	1.51 \pm 0.53	1.21 \pm 0.46	3.06 \pm 14.87	1.51 \pm 0.53	1.20 \pm 0.46	3.06 \pm 14.87
	SyNG-R	1.88	2.22	2.91	1.77 \pm 0.62	2.08 \pm 0.77	2.75 \pm 0.94	1.77 \pm 0.62	2.08 \pm 0.77	2.75 \pm 0.94
	VGAE	5.95	4.92	4.52	5.55 \pm 2.14	4.53 \pm 1.93	4.19 \pm 1.70	-5.55 \pm 2.14	-4.53 \pm 1.93	-4.19 \pm 1.70
1500	SyNG-D	0.87	0.62	0.63	0.80 \pm 0.34	0.57 \pm 0.22	0.58 \pm 0.25	0.80 \pm 0.34	0.57 \pm 0.23	0.57 \pm 0.27
	SyNG-R	0.99	1.07	1.35	0.92 \pm 0.36	1.00 \pm 0.37	1.26 \pm 0.48	0.92 \pm 0.36	1.00 \pm 0.37	1.26 \pm 0.48
	VGAE	4.59	3.34	3.05	4.26 \pm 1.73	3.05 \pm 1.36	2.78 \pm 1.25	-4.26 \pm 1.73	-3.05 \pm 1.36	-2.78 \pm 1.25

1376 Table 13: Similarity between the the *global clustering coefficients* of the original network and
 1377 generated network, sparse network.

n	Method	RMSE ($\times 10^{-2}$)			MAE ($\times 10^{-2}$)			Bias ($\times 10^{-2}$)		
		r=2	r=3	r=4	r=2	r=3	r=4	r=2	r=3	r=4
500	SyNG-D	1.57	4.62	19.69	1.52 \pm 0.40	2.42 \pm 3.95	13.33 \pm 14.53	1.52 \pm 0.40	2.42 \pm 3.95	13.33 \pm 14.53
	SyNG-R	1.81	2.37	4.22	1.77 \pm 0.38	2.33 \pm 0.47	3.99 \pm 1.39	1.77 \pm 0.38	2.33 \pm 0.47	3.99 \pm 1.39
	VGAE	5.31	4.51	4.09	5.03 \pm 1.71	4.28 \pm 1.45	3.89 \pm 1.25	-5.02 \pm 1.75	-4.26 \pm 1.48	-3.87 \pm 1.32
1000	SyNG-D	0.84	0.69	4.05	0.82 \pm 0.20	0.65 \pm 0.24	1.16 \pm 3.89	0.82 \pm 0.20	0.65 \pm 0.24	1.15 \pm 3.89
	SyNG-R	0.98	1.18	1.52	0.96 \pm 0.20	1.16 \pm 0.21	1.50 \pm 0.27	0.96 \pm 0.20	1.16 \pm 0.21	1.50 \pm 0.27
	VGAE	5.37	4.40	4.10	5.05 \pm 1.81	4.10 \pm 1.60	3.81 \pm 1.52	-5.05 \pm 1.81	-4.08 \pm 1.65	-3.78 \pm 1.58
1500	SyNG-D	0.59	0.46	0.46	0.57 \pm 0.16	0.43 \pm 0.16	0.42 \pm 0.19	0.57 \pm 0.16	0.43 \pm 0.17	0.41 \pm 0.21
	SyNG-R	0.67	0.80	0.98	0.65 \pm 0.14	0.79 \pm 0.14	0.96 \pm 0.17	0.65 \pm 0.14	0.79 \pm 0.14	0.96 \pm 0.17
	VGAE	5.43	4.06	3.74	5.09 \pm 1.91	3.79 \pm 1.45	3.50 \pm 1.32	-5.09 \pm 1.91	-3.79 \pm 1.47	-3.50 \pm 1.32

1404 **C.7 EVALUATION RESULTS ON REAL-WORLD DATASETS**

1405
1406 In this subsection, we list all the experiment results on the real-world datasets. For each dataset, we
1407 present three tables detailing the generation quality. The first table evaluates the similarity of degree
1408 centrality distributions, the second assesses the similarity of eigenvalue distributions, and the third
1409 reports on numerical characteristics such as global clustering coefficient and triangle density.

1410 **YouTube dataset.** Tables 14 to 16 summarize the generation quality on the YouTube dataset.

1411
1412 **Table 14: Generation quality in degree centralities distribution similarity on YouTube dataset. All**
1413 **reported distance values are scaled by 10^{-2} .**

Method	Config	W1 dist.	KS dist.	Energy dist.	MMD
SyNG-D	2	0.15 ± 0.07	3.76 ± 1.43	0.01 ± 0.01	2.13 ± 1.80
	3	0.23 ± 0.09	5.61 ± 1.67	0.01 ± 0.01	4.46 ± 2.02
	4	0.32 ± 0.10	7.42 ± 1.91	0.03 ± 0.02	6.71 ± 2.15
	5	0.49 ± 0.09	11.79 ± 1.78	0.07 ± 0.02	11.49 ± 1.90
	6	0.58 ± 0.09	13.92 ± 1.87	0.10 ± 0.03	13.80 ± 1.98
	2	0.19 ± 0.05	6.05 ± 1.42	0.01 ± 0.00	4.24 ± 1.50
SyNG-D (MLP)	3	0.18 ± 0.05	5.91 ± 1.29	0.01 ± 0.00	4.06 ± 1.43
	4	0.18 ± 0.05	5.88 ± 1.51	0.01 ± 0.01	3.89 ± 1.68
	5	0.22 ± 0.05	8.00 ± 1.57	0.01 ± 0.01	6.34 ± 1.48
	6	0.29 ± 0.08	9.82 ± 1.64	0.03 ± 0.01	8.13 ± 1.78
	2	0.13 ± 0.06	2.86 ± 1.13	0.00 ± 0.00	1.10 ± 1.43
	3	0.13 ± 0.06	2.91 ± 1.16	0.00 ± 0.00	1.21 ± 1.47
SyNG-R	4	0.13 ± 0.06	2.91 ± 1.11	0.00 ± 0.00	1.18 ± 1.50
	5	0.13 ± 0.06	2.98 ± 1.16	0.00 ± 0.00	1.15 ± 1.47
	6	0.13 ± 0.06	3.00 ± 1.21	0.00 ± 0.00	1.16 ± 1.52
	2	0.89 ± 0.01	23.74 ± 0.44	0.20 ± 0.00	33.85 ± 0.46
	3	0.89 ± 0.01	23.49 ± 0.40	0.20 ± 0.00	33.39 ± 0.55
	4	0.80 ± 0.01	20.10 ± 0.43	0.15 ± 0.00	27.83 ± 0.41
VGAE	5	0.91 ± 0.01	24.40 ± 0.39	0.21 ± 0.00	34.96 ± 0.36
	6	0.82 ± 0.01	20.33 ± 0.43	0.16 ± 0.00	28.78 ± 0.36
	16	0.85 ± 0.01	21.76 ± 0.43	0.18 ± 0.00	31.03 ± 0.40
	128	0.78 ± 0.38	15.38 ± 5.47	0.12 ± 0.17	16.02 ± 4.24
	256	5.71 ± 0.41	57.59 ± 3.00	3.87 ± 0.48	62.02 ± 3.20
	512	0.76 ± 0.20	9.24 ± 2.00	0.08 ± 0.04	7.86 ± 1.72
EDGE	—	0.41 ± 0.05	7.82 ± 0.86	0.04 ± 0.01	7.84 ± 0.95
GraphMaker	—	1.35 ± 0.00	37.68 ± 0.47	0.55 ± 0.01	64.99 ± 0.47
E-R	—	1.41 ± 0.01	47.08 ± 0.44	0.67 ± 0.01	69.22 ± 0.40
BTTER	—	0.04 ± 0.01	1.64 ± 0.32	0.00 ± 0.00	0.00 ± 0.00
mKPGM	—	1.06 ± 0.01	31.71 ± 0.39	0.33 ± 0.01	44.86 ± 0.45

1449 **DBLP dataset.** The following Tables 17 to 19 present the full experimental results for the DBLP
1450 dataset.

1451 **Yelp dataset.** Here we provide the detailed evaluation for the Yelp dataset. The results for degree
1452 centrality, eigenvalue distribution, and other numerical characteristics are shown in the Tables 20
1453 to 22 respectively.

1454 **PolBlogs dataset.** Finally, we present the comprehensive results for the PolBlogs dataset. The
1455 subsequent Tables 23 to 25 detail the performance of each method in capturing the structural and
1456 numerical properties of the original network.

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467

1468 Table 15: Generation quality in eigenvalue distribution similarity on YouTube dataset. W1 dist. is
1469 reported in its original scale, while KS dist., Energy dist., and MMD are scaled by 10^{-1} .

1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Method	Config	W1 dist.	KS dist.	Energy dist.	MMD
SyNG-D	2	0.31 ± 0.06	0.30 ± 0.07	0.11 ± 0.05	0.26 ± 0.09
	3	0.23 ± 0.04	0.20 ± 0.06	0.05 ± 0.03	0.08 ± 0.10
	4	0.19 ± 0.04	0.14 ± 0.04	0.03 ± 0.01	0.01 ± 0.03
	5	0.30 ± 0.08	0.20 ± 0.06	0.07 ± 0.04	0.02 ± 0.05
	6	0.40 ± 0.08	0.28 ± 0.07	0.14 ± 0.07	0.11 ± 0.11
	2	0.30 ± 0.06	0.28 ± 0.06	0.10 ± 0.05	0.24 ± 0.09
SyNG-D (MLP)	3	0.28 ± 0.06	0.27 ± 0.07	0.09 ± 0.05	0.20 ± 0.11
	4	0.19 ± 0.05	0.18 ± 0.06	0.04 ± 0.03	0.04 ± 0.07
	5	0.17 ± 0.04	0.14 ± 0.04	0.03 ± 0.02	0.01 ± 0.04
	6	0.19 ± 0.06	0.14 ± 0.04	0.03 ± 0.02	0.00 ± 0.01
	2	0.43 ± 0.07	0.44 ± 0.07	0.24 ± 0.09	0.45 ± 0.09
	3	0.38 ± 0.06	0.39 ± 0.07	0.19 ± 0.07	0.39 ± 0.10
SyNG-R	4	0.33 ± 0.06	0.36 ± 0.06	0.15 ± 0.06	0.34 ± 0.09
	5	0.31 ± 0.06	0.36 ± 0.06	0.14 ± 0.06	0.32 ± 0.09
	6	0.29 ± 0.05	0.35 ± 0.06	0.13 ± 0.05	0.31 ± 0.09
	2	1.27 ± 0.01	1.51 ± 0.01	2.35 ± 0.04	1.85 ± 0.01
	3	1.26 ± 0.01	1.51 ± 0.01	2.33 ± 0.04	1.84 ± 0.01
	4	1.15 ± 0.01	1.41 ± 0.01	1.94 ± 0.03	1.72 ± 0.01
VGAE	5	1.29 ± 0.01	1.53 ± 0.01	2.41 ± 0.04	1.87 ± 0.01
	6	1.17 ± 0.01	1.42 ± 0.01	2.02 ± 0.03	1.74 ± 0.01
	16	1.21 ± 0.01	1.46 ± 0.01	2.14 ± 0.04	1.79 ± 0.01
	128	0.97 ± 0.46	0.70 ± 0.29	1.14 ± 1.25	0.71 ± 0.32
	256	4.00 ± 0.23	2.40 ± 0.12	14.20 ± 1.53	2.58 ± 0.14
	512	0.94 ± 0.17	0.76 ± 0.10	0.99 ± 0.33	0.79 ± 0.08
EDGE	–	0.34 ± 0.04	0.39 ± 0.08	0.14 ± 0.05	0.44 ± 0.07
GraphMaker	–	1.62 ± 0.01	1.81 ± 0.01	3.68 ± 0.04	2.31 ± 0.01
E-R	–	1.95 ± 0.01	2.10 ± 0.01	5.54 ± 0.06	2.60 ± 0.01
BTER	–	0.76 ± 0.01	0.60 ± 0.01	0.57 ± 0.02	0.64 ± 0.01
mKPGM	–	1.72 ± 0.01	1.84 ± 0.01	4.19 ± 0.06	2.24 ± 0.01

Table 16: Generation quality in numerical characteristics on YouTube dataset.

Method	Config	Clus ($\times 10^{-2}$)			Tri ($\times 10^{-4}$)		
		RMSE	MAE	Bias	RMSE	MAE	Bias
SyNG-D	2	2.28	2.15	-2.15	0.97	0.92	0.92
	3	1.69	1.46	-1.41	0.89	0.84	0.84
	4	1.34	1.08	-0.95	0.83	0.78	0.78
	5	1.50	1.22	-1.09	0.58	0.52	0.52
	6	1.42	1.19	-1.01	0.41	0.35	0.35
	2	1.12	0.88	-0.46	1.35	1.30	1.30
SyNG-D (MLP)	3	1.87	1.63	1.54	1.47	1.43	1.43
	4	1.58	1.34	1.15	1.62	1.58	1.58
	5	2.98	2.83	2.80	1.40	1.36	1.36
	6	3.13	2.93	2.88	1.18	1.14	1.14
	2	2.23	2.08	-2.07	1.15	1.11	1.11
	3	1.07	0.87	-0.40	1.38	1.34	1.34
SyNG-R	4	1.20	0.96	0.66	1.53	1.49	1.49
	5	1.57	1.30	1.19	1.61	1.57	1.57
	6	1.84	1.57	1.52	1.65	1.61	1.61
	2	11.80	11.80	-11.80	0.81	0.81	-0.81
	3	11.66	11.66	-11.66	0.80	0.80	-0.80
	4	8.00	8.00	-8.00	0.56	0.56	-0.56
VGAE	5	12.07	12.07	-12.07	0.83	0.83	-0.83
	6	9.24	9.24	-9.24	0.65	0.65	-0.65
	16	9.87	9.87	-9.87	0.69	0.69	-0.69
	128	11.34	11.32	-11.32	0.85	0.56	0.54
	256	5.30	5.29	-5.29	15.05	14.95	14.95
	512	10.11	10.10	-10.10	1.13	1.08	1.08
EDGE	-	14.45	13.81	-13.80	0.78	0.75	-0.50
GraphMaker	-	16.71	16.71	-16.71	1.12	1.12	-1.12
E-R	-	16.30	16.30	-16.30	1.05	1.05	-1.05
BTER	-	9.73	9.73	-9.73	0.02	0.02	-0.01
mKPGM	-	16.00	16.00	-16.00	1.03	1.03	-1.03

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575

1576 Table 17: Generation quality in degree centralities distribution similarity on DBLP dataset. W1 dist.
1577 and Energy dist. are scaled by 10^{-2} ; KS dist. and MMD are scaled by 10^{-1} .

1578

Method	Config	W1 dist.	KS dist.	Energy dist.	MMD
SyNG-D	2	0.19 ± 0.08	0.75 ± 0.17	0.02 ± 0.01	0.93 ± 0.23
	3	0.18 ± 0.06	0.91 ± 0.16	0.02 ± 0.01	1.03 ± 0.19
	4	0.22 ± 0.07	1.22 ± 0.14	0.03 ± 0.01	1.29 ± 0.17
	5	0.33 ± 0.09	1.74 ± 0.18	0.05 ± 0.02	1.78 ± 0.20
	6	0.44 ± 0.10	2.19 ± 0.18	0.09 ± 0.02	2.22 ± 0.20
	2	0.31 ± 0.07	1.81 ± 0.17	0.04 ± 0.01	1.50 ± 0.16
SyNG-D (MLP)	3	0.42 ± 0.06	1.33 ± 0.13	0.07 ± 0.02	1.67 ± 0.18
	4	0.47 ± 0.15	1.19 ± 0.19	0.06 ± 0.03	1.40 ± 0.25
	5	0.47 ± 0.10	1.36 ± 0.14	0.07 ± 0.02	1.72 ± 0.16
	6	0.35 ± 0.06	1.53 ± 0.18	0.06 ± 0.01	1.73 ± 0.19
	2	0.15 ± 0.07	0.73 ± 0.18	0.01 ± 0.01	0.75 ± 0.28
	3	0.15 ± 0.07	0.73 ± 0.18	0.01 ± 0.01	0.75 ± 0.28
SyNG-R	4	0.15 ± 0.07	0.73 ± 0.18	0.01 ± 0.01	0.77 ± 0.28
	5	0.16 ± 0.07	0.74 ± 0.18	0.01 ± 0.01	0.78 ± 0.27
	6	0.16 ± 0.07	0.75 ± 0.17	0.01 ± 0.01	0.80 ± 0.27
	2	0.49 ± 0.01	2.33 ± 0.08	0.10 ± 0.00	2.84 ± 0.10
	3	0.29 ± 0.00	2.65 ± 0.07	0.09 ± 0.00	2.80 ± 0.06
	4	0.35 ± 0.01	3.20 ± 0.08	0.12 ± 0.00	3.28 ± 0.06
VGAE	5	0.35 ± 0.01	3.16 ± 0.08	0.12 ± 0.00	3.23 ± 0.07
	6	0.32 ± 0.00	2.96 ± 0.07	0.11 ± 0.00	3.02 ± 0.05
	16	0.32 ± 0.00	2.96 ± 0.08	0.10 ± 0.00	2.96 ± 0.06
	128	1.48 ± 0.25	3.79 ± 0.88	0.41 ± 0.14	5.13 ± 0.96
	256	1.25 ± 0.03	4.61 ± 0.12	0.54 ± 0.02	6.12 ± 0.14
	512	1.06 ± 0.01	2.21 ± 0.08	0.31 ± 0.01	2.97 ± 0.09
EDGE	–	0.23 ± 0.12	0.79 ± 0.11	0.02 ± 0.02	0.99 ± 0.23
GraphMaker	–	1.37 ± 0.01	5.56 ± 0.07	0.68 ± 0.01	7.51 ± 0.07
E-R	–	1.57 ± 0.01	6.63 ± 0.07	1.02 ± 0.02	8.72 ± 0.06
BTER	–	0.08 ± 0.01	0.56 ± 0.05	0.00 ± 0.00	0.46 ± 0.05
mKPGM	–	1.13 ± 0.01	3.25 ± 0.08	0.37 ± 0.00	4.57 ± 0.08

1611
1612
1613
1614
1615
1616
1617
1618
1619

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629

1630 Table 18: Generation quality in eigenvalue distribution similarity on DBLP dataset. W1, KS, and
1631 MMD are scaled by 10^{-1} ; Energy dist. is scaled by 10^{-2} .

1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Method	Config	W1 dist.	KS dist.	Energy dist.	MMD
SyNG-D	2	3.02 ± 0.32	0.81 ± 0.06	2.35 ± 0.43	0.88 ± 0.06
	3	2.13 ± 0.28	0.91 ± 0.07	1.57 ± 0.21	0.77 ± 0.05
	4	1.73 ± 0.17	1.06 ± 0.07	1.65 ± 0.20	0.77 ± 0.05
	5	2.56 ± 0.43	1.32 ± 0.08	2.99 ± 0.57	0.96 ± 0.08
	6	3.80 ± 0.46	1.63 ± 0.08	5.62 ± 0.89	1.28 ± 0.08
	2	2.85 ± 0.34	1.10 ± 0.07	2.37 ± 0.31	0.93 ± 0.05
SyNG-D (MLP)	3	6.09 ± 0.47	1.10 ± 0.08	8.94 ± 1.27	1.34 ± 0.07
	4	4.46 ± 0.41	0.83 ± 0.05	5.05 ± 0.87	1.12 ± 0.07
	5	5.75 ± 0.46	0.97 ± 0.07	7.42 ± 1.06	1.32 ± 0.06
	6	5.92 ± 0.45	1.03 ± 0.08	8.06 ± 1.13	1.31 ± 0.06
	2	2.89 ± 0.33	0.63 ± 0.05	2.02 ± 0.50	0.80 ± 0.07
	3	2.25 ± 0.33	0.58 ± 0.05	1.35 ± 0.39	0.65 ± 0.07
SyNG-R	4	1.70 ± 0.29	0.50 ± 0.06	0.83 ± 0.25	0.49 ± 0.07
	5	1.31 ± 0.30	0.46 ± 0.05	0.52 ± 0.18	0.37 ± 0.07
	6	1.19 ± 0.32	0.41 ± 0.05	0.40 ± 0.15	0.27 ± 0.07
	2	12.38 ± 0.16	2.35 ± 0.03	37.67 ± 1.01	2.62 ± 0.03
	3	4.04 ± 0.06	0.98 ± 0.03	3.47 ± 0.17	1.20 ± 0.04
	4	3.83 ± 0.10	0.67 ± 0.03	2.81 ± 0.18	0.68 ± 0.03
VGAE	5	3.76 ± 0.12	0.65 ± 0.03	2.69 ± 0.21	0.65 ± 0.03
	6	3.51 ± 0.08	0.61 ± 0.02	2.30 ± 0.13	0.64 ± 0.03
	16	3.57 ± 0.09	0.63 ± 0.03	2.48 ± 0.16	0.65 ± 0.03
	128	6.40 ± 1.61	1.61 ± 0.20	14.92 ± 6.20	1.87 ± 0.22
	256	17.55 ± 0.48	3.06 ± 0.05	75.24 ± 3.29	3.54 ± 0.06
	512	6.95 ± 0.24	1.49 ± 0.05	11.81 ± 1.00	1.76 ± 0.07
EDGE	–	5.50 ± 1.34	1.22 ± 0.25	9.72 ± 4.23	1.39 ± 0.30
GraphMaker	–	18.39 ± 0.14	3.32 ± 0.02	85.40 ± 1.14	3.93 ± 0.02
E-R	–	22.55 ± 0.14	3.77 ± 0.02	121.43 ± 1.26	4.41 ± 0.02
BTER	–	9.44 ± 0.11	1.14 ± 0.02	14.67 ± 0.35	1.48 ± 0.03
mKPGM	–	13.13 ± 0.13	2.52 ± 0.02	43.78 ± 0.90	3.00 ± 0.03

Table 19: Generation quality in numerical characteristics on DBLP dataset.

Method	Config	Clus ($\times 10^{-2}$)			Tri ($\times 10^{-4}$)		
		RMSE	MAE	Bias	RMSE	MAE	Bias
SyNG-D	2	6.22	5.87	-5.87	1.58	1.26	0.46
	3	5.34	4.94	-4.94	1.61	1.37	-0.87
	4	5.51	5.23	-5.23	1.81	1.57	-1.39
	5	5.27	4.95	-4.95	2.34	2.13	-2.07
	6	5.71	5.37	-5.37	3.01	2.86	-2.86
	2	14.00	13.61	-13.61	2.91	2.67	-2.62
SyNG-D (MLP)	3	24.21	23.91	-23.91	3.74	3.64	-3.64
	4	10.12	9.92	-9.92	3.63	3.20	3.13
	5	14.38	14.14	-14.14	2.29	1.81	1.47
	6	17.15	16.94	-16.94	1.80	1.54	-1.37
	2	3.78	3.28	-3.25	1.43	1.12	0.11
SyNG-R	3	3.22	2.69	-2.64	1.44	1.12	0.19
	4	2.63	2.10	-1.96	1.45	1.12	0.25
	5	2.27	1.76	-1.51	1.46	1.13	0.28
	6	2.14	1.66	-1.32	1.46	1.13	0.31
	2	63.28	63.28	-63.28	6.65	6.65	-6.65
VGAE	3	1.36	1.34	-1.34	0.58	0.58	-0.58
	4	2.94	2.93	2.93	0.28	0.28	0.28
	5	3.01	3.00	3.00	0.26	0.26	0.26
	6	3.32	3.31	3.31	0.11	0.10	0.10
	16	3.10	3.10	3.10	0.05	0.05	0.05
	128	87.63	87.63	-87.63	6.78	6.73	-6.73
GRAN	256	88.93	88.93	-88.93	7.93	7.93	-7.93
	512	89.21	89.21	-89.21	7.99	7.99	-7.99
	-	13.27	10.86	-10.86	2.20	1.77	-1.77
EDGE	-	89.78	89.78	-89.78	7.98	7.98	-7.98
GraphMaker	-	89.43	89.43	-89.43	7.96	7.96	-7.96
E-R	-	89.43	89.43	-89.43	7.96	7.96	-7.96
BTER	-	67.75	67.75	-67.75	6.09	6.09	-6.09
mKPGM	-	89.97	89.97	-89.97	8.00	8.00	-8.00

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740 Table 20: Generation quality in degree centralities distribution similarity on Yelp dataset. All metrics
1741 scaled by 10^{-2} .

Method	Config	W1 dist.	KS dist.	Energy dist.	MMD
SyNG-D	2	0.15 ± 0.05	2.49 ± 0.74	0.54 ± 0.19	1.28 ± 0.87
	3	0.21 ± 0.10	3.55 ± 1.26	0.77 ± 0.34	2.36 ± 1.43
	4	0.24 ± 0.10	4.54 ± 1.12	0.98 ± 0.33	3.46 ± 1.09
	5	0.36 ± 0.11	6.02 ± 1.16	1.42 ± 0.37	5.03 ± 1.15
	6	0.44 ± 0.13	7.72 ± 1.42	1.81 ± 0.44	6.72 ± 1.36
	2	0.32 ± 0.12	4.68 ± 1.36	1.18 ± 0.43	3.26 ± 1.42
SyNG-D (MLP)	3	0.39 ± 0.12	5.40 ± 1.30	1.38 ± 0.40	4.32 ± 1.18
	4	0.69 ± 0.15	8.56 ± 1.33	2.49 ± 0.46	7.82 ± 1.23
	5	0.23 ± 0.08	5.22 ± 1.03	1.01 ± 0.26	4.17 ± 0.79
	6	0.30 ± 0.09	4.80 ± 1.06	1.19 ± 0.33	4.51 ± 0.96
	2	0.13 ± 0.06	2.02 ± 0.80	0.47 ± 0.22	0.65 ± 0.94
	3	0.13 ± 0.06	1.98 ± 0.78	0.47 ± 0.22	0.60 ± 0.90
SyNG-R	4	0.13 ± 0.06	1.99 ± 0.82	0.47 ± 0.23	0.62 ± 0.92
	5	0.14 ± 0.06	2.05 ± 0.80	0.48 ± 0.22	0.67 ± 0.94
	6	0.13 ± 0.06	1.98 ± 0.78	0.47 ± 0.22	0.62 ± 0.91
	2	1.65 ± 0.00	22.12 ± 0.23	5.79 ± 0.02	32.23 ± 0.16
	3	1.70 ± 0.00	23.14 ± 0.22	5.98 ± 0.02	33.32 ± 0.19
	4	1.71 ± 0.00	23.50 ± 0.21	6.03 ± 0.02	33.67 ± 0.17
VGAE	5	1.69 ± 0.00	22.81 ± 0.22	5.97 ± 0.02	33.38 ± 0.16
	6	1.79 ± 0.00	24.47 ± 0.20	6.34 ± 0.02	35.49 ± 0.14
	16	1.73 ± 0.00	23.37 ± 0.21	6.09 ± 0.02	33.74 ± 0.18
GraphMaker	–	2.59 ± 0.00	41.44 ± 0.20	10.33 ± 0.01	69.26 ± 0.15
E-R	–	2.81 ± 0.00	57.17 ± 0.18	12.09 ± 0.03	77.36 ± 0.13
BTER	–	0.04 ± 0.00	0.97 ± 0.17	0.14 ± 0.01	0.00 ± 0.00
mKPGM	–	3.10 ± 0.00	49.19 ± 0.18	13.07 ± 0.02	49.97 ± 0.14

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793

1794 Table 21: Generation quality in eigenvalue distribution similarity on Yelp dataset. W1 unchanged;
1795 KS, Energy, and MMD scaled by 10^{-1} .

1796

Method	Config	W1 dist.	KS dist.	Energy dist.	MMD
SyNG-D	2	1.29 ± 0.09	0.53 ± 0.04	2.93 ± 0.24	0.61 ± 0.05
	3	1.09 ± 0.10	0.44 ± 0.05	2.43 ± 0.27	0.51 ± 0.05
	4	0.92 ± 0.08	0.38 ± 0.04	2.03 ± 0.23	0.43 ± 0.05
	5	0.77 ± 0.08	0.30 ± 0.04	1.62 ± 0.22	0.34 ± 0.05
	6	0.64 ± 0.09	0.23 ± 0.05	1.28 ± 0.25	0.25 ± 0.06
	2	2.07 ± 0.10	0.84 ± 0.04	4.88 ± 0.25	0.96 ± 0.05
SyNG-D (MLP)	3	1.88 ± 0.10	0.75 ± 0.04	4.43 ± 0.25	0.87 ± 0.04
	4	2.00 ± 0.11	0.82 ± 0.04	4.79 ± 0.26	0.94 ± 0.05
	5	1.21 ± 0.10	0.51 ± 0.04	2.83 ± 0.25	0.57 ± 0.05
	6	1.55 ± 0.09	0.66 ± 0.04	3.73 ± 0.23	0.75 ± 0.04
	2	1.32 ± 0.09	0.55 ± 0.04	3.04 ± 0.25	0.64 ± 0.05
	3	1.22 ± 0.09	0.51 ± 0.04	2.82 ± 0.25	0.59 ± 0.05
SyNG-R	4	1.10 ± 0.09	0.47 ± 0.04	2.55 ± 0.24	0.54 ± 0.05
	5	1.00 ± 0.09	0.44 ± 0.04	2.33 ± 0.24	0.49 ± 0.05
	6	0.94 ± 0.09	0.42 ± 0.04	2.21 ± 0.23	0.47 ± 0.05
	2	2.44 ± 0.01	1.40 ± 0.00	6.51 ± 0.02	1.73 ± 0.00
	3	2.46 ± 0.01	1.41 ± 0.00	6.56 ± 0.02	1.76 ± 0.00
	4	2.47 ± 0.01	1.41 ± 0.00	6.58 ± 0.02	1.76 ± 0.00
VGAE	5	2.48 ± 0.01	1.42 ± 0.00	6.60 ± 0.02	1.75 ± 0.00
	6	2.51 ± 0.01	1.44 ± 0.00	6.71 ± 0.02	1.79 ± 0.00
	16	2.42 ± 0.01	1.40 ± 0.00	6.49 ± 0.02	1.76 ± 0.00
GraphMaker	–	2.94 ± 0.01	1.60 ± 0.00	7.63 ± 0.02	2.07 ± 0.00
E-R	–	3.83 ± 0.01	2.00 ± 0.00	10.22 ± 0.02	2.45 ± 0.00
BTER	–	1.75 ± 0.01	0.70 ± 0.00	3.96 ± 0.02	0.83 ± 0.00
mKPGM	–	2.06 ± 0.01	0.91 ± 0.00	4.77 ± 0.02	0.93 ± 0.00

1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Table 22: Generation quality in numerical characteristics on Yelp dataset.

Method	Config	Clus ($\times 10^{-2}$)			Tri ($\times 10^{-4}$)		
		RMSE	MAE	Bias	RMSE	MAE	Bias
SyNG-D	2	2.56	2.52	-2.52	1.24	1.08	-1.05
	3	2.65	2.61	-2.61	1.71	1.57	-1.56
	4	2.01	1.96	-1.96	1.59	1.47	-1.46
	5	1.83	1.77	-1.77	1.82	1.72	-1.71
	6	1.77	1.70	-1.70	2.00	1.89	-1.88
	2	2.35	2.31	-2.31	0.74	0.61	-0.22
SyNG-D (MLP)	3	1.05	0.96	-0.96	1.40	1.18	1.15
	4	0.75	0.63	0.58	3.33	3.18	3.18
	5	0.81	0.71	-0.68	0.98	0.84	-0.72
	6	0.65	0.53	0.47	1.44	1.26	1.23
	2	2.79	2.76	-2.76	1.49	1.35	-1.34
	3	2.40	2.36	-2.36	1.33	1.17	-1.15
SyNG-R	4	1.56	1.50	-1.50	1.01	0.85	-0.73
	5	0.99	0.90	-0.89	0.83	0.69	-0.43
	6	0.76	0.65	-0.61	0.78	0.64	-0.30
	2	10.36	10.36	-10.36	7.36	7.36	-7.36
	3	10.55	10.55	-10.55	7.45	7.45	-7.45
	4	10.56	10.56	-10.56	7.46	7.46	-7.46
VGAE	5	10.77	10.77	-10.77	7.49	7.49	-7.49
	6	11.26	11.26	-11.26	7.67	7.67	-7.67
	16	10.25	10.25	-10.25	7.41	7.41	-7.41
GraphMaker	-	15.52	15.52	-15.52	8.82	8.82	-8.82
E-R	-	14.48	14.48	-14.48	8.12	8.12	-8.12
BTER	-	4.45	4.45	-4.45	2.27	2.27	-2.27
mKPGM	-	15.98	15.98	-15.98	9.35	9.35	-9.35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899

1900 Table 23: Generation quality in degree centralities distribution similarity on PolBlogs dataset. All
1901 metrics scaled by 10^{-2} .

1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Method	Config	W1 dist.	KS dist.	Energy dist.	MMD
SyNG-D	2	0.18 ± 0.08	4.53 ± 0.97	0.01 ± 0.01	0.97 ± 1.44
	3	0.22 ± 0.11	5.02 ± 1.34	0.01 ± 0.01	1.95 ± 2.15
	4	0.28 ± 0.13	5.74 ± 1.64	0.02 ± 0.02	3.18 ± 2.50
	5	0.44 ± 0.14	8.29 ± 2.04	0.04 ± 0.02	6.49 ± 2.44
	6	0.52 ± 0.15	9.98 ± 2.11	0.06 ± 0.03	8.31 ± 2.50
	2	0.20 ± 0.07	9.59 ± 1.21	0.01 ± 0.01	1.47 ± 1.71
SyNG-D (MLP)	3	0.24 ± 0.10	9.81 ± 1.09	0.01 ± 0.01	3.05 ± 2.25
	4	0.33 ± 0.15	10.06 ± 1.49	0.02 ± 0.02	3.20 ± 2.26
	5	0.23 ± 0.07	8.99 ± 0.93	0.01 ± 0.01	2.79 ± 1.77
	6	0.19 ± 0.08	9.16 ± 1.35	0.01 ± 0.01	1.41 ± 1.73
	2	0.18 ± 0.10	4.47 ± 0.92	0.01 ± 0.01	0.92 ± 1.45
	3	0.18 ± 0.10	4.49 ± 1.11	0.01 ± 0.01	0.93 ± 1.50
SyNG-R	4	0.18 ± 0.10	4.57 ± 1.23	0.01 ± 0.01	0.94 ± 1.50
	5	0.18 ± 0.10	4.68 ± 1.30	0.01 ± 0.01	1.06 ± 1.62
	6	0.18 ± 0.10	4.88 ± 1.49	0.01 ± 0.01	1.12 ± 1.67
	2	0.93 ± 0.01	35.38 ± 0.49	0.24 ± 0.01	35.42 ± 0.61
	3	0.97 ± 0.01	36.24 ± 0.53	0.26 ± 0.01	37.16 ± 0.51
	4	0.94 ± 0.01	35.65 ± 0.52	0.24 ± 0.01	36.02 ± 0.60
VGAE	5	0.92 ± 0.01	35.31 ± 0.51	0.23 ± 0.01	35.33 ± 0.64
	6	0.97 ± 0.01	36.35 ± 0.53	0.26 ± 0.01	37.42 ± 0.57
	16	0.98 ± 0.01	36.56 ± 0.49	0.26 ± 0.01	37.82 ± 0.56
	128	0.56 ± 0.19	15.88 ± 2.70	0.08 ± 0.05	13.86 ± 2.01
	256	2.25 ± 0.31	35.58 ± 3.15	0.64 ± 0.15	33.78 ± 3.61
	512	9.30 ± 0.67	63.37 ± 2.38	6.36 ± 0.72	67.41 ± 2.69
EDGE	–	0.06 ± 0.00	4.91 ± 0.44	0.00 ± 0.00	0.00 ± 0.00
GraphMaker	–	1.72 ± 0.01	49.48 ± 0.60	0.82 ± 0.01	74.15 ± 0.75
E-R	–	1.83 ± 0.01	56.70 ± 0.56	1.04 ± 0.01	79.24 ± 0.59
BTER	–	0.06 ± 0.01	5.69 ± 0.62	0.00 ± 0.00	0.00 ± 0.00
mKPGM	–	1.57 ± 0.01	33.09 ± 0.37	0.60 ± 0.01	50.67 ± 0.90

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953

1954 Table 24: Generation quality in eigenvalue distribution similarity on PolBlogs dataset. W1 is unscaled;
1955 KS, Energy, and MMD are scaled by 10^{-2} .

1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Method	Config	W1 dist.	KS dist.	Energy dist.	MMD
SyNG-D	2	0.21 ± 0.06	4.82 ± 0.94	0.92 ± 0.51	2.58 ± 1.37
	3	0.20 ± 0.04	5.02 ± 1.03	0.90 ± 0.38	3.15 ± 1.16
	4	0.20 ± 0.05	4.41 ± 0.96	0.74 ± 0.32	2.52 ± 1.22
	5	0.25 ± 0.07	3.22 ± 0.77	0.80 ± 0.46	1.51 ± 1.18
	6	0.30 ± 0.09	3.32 ± 0.89	1.19 ± 0.72	1.43 ± 1.36
	2	0.46 ± 0.10	7.00 ± 0.89	3.36 ± 1.34	5.54 ± 1.05
SyNG-D (MLP)	3	0.37 ± 0.09	7.01 ± 0.76	2.51 ± 1.04	5.27 ± 0.90
	4	0.65 ± 0.11	8.90 ± 0.90	6.88 ± 1.98	8.17 ± 1.11
	5	0.38 ± 0.10	7.00 ± 0.89	2.81 ± 1.18	5.57 ± 1.08
	6	0.39 ± 0.10	6.74 ± 0.92	2.80 ± 1.18	5.35 ± 1.12
	2	0.24 ± 0.08	5.04 ± 1.10	1.24 ± 0.82	3.01 ± 1.59
	3	0.23 ± 0.07	5.45 ± 1.02	1.33 ± 0.76	3.64 ± 1.34
SyNG-R	4	0.23 ± 0.07	5.58 ± 1.06	1.35 ± 0.79	3.86 ± 1.32
	5	0.22 ± 0.07	5.68 ± 0.99	1.34 ± 0.77	3.98 ± 1.20
	6	0.22 ± 0.06	5.69 ± 0.98	1.36 ± 0.73	4.15 ± 1.17
	2	1.23 ± 0.01	27.33 ± 0.18	42.20 ± 0.72	31.11 ± 0.20
	3	1.27 ± 0.01	27.67 ± 0.18	44.05 ± 0.82	31.57 ± 0.21
	4	1.24 ± 0.01	27.41 ± 0.18	42.65 ± 0.74	31.23 ± 0.20
VGAE	5	1.23 ± 0.01	27.27 ± 0.18	41.88 ± 0.75	31.10 ± 0.22
	6	1.27 ± 0.01	27.72 ± 0.18	44.16 ± 0.74	31.62 ± 0.19
	16	1.28 ± 0.01	27.81 ± 0.18	44.70 ± 0.77	31.80 ± 0.20
	128	0.48 ± 0.18	10.91 ± 1.15	4.63 ± 2.88	9.04 ± 0.98
	256	1.23 ± 0.16	10.89 ± 1.18	17.03 ± 4.31	9.39 ± 1.26
	512	3.52 ± 0.19	24.55 ± 1.24	122.93 ± 12.78	26.84 ± 1.41
EDGE	–	0.28 ± 0.04	8.21 ± 1.17	1.90 ± 0.59	4.69 ± 1.26
GraphMaker	–	1.78 ± 0.01	32.20 ± 0.15	72.49 ± 0.85	38.28 ± 0.13
E-R	–	2.03 ± 0.01	34.42 ± 0.12	93.20 ± 0.92	40.10 ± 0.11
BTER	–	0.41 ± 0.02	4.53 ± 0.40	1.87 ± 0.17	3.04 ± 0.34
mKPGM	–	1.31 ± 0.01	23.36 ± 0.22	31.95 ± 0.46	31.15 ± 0.22

1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051

Table 25: Generation quality in numerical characteristics on PolBlogs dataset.

Method	Config	Clus ($\times 10^{-2}$)			Tri ($\times 10^{-4}$)		
		RMSE	MAE	Bias	RMSE	MAE	Bias
SyNG-D	2	1.90	1.51	1.15	0.71	0.55	0.13
	3	1.56	1.23	0.54	0.68	0.56	-0.33
	4	1.85	1.45	0.90	0.78	0.66	-0.43
	5	1.66	1.33	0.49	1.09	1.00	-0.98
	6	1.91	1.49	0.93	1.19	1.09	-1.07
	2	3.58	3.26	3.23	0.91	0.69	0.56
SyNG-D (MLP)	3	2.23	1.88	1.73	0.59	0.48	-0.16
	4	5.69	5.45	5.45	1.80	1.61	1.60
	5	5.18	4.77	4.74	1.15	0.90	0.77
	6	3.15	2.80	2.72	0.84	0.65	0.50
	2	2.45	2.00	1.83	0.83	0.62	0.39
SyNG-B	3	2.68	2.23	2.12	0.85	0.64	0.44
	4	2.88	2.44	2.37	0.87	0.66	0.49
	5	2.91	2.50	2.44	0.89	0.68	0.51
	6	3.13	2.74	2.69	0.92	0.71	0.55
	2	3.72	3.71	-3.71	2.10	2.10	-2.07
VGAE	3	4.49	4.49	-4.49	2.20	2.20	-2.20
	4	4.03	4.02	-4.02	2.14	2.14	-2.14
	5	3.26	3.25	-3.25	2.07	2.07	-2.07
	6	4.87	4.87	-4.87	2.22	2.22	-2.22
	16	4.54	4.54	-4.54	2.22	2.22	-2.22
	2	11.42	11.38	-11.38	1.57	1.49	-1.41
GRAN	128	10.82	10.78	-10.78	4.42	4.22	4.22
	256	0.76	0.60	0.03	64.94	64.45	64.45
	512						
EDGE	-	5.69	5.43	-5.43	0.79	0.75	-0.75
GraphMaker	-	20.75	20.75	-20.75	3.27	3.27	-3.27
E-R	-	20.36	20.36	-20.36	3.22	3.22	-3.22
BTER	-	5.27	5.27	-5.27	0.88	0.88	-0.88
mKPGM	-	21.43	21.43	-21.43	3.32	3.32	-3.32

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065

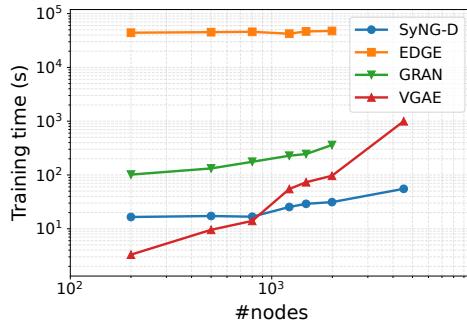
2066 Table 26: 4-node graphlet frequency distance (GFD) results on the YouTube, DBLP, PolBlogs, and
2067 datasets. We report both L1 and L2 distances as measures of similarity, and highlight the best
2068 result for each method in bold. All entries are scaled by 10^{-1} .
2069

2070 Method	2071 Config	GFD _{L1} ↓				GFD _{L2} ↓			
		2072 YouTube	2073 DBLP	2074 PolBlogs	2075 Yelp	2076 YouTube	2077 DBLP	2078 PolBlogs	2079 Yelp
2071 SyNG-D	2	1.42 ± 0.91	3.80 ± 0.96	0.76 ± 0.39	0.38 ± 0.09	0.70 ± 0.48	1.97 ± 0.51	0.33 ± 0.19	0.16 ± 0.05
	3	1.39 ± 0.97	3.03 ± 0.98	0.72 ± 0.42	0.42 ± 0.11	0.68 ± 0.51	1.58 ± 0.52	0.32 ± 0.21	0.17 ± 0.05
	4	1.45 ± 0.98	3.35 ± 0.86	0.86 ± 0.46	0.30 ± 0.11	0.71 ± 0.50	1.75 ± 0.45	0.38 ± 0.23	0.13 ± 0.05
	5	1.45 ± 0.97	3.17 ± 0.90	0.89 ± 0.52	0.32 ± 0.13	0.71 ± 0.50	1.67 ± 0.47	0.40 ± 0.26	0.14 ± 0.06
	6	1.69 ± 1.05	3.46 ± 0.94	0.97 ± 0.51	0.31 ± 0.13	0.83 ± 0.54	1.83 ± 0.49	0.43 ± 0.25	0.14 ± 0.06
	2	2.08 ± 0.98	6.92 ± 1.11	1.19 ± 0.52	0.35 ± 0.11	1.04 ± 0.50	3.60 ± 0.59	0.51 ± 0.26	0.14 ± 0.05
2072 SyNG-D(MLP)	3	2.55 ± 1.03	9.51 ± 0.86	1.23 ± 0.52	0.37 ± 0.19	1.24 ± 0.50	5.04 ± 0.48	0.55 ± 0.25	0.17 ± 0.10
	4	1.71 ± 0.86	6.17 ± 0.74	1.47 ± 0.38	0.34 ± 0.13	0.82 ± 0.43	3.19 ± 0.39	0.61 ± 0.18	0.13 ± 0.05
	5	3.02 ± 0.96	7.22 ± 0.86	1.41 ± 0.55	0.23 ± 0.14	1.45 ± 0.46	3.73 ± 0.45	0.56 ± 0.26	0.11 ± 0.07
	6	2.68 ± 1.14	7.86 ± 0.73	1.37 ± 0.74	0.27 ± 0.11	1.28 ± 0.55	4.08 ± 0.39	0.60 ± 0.38	0.11 ± 0.05
	2	1.38 ± 1.01	1.91 ± 0.91	0.81 ± 0.39	0.39 ± 0.11	0.67 ± 0.53	0.99 ± 0.51	0.35 ± 0.19	0.15 ± 0.04
	3	1.33 ± 1.05	1.60 ± 0.89	0.83 ± 0.38	0.33 ± 0.11	0.65 ± 0.53	0.83 ± 0.49	0.36 ± 0.18	0.13 ± 0.04
2073 SyNG-R	4	1.34 ± 1.07	1.31 ± 0.80	0.86 ± 0.38	0.23 ± 0.12	0.65 ± 0.53	0.67 ± 0.44	0.36 ± 0.18	0.09 ± 0.05
	5	1.36 ± 1.07	1.13 ± 0.72	0.87 ± 0.39	0.18 ± 0.11	0.65 ± 0.52	0.58 ± 0.39	0.37 ± 0.18	0.08 ± 0.05
	6	1.37 ± 1.08	1.14 ± 0.81	0.88 ± 0.37	0.18 ± 0.11	0.66 ± 0.53	0.58 ± 0.44	0.37 ± 0.18	0.08 ± 0.05
	2	6.53 ± 0.04	13.69 ± 0.01	2.95 ± 0.09	3.66 ± 0.01	2.97 ± 0.01	7.39 ± 0.01	1.45 ± 0.04	1.53 ± 0.00
	3	6.50 ± 0.04	2.54 ± 0.13	3.21 ± 0.08	3.85 ± 0.01	2.96 ± 0.01	1.14 ± 0.09	1.54 ± 0.04	1.61 ± 0.00
	4	5.91 ± 0.03	1.57 ± 0.12	3.08 ± 0.08	3.86 ± 0.01	2.79 ± 0.01	0.68 ± 0.06	1.50 ± 0.04	1.61 ± 0.00
2074 VGAE	5	6.61 ± 0.03	1.57 ± 0.14	3.00 ± 0.08	3.80 ± 0.01	3.00 ± 0.01	0.69 ± 0.07	1.48 ± 0.04	1.58 ± 0.00
	6	6.20 ± 0.03	1.69 ± 0.15	3.19 ± 0.09	4.09 ± 0.01	2.88 ± 0.01	0.85 ± 0.07	1.51 ± 0.04	1.70 ± 0.00
	16	6.30 ± 0.03	1.51 ± 0.11	3.37 ± 0.08	3.93 ± 0.01	2.92 ± 0.01	0.80 ± 0.07	1.62 ± 0.04	1.64 ± 0.00
	2	1.90 ± 0.30	18.35 ± 0.14	1.95 ± 0.33	-	0.77 ± 0.14	9.92 ± 0.04	0.79 ± 0.19	-
	3	2.42 ± 0.18	17.26 ± 0.15	3.88 ± 0.76	-	1.07 ± 0.10	8.49 ± 0.53	1.73 ± 0.37	-
	512	1.67 ± 0.38	17.17 ± 0.08	3.04 ± 0.30	-	0.67 ± 0.17	8.22 ± 0.31	1.40 ± 0.16	-
2086 EDGE	-	5.35 ± 0.49	5.27 ± 2.28	1.14 ± 0.29	-	2.12 ± 0.19	2.57 ± 1.35	0.45 ± 0.11	-
2087 GraphMaker	-	7.97 ± 0.00	17.45 ± 0.01	7.88 ± 0.01	5.17 ± 0.00	3.48 ± 0.00	8.32 ± 0.00	3.23 ± 0.00	2.14 ± 0.00
2088 ER	-	7.90 ± 0.00	17.39 ± 0.01	7.80 ± 0.01	5.02 ± 0.00	3.47 ± 0.00	8.32 ± 0.00	3.22 ± 0.00	2.08 ± 0.00
2089 BTER	-	2.24 ± 0.10	13.84 ± 0.01	2.09 ± 0.09	0.73 ± 0.01	0.95 ± 0.05	7.54 ± 0.00	0.98 ± 0.04	0.30 ± 0.01
2090 mKPGM	-	7.57 ± 0.01	17.47 ± 0.01	7.83 ± 0.03	4.26 ± 0.01	3.32 ± 0.01	8.28 ± 0.00	3.09 ± 0.01	1.74 ± 0.01

2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2106 C.8 SUPPLEMENTARY FOR THE EFFICIENCY COMPARISON
2107

2108 In this section, we begin with a note on e-FLOPs and then present a comparison of training and
2109 sampling time across methods, specifying the device environment used for each.
2110

2111 **A note on e-FLOPs.** The definition of e-FLOPs considers two types of operations: the float-point
2112 operations on neural nets, and node visit operations on trees. These two operations are not directly
2113 comparable, as node visits involve comparison and branching which are different operations than the
2114 float-point operations on neural nets. In Section 4.3, we use e-FLOPs for a comparison which is less
2115 dependent on the implemented device environments. As a supplementary, we study the wall-block
2116 training and sampling time of each methods with their implemented device environments specified.
2117

2118 Figure 5: Wall-clock training time of different methods for datasets of different sizes.
2119

2120 **Evaluation metrics and configuration.** We compare training and sampling efficiency between
2121 SyNG-D and the baseline methods through the time they spend during training and sampling. SyNG-
2122 D and VGAE are trained on CPUs, while GRAN and EDGE are trained on a single NVIDIA GeForce
2123 RTX 4090 with memory of 24GB. For each dataset, we train each model using the default training
2124 schedule, sample 128 networks from each model, and record the wall-clock training time and average
2125 sampling time.
2126

2127 **Results and discussion.** Figure 5 presents the training time comparisons between our method and
2128 the baselines. In particular, our model can be trained in tens of seconds even for graphs with up
2129 to 5,000 nodes, whereas deep learning based methods typically require on the order of hundreds
2130 to thousands of seconds. As network size increases, the training time for our method grows at a
2131 moderate rate, while the training time for VGAE increases much faster. This indicates that the
2132 computational cost of SyNG-D remains relatively stable as network size grows, demonstrating its
2133 advantages on large-scale networks. The training time of EDGE and GRAN remains high across all
2134 dataset sizes.
2135

2136 For sampling speed, on networks with fewer than 1,000 nodes, both SyNG-D and VGAE complete a
2137 single draw in under 0.1 s on average, whereas EDGE and GRAN require a few seconds. SyNG-D
2138 requires only a small number of diffusion steps to generate high-quality latent embeddings. For larger
2139 networks with 5,000 nodes, SyNG-D samples a synthetic network in only a few seconds, significantly
2140 faster than GRAN and EDGE, which require tens of seconds. The sampling time of SyNG-D is also
2141 more stable as network size increases, compared with the other methods.
2142

2143 These results highlight the scalability of SyNG-D and its advantage for large graphs.
2144

2145 C.9 ANALYSIS OF COMPLEXITY
2146

2147 We provide an analysis of the time complexity of the training process. As suggested by Ma et al.
2148 (2020), each iteration of the projected gradient descent involves only matrix multiplication between
2149 the adjacency matrix and the current latent embedding estimate. Therefore, the per-iteration time
2150 complexity of the projected gradient descent in estimating the latent node embeddings is $O(n^2r)$,
2151 where n is the number of nodes and r is the latent dimension. Meanwhile, the cost of generating a
2152

new group of latent embeddings is $O(nr)$, where the omitted constant depends on the model and implementation. Since the latent embedding is typically low-dimensional, the overall time complexity of the training and inference of our approach is $O(n^2r)$.

In the context of a large-scale sparse network dataset, the proposed SyNGLER framework remains scalable with a simple adaptation. Concretely, under the Gaussian link function $p(a_{ij} \mid \pi_{ij}) \propto (2\pi\sigma^2)^{-1/2} \exp\{-(a_{ij} - \pi_{ij})^2/(2\sigma^2)\}$, the embedding estimation problem Eq. (1) can be efficiently solved with top- r singular value decomposition. According to [Saad \(2003\)](#), the time complexity of eigen-decomposition for a sparse adjacency matrix A is $O(|E(A)|r + nr)$, where $E(A)$ denotes the edge set associated with the adjacency matrix A . When the total number of edges is $O(n^c)$ with $c < 2$, the resulting time complexity grows more slowly than that of using a logistic link. In scenarios involving very large-scale and sparse networks, this approach is highly computationally efficient. We empirically study this approach on a network with one million nodes in [Appendix D](#).

For other deep generative models, [Zhu et al. \(2022\)](#) suggests that the per-iteration time complexity to train a deep generative model over a graph of size n is typically $O(n^2M)$, where M is the number of parameters in the model. Note that deep generative models typically have a large number of parameters M , which can be much larger than r . Therefore, we conclude that our method has a lower time complexity than deep generative models, which is consistent with our empirical results.

D EVALUATION OF SYNGLER ON LARGE SCALE NETWORK DATASET

In this section, we evaluate the scalability and effectiveness of SyNGLER on a large-scale synthetic network. To illustrate the capability of our framework under extreme graph sizes and sparsity levels, we construct a massive benchmark using the Stochastic Block Model (SBM) and assess whether SyNGLER is able to faithfully reproduce its structural patterns.

Large-Scale Network Simulation via SBM. We first generate a network with $n = 10^6$ nodes from a three-block Stochastic Block Model. The network is designed to be extremely sparse, with an average degree of approximately 5. This setup provides a controlled environment to examine whether SyNGLER can recover community structure and degree behavior at scale.

Latent Space Estimation. We apply our latent space model to embed the one-million-node network into a continuous low-dimensional space. To ensure computational feasibility at the one-million-node scale, we apply a linear latent space model to obtain the embeddings.

Generative Resampling via SyNG-D (MLP). Using the estimated latent positions, we train our SyNG-D (MLP) model to resample latent embeddings. The model learns the distribution of the latent embeddings and enables resampling of synthetic latent vectors that preserve the structural structure and cluster patterns present in the original data.

Direct visualization or adjacency-level comparison is infeasible for networks of this scale. Instead, we validate the generative resampling by examining whether key structures are preserved. In particular, [Figure 6](#) shows that SyNG-D(MLP) successfully recovers the global community interaction patterns and preserves important spectral characteristics of the graph.

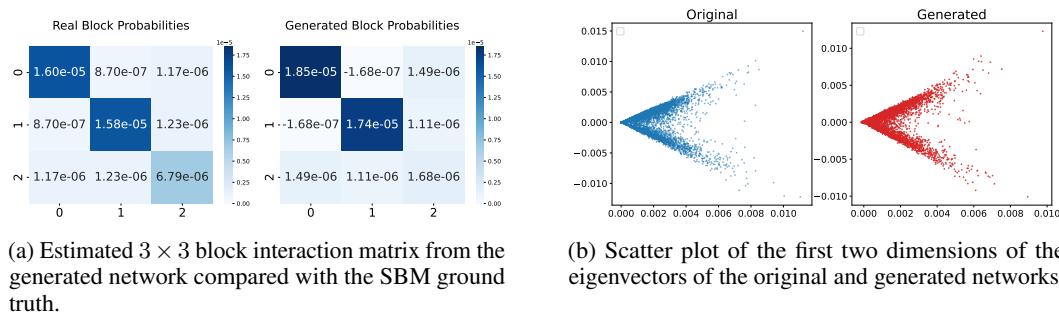


Figure 6: Evaluation of SyNG-D(MLP) on the one-million-node SBM network.

2214 E DETAILS OF SYNGLER-ATTR AND ITS EVALUATION RESULTS

2215
 2216 In this section, we provide additional details on the SyNGLER-Attr procedure and report its empirical
 2217 performance on several attributed network datasets. We first present the full algorithmic workflow of
 2218 SyNGLER-Attr, including latent factor estimation, attribute decomposition, and the joint mechanism
 2219 for network and node attributes generation. The complete procedure is summarized in Algorithm 3.
 2220 In practice, we use the sigmoid function as the link function when modeling binary networks, so that
 2221 Bernoulli($g(\cdot)$) reduces to a standard logistic formulation for edge probabilities.
 2222

2224 **Algorithm 3** Synthetic Network Generation via Latent Emedding Reconstruction for Attributed 2225 Network

- 2226 1: **Input:** Adjacency matrix $A \in \{0, 1\}^{n \times n}$, Attribute matrix $Y \in \mathbb{R}^{n \times p}$.
- 2227 2: Fit the latent space likelihood model $(A_{ij} | z_{1i}, z_{1j}, \alpha_i, \alpha_j) \sim \text{Bernoulli}(g(z_{1i}^\top z_{1j} + \alpha_i + \alpha_j))$
 2228 to obtain the MLE $(\hat{Z}_1, \hat{\alpha})$.
- 2229 3: Regress Y on Z_1 under $Y = \mathbf{1}_n \hat{\mu}^\top + \hat{Z}_1 \hat{\Lambda}_1^\top + R$, where R denotes the residual matrix.
- 2230 4: Conduct an eigenvalue ratio test on residual R to determine d_2 , then fit $R = Z_2 \hat{\Lambda}_2^\top + E$, $E_i \sim$
 2231 $N(0, \Psi)$ to obtain $(\hat{Z}_2, \hat{\Lambda}_2)$.
- 2232 5: Form the full latent embedding $\hat{Z} = (\hat{Z}_1, \hat{Z}_2)$ and train a generative model $\text{Sampler} =$
 2233 $\text{GenModel}(\{(\hat{z}_i, \hat{\alpha}_i)\}_{i=1}^n)$.
- 2234 6: Generate new latent samples $(\tilde{z}_i, \tilde{\alpha}_i) \sim \text{Sampler}$, $i = 1, \dots, n$, where $\tilde{z}_i = (\tilde{z}_{1i}^\top, \tilde{z}_{2i}^\top)^\top$.
- 2235 7: With sampled latent variables $\tilde{z}_i, \tilde{\alpha}_i$, generate network edges via $\tilde{A}_{ij} = \tilde{A}_{ji} \sim p(\cdot | \tilde{z}_{1i}^\top \tilde{z}_{1j} +$
 2236 $\tilde{\alpha}_i + \tilde{\alpha}_j)$, and generate attributes via $\tilde{Y} = \mathbf{1}_n \hat{\mu}^\top + \tilde{Z}_1 \hat{\Lambda}_1^\top + \tilde{Z}_2 \hat{\Lambda}_2^\top$.
- 2237 8: **Output:** Generated network \tilde{A} and generated attributes \tilde{Y} .

2240
 2241 Empirically, we evaluate the SyNGLER-Attr procedure on the Cora dataset, a widely used attributed
 2242 network benchmark.

2244 Table 27: Generation performance of SyNG-Attr and GraphMaker on the Cora dataset.

Method	RMSE _{Tri.} ↓	RMSE _{Clus.} ↓	MMD _{Eig.} ↓	MMD _{DegC.} ↓	ML-R
SyNG-Attr _{MLP}	36.07	5.38	0.68 ± 0.00	2.61 ± 0.15	0.98 ± 0.01
SyNG-Attr _{Forest}	0.54	2.09	0.88 ± 0.00	0.32 ± 0.05	0.99 ± 0.02
SyNG-Attr _R	0.48	5.21	0.89 ± 0.01	0.50 ± 0.04	1.00 ± 0.00
GraphMaker	0.58	7.72	1.03 ± 0.01	2.36 ± 0.01	1.00 ± 0.00

2253
 2254 In comparison with GraphMaker (Li et al.,
 2255 2023), we observe that SyNGLER-Attr produces
 2256 synthetic graphs with close structural
 2257 statistics while maintaining comparable
 2258 attribute-level accuracy. Table 27
 2259 reports the structural and ML-utility metrics,
 2260 showing that SyNGLER-Attr achieves
 2261 competitive or superior performance on tri-
 2262 angle density, clustering coefficient, and
 2263 spectral and centrality-based measures. For
 2264 the ML-utility metric, we adopt a link pre-
 2265 diction task, with the full evaluation pro-
 2266 tocol detailed in Appendix F. To further evaluate attribute quality, we compute the Kolmogorov-
 2267 Smirnov (KS) distance and Maximum Mean Discrepancy (MMD) between the generated and original
 2268 attributes. As reported in Table 28, SyNGLER-Attr achieves smaller discrepancies than GraphMaker,
 2269 confirming its ability to preserve attribute distributions.

2263 Table 28: KS and MMD distances between row sums
 2264 of generated and original attributes for SyNGLER-Attr and
 2265 GraphMaker on the Cora dataset.

Method	d _{KS} ↓	d _{W1} ↓	MMD ↓
SyNG-Attr _{MLP}	0.1398	2.8085	0.1676
SyNG-Attr _{Forest}	0.1225	1.9584	0.1681
SyNG-Attr _R	0.1457	2.3231	0.1701
GraphMaker	0.1400	5.1615	0.1678

2268 F EVALUATIONS FOR GENERATED GRAPHS ON DOWNSTREAM TASKS

2271 To assess whether a generated graph can serve as a reliable surrogate for downstream machine learning
 2272 tasks, we employ a discriminative-model-based evaluation protocol adapted from [Li et al. \(2023\)](#). For
 2273 a given dataset, we train a GCN-based graph auto-encoder (GAE) on the training split of the original
 2274 graph, yielding a model with parameters \hat{W} . We then train the same architecture on a generated graph
 2275 \hat{G} to obtain a second model with parameters \check{W} . Both models are subsequently evaluated on the *same*
 2276 held-out test split of the original graph, resulting in two AUC scores $\text{ACC}(G | G)$ and $\text{ACC}(G | \hat{G})$,
 2277 corresponding to the model trained on the original graph and the one trained on the generated graph,
 2278 respectively. We use the ratio

$$\frac{\text{ACC}(G | \hat{G})}{\text{ACC}(G | G)}$$

2282 as the utility metric. A ratio close to one indicates that the generated graph offers comparable
 2283 signal for training the GAE model, and therefore retains the structural information relevant for link
 2284 prediction. All hyperparameters are tuned consistently across both training procedures to ensure a
 2285 fair comparison. The results across all four datasets are summarized in Table 29.

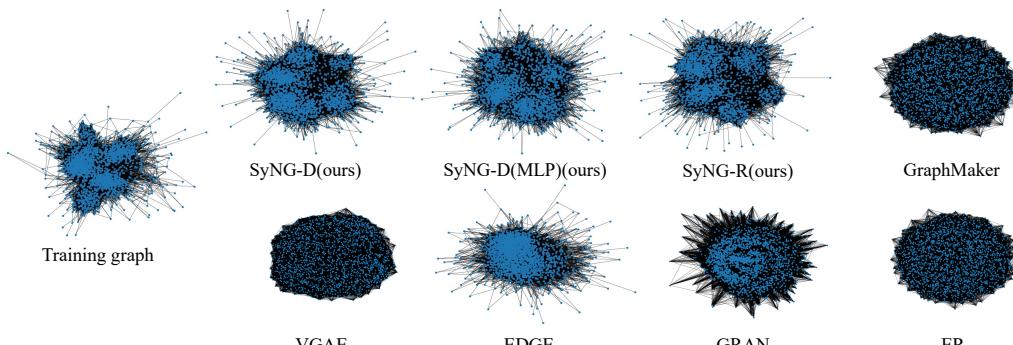
2287 Table 29: ML utility evaluation of SyNG-D, SyNG-R, EDGE, GRAN, and GraphMaker across four
 2288 datasets. Entries marked with “–” indicate OOM issues.

2290 Method	2291 Config	2292 DBLP	2293 PolBlogs	2294 YouTube	2295 Yelp
2292 SyNG-D	2	1.00 ± 0.00	0.98 ± 0.01	0.94 ± 0.02	0.98 ± 0.00
	3	1.00 ± 0.00	0.98 ± 0.01	0.98 ± 0.01	0.99 ± 0.00
	4	1.00 ± 0.00	0.99 ± 0.01	0.98 ± 0.01	0.99 ± 0.00
	5	1.00 ± 0.00	0.99 ± 0.01	0.99 ± 0.01	0.99 ± 0.00
	6	1.00 ± 0.00	0.99 ± 0.00	0.99 ± 0.01	0.99 ± 0.00
	–	–	–	–	–
2297 SyNG-D(MLP)	2	1.00 ± 0.00	0.98 ± 0.01	0.90 ± 0.02	0.98 ± 0.00
	3	1.00 ± 0.00	0.99 ± 0.01	0.98 ± 0.01	0.99 ± 0.00
	4	1.00 ± 0.00	0.96 ± 0.01	0.96 ± 0.01	0.99 ± 0.00
	5	1.00 ± 0.00	0.97 ± 0.01	0.99 ± 0.00	0.99 ± 0.00
	6	1.00 ± 0.00	0.98 ± 0.01	0.98 ± 0.01	0.99 ± 0.00
	–	–	–	–	–
2302 SyNG-R	2	1.00 ± 0.00	0.98 ± 0.01	0.96 ± 0.02	0.98 ± 0.00
	3	1.00 ± 0.00	0.98 ± 0.01	0.98 ± 0.01	0.99 ± 0.00
	4	1.00 ± 0.00	0.98 ± 0.01	0.98 ± 0.01	0.99 ± 0.00
	5	1.00 ± 0.00	0.98 ± 0.01	0.99 ± 0.01	1.00 ± 0.00
	6	1.00 ± 0.00	0.99 ± 0.01	0.99 ± 0.01	1.00 ± 0.00
	–	–	–	–	–
2307 VGAE	2	1.00 ± 0.00	1.01 ± 0.00	1.00 ± 0.00	1.00 ± 0.00
	3	1.00 ± 0.00	1.01 ± 0.00	1.00 ± 0.00	1.00 ± 0.00
	4	1.00 ± 0.00	1.01 ± 0.00	1.00 ± 0.00	1.00 ± 0.00
	5	1.00 ± 0.00	1.01 ± 0.00	1.00 ± 0.00	1.00 ± 0.00
	6	1.00 ± 0.00	1.01 ± 0.00	0.99 ± 0.00	1.00 ± 0.00
	16	1.00 ± 0.00	1.01 ± 0.00	0.99 ± 0.00	1.00 ± 0.00
2313 GRAN	128	0.98 ± 0.08	0.92 ± 0.08	1.00 ± 0.00	-
	256	0.75 ± 0.00	1.04 ± 0.00	0.99 ± 0.00	-
	512	0.83 ± 0.06	1.04 ± 0.00	0.98 ± 0.02	-
2316 EDGE	-	1.00 ± 0.00	0.98 ± 0.01	1.00 ± 0.00	-
	-	-	-	-	-
2317 GraphMaker	-	0.95 ± 0.02	1.00 ± 0.00	0.99 ± 0.00	0.83 ± 0.01
	-	-	-	-	-
2318 ER	-	0.90 ± 0.03	1.00 ± 0.00	0.99 ± 0.00	0.80 ± 0.01
	-	-	-	-	-
2319 BTER	-	0.85 ± 0.05	0.95 ± 0.01	0.91 ± 0.01	0.94 ± 0.01
	-	-	-	-	-
2321 mKPGM	-	0.96 ± 0.02	1.01 ± 0.00	0.92 ± 0.01	0.89 ± 0.02
	-	-	-	-	-

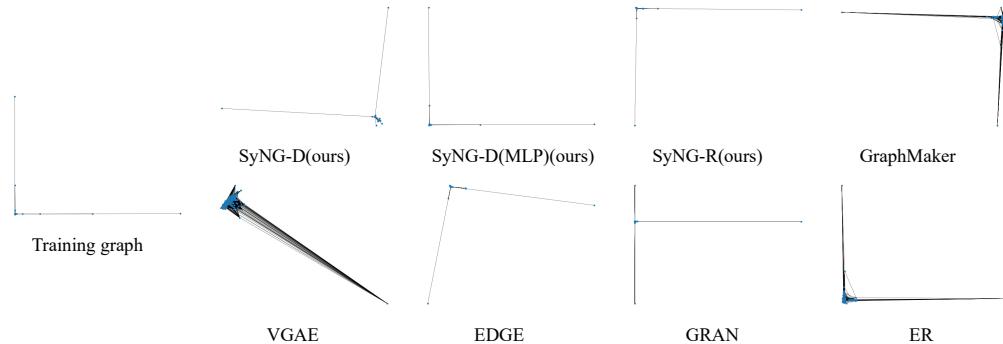
2322 We observe that both SyNG-D and SyNG-R consistently produce AUC ratios extremely close to
 2323 one, indicating that the generated graphs preserve the predictive signal necessary for training link
 2324 prediction models. In particular, SyNG-D achieves stable performance across all latent dimensions,
 2325 and SyNG-R demonstrates similarly strong results with small variance. Compared with existing
 2326 baselines such as EDGE, GRAN, and GraphMaker, SyNGLER exhibits both higher accuracy and
 2327 greater robustness across datasets, further validating its effectiveness as a general-purpose synthetic
 2328 graph generator for downstream ML tasks.

2330 G VISUALIZATIONS

2332 **Visualization of generated networks.** We visualize the YouTube dataset with different layout
 2333 algorithms to provide an intuitive comparison of graph generation quality across methods. In
 2334 the main text, Figure 2 shows the visualization produced by the `spring_layout` method in
 2335 `networkx`([Hagberg et al., 2008](#)), which utilize the Fruchterman-Reingold force-directed algorithm
 2336 to highlight the structural patterns of network. Since different visualization algorithms may reveal
 2337 different aspects of a network’s geometry, we include additional visualizations in this section under
 2338 multiple layout schemes to offer a more comprehensive comparison of the generated graphs.



2349 Figure 7: Visualization via the Spring layout.



2366 Figure 8: Visualization via the Spectral layout.

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

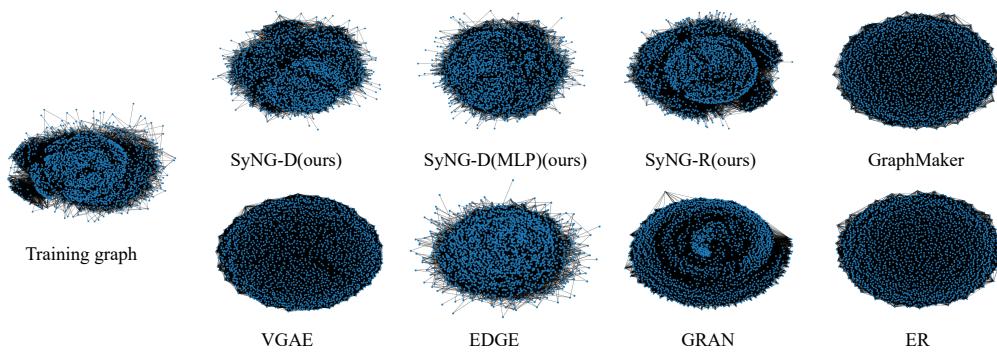


Figure 9: Visualization via the Kamada kawai layout.