EFFICIENT SYNTHETIC NETWORK GENERATION VIA
LATENT EMBEDDING RECONSTRUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Network data are ubiquitous across the social sciences, biology, and information
systems. Generating realistic synthetic network data has broad applications from
network simulation to scientific discovery. However, many existing black-box
approaches for network generation tend to overfit observed data while overlooking
characteristic network structure, and incur substantial computational overhead at
scale. These practical challenges call for synthetic network generation methods
that are both efficient and capable of capturing structural properties of networks.
In this paper, we introduce Synthetic Network Generation via Latent Embedding
Reconstruction (SyNGLER), a general and efficient framework for synthetic net-
work generation that builds on latent space network models. Given an observed
network, SYNGLER first learns low-dimensional latent node embeddings via a
latent space network model and then reconstructs the latent space by building a
distribution-free generator over these embeddings. For generation, SyYNGLER
first samples (or resamples) node embeddings from the generator in the latent
space and then produces synthetic networks using the latent space network model.
Through the latent space framework, SYNGLER preserves unique characteristics
in networks such as sparsity and node degree heterogeneity, while allowing for effi-
cient training with lower computational cost than many existing deep architectures.
We provide theoretical guarantees by developing consistency results regarding
the distance between the true and synthetic edge distributions. Empirical studies
further demonstrate the effectiveness of SYNGLER, where SyYNGLER efficiently
produces networks that better preserve key network characteristics such as network
moments and degree distributions compared with existing approaches.

1 INTRODUCTION

Graph network data capture interactions among entities in complex systems. Examples include social
networks (Traud et al., 2012), molecular interaction networks (Goémez-Bombarelli et al., 2018), and
brain connectivity networks (Bullmore & Sporns, 2009). Generating realistic synthetic network
data (Zhu et al., 2022) has broad applications, spanning drug discovery (Li et al., 2018a), material
discovery (Merchant et al., 2023), and image recognition (Xie et al., 2019). Designing efficient
generative models that produce realistic network data while preserving characteristic structural
network properties remains a long-standing and active research challenge.

Recent years have witnessed a growing line of work on data-driven graph network generation using
deep learning. For example, Li et al. (2018b) proposed an autoregressive generation scheme, in which
a graph neural network (GNN; Scarselli et al. (2008)) sequentially adds nodes and edges based on the
current graph. You et al. (2018) later adopted recurrent neural networks (Schmidt, 2019) that summa-
rize nodes and edges and generate, at each step, the next node and its associated edges. Liao et al.
(2019) introduced a block-wise autoregressive model with graph attention mechanism (Velickovi¢
et al., 2017), reducing serial computation while preserving long-range dependencies. Nevertheless,
for large graphs, training and sampling in deep autoregressive models remain computationally heavy
due to sequential modeling of a large graph (Salha et al., 2021). Another line of research devel-
ops diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) for graphs.
Early methods (Niu et al., 2020; Jo et al., 2022) applied continuous diffusion processes directly in
adjacency-matrix space, which neglected discreteness in graphs. Vignac et al. (2022) and Haefeli
et al. (2022) studied discrete Markov processes over adjacency matrices. However, while operating

Latent space network model Latent space reconstruction Synthetic network generation

Original adjacency matrix Latent embeddings Generated latent embeddings New adjacency matrix

Figure 1: An illustrative SyNGLER pipeline using the YOUTUBE dataset (Yang & Leskovec, 2012)
with a two-dimensional latent space. From left to right: observed network in the form of an adjacency
matrix; learned latent embeddings; synthetic embeddings from the generator in the latent space;
synthetic network.

on a discrete state space, applying diffusion directly in adjacency-matrix space still overlooks the
low-rank structure often present in large-scale network data (Luo et al., 2023). Vahdat et al. (2021)
and Rombach et al. (2022) combined diffusion modeling with encoder-decoder architectures by
applying diffusion in a continuous latent space. The resulting latent-diffusion approach has been
used for molecular and protein graph generation (Xu et al., 2023; Fu et al., 2024) and extended to
general graph generation (Zhou et al., 2024), covering both conditional and unconditional settings.
Nevertheless, most of the methods typically rely on variational training to connect the graphs and the
latent space, which becomes computationally demanding for large-scale networks. Overall, existing
methods tend to face computational challenges on large graphs due to deep neural network training on
large-dimensional data and/or variational procedures, while characteristic network structure is often
neglected. A recent work Li et al. (2023) uses a message-passing neural network (MPNN) as the
encoder and is able to efficiently generate networks from a single large observation, but a theoretical
analysis of the algorithm is lacking. These limitations underscore the need for graph generation
models that can capture complex network structure while staying computationally tractable and
scalable to large graphs, with accompanying theoretical guarantees.

In this work, we introduce Synthetic Network Generation via Latent Embedding Reconstruction
(SyNGLER), an efficient synthetic network generation framework that leverages latent space net-
work models (Hoff et al., 2002; Ma et al., 2020) to address these challenges. During training,
SyNGLER first fits a likelihood-based latent space model to the observed network to learn a set
of low-dimensional node embeddings. Using these embeddings, it then trains a distribution-free
generator in the latent space. For generation, SYNGLER samples (or resamples) node embeddings
from the generator and produces synthetic networks from these node embeddings via the latent space
model. An illustrative pipeline is in Figure 1. Via the latent space approach, SYNGLER avoids
training deep models directly on the high-dimensional network space by learning low-dimensional
node embeddings with flexibly chosen likelihood models and requiring only lightweight generative
model training in the latent space, thereby reducing computational cost. Moreover, the geometry
of in the latent space enables SYNGLER to preserve key structural properties of the network that
reflect latent node-node interactions. We provide a theoretical analysis of SYNGLER and establish its
consistency and generalization guarantees under a hierarchical latent space network model. Extensive
experiments on synthetic and real-world datasets further demonstrate its strong performance in
comparison to existing approaches, with significantly reduced computational cost.

The remainder of the paper is organized as follows. In Section 2, we formally introduce the SYNGLER
framework. Section 3 presents the theoretical results. Section 4 reports empirical results on simulated
and real-world data. Section 5 concludes the paper with a discussion. Additional numerical results,
experimental details, and proofs are provided in the Appendix.

2 SYNTHETIC NETWORK GENERATION VIA LATENT EMBEDDING
RECONSTRUCTION

Given an observed network with n nodes, our goal is to train a generative model that can produce
networks that preserves key structural properties of the original network. The synthetic node set may

comprise the original nodes, newly generated nodes with distributional characteristics similar to the
originals, or any mixture of the two. Specifically, we represent the observed network by an adjacency
matrix A € R™*™ with A;; = A;; for i # j and A;; = 0 for all i € [n], where the observation
A;; can be binary observations in {0,1}, count-valued observations in N, or general continuous

observations in R. Given the observation A, our goal is to generate a synthetic network A e RY<™,

We introduce Synthetic Network Generation via Latent Embedding Reconstruction (SyYNGLER) to
achieve this goal. During training, SYNGLER first learns a set of node embeddings from the observed
network using a likelihood model p(- | -) compatible with edge types of A;;, and then reconstructs
the latent space by training a distribution-free generator over the learned embeddings. For data
generation, SYNGLER samples a set of node embeddings from the latent generator and produces
synthetic networks using these embeddings via p(- | -). Algorithm 1 summarizes the procedure.

Algorithm 1 Synthetic Network Generation via Latent Embedding Reconstruction

1: Input: Latent dimension r, input network A € {0, 1}™*™,

2: Fit the likelihood model to get (Z, &) € R™*" x R";

3: Train a generative model using the fitted data: Sampler = GenModel({(Z;, &)});

4: foreachi=1,...,ndo

5: Sample (%, d;) € R™™! from Sampler.

6: end for

7: for each pair of nodes (7, j) with1 < i < j <ndo

8: Independently generate the edge observation A;; = Aj; from the conditional model
P 212 + éi + ay)

9: end for

10: Output: Generated network A.

In Algorithm 1, Z = (21,...,%,)" denotes the learned latent node embeddings and & =
(G1,...,6,)" the learned node degree parameters. GenModel denotes the generator architec-
ture in latent space. We specify the likelihood p(- | -) and formally introduce the model parameters in
Section 2.1, and we detail GenModel in Section 2.2.

2.1 LATENT SPACE NETWORK MODELS AND NETWORK EMBEDDING

Latent space network models (Hoff et al., 2002; Ma et al., 2020; Li et al., 2025) provide a flexible and
efficient network embedding framework. Associate each node 7 with a latent position z; € R™ and a
degree parameter o; € R. Let o = (g, a9, ...,a,) € R™ and define & € R™*("+1) where each
row of @ is given by ®; = (2], ;)" € R""1, i = 1,...,n. Latent space network models specify
that given ®, each edge observation A;; = A;; for 1 < i < j < n is independently generated from
P(Aij € A| ®) = [, pla]z "z + i + ;) du(a), where p(- | -) is the conditional density of A;;
given @, u is some measure on R (e.g., counting measures for discrete-valued edges or Lebesgue
measures for continuous-valued edges), and A is the corresponding Borel set. Given @, we use P 4|4
to denote the conditional distribution of A given ®.

Assumption 2.1 (embedding distribution). {(z;, «;)}?_, are independently generated from some
distribution Py on R™! such that Ep,[2;] = 0,. Moreover, there exists R > 0 such that ||z|2 < R
forall (z,a) € supp(Pp).

Assumption 2.1 guarantees the boundedness of the embedding space and the identifiability of the
node degree distribution, since joint shifts in « and z can leave the edge distribution unchanged.
Specifically, in (2.1), for all i € [n],let 2; = z; +aand &; = a; —a' z; — a'a/2 for some a € R".
Then 2, 2; + &; + &, = 2 zj + a; + «; for all 4, j € [n], and the likelihood remains unchanged.
Assumption 2.1 thus fixes this shift as a = —Ep, [2;] to ensure node-degree identifiability. Similar
conditions have been commonly considered in the latent space literature for node degree identifiability,

for example, in Ma et al. (2020) and Zhang et al. (2022).

Network embedding for general edge types. Based on the observed edge type of A;;, the

likelihood model p(-|-) can be chosen flexibly. Define 7;; = 2, z; + ; + «j, which determines the

distribution of A;;. If A;;’s are binary, one can choose the Bernoulli model as further introduced

in the next paragraph. If A;;’s are continuously measured, one can use a Gaussian noise model
plai; | mij) = (2m0?)~ Y2 exp{—(a;; — m;;)?/(20?} for some 0> > 0 (Sun & Li, 2017; Wang &
Guo, 2023). Once the conditional model is determined, degree parameters and latent embeddings
can be estimated by maximizing the following likelihood function over the parameters (Z, o), where
Z = (2] ,29 ,...,2,)7 is the latent position matrix with rows 21, zs, ..., z, and @ = (a1, ..., Q)

rn

is the vector of degree parameters:

(Z,&) = arg max Z logp(Aij | 2| zj + a; + aj). (1
(Z,Q)ER"X("‘+1>:ZT1":OT 1§z<g§n

The constraint in Eq. (1) ensures identifiability of the degree parameters and is designed based on
Assumption 2.1. A projected gradient descent algorithm can be employed to efficiently solve Eq. (1)
with provable convergence guarantees (Ma et al., 2020). We leave the details of the optimization
algorithm to Appendix C.1.

Sparse networks for binary edges. For binary networks, let i = dg + J1, where dy and J; are
Dirac measures at 0 and 1, and specify p(a;; | mi;) = exp{ai;mi;j} (1 + exp{m;;}) "1 ie, P(A;; =
1| m;) = o(m;), where o(-) = exp(-)/(1 + exp(-)). Recall that ;; = 2 z; + o; + a; with
Ep, [2:] = 0. We further define p,, = 2Ep,[c;] and let w,, = exp(p,,). Then we can reparameterize
T = z: zj+a;+a;+p,, where the o; have been centered by their expectation Ep, [cv;]. Accordingly,
Eq. (1) is modified by introducing an additional parameter p and an additional constraint o' 1,, = 0,
which we empirically find to facilitate the embedding process. Under the logistic link, note that
o(mj) < w, — 0 as p,, — —oo, assuming the variance of ¢; is bounded. The quantity w, thus
serves to quantify the global edge sparsity, which is commonly observed in large networks. In our
theoretical analysis in Section 3, we provide a more detailed discussion of sparsity.

Remark 1. The latent space network model also covers a wide class of classical network reconstruc-
tion models given appropriate choices of link functions and parametrizations of the node embeddings,
including the Erdds—Rényi graph (Erdos & Rényi, 1960), the Chung—Lu graph (Chung & Lu, 2002),
and the stochastic block model and its mixed-membership variants (Holland et al., 1983; Karrer &
Newman, 2011; Airoldi et al., 2008). Further discussion is provided in Appendix B.

2.2 LATENT EMBEDDING RECONSTRUCTION

In this section, we introduce two implementations of GenModel in Algorithm 1. Both implementa-
tions reconstruct the latent space from the learned embeddings. The first approach resamples from
the empirical distribution on ®, which is suitable when the synthetic network should include some
original nodes from the observed network. The second approach trains a score-based generator using
the learned embeddings and is appropriate when new nodes need to be generated in the network. The
final GenModel can be a mixture of the two, producing networks that include both original nodes
and new nodes. This choice is flexible and can be adapted to practitioners’ needs.

Resampling based latent space reconstruction. Given the learned embeddings P, we set
GenMode to be the uniform distribution over the discrete set ®. At each call, this sampler returns
one of the row vectors of ®, with replacement. The resampled latent embeddings, denoted P, are used
later to construct the synthetic network. The idea of resampling latent embeddings in networks has
been used for bootstrap inference of network statistics (see Levin & Levina, 2019), but it has not been
systematically studied for network generation tasks. In scenarios where duplicate embeddings exist
in ® due to sampling with replacement, we suggest removing the duplicate embeddings. Meanwhile,
any nodes that must remain in the network can have their embeddings preserved in P as needed.

Score-based generator in the latent space. To sample novel node embeddings that are close in
distribution to the learned embeddings, we consider a score-based generative model formulated via
stochastic differential equations (Song et al., 2020), in which a forward noising process gradually
adds noise to the training samples and a backward denoising process recovers the distribution of the
original samples from pure noise using information from the forward process. In our setup, a key
difference from existing work is that we train the score network based on the learned embeddings.
Specifically, let sg(z,t) : RY x [0, 1] — R< be a prediction model parameterized by 6. We use both

the XGBoost, following ForestDiffusion (Jolicoeur-Martineau et al., 2024) and multilayer perceptrons
(MLP), to approximate the score function. Consider a variance-preserving Ornstein-Uhlenbeck (OU)
(Maller et al., 2009) forward process. Given the fitted embeddings ®, the forward process ¢; follows
dpy = —py dt + /2 dB;, where ¢ is randomly sampled from the row vectors of ® and B;isa
standard Wiener process. Given the forward process, the parameter 6 in sy (x,t) is optimized by
minimizing the denoising score-matching objective (Vincent, 2011) constructed using the learned
embeddings (Wu et al., 2025):

1 — R » 2
RN ES o YR EN e NP SR
argamln t~U[0,1], N(O,I,,.+1)[n 2 so(e "o + etz 1) + —

To sample from the generator, we simulate the following process initialized at »0 ~ N (0,141),
using the trained network s:

D — G 4 h((/;(k) +255(6™,1 - kh)) FVRRER, € N0, I).

When 7' is large (equivalently, i is small) and sy sufficiently approximates the true score, the
distribution of ¢([*/71 is close to the distribution of the learned embeddings. This approach enables
us to sample novel node embeddings, thereby including novel nodes in the synthetic network.

2.3 SYNGLER-ATTR: SYNTHETIC NETWORK GENERATION VIA LATENT EMBEDDING
RECONSTRUCTION FOR ATTRIBUTED NETWORK

In the main body of this work, we study the task of generating networks when only network structures
are observed and needed in downstream tasks, using the vanilla SyNGLER. Meanwhile, generating
attributed networks that preserve feature-network interactions is also an important problem. The
classical VGAE (Kipf & Welling, 2016) approaches this problem in the setting of fixed attributes,
where the attributes of the generated graph remain the same as those of the input graph. Using
continuous diffusion models, Jo et al. (2022) developed a pipeline that successfully generates
attributed graphs with new features, although its design and training are tailored to multiple small-
scale graphs. Li et al. (2023) uses a message-passing neural network (MPNN) as the encoder and is
able to efficiently generate attributed graphs from a single large observation. In our paper, to address
this task, we introduce SyNGLER-Attr, a generalization of SYNGLER for generating attributed
networks. Specifically, SYNGLER-Attr jointly embeds and reconstructs the latent embeddings of
the network and its associated attributes, allowing the synthetic data to preserve the joint latent
structures of the network and its attributes. Due to page limits, we present the detailed algorithmic
description and implementation, along with an empirical study of SYNGLER-Attr to assess its utility
in downstream machine learning tasks in Appendix E.

3 THEORETICAL ANALYSIS

In this section, we study generation consistency of SyNGLER via the distance between the distribu-
tions of the synthetic and original networks. We consider the logistic link model for sparse binary
networks introduced in Section 2.1 with logsitic link . Throughout this section, we treat the global
sparsity parameter p}, = Ep [a1]/2 as a fixed parameter, where a superscript * denotes the true
parameters, and we assume that the observed network A is generated from the latent space model in
Section 2.1 with global sparsity parameter p;, and some ®* whose rows are independent realizations
from Py in Assumption 2.1. In this section, we study generation consistency of SyNGLER via the
distance between the distributions of the synthetic and original networks. We consider the model for
sparse binary networks introduced in Section 2.1 with logistic link. Throughout this section, we treat
the global sparsity parameter p; = Ep,[a;1]/2 as a fixed parameter, where a superscript * denotes
the true parameters, and we assume that the observed network A is generated from the latent space
model in Section 2.1 with global sparsity parameter p}, and some ®* whose rows are independent
realizations from [Py in Assumption 2.1. Note that the distribution of the synthetic network A is based
on the model trained on the observed network A. We denote the distribution of A given A as P4,
which can be viewed as a random measure where the randomness comes from the observed network
A generated under model Section 2.1 with embeddings ®* and sparsity parameter p . Similarly, we

define Pg as the random measure for the group of latent embeddings on R™* ("+1) We also denote

the individual distribution of <;~$ given A as Pg. Similarly, we denote the marginal distribution of each

qgi as P e where the subscript ¢ in @ is omitted due to the exchangeability of the nodes. Our first
theorem decomposes the Kullback-Leibler (KL) divergence between P4 and IF’%.

Theorem 3.1. Under Assumption 2.1, the average KL divergence between the distribution of A and
A given A admits the following decomposition:

1
—5dk(Pa || P3) = B, + Eo + Egen. @)
where the three error terms are defined as follows:

)

p(Az |z 2+ a1 + o + PZ)}

E =E n[lo
P Pas xP§ & p(A12 | Z;—ZQ + o +as + ﬁ)

B = mjn (5o [l 20 +Epg[1og§§<¢>} s, [log];‘j;g W) ®

1
Egen = EdKL(]P)Jy || Pg)

Here the minimization in Eq. (3) is over all orthogonal transforms T : ® = (Z,a) — (ZU,),
where U is a r-dimensional rotation matrix, and P§ is the distribution of T (¢) when ¢ ~ P.

The first term in Theorem 3.1 is referred to as E, since p(4i; | 2, zj + a; + o + p7;) differs from
p(Aij | 2" 2 + a; + aj + p) only in the global sparsity parameter p,,. The second term is denoted
as Eg, since it primarily depends on the distance between [P 3 and Py. The third term F, denotes

the KL divergence between the conditional distributions of (;AS and ¢ given A, and is determined
by the generative model in Algorithm 1. Error analysis of such terms has been considered in the
literature, for example, Chen et al. (2022; 2023a) for score-based generative models. In this analysis,
we focus on characterizing the first two terms in Eq. (2), while noting that the third term concerns the
generative error in a low-dimensional space rather than in the original large-scale network space.

We first consider the sparsity regime in the following assumption.
Assumption 3.1 (network sparsity). w,, = exp(p},) = Q(logn/n).

Assumption 3.1 states that the edge density is bounded below by Q(log n/n), and accordingly the
expected node degrees are at least of order log n as n grows. Such a sparsity regime is consistent
with the network analysis literature; see, for example, Athreya et al. (2018) and Ma et al. (2020).

In the sequel, we analyze E, and Eg under the asymptotic regime where n — oo. We first have the
following theorem on E/,.

Theorem 3.2. Under Assumptions 2.1 and 3.1, it holds that E, = Op((wy, - n)’1/2 logn).

Theorem 3.2 demonstrates that as long as w,, > (logn)?/n, the first error term satisfies E, = 0,(1).
This requirement on wy, is consistent with Assumption 3.1 up to a logrithmic factor. Analyzing the
second term is challenging since it involves the marginal distribution of the estimated latent positions,
which is practically hard to be compared with the true distribution Py. Following Wu et al. (2025),
we use the technique of discretizing the underlying distribution to understand the approximation error
between P P and IF’OT for some transform 7. Suppose that P is a continuous distribution of the latent
embeddings with density pg that follows Assumption 2.1. Since the support of P is bounded, we
discretize the support of Py into the following grid: G,, = {¢ € R""! : ¢; /v, € Z,|p;| < R+7n},
where {, } is a sequence of discretization scales that converge to zero. Then for any ¢ € G, , we
define the following mass functiong.,, (#) = [prs1 [Ti<piq 1{} € [#i =70 /2, i+m/2}p0(9")de'.
Using the linearity of expectation, we conclude that } .5 ¢y,(¢) = 1. Therefore, ¢, is a
probability mass function. We claim that, as long as the original density function is sufficiently
smooth, this discretized mass function is able to capture the structure of the original density function
well. To this end, we define the projection operator associated with the grid as projg_ () =

argming g [|¢' — ¢[|2, and consider p,, (¢) = ¢, (projg,, ()7~ "*tY. Then we have the
following theorem.

Theorem 3.3. Suppose that py : R"™t! — R is L-Lipschitz, then it holds that |po(¢) — p-,, (¢)] <
Ly,vr+ 1.

This theorem indicates that sampling from the original distribution is almost the same as sampling
from g, . We consider ot = (gﬂ, e qﬁL)T € R"*("+1) where the rows are independent realizations
from g, . We denote the corresponding empirical mass function as g, (¢) =n='>", 1{¢! = ¢}
for ¢ € G, . Then the following result indicates that g, is close to g, .

Lemma 3.1. For any small § > 0, it holds that maxgcg |qy,(¢) — 4,,(0)] <
V10g(1/0) + log(R/~n)/+/n with probability 1 — §.

When ®* is replaced by ®', we need to modify the estimators in Eq. (1) accordingly using the
projection operator projg_ . Given @ and a rotation transform 7, we define the corresponding

empirical distribution on the grid G, as follows: ¢,, (¢) = £ Y% | 1{¢; = projg. (Td)}, ode
G,, - Next theorem shows that ¢, is close to ¢, , which is a direct consequence of the uniform
consistency of the estimated latent embeddings.

Theorem 3.4. Suppose that each ¢ is sampled from a discrete mass function q, on G,,. Fix a
sequence of discretization levels y,, = Q((wy, -n)_l/ 2"'5) where € > 0 is fixed. Under Assumption 2.1
and Assumption 3.1, there exists a transform T : ¢ = (Z,a)) — (ZU,) for some rotation matrix U,
such that maxgeg. |Gy, (¢) — Gy, (¢)| — 0, in probability as n — oc. Here, the randomness comes
from the realizations of A.

This result shows that the marginal distribution of any single point from {proj, (él)}lgn is close to
the discretized distribution g, , up to a rotation, and consequently controls Eg. Proofs of all results
in this section are provided in Appendix A.

4 EXPERIMENTS

In this section, we empirically evaluate the effectiveness and efficiency of the proposed SYNGLER
framework using both simulated and real-world network datasets.

Simulated network dataset. We consider simulated sparse networks with sizes and latent dimen-
sions (n,r) € {500, 1000, 1500} x {2,3,4}. For each (n, r), we independently sample latent node
embeddings {z}?_; from a truncated Gaussian mixture in R” and degree parameters {cf} ; from
a uniform distribution. We adopt a logarithmic sparsity p, = —0.41og(n), which results in an edge
density that scales as O(n~%). Such sparse configuration is able to closely characterize real-world
network dataset. Based on the sampled latent embeddings, we generate a network from the binary
logistic network model in Section 2.1. Each result is based on 200 Monte Carlo repetitions. Please
see more details in Appendix C.2.

Real-world datasets. We use four large real-world networks: (i) the user-user friendship network
from the Yelp Open Dataset (Yelp, 2024); (ii) the YouTube social network dataset (Yang & Leskovec,
2012); (iii) the DBLP co-authorship network (Yang & Leskovec, 2012); and (iv) the PolBlogs network
(Adamic & Glance, 2005). Details regarding the preprocessing of these datasets are in Appendix C.4.

Baselines and implementations. We consider two diffusion-based approaches, SyNG-D and SyNG-
D (MLP), where SyNG-D (MLP) uses a multilayer perceptron to approximate the score instead
of the tree-based estimator in SyNG-D, and a resampling-based approach, SyNG-R, as defined in
Section 2.2. SyNG-D and SyNG-R are included in all experiments, whereas SyNG-D (MLP) is
evaluated only on real-world datasets. For baselines, VGAE (Kipf & Welling, 2016) is compared
across all experiments evaluating structural recovery and efficiency. In the real-data evaluations, we
also compare to GRAN (Liao et al., 2019), EDGE (Chen et al., 2023b), GraphMaker (Li et al., 2023),
and the classical Erd6s—Rényi model (Erdos & Rényi, 1960). Implementation details for our methods
are provided in Appendix C.4. We also cover mKPGM (Moreno et al., 2013) and BTER (Kolda et al.,
2014) for baselines. The implementations of the baselines on simulated and real-world datasets are
provided separately in Appendix C.5 and Appendix C.7, respectively.

Table 1: Simulated sparse networks. Eigenvalues and degree centrality are evaluated by
energy (En.) and Kolmogorov—Smirnov (KS) distances. Best results are in bold.

Tri. (x10™%) Clus. (x1073) Eig. (x107?) DegC. (x1072)
RMSE Bias RMSE Bias En. KS En. KS
SyNG-D 4.60 437 157 152 588 9.07 334 1107

(500,2) SyNG-R 5.37 5.11 18.1 177 6.38 9.78 3.69 12.45
VGAE 9.70 -9.16 53.1 -50.2 10.18 15.67 10.69 44.45

SyNG-D 0.63 0.57 4.58 4.07 7.09 12.09 1.59 6.42
(1500,4) SyNG-R 1.35 1.26 9.80 9.65 941 1445 252 9.58
VGAE 3.05 -2.78 374 -350 1726 3246 925 48.18

(n,7) Method

4.1 STRUCTURAL PROPERTY RECOVERY

To evaluate the quality of the synthetic networks, we consider the distance between network statistics
of the synthetic and the observed networks. Specifically, we evaluate triangle density (Tri., measuring
the prevalence of triangle motifs / three-node interactions), clustering coefficient (Clus., summarizing
local transitivity), eigenvalue distributions (Eig., reflecting global spectral structure), and degree
centrality (DegC., describing node connectivity). For Tri. and Clus., which are single values for
each network, we compute the root-mean-square error (RMSE) and bias relative to the observed
network. For Eig. and DegC., which are vectors for each network, we compute the maximum mean
discrepancy (MMD), the Kolmogorov-Smirnov (KS) statistic, and the energy distance. In addition,
we also include the 4-graphlet frequency distance in the real-data experiment. More details are in
Appendix C.3.

Table 1 summarizes the results for simulated networks. Our methods exhibit overall superior
performance compared to the baseline VGAE model, reasonably due to the fact that the data are
simulated from sparse latent space network models with a mixture distribution over latent embeddings.
In the relatively large-scale setting with (n,) = (1500, 4), we note that SyNG-D outperforms SyNG-
R on all metrics, indicating the effectiveness of generating novel node embeddings while capturing
network structures. Here, we report only the results for (n,r) € {(500,2), (1500, 4)} due to page
constraints. More results on simulated networks are provided in Appendix C.5.

Real-world datasets allow a fairer comparison. For each method, we select the configuration that
yields the best average performance across all four metrics. The results are summarized in Table 2.
EDGE and GRAN ran out of memory on the Yelp dataset on a single NVIDIA GeForce RTX 4090 with
memory of 24GB, and are marked “-” at the corresponding entries. This reflects that these methods
are computationally expensive at scale and pose challenges when computational resources are limited.
For most metrics, SYNG-D and SyNG-R produce networks with better-preserved characteristics. In
Figure 2, we visualize the YouTube network alongside synthetic networks produced by different
methods using the Fruchterman-Reingold force-directed algorithm. We also provide additional
visualization results obtained using alternative tools in Appendix G. SyNG-D and SyNG-R preserve
the clustering patterns in the observed network evidently better in comparison with other methods.
More results and details are in Appendix C.7. Our proposed approach shows superior performances
on all four networks. The improvements on Yelp and PolBlogs networks are clear.

4.2 ML UTILITY EVALUATION

We also evaluate the machine learning utility of the generated graphs, that is, whether synthetic graphs
can effectively support downstream predictive tasks. Following the evaluation protocol proposed by
Li et al. (2023), we adopt a discriminative-model-based framework to quantify utility. In this setting,
a predictive model is first trained on the original graph G and then separately on a generated graph G.
Both models are then evaluated on the test set of the original graph to obtain performance measures

ACC(G | G) and ACC(G | G) (Li et al., 2023). A generated graph is regarded as having high ML

utility if %gig; ~ 1, indicating that training on the synthetic graph yields predictive performance

comparable to training on the real graph. We consider the link prediction task, which aims to infer

missing edges in a partially observed graph and may utilize node features and node labels where
available. For this task, we adopt the Graph Autoencoder (GAE) model of Kipf & Welling (2016),

SyNG-D(ours) SyNG-D(MLP)(ours) SyNG-R(ours) GraphMaker

Training graph . ‘
ER

Figure 2: Visualization of the YouTube network and synthetic networks by different methods.

p

VGAE EDGE ' GRAN

Table 2: Results on real-world networks. Eigenvalues and degree centrality are evaluated using MMD.
Each entry is the average over 200 generated networks. Best performances are in bold.

(a) YouTube (b) DBLP

Tri Clus Eig DegC Tri Clus Eig DegC
Method (x10~H)(x107*)(x10~?)(x10?) Method (x10~H)(x107H)(x10~) (x10™")
E-R 1.05 163 2596 6922 E-R 796 894 4409 8.716
BTER 0.02 9.7 642 0.00 BTER 6.09 678 1484 0.462
mKPGM 1.03 160 2238 4486 mKPGM 800 9.00 3.003 4.568
VGAE 0559 80 1720 27.83 VGAE 0.578 0136 1.196 2.797
GRAN .13 101 7.88 7.86 GRAN 799 892 1757 2973
EDGE 0.785 144 444 784 EDGE 220 133 1.387 0992
GraphMaker 1.12 167 2313 6499 GraphMaker 798 898 3931 7512
SyNG-D 0967 228 261 213 SyNG-D 1.58 0.622 0879 0.926
SYNG-D(MLP) 162 158 0378 3.89 SyNG-D(MLP) 3.63 101 1.116 1.401
SYyNG-R .11 223 447 1.10 SyNG-R 143 0378 0.799 0.748

(c) Yelp (d) PolBlogs

Tri Clus Eig DegC Tri Clus Eig DegC
Method (1071 (x1072)(x1072)(x10™2) Method (X107 (x1072)(x1072)(x1072)
E-R 8.12 145 2453 7736 ER 322 204 40.10 79.24
BTER 227 445 826 0.00 BTER 0.88 527 3.04 0.00
mKPGM 935 160 926 4997 mKPGM 332 214 3115 50.67
VGAE 741 103 1758 3374 VGAE 207 326 31.10 35.33
GRAN - - - - GRAN 157 114 904 13.86
EDGE - - - - EDGE 0790 569 469 0.00
GraphMaker 882 155 2070 6926 GraphMaker 327 20.8 3828 74.15
SyNG-D 200 177 250 672 SyNG-D 0710 190 258 097
SYNG-D(MLP) 0.745 235 9.62 3.26 SyNG-D(MLP) 0.594 223 527 3.05
SYyNG-R 0778 0.756 4.69 0.62 SyNG-R 0.830 245 3.01 092

and use AUROC as the performance measure ACC. Additional implementation details are provided
in Appendix F.

Table 3 summarizes the results for ML utility ratios. Our SyNGLER-based methods consistently
achieve ratios close to one, indicating strong preservation of the learning signal necessary for down-
stream ML tasks. These results suggest that SYNGLER not only captures structural characteristics
but also maintains the discriminative information required for effective model training.

4.3 EFFICIENCY

Evaluation metrics and configuration. We compare training efficiency between SyNG-D and the
baseline methods through a computational workload metric we define as the equivalent floating-point
operations (e-FLOPs). To evaluate the training efficiency of different methods, the e-FLOPs metric

—e— SyNG-D
10+ EDGE
—&— GRAN
1013 4 —¥— VGAE
4
o
12
u_,.‘ 10
9]
* 101 |
10t .
Training graph
102 103 Co SR
#nodes VGAE EDGE

Figure 3: Efficiency comparison. Left: number of e-FLOPS versus the number of nodes in the
observed graph. Right: Synthetic networks from different methods on the DBLP dataset.

counts the total number of floating-point operations or their approximate equivalents during the
training process.

Note that SYNG-D and the baseline meth- Table 3: ML utility evaluation. “~": out-of-memory.
ods consist of neural nets and tree struc-
tures in their model architecture. For neural — Method | DBLP PolBlogs YouTube Yelp
nets, e-FLOPs counts floating-point opera- Er 0.90£0.03 1.00+0.00 099+0.00 0.80+0.01
tions. whereas for tree structures. e-FLLOPs ~ BTER 0854005 095+001 091+001 0.94+0.01
’ . ’ mKPGM 0964002 1.01+000 0924001 0.89++0.02
counts node visits. We use e-FLOPs to vGag 1.00 £0.00 1.01+£000 1.00+0.00 1.00+0.00
evaluate the efficiency of different methods, GRAN 098008 092£008 1.00+0.00 -

. h less d P he hard. EPGE 1.00 £0.00 098001 1.00 % 0.00 -
since they are less dependent on the hard- GraphMaker | 0.95+0.02 1.00=0.00 0.99+£0.00 083 +0.01
ware environment. F.OF the more straightfor- “ginGp 1.00 £0.00 0.99+0.00 0.99+001 099+ 0.00
ward wall-clock training time, we present SyNG-D(MLP) | 1.00 £ 0.00 0.97 +£0.01 0.99 +0.00 0.99 & 0.00

. - NG-R 1.00 £ 0. 99 £0.01 099001 1.00 % 0.
the results along with the hardware envi- SYNG 00£000 099+001 0.99+001 1004000

ronment used by each method in Appendix C.8. In addition to four real-world datasets, we also
compare these methods on a group of simulated networks with sizes of 200, 500, and 800. For a fair
comparison, we keep the latent dimension of all models at 4. Specifically, for SyNG-D and VGAE,
the latent dimension corresponds to the dimension of the latent space. For GRAN, it is the output
dimension of the attention layers. For EDGE, it is the dimension of the hidden layer in the score
network.

Results. Figure 3 summarizes the results. We have several observations. In terms of e-FLOPs,
SyNG-D attains the lowest cost across all settings and remains stable as network size grows. In terms
of synthetic network quality, SyNG-D best preserves the overall structure of the observed networks;
VGAE, while computationally comparable to SyNG-D, does not match its quality. Third, GRAN
and EDGE require substantially longer training times, yet their performance is not as satisfactory,
especially for GRAN. Overall, SyNG-D is both effective and efficient for this task, producing realistic
synthetic networks with a computationally lightweight training process. Additional results regarding
efficiency comparisons, along with further details, are provided in Appendix C.8.

5 CONCLUSION

In this work, we address the challenge of synthesizing realistic networks at scale while preserving
salient structural properties using Synthetic Network Generation via Latent Embedding Recon-
struction (SyNGLER), a general and efficient framework that learns low-dimensional latent node
embeddings from a single observed network and then trains a distribution-free generator in the learned
latent space. By separating representation learning via a likelihood-based latent space approach from
generative modeling, SYNGLER preserves structural information with latent space geometry where
lightweight generators suffice, enabling fast training and sampling. Theoretical and empirical results
both demonstrate the effectiveness of SYNGLER. Future research directions include incorporating
richer supervision for conditional generation (e.g., node/edge attributes and constraints), extending to
directed, dynamic, and multilayer networks, and developing rigorous privacy-preserving training and
release mechanisms.

10

REFERENCES

Lada A Adamic and Natalie Glance. The political blogosphere and the 2004 us election: divided they
blog. In Proceedings of the 3rd international workshop on Link discovery, pp. 36—43, 2005.

Edo M Airoldi, David Blei, Stephen Fienberg, and Eric Xing. Mixed membership stochastic
blockmodels. Advances in neural information processing systems, 21, 2008.

Avanti Athreya, Donniell E Fishkind, Minh Tang, Carey E Priebe, Youngser Park, Joshua T Vogelstein,
Keith Levin, Vince Lyzinski, Yichen Qin, and Daniel L Sussman. Statistical inference on random
dot product graphs: a survey. Journal of Machine Learning Research, 18(226):1-92, 2018.

Ed Bullmore and Olaf Sporns. Complex brain networks: graph theoretical analysis of structural and
functional systems. Nature reviews neuroscience, 10(3):186—198, 2009.

Sourav Chatterjee. Matrix estimation by universal singular value thresholding. The Annals of
Statistics, 43(1):177-214, 2015. ISSN 00905364.

Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score approximation, estimation and
distribution recovery of diffusion models on low-dimensional data. In International Conference on
Machine Learning, pp. 4672—4712. PMLR, 2023a.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as easy
as learning the score: theory for diffusion models with minimal data assumptions. arXiv preprint
arXiv:2209.11215, 2022.

Xiaohui Chen, Jiaxing He, Xu Han, and Li-Ping Liu. Efficient and degree-guided graph generation
via discrete diffusion modeling. arXiv preprint arXiv:2305.04111, 2023b.

Fan Chung and Linyuan Lu. The average distances in random graphs with given expected degrees.
Proceedings of the National Academy of Sciences, 99(25):15879-15882, 2002.

Fan Chung and Mary Radcliffe. On the spectra of general random graphs. the electronic journal of
combinatorics, pp. P215-P215, 2011.

Paul Erdos and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad.
Sci, 5:17-61, 1960.

Cong Fu, Kegiang Yan, Limei Wang, Wing Yee Au, Michael Curtis McThrow, Tao Komikado, Koji
Maruhashi, Kanji Uchino, Xiaoning Qian, and Shuiwang Ji. A latent diffusion model for protein
structure generation. In Learning on graphs conference, pp. 29—-1. PMLR, 2024.

Rafael Gomez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernandez-Lobato,
Benjamin Sanchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Aldn Aspuru-Guzik. Automatic chemical design using a data-driven continuous
representation of molecules. ACS central science, 4(2):268-276, 2018.

Kilian Konstantin Haefeli, Karolis Martinkus, Nathanaél Perraudin, and Roger Wattenhofer. Diffusion
models for graphs benefit from discrete state spaces. arXiv preprint arXiv:2210.01549, 2022.

Aric Hagberg, Pieter J Swart, and Daniel A Schult. Exploring network structure, dynamics, and
function using networkx. Technical report, Los Alamos National Laboratory (LANL), Los Alamos,
NM (United States), 2008.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Peter D Hoff, Adrian E Raftery, and Mark S Handcock. Latent space approaches to social network
analysis. Journal of the american Statistical association, 97(460):1090-1098, 2002.

Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First
steps. Social networks, 5(2):109-137, 1983.

11

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations. In International conference on machine learning, pp.
10362-10383. PMLR, 2022.

Alexia Jolicoeur-Martineau, Kilian Fatras, and Tal Kachman. Generating and imputing tabular data
via diffusion and flow-based gradient-boosted trees. In International conference on artificial
intelligence and statistics, pp. 1288-1296. PMLR, 2024.

Brian Karrer and Mark EJ Newman. Stochastic blockmodels and community structure in networks.
Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 83(1):016107, 2011.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016.

Tamara G Kolda, Ali Pinar, Todd Plantenga, and Comandur Seshadhri. A scalable generative graph
model with community structure. SIAM Journal on Scientific Computing, 36(5):C424-C452, 2014.

Keith Levin and Elizaveta Levina. Bootstrapping networks with latent space structure. arXiv preprint
arXiv:1907.10821, 2019.

Jinming Li, Shihao Wu, Chengyu Cui, Gongjun Xu, and Ji Zhu. Statistical inference on latent space
models for network data. arXiv preprint arXiv:2312.06605v3, 2025.

Mufei Li, Eleonora Kreaci¢, Vamsi K Potluru, and Pan Li. Graphmaker: Can diffusion models
generate large attributed graphs? arXiv preprint arXiv:2310.13833, 2023.

Yibo Li, Liangren Zhang, and Zhenming Liu. Multi-objective de novo drug design with conditional
graph generative model. Journal of cheminformatics, 10(1):33, 2018a.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative
models of graphs. arXiv preprint arXiv:1803.03324, 2018b.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel
Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent attention networks.
Advances in neural information processing systems, 32, 2019.

Tianze Luo, Zhanfeng Mo, and Sinno Jialin Pan. Fast graph generation via spectral diffusion. /IEEE
Transactions on Pattern Analysis and Machine Intelligence, 46(5):3496-3508, 2023.

Zhuang Ma, Zongming Ma, and Hongsong Yuan. Universal latent space model fitting for large
networks with edge covariates. Journal of Machine Learning Research, 21(4):1-67, 2020.

Ross A Maller, Gernot Miiller, and Alex Szimayer. Ornstein—uhlenbeck processes and extensions.
Handbook of financial time series, pp. 421-437, 2009.

Amil Merchant, Simon Batzner, Samuel S Schoenholz, Muratahan Aykol, Gowoon Cheon, and
Ekin Dogus Cubuk. Scaling deep learning for materials discovery. Nature, 624(7990):80-85,
2023.

Sebastian I Moreno, Jennifer Neville, and Sergey Kirshner. Learning mixed kronecker product
graph models with simulated method of moments. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 1052—1060, 2013.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Permu-
tation invariant graph generation via score-based generative modeling. In International conference
on artificial intelligence and statistics, pp. 4474-4484. PMLR, 2020.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684—10695, 2022.

Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

12

Guillaume Salha, Romain Hennequin, Jean-Baptiste Remy, Manuel Moussallam, and Michalis
Vazirgiannis. Fastgae: Scalable graph autoencoders with stochastic subgraph decoding. Neural
Networks, 142:1-19, 2021.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE transactions on neural networks, 20(1):61-80, 2008.

Robin M Schmidt. Recurrent neural networks (rnns): A gentle introduction and overview. arXiv
preprint arXiv:1912.05911, 2019.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256-2265. pmlr, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Will Wei Sun and Lexin Li. Store: sparse tensor response regression and neuroimaging analysis.
Journal of Machine Learning Research, 18(135):1-37, 2017.

Amanda L Traud, Peter] Mucha, and Mason A Porter. Social structure of facebook networks. Physica
A: Statistical Mechanics and its Applications, 391(16):4165-4180, 2012.

Stephen Tu, Ross Boczar, Max Simchowitz, Mahdi Soltanolkotabi, and Ben Recht. Low-rank
solutions of linear matrix equations via procrustes flow. In International conference on machine
learning, pp. 964-973. PMLR, 2016.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
Advances in neural information processing systems, 34:11287-11302, 2021.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation. arXiv preprint arXiv:2209.14734,
2022.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computa-
tion, 23(7):1661-1674, 2011.

Yikai Wang and Ying Guo. Locus: A regularized blind source separation method with low-rank
structure for investigating brain connectivity. The annals of applied statistics, 17(2):1307, 2023.

Shihao Wu, Junyi Yang, Gongjun Xu, and Ji Zhu. Denoising diffused embeddings: a generative
approach for hypergraphs. arXiv preprint arXiv:2501.01541, 2025.

Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming He. Exploring randomly wired neural
networks for image recognition. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 1284-1293, 2019.

Minkai Xu, Alexander S Powers, Ron O Dror, Stefano Ermon, and Jure Leskovec. Geometric latent
diffusion models for 3d molecule generation. In International Conference on Machine Learning,
pp- 38592-38610. PMLR, 2023.

Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on ground-truth.
In Proceedings of the ACM SIGKDD workshop on mining data semantics, pp. 1-8, 2012.

Yelp. Yelp open dataset. Online resource, 2024. URL https://business.yelp.com/data/
resources/open—-dataset/.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generating
realistic graphs with deep auto-regressive models. In International conference on machine learning,
pp- 5708-5717. PMLR, 2018.

13

https://business.yelp.com/data/resources/open-dataset/
https://business.yelp.com/data/resources/open-dataset/

Xuefei Zhang, Gongjun Xu, and Ji Zhu. Joint latent space models for network data with high-
dimensional node variables. Biometrika, 109(3):707-720, 2022.

Cai Zhou, Xiyuan Wang, and Muhan Zhang. Unifying generation and prediction on graphs with
latent graph diffusion. Advances in Neural Information Processing Systems, 37:61963-61999,

2024.

Yangiao Zhu, Yuanqgi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, and Shu Wu. A survey
on deep graph generation: Methods and applications. In Learning on Graphs Conference, pp. 47-1.

PMLR, 2022.

14

APPENDIX

We provide experimental details, additional numerical results, and proofs of the theoretical results
in the appendix. Appendix A collects proofs of the theoretical results in Section 3. Appendix B
then discusses the connections between latent space models and several classcial network models.
Appendix C contains complete experimental details. Specifically, Appendix C.1 covers the details
of the estimation algorithms. Appendix C.2 specifies the setup for the simulated networks and
provides details on the real-world networks, as well as their preprocessing pipelines. Appendix C.3
includes the detailed description of the evaluation metrics in our experiments. Appendix C.4 contains
implementation details for both SYNGLER and the baselines, including the device environments
on which they are implemented and the hyperparameter configurations used. Appendix C.5 and
Appendix C.7 collect additional results for the simulated networks and the real-world networks,
respectively. Appendix C.8 provides additional numerical results on the efficiency analysis of
different methods. We also provide a heuristic analysis on the sample complexities of different
methods in Appendix C.9 The performance of the proposed method on large scale dataset is included
in Appendix D. In Appendix E, we illustrate how to extend the SYNGLER to the attributed networks
with demonstrations on the real-world datasets. In Appendix F, we introduce the pipeline of assessing
ML utilities of the generated networks with experimental results. Finally, in Appendix G, we present
a comprehensive visualization comparison of the generated networks from Section 4.

A PROOFS IN SECTION 3

A.1 PROOF OF THEOREM 3.1

Proof of Theorem 3.1. Note that the marginal distribution of the network A can be expressed as the
product of the conditional distribution and the marginal distribution of the latent positions. Because
of the identifiability issue of Z in model Section 2.1, we consider any transform 7 : ® = (Z,) —
(ZU,) € R ("1 where U is a r-dimensional rotation matrix. The transform 7~ applied on ®
does not change the conditional distribution of A. We define P14« as the distribution of 7 ®*, then

Pajre: Pro-
A (Pa | PY) = By, crpn | 108 5 (4| @) + log —3()]

- A
Ald %
Aij| 2] 2j + i + o + p*
= Er, e 23 log DA A5 120 4 (Brae ([B2)
i<j]D(AZ]|ZZ Zj + «; +aj +p)
2 p(A1z | 2{ 22 + o1 + ag + p) A
= n’E {1 }+d Pro. || P2).
T EPAL, 6.0 | 108 p(A12|Zir2’2+041—|-042—|—ﬁ) KL(T® q;.)

Here the last equality holds because of the exchangeability of the distributions of (¢1, @2, . .., ¢n).
We decompose the K-L divergence in the right-hand side as follows

dxi(Pra- || P3) =n - Epr {bg g(@}
¢
=n-Epr [log I;i((zﬁ) + log IIE;;; (¢)]
— - (Erp [10g]g(@] + By [log i;i (¢)] — B, | log gﬁ? (9)]

+ Epd; [log

©)])-

Here P $ is the marginal distribution of <ZA)Z» for each 7, which is the same for all 7 because of the
exchangeability. Minimizing over all transform 7~ concludes the proof of the theorem. O

N

15

A.2 PROOF OF THEOREM 3.2
Proof of Theorem 3.2. We denote 6;; = z z; + a; + «;. The Lipschitz continuity of I;;(7) =
log p(A;; | m) in 7 implies that
|log p(Aij | 055+ p*) —log p(Aij | 055 + p)| < M|p* — .
Now combining with Lemma A.4 implies the desired result. O

A.3 PROOF OF THEOREM 3.3

Proof of Theorem 3.3. Fix ¢ € R"™+! and set ¢ := projg. (¢) € G,. By the definition of ¢, , for
any grid point ¢ € G, we can write
r+1

6= [T e o2 vt/ du= [ot

where C(1) = T[/21 [— Yn/2, i + n/2] is the hypercube that is centered at ¢ and has side
length ~y,, with volume ~/ 1. By the definition of p.,, we have
Py (6) = g5, (Projg. (9)) 7, Y

= q'Yn (w) ,Y?:(T+l)
1

=— po(u) du.
’7n+1 /C(z/:)
Thus p-,, (¢) is exactly the average of py over the cube C(%)).

Next we bound the distance between ¢ and any point u € C(¢)). Using the triangle inequality, we
have for any v € C(¢)) that

[= @l < llu =l + i = ¢ill < Vr+1yn.

Since p.,, (¢) is a local average of py over the cube C' (1)), we have by Lipschitz continuity of py that

1
70(6) = 22, (0)| = |l@) ~ =7 [pofu)du
n C)
. / (Po(6) — polw)) du
Tn C)
=
< — Ipo(¢) — po(u)| du
i Jow)
1
< =7 / Ly, vr+1du
Tn C)
C
= Lf}/n\/r +1- %
Tn
= Ly,vr+ 1.
Since ¢ was arbitrary, this completes the proof. O

A.4 PROOF OF LEMMA 3.1

Proof of Lemma 3.1. For fixed ¢ € G, using Hoeffding’s inequality yields that

P(1g:,(6) = Gy, (@) = t) < 2exp(~2nt).

Using the union bound over all (R/~,,)" ™ points in G, yields that

P(max [g,,(6) — 3, (9)] 2 t) < 2(R/7.)"* exp(—2nt?).

n

Therefore, setting t = \/(r + 1) log(R/7») + log(2/5)/v/2n yields the desired result. O

16

A.5 PROOF OF THEOREM 3.4

Proof of Theorem 3.4. Define the event &, = {n~' Y., ldi — Tor||2 < ~.%}, where ~/, =

Q((wpn)~/?+¢/2) for some fixed € > 0. Then, we have that P(&,) — 1 as n — oo, as shown in
Lemma A.4. On the other hand, we have that

. N 1 - . n . *
Joax |4y, =y, | < -3 1{projg, (4:) # projg, (T9)}
=1

Tn

A

1 — .
< D W16 = T2 > 29}
=1

IN

1=, 2
- Z g — T 113/ (472)-
1=1

Here, the last inequality holds by Markov’s inequality. Therefore, we have that

In

P(max 4., — | >) < P(i; 16— T6113 > 4e12)
<BES) + (= Y b~ Tor I3 > 4 | £) BEw).
i=1

For sufficiently large n and fixed ¢, we have that 4ey2 > /2, therefore the second term vanishes
for sufficiently large n. And the left-hand-side is upper bounded by P(£¢), which goes to zero as
n — o0. This concludes the proof of Theorem 3.4. O

A.6 SUPPORTING LEMMAS AND PROOFS

Lemma A.1 (Theorem 5 in Chung & Radcliffe (2011)). Let X, ..., X,, be independent random
n X n Hermitian matrices. Assume || X; — EX;|| < M for all i, and put

Vo= HZVar(Xi)
i=1
Let X = > X,. Then for any a > 0,

a2

Lemma A.2. Under the model in Section 2.1 and Assumption 2.1, let Ol* € R"™*™ be the matrix
where each entry is Olf; = Uy (77;). Then we have that

[|lor*] = O,,(w}/znl/2 (logn)1/2).

Proof of Lemma A.2. Let E™J be the n x n matrix with 1 in the (7,) and (j, i) positions and 0
elsewhere. Denote p;; = E4[l)y, (7};)]. To use Lemma A.1, write 9I* as the sum of matrices A"
defined as

AW = (Aij — pj;) BV, 1<i<j<n,

sothat 9I* = 31 >, A%, Note that |A"7|| < 1, E[A%/] = 05,0, and

E[(A™)?] = (p; — (03;)?) (B™ + E™).

Let
vi= |30 D0 E@| = (D0 Y (0 -) (BN + E)
i=1 j=i+1 i=1 j=i+1

17

Then

n n n gJ—1
v = IS - W) B+ S0 (Do - i)) B
i=1 j=it+1 =2 i=1
n
* * \2 *
< 2max m7ax Z p” p” < 2nnl12X(pij — (pij)) < an}%Xpij-

For ¢ > 0, we seta = \/ 5nmax; ; p}; log(2n/e"). By Assumption 2.1, for sufficiently large n, it
holds that

nmaxp” > 2\/ nmaxplj log(2n/€').
i, i,
Applying Lemma A.1, we obtain

Snmax; ; p;; log(2n/€e
P(||0I*|] > a) < 2nexp{ — i Pij log(2n/€)

4nmax; ; pj; + 2\/ % nmax; ; p;; log(2n/¢€’)
< 2nexp{—log(2n/e)} = €.

Noting that max; j pj; < wy, as n — oo, there exists M’ > 0 such that, for any ¢’ > 0,
]P(H&l*” > M’/ nw,, log(n/e’)) <,

which concludes the proof. O

We need the following lemma to characterize the estimation error of the latent embedding from the
graph.

Lemma A.3 (Lemma 5.4 in Tu et al. (2016)). Suppose that Z1, Zy € R™*" are two matrices such
that Amin(Zy Z1) > 0. Then we have

1
1nf 1 —ZU|lp < ———
Ueo H 1= 22Ul = 2(\/§ —1)o?

*

Lemma A.4. Suppose that each I (ZJ) is i.i.d. bounded with mean zero. Then for any € > 0, there
exists a constant M > 0 such that wzth probability at least 1 — ¢, there exists a transform T such that

2,2 — Z22] ||

- Z 6 — To7 |2 = n~logn), and |p—p*| = Op(w;*n " logn).

Proof of Lemma A.4. Let m;; = z] z; + a; + a; + p and 7 be its estimated version. Applying
Taylor’s expansion to each [;; at 7} yields that

R o . 1 *
Zlij(ﬂw Zlu ™)+ Zl)i = m5) + 5 2 Zl// (&) (5 — Wij)2»
i<j i<j i<j i<

where each &;; € [min{#;;, 7};}, max{;;,7};}]. Using the optimality condition, it holds that
Zi<j lij(ﬁ'ij) > Zi<j lﬁ(ﬂ';kj). And therefore

Zl i) (Fij — 735 >Z l// (&ig) (7 _ﬂ';j)Q

i<j i<j

> —wy, e 2N iy -l)

4 —
1<J

)_\

18

To facilitate the matrix inequalities, we define 91*,T1*,IT € R"™*™ such that oy, = Uy, (7).,

Iy, =}, = Z*TZ* +af —|—o¢7 + 05, andH” =T = z Zj + &; + & + p. Then, we can upper
bound the left- handed s1de in Eq. (4) as

SO () (g —) < (00, TL— 117

i<j

<V2r+3- ||| - [|TT — 117, ®)
Last inequality holds since IT — II* has rank at most 2r + 3. Invoking Lemma A.2, we have
that [|0l*]] = Op(w,l/in/2 logn). Combining Eqs. (4) and (5) yields that ||II — IT*|[p =

Op(wﬁl/2n1/2 logn).
Before obtaining the estimation error of p, we need to involve an identifiability transform over Z*, o*,
since their sample average is not necessarily zero. Define 8 = 1271, g = 2*Z*T1,,a = 1] o*
andu = 1, Z*Z*T1,,. Then we further define ZT = Z* - 1,87, a = a* + Q%Lg — 0 1ly— 5 1y,
and pf = p* + 27“ + -. Then, it is evident that
T T
ZT ZT +C¥T].;lr +].nCVT +pT1n1;|; _ Z*Z*T + Ol*lz + 1na*T +p*]—n]—7—|¢—

Additionally, we have that Z TTln =0, and 1,—[af = 0. It then follows that

12!~ 2" < V- 18l = Oy(1) ©
1

ot —a*ll < 5l + 2 i+ 1 = 0,1, @
2

o ot < 24 % = 0,n7%), ®

On the other hand, we can expand ||TT — IT*||2 as
- = 1227 = ZT 27T |2+ [[(6 = ") + 1a(al = &) 7|2 +n?|p — ol
+22Z7 - 7' 21T (6 — aN1] + 1,6 — D))
VAR AVALING) I R
+2((@—aN1; + 1,6 —ah)T, (5 - pH1,1,)
1227 - 21 27T |2 + 20l — o2 + 025 — o2,
Here the second line holds because Z 71, = 0, and 1) af = 0. Combining with the fact that
|11 — II*||Z = O, (w,, 'nlogn), we have that
1227 — 212172 = Op(w;, 'nlog® n)
n~a - al||2 = Oy (w;, 'n~tlog® n)
15— P12 = Opluw;!
On the other hand, we have that /\min(ZTTZ) = Q,(n) because of Assumption 2.1. Using

Lemma A.3, we have that n= || Zf — ZU||2 = O, (w;; 'n~" log® n) for some rotation matrix U. In
this sense, the fluctuation in Egs. (6) to (8) is always of smaller magnitude. Thus, the desired result
follows.

n~tlog®n).

O

B CONNECTIONS BETWEEN CLASSICAL NETWORK GENERATIVE MODELS
AND THE LSM

We illustrate the connection between these models and the latent space model below. First of all, the
general latent space network model assumes that each A;; ~ p(- | m;;) where 7;; = 2, 2; + a; + o
and p(- |) is a link function that can be chosen flexibly. Below, we explain its connection to several
classical network models with details. We remark that some classical node-embedding models already
belong to the latent space model. For example:

19

* The Chung-Lu graph model (Chung & Lu, 2002) assumes that each node i is equipped
with a degree parameter w; > 0, and lets W := >"}'_, wy, be the total "weight”. This
model assumes independent edges with P(A4;; = 1) = w;w;/W. We can then construct

the latent embedding for the ¢-th node as z; = \;UW € R, and collect them into the
embedding matrix Z = (21,...,2,)" € R™ !, With this parametrization, we have that

E[A] = ZZ". Therefore, the Chung—Lu model is a latent space model with a linear link
function p(- |) = Bernoulli(r).

* The random dot product graph (RDPG) model (Athreya et al., 2018) assumes that each
node i has a latent position z; € R” such that z," zj € [0, 1] for all ¢, j. With the embedding
matrix Z = (z1,...,2,) € R, RDPG assumes that A ~ Bernoulli(ZZ), which is
exactly a latent space model with the linear link function p(- | 7) = Bernoulli(r).

Besides, many block-structured graph models also fall into the scope of latent space network models.
For example:

* The (degree corrected) block model (DCBM/SBM) (Holland et al., 1983; Karrer & Newman,
2011), similar to the BTER model, assumes that each node is equipped with a cluster
label g; € [K] and a degree parameter ;. Then it assumes that E[A];; = 0;0;B,(;)4(5)
where B € [0, 1]%*¥ is symmetric and positive semi-definite, and 6; € [0, 1] is the degree
parameter for node i. Let B = UU " be the symmetric decomposition of B, where Uy,
is the k-th row of U. Then, we can construct the latent embedding for the ¢-th node as
zi = (0;U,) € R¥. Using the linear link function p(- | m) = Bernoulli(r), it can be
formulated as the latent space model A ~ p(- | ZZT)

* Mixed-Member ship block models (Airoldi et al., 2008). Beyond classical block models,
this model assumes that each node is associated with multiple blocks. Specifically, this
model assumes that E[A];; = m; Bm;, where each 7; belongs to the probability simplex
Ag = {m: 7 € [0,1)%,||x||s = 1}. Whenever B is positive definite with symmetric
decomposition B = UU " with U € RE*" we can construct Z = (21,...,2,)" such that
its 4-th row vector z; = U " m; € RX. With the linear link function p(- | 7) = Bernoulli(r),
we have that A ~ Bernoulli(ZZ "), which is an instance of latent space model.

In general, we see that these classical methods can generally be approximated by the latent space
model with a suitable choice of the latent embedding and the link function. Therefore, we believe
that the latent space model is sufficiently general to cover classical network models.

C SUPPLEMENTAL MATERIALS FOR EXPERIMENTS

C.1 DEFERRED ALGORITHMS

Estimation in the latent space model. Suppose that we observe a network A, and we want to
fit a latent space network model on A with proper conditional model p(- | -) and candidate latent
dimension r. We use the following Algorithm 2 to solve Eq. (1).

Algorithm 2 Projected Gradient Descent

Require: Network observation A € R™*™, model p(-
N eN;
1: fort:=0to N —1do
20 N« ZZ" +al1" +1a';
3 Z+ Z+2nz 0, p(A)Z;
4
5

-), stepsizes 7z, Mo, > 0, number of iterations

o < + 21 O p(AID)1,;
Z < (Z —=n7'1,1] Z) R, where R € R™*" is the orthonormal matrix such that n=(Z —
n 11,10 2)"(Z -n"11,1] 2).

6: end for

7:return Z =Z,d=a—a 1,/n,p=0a"1,.

20

The convergence of Algorithm 2 in the well-specified setting can be found in Ma et al. (2020). In
practice, we need to use a proper initialization for Z and «. And we use the output of universal
singular value thresholding (USVT) (Chatterjee, 2015) as the initialization of Z and «.. The detail of
this initialization algorithm can be found in Ma et al. (2020).

C.2 DATASETS DETAILS

Simulated Datasets. In the simulated datasets evaluation, we consider (n,r) €
{500, 1000, 1500} x {2,3,4}. For each (n,r) pair and each replicate t = 1,...,200, we
generate an undirected sparse simple graph A € {0, 1}"*" as follows.

We first draw the degree parameters oy Unif([-1/2,1/2]) fori = 1,...,n and set a =
(Q1,...,05) . Let Z; € R” be i.i.d. realizations of projj_s, /o /m- #N:(0, I /7) (ie., a scaled
Gaussian distribution truncated to [—2/+/r,2/4/7]"). We then independently draw two centers
v v?) € R” from Unif([—1,1]"). For each node, we independently sample a label L; with
P(L; = 1) = P(L; = 2) = 1/2fori = 1,...,n. Finally, we set 2/ = Z; + v(%?) and z; =
2 (I 2) 2

Given the latent positions and the degree parameters, we generate the network edges. We set
the sparsity parameter p};, = —0.4logn. For each pair of nodes 1 < 7 < j < n, we calculate
pij = o(a; + aj + 2, z; + pi). Then we independently sample A;; = A;; ~ Bernoulli(p;;) for
1 < jandset A;; = 0foralli < n.

Table 4: Dataset statistics for Yelp, YouTube, DBLP and PolBlogs.

Dataset | Original Dataset | Subgraph | Statistics
| Nodes Edges | Nodes Edges | Density Clustering Coef. Triangle Density
Yelp 906,179 7,305,874 | 4,530 541,655 | 0.0527 0.1976 0.0010
YouTube | 1,134,890 2,987,624 | 1,991 51,756 | 0.0261 0.1891 0.0002
DBLP 317,080 1,049,866 | 1,481 18,901 0.0172 09116 0.0008
PolBlogs 1,490 19,090 1,222 16,714 | 0.0224 0.2259 0.0003
Degree Distribution Spectrum Distribution Degree Distribution Spectrum Distribution
o] u gl
0.003 005 H 0.010 ‘ 01:5 H
z goos4 H £ 0.008 ‘ ‘ £ 0.100 ‘
£ o002 £003 [£ 0.006 } & o075 }‘
.l oot gl
(a) Yelp dataset. (b) YouTube dataset.
Degree Distribution Spectrum Distribution Degree Distribution Spectrum Distribution
oo | ot | oos! | el
oo ‘ 0.20 H 0.04 H 0.25 H
gos| Zol | il o |
al M }\ Sos|
0.01 ‘ (] 0.05 0.01 H-‘ z:f ‘h-h}n\
(c) DBLP dataset. (d) PolBlogs dataset..

Figure 4: Degree and eigenvalue distributions for four real-world datasets.

Real-world datasets. We evaluate on four networks spanning thousands to millions of nodes.
For Yelp, YouTube, and DBLP, whose full graphs are extremely large and highly sparse, we con-
struct tractable training sets by extracting high-degree nodes and then taking the largest connected
component (LCC).

In the Yelp and YouTube datasets, nodes represent users and an undirected edge between users
represents a social tie (friendship/subscription). In the DBLP dataset, nodes represent authors, and an

21

edge connects two authors if they have coauthored at least one paper. In the PolBlogs dataset, nodes
represent U.S. political blogs from the 2004 election blogosphere and two blogs are connected if one
of them contains a link to the other.

Since the Yelp, YouTube, and DBLP datasets are very large and contain many low-degree nodes, we
sample induced subgraphs for tractable evaluation. Our general procedure is to rank nodes by degree,
take the induced subgraph on the top-%k nodes (for £ between 1,000 and 5,000), and then extract the
largest connected component (LCC). For Yelp, we select the top 0.5% of users by degree, yielding an
LCC of 4,530 nodes and 541,655 edges. For YouTube and DBLP, we take the top 2,000 and 1,500
nodes, resulting in LCCs of 1,991 and 1,481 nodes, respectively. To avoid out-of-memory (OOM)
issues for some baseline methods, we cap most subgraphs at < 2, 000 nodes. The PolBlogs network
is relatively smaller, so we use its full LCC of 1,222 nodes and 16,714 edges. For all networks, we
symmetrize edges and remove self-loops. Key statistics for the original and the extracted graphs are
in Table 4, with degree and eigenvalue(spectrum) distributions shown in Figure 4.

C.3 EVALUATION DETAILS

Metrics for similarity. We assess the quality of the generated networks by comparing some metrics
that capture both numerical and structural aspects of a network. For the numerical characteristics, we
use the triangle density and the global clustering coefficient. For the structural characteristics, we
consider the distribution of degree centralities and the eigenvalues of the adjacency matrix. For any
network adjacency A, we consider the following numerical characteristics:

* The triangle density: TD(A) = NT(A)/(3) where NT(A) = & tr(A®) is the number of
triangles in the graph;

* The global clustering coefficient: GC(A) = 3NT(A)/> ", (%) where d; = 3, Aij is

the degree of node i.
For each input network and generative model, we generate S = 200 independent networks
Ay, ..., Ag and compute the empirical distribution of each numerical characteristic. Specifically, for

a numerical characteristic f with f € {TD, GC} and a collection of generated networks {Z(S)}le,
we compute

s=1
S
MAE; = ¢ 3"|7(4) - (A®)],
s=1
1 S
Bias; = & > (FAW) = £(4))
s=1

For the structural characteristics, we consider the following:

¢ The degree centrality: DC(A) = (dy,...,d,), where d; = Z#i A;; is the degree of node

Z?

* The eigenvalues: EV(A) = (A1,...,\n), Wwhere Ay > Ao > --- >), are the eigenvalues
of A.

22

For two vectors, we consider the Wasserstein distance 1-distance, the Kolmogorov—Smirnov distance,
energy distance and maximum mean discrepancy (MMD) as follows:

n

1
Wl(u,v) = ﬁ Z ‘U(l) — ’U(i)|,

i=1
1« 1<
KS(u, v)fsggwﬁgl{ui gz}fﬁgl{vi <z},
2 n 1 n 1 n
ED(u,v) = — > Jui =] — 3 > Jui — uy) > v =l
,J.,l ,J,l .J.,l
MMD (u, v) Zku“uj 3 Zkv“v] 3 Zkul,vj
1,j=1 i,j=1 i,5=1

where w1y < ug2) < -+ < ugy, are the order statistics of u, and k(z,y) = exp(—|z — y|?/2)
is the standard Gaussian RBF kernel. For a structural characteristic f with f € {DC,EV} and a
discrepancy metric d with d € {W1, KS, ED, MMD}, we compute the average distance between the

original network and the generated networks as dy = £ 35 d(f(A), f(A®)).

We additionally consider the graphlet frequency as the structural distance and calculate the L' /L?
distances between the original graph and the generated graph. The graphlet frequency is defined
as follows. Let Sy := {S C [n] : [S| = 4} be the collection of all 4-vertex subsets of V. For any
S = (i1, 12,13, 14) With i1 < 49 < i3 < i4, we define the local degrees for r < 4 as

=Y A, r=1234
seS
SFE b

Then we consider its order statistics d1)(S) < d2)(S) < d3)(S) < d4)(S) and the total
edgese(S) = 3 oy, d,(S).
The six connected 4-node graphlets are denoted as

Gy = {K13,Py,C4,T,D, Ky},
where K 3 is the 3-star, P, is the 4-path, Cy is the 4-cycle, T is the triangled tail (a triangle with a
pendant vertex), D is the diamond (K4 with one edge removed), and K is the complete graph on 4

vertices. Each graphlet g € G, is uniquely characterized (by isomorphism type) by its edge count e,
and its ordered degree sequence 64 = (d4,1,094,2,94,3,9g,4), namely

g=Ki3 <= e;,=3,0,=(1,11,3),
g=P < e,=30,=(1,1,2,2),
g=C1 <= e,=4,0,=(2,2,2,2),
g=T eg_4 5, = (1,2,2,3),
g=D <= e,=50,=(2233),
g=K, <+ 9—6,6 (3,3,3,3).

For each g € G4, define the indicator
1,(8) = 1{6(5) = eg, (d1)(S), d2)(S), dg3(S), day (S)) = 5g}, S € 8.

We aggregate them to get the corresponding 4-node graphlet count: Cy(A) := 3 55, 14(S5), and

normalize to get the 4-graphlet frequency GF4(A) such that the g-th coordinate is GF4(A), =

%. We use L' and L? to measure the distance between two graphs, namely
a9’ €9y !

GFDyi (4, 4") =) |GF4(A)y — GF4(A'),;
9€Ga
1/2
GFD2(A,A) = (> IGF4(A), — GF4(AI)g|2) :
g€Ga

23

Evaluation pipeline. For a single input network A, we generate .S = 200 independent networks
and calculate the above metrics. In the real-world dataset setting, we directly report the averaged
metrics for each input network and its associated standard deviation.

C.4 IMPLEMENTATION DETAILS

Implementation of SYNGLER. For the SyNG-D, we use ForestDiffusion (Jolicoeur-
Martineau et al., 2024) to construct the score approximation. Table 5 lists all the hyperparameters for
ForestDif fusion throughout our experiments.

Table 5: ForestDiffusion Hyperparameters For Data Generation.

Category | Hyperparameter Simulated Data Real-world data Description
ng 50 100 Number of diffusion time steps.
ForestDiffusion duplicate K 100 100 Sample duplication factor for training data.
diffusion type vp vp Use variance-preserving (VP) diffusion.
max depth 7 7 Maximum tree depth.
number of estimators 100 100 Number of boosting trees.
eta 0.3 0.3 Learning rate.

XGBoost tree method hist hist Histogram-based tree construction.
regression lambda 0.0 0.0 L2 regularization parameter.
regression alpha 0.0 0.0 L1 regularization parameter.

subsample 1.0 1.0 Row subsampling ratio per tree.

Experimental environment. All experiments are conducted on NVIDIA GeForce RTX 4090
(24 GB) GPUs and 384 CPU cores.

The ForestDiffusion module is parallelized on the CPU and executes entirely on host cores.
We deploy VGAE and SyNG-D models on CPUs. EDGE and GRAN are deployed on a single GPU,
according to the default configuration in the original codebase.

Implementation for baselines. For the VGAE, EDGE and GRAN, we use the codebases hosted in
gae, graph-generation-EDGE, GRAN, respectively. For each baseline method, we adopt the default
models in the corresponding codebase without further clarification. In the real data experiments,
we include the results for each method with several different configurations. For our SyNG-D and
SyNG-R, we vary the number of the latent dimension 7 from 2 to 6. For VGAE, we vary the number
of the embeddings consecutively from 2 to 6, and include the default setting 16. For GRAN, we
choose the dimension of the hidden layer from 128, 256 and 512. Other methods remain their default
configurations.

C.5 EVALUATION RESULTS ON NON-SPARSE SIMULATED NETWORK

Structural characteristics. The following Table 6 and Table 7 summarize the discrepancies
between the structural statistics of the generated networks and those of the input networks.

Table 6: Averaged distance between the degree centralities of the original network and the generated
output. All values are reported as x 1071

n = 500 n = 1000 n = 1500
Metric Method r=2 r=3 r=4 r=2 r=3 r=4 r=2 r=3 r=4

SyNG-D 0.08£0.02 0.08+0.02 0.08+0.02 0.05+0.01 0.05+0.02 0.06+0.02 0.044+0.01 0.04+0.01 0.04+0.01
Wi-dist SyNG-R 0.08 £0.02 0.08+0.02 0.08+0.02 0.05+0.01 0.06+002 0.06+0.02 0.04+0.01 0.04+001 0.04+0.01
VGAE 049+0.02 049+0.03 050+0.03 049+002 0.50+£0.03 0504+0.03 050+0.02 0.51+£0.02 0.51+0.02

SyNG-D 0.69+0.10 0.68+0.10 0.70+0.13 0.47+0.07 047+£009 048+0.09 0.38+0.06 0.38+0.07 0.38+0.07
KS-dist SyNG-R 0.72+£0.09 0.72+£0.09 0.73£0.12 049+0.06 049+008 0.51+£008 039+0.05 040%0.06 0.40=+0.06
VGAE 456+023 453+024 457+028 451+£0.19 451+020 4524021 452+0.16 453+£0.16 4.55+0.17

SyNG-D 0.27+£0.06 0.27+0.06 0.28+0.07 0.19+0.04 0.19+£005 0.19+005 0.15+0.03 0.15+0.04 0.15+0.04
Energy-dist SyNG-R 0.27 £0.05 0.28+0.05 0.28+0.07 0.19+£0.04 0.19+005 0.19+0.05 0.15+0.03 0.15+0.04 0.15+0.04
VGAE 1.72+0.06 1.72+0.07 1.73+£0.07 1.72+005 1.73+0.06 1.734+0.06 1.73+0.05 1.75+0.05 1.75+0.05

Numerical characteristics. The following Table 8 and Table 9 summarize the distances between
the numerical characteristics of the generated networks and the input networks.

24

https://github.com/tkipf/gae
https://github.com/tufts-ml/graph-generation-EDGE
https://github.com/lrjconan/GRAN

Table 7: Averaged distance between the eigenvalues of the original network and the generated output.
All values are reported as x 1071,

n = 500 n = 1000 n = 1500
eigenvalues Distance ~ Method r=2 r=3 r=4 r=2 r=3 r=4 r=2 r=3 r=4
SyNG-D 0.37+£0.04 0434009 066+037 0244003 0.26+0.04 036=+0.13 0.19+0.02 0.20+0.03 0.25+0.05
W-dist SyNG-R 04040.04 059+£009 098+0.18 025+0.03 035£0.05 056+0.15 020£0.02 025+0.03 0.38+£0.06

VGAE 9.54 +0.51 970 £0.67 9.55+£0.78 9.55+046 980+£0.69 991076 952+£050 9.80+£0.70 9.83+0.82

SyNG-D 047 +0.06 0484+0.11 062+029 032+003 0.32+0.06 038+0.15 0.27+0.03 0.26=+004 0.28+0.06
KS-dist SyNG-R 0524006 0.65+0.12 0964022 035+0.03 042+£0.08 059+0.18 028+£0.02 032+005 042+0.09
VGAE 9.65 +0.01 9.61 £0.02 9.61£0.04 9.81+0.01 9.82 4 0.01 9.81+£0.02 9.87£0.01 9.88 4 0.01 9.87 +0.01

SyNG-D 0.28 £0.04 0.29+£0.07 0414021 018+£0.02 0184004 0.23+0.11 0154002 0.14+0.03 0.16=+0.04
Energy-dist SyNG-R 0.3040.04 039+£008 0.64+0.16 0.19+002 023£0.05 036+0.12 0.15£0.01 0.174+0.03 0.25+0.06
VGAE 10.154+0.23 1040 £0.31 10484036 10.55+0.20 10.78+£0.30 10.924+0.32 10.70£0.22 10.89+£0.28 10.99 £ 0.33

Table 8: Similarity between the the triangle densities of the original network and generated network.
All values are reported as x 1072,

n Method ‘ RMSE ‘ MAE (x10~?) | Bias (x1072)
N R R N S = = R

SyNG-D | 045 0.44 0.50 | 037 £0.26 0.47 £0.34 050+£049 | 0.18 042 010+043 0.22 £ 0.66
500 SyNG-R | 043 044 049 | 0.35+£0.26 0.51+£0.37 039+030 | 017+040 0.13£042 0.18£0.46
VGAE | 0.68 0.73 0.71 | 0.58 £0.36 0.61£0.39 0.58 £0.41 | -0.54+042 -0.57+045 -0.52+0.49

SyNG-D | 0.31 032 033 | 032+£0.17 031+£0.25 035£0.29 | 0.09+£0.29 0.05+£0.32 0.06 £0.45
1000 SyNG-R | 0.30 043 034 | 0.254+0.17 0344+026 0274020 | 0.09+028 0.194+038 0.10+£0.32
VGAE | 0.66 0.67 0.68 | 0.58 £0.32 0.59£0.33 0.59 £0.33 | -0.56 £0.35 -0.56 £0.38 -0.56 £ 0.38

SyNG-D | 0.31 0.31 0.32 | 025+0.14 024+£0.19 025+0.21 | 0.08+0.30 0.03+0.25 -0.03+0.32
1500 SyNG-R | 0.24 032 034 | 0.20+0.13 0254+020 0274020 | 0.04+023 0.13+£030 0.13+£0.31
VGAE | 0.71 0.65 0.65 | 0.65+0.29 0.59+0.28 0.58 £0.31 | -0.65+0.29 -0.57+£0.32 -0.57+£0.33

Table 9: Similarity between the the global clustering coefficients of the original network and generated
network.

7 Method | RMSE MAE (x10~2) | Bias (x1072)
| =2 =3 =4| =2 =3 =4 | =2 =3 r=4

SyNG-D | 0.62 0.58 0.70 | 0.51 £0.34 0.47 £0.34 0.50 £0.49 | 0.34 £0.51 021+0.54 0.22 £ 0.66
500 SyNG-R | 0.61 0.63 0.70 | 0.51 £0.34 0.51+0.37 057+041 | 037+£049 036+052 0434056
VGAE | 259 260 258 |2494+0.72 245£086 2404093 | -249+£0.72 -245+£086 -2.40+0.94

SyNG-D | 040 0.39 045 | 032+£023 031+£025 035+0.29 | 017+0.36 0.07+£0.39 0.06 =0.45
1000 SyNG-R | 0.40 043 0.52 | 0.32+024 034+026 041+032 | 020+035 0.194+038 0.26 +£0.45
VGAE | 259 257 261 |250+£0.70 243+0.85 247+0.85 | -250+0.70 -2434+0.85 -247+0.85

SyNG-D | 0.31 031 032 | 025£0.17 024+£0.19 025+0.21 | 0.08+£0.30 0.03+£0.31 -0.03+0.32
1500 SyNG-R | 0.30 0.32 034 | 0.24+0.17 0254+020 0274020 | 010028 0.134+030 0.13+0.31
VGAE | 271 246 253 | 263+0.64 235+£074 2404+0.82 | -263£0.64 -235+£0.74 -2.40+0.82

C.6 EVALUATION RESULTS ON SPARSE SIMULATED NETWORK

Structural characteristics. Below, we present the quality of the synthetic networks on the sparse
simulated networks. The following Table 10 and Table 11 summarize the discrepancies between the
structural statistics of the generated networks and those of the input networks.

Table 10: Averaged distance between the degree centralities of the original network and the generated
output, sparse network. All values reported as x 1071,

n = 500 n = 1000 n = 1500
Metric Method r=2 r=3 r=4 r=2 r=3 r=4 r=2 r=3 r=4

SyNG-D 0.07+0.02 0.11+0.11 0.51+0.55 0.04+0.01 0.04+0.01 0.05+£0.09 0.03+0.01 0.03+0.01 0.03+0.01
Wil-dist SyNG-R 0.08+0.02 0.12+£0.03 0.24+£0.12 0.04£0.01 0.05+0.01 0.074+0.02 0.03+£0.01 0.04£0.01 0.05£0.01
VGAE 0.21£0.02 020%£0.02 0.194+0.02 0.18+0.02 0.17£0.02 0.16£0.02 0.164+0.02 0.154+0.02 0.15+0.02

SyNG-D 1.11+0.24 1.44+0.88 3.75+278 0.71+0.16 0.75+020 0.92+0.60 0.55+0.13 0.58+0.15 0.64+0.17
KS-dist SyNG-R 1.25+0.25 1.65+039 293+1.13 0.79+0.16 0994+0.20 1.29+0.27 0.60+£0.13 0.75+£0.15 0.9640.17
VGAE 4.45+0.83 4.45+0.83 450+0.79 4.53+083 4.57+£0.85 4.62+0.85 4.624+0.89 481+0.79 4.82+£0.71

SyNG-D 0.33+0.08 046+0.37 1.61+147 0.19+0.05 020+0.06 0.26+0.26 0.14+0.04 0.14+0.04 0.16+0.05
Energy-dist SyNG-R 0.37+£0.08 0.52+0.14 1.014+045 021+£0.05 027£0.06 0.374+0.09 0.15+£0.04 0.19+0.04 0.2540.05
VGAE 1.07+£0.11 1.06+£0.11 1.05+0.11 098+0.11 097+0.11 0.96+£0.11 0.94+£0.11 0.93+0.10 0.9340.08

25

Table 11: Averaged distance between the eigenvalues of the original network and the generated
output, sparse network. All values reported as x 1071,

n = 500 n = 1000 n = 1500
eigenvalues Distance ~ Method r=2 =3 r=4 r=2 r=3 r=4 r=2 r=3 r=4
SyNG-D 0.66+0.12 1.38+1.23 634+601 0.36+0.06 0.56+0.12 1.05+1.02 0.26+0.04 0.37+0.08 0.63+0.16
W-dist SyNG-R 0.74£0.11 1.46+026 299+0.72 040+£0.06 0.76+£0.11 1.38+£0.22 0.28+0.04 0.51+0.07 0.93+0.14

VGAE 1.724+£049 1.60+0.53 1.424+047 1864055 1.734£0.61 1.66+0.58 1.86+0.57 1.79+£0.61 1.63+£0.59

SyNG-D 091+0.23 1.53+0.70 356+185 0.57+0.12 0.91+028 1.53+0.63 0.46+0.10 0.70+0.22 1.21+0.41
KS-dist SyNG-R 0.98+024 1.65+046 3.03£085 0.62+£012 1.06+£0.29 1.81+£0.52 047£0.10 0.80+0.23 1.4440.42
VGAE 1.57+£0.27 1.55+£0.53 1.54+£0.58 215+0.49 2404+0.83 2.614+0.94 2584+0.64 3124086 3.25+£0.94

SyNG-D 0.59+0.13 1.15+0.71 3.69+262 0.33+0.06 0.56+0.16 1.03+0.58 0.24+0.05 0.39+0.11 0.71+£0.22
Energy-dist SyNG-R 0.64£0.13 1254028 249+£0.60 0.36+£0.06 0.71+£0.15 1.31£0.29 0.26+£0.04 0.494+0.11 0.9440.20
VGAE 1.02+£0.29 1.03+£044 098+043 138+046 1454+0.57 1.534+0.61 1.56+049 1.74+£0.56 1.73+£0.59

Numerical characteristics. The following Table 12 and Table 13 summarize the distances between
the numerical characteristics of the generated networks and the input networks.

Table 12: Similarity between the the triangle densities of the original network and generated network,
sparse network.

n Method | RMSE(x10™") | MAE (x107%) | Bias (x10%)
| =2 r=3 =4 | =2 =3 =4 | = =3 =

SyNG-D | 4.60 1834 157.01 | 437+ 144 8.16+1647 9099+ 12829 | 437+144 816+£1647 90.99 £ 128.29
500 SyNG-R | 537 17.31 1722 | 5114+ 1.66 6944232 14.73 £ 8.94 5.11 £ 1.66 6.94 +2.32 14.73 +8.94
VGAE | 9.70 8.46 7.63 | 9.16 £3.20 797285 7.19 £2.56 -9.16 £3.20 —-797+£285 —-7.19+£2.56

SyNG-D | 1.60 1.29 1514 | 1.51+0.53 1.21+£0.46 3.06 + 14.87 1.51 + 0.53 1.20 + 0.46 3.06 + 14.87
1000 SyNG-R | 1.88 2.22 291 1.77+£0.62 2.08 +0.77 2.75 £0.94 1.77 £ 0.62 2.08 £0.77 2.75 £0.94
VGAE | 595 492 452 | 555+£214 453+193 4.19 £ 1.70 —5.55+£2.14 —453+193 —419+1.70

SyNG-D | 0.87 0.62 0.63 | 0.80 £0.34 0.57+0.22 0.58 £0.25 0.80 +0.34 0.57 £0.23 0.57 £0.27
1500 SyNG-R | 0.99 1.07 135 | 092+£0.36 1.00=+0.37 126 £0.48 0.92 +£0.36 1.00 £ 0.37 1.26 £0.48
VGAE | 459 334 3.05 | 426+1.73 3.05+1.36 278 £1.25 —4.26+1.73 -3.05+136 —2.78+125

Table 13: Similarity between the the global clustering coefficients of the original network and
generated network, sparse network.

n Method | RMSE(x1072) | MAE (x10~2) \ Bias (x10-2)
| =2 =3 =4 | r=2 =3 =4 | =2 r=3 r=4

SyNG-D | 1.57 4.62 19.69 | 1.52£0.40 2424395 13.33+14.53 | 1.52+0.40 242+£395 13331453
500 SyNG-R | 1.81 237 422 | 1.77+0.38 233+047 3994139 1.77 £ 0.38 2.33+0.47 3.99 £ 1.39
VGAE | 531 451 4.09 |503+171 428+145 3.89+125 | —5.02+1.75 —426+148 —-3.87+132

SyNG-D | 0.84 0.69 4.05 | 0.82+0.20 0.65+024 1.16+3.89 0.82 £ 0.20 0.65 + 0.24 1.15 + 3.89
1000 SyNG-R | 098 1.18 1.52 | 0.96+020 1.16+0.21 1.50 £0.27 0.96 & 0.20 1.16 £0.21 1.50 +0.27
VGAE | 537 440 410 |505+181 410+1.60 381+152 | —5.06+1.81 —4.08+1.65 —3.78+1.58

SyNG-D | 0.59 046 046 | 0.57+0.16 043+0.16 0.42+0.19 0.57 +0.16 0.43 +0.17 0.41 +0.21
1500 SyNG-R | 0.67 0.80 098 | 0.65+0.14 0.79+0.14 096 £0.17 0.65 £ 0.14 0.79 £ 0.14 0.96 & 0.17
VGAE | 543 406 374 |509+191 379+145 350+132 | —5.09+191 —-3.79+147 —3.50+1.32

26

C.7 EVALUATION RESULTS ON REAL-WORLD DATASETS

In this subsection, we list all the experiment results on the real-world datasets. For each dataset, we
present three tables detailing the generation quality. The first table evaluates the similarity of degree
centrality distributions, the second assesses the similarity of eigenvalue distributions, and the third
reports on numerical characteristics such as global clustering coefficient and triangle density.

YouTube dataset. Tables 14 to 16 summarize the generation quality on the YouTube dataset.

Table 14: Generation quality in degree centralities distribution similarity on YouTube dataset. All
reported distance values are scaled by 1072,

Method Config | W1 dist. KS dist. Energy dist. MMD
2 0.15+0.07 376 £143 0.01 +£0.01 2.13+1.80
3 023£0.09 5.61+£1.67 0.01+001 446+2.02
SyNG-D 4 032£0.10 742+£191 0.03+£0.02 6.71+2.15
5 049 £0.09 11.79+£1.78 0.07+0.02 11.49 £ 1.90
6 0.58£0.09 13924187 0.10+0.03 13.80=+ 1.98
2 0.19£0.05 6.05+142 0.01+0.00 4.244+1.50
3 018 £0.05 591+129 0.01+0.00 4.06%+1.43
SyNG-D (MLP) 4 0.18 £0.05 588+151 0.01+0.01 3.89+1.68
5 022+0.05 8.00+157 0.01+0.01 6.34+1.48
6 029+£0.08 9.82+164 0.03+0.01 8.134+1.78
2 0.13£0.06 286+113 0.00+0.00 1.10+1.43
3 0.13£0.06 291+1.16 0.00+0.00 1.21+1.47
SyNG-R 4 0.13£0.06 291+1.11 0.00+0.00 1.18+1.50
5 0.13+0.06 298+1.16 0.00£0.00 1.15+1.47
6 0.13£0.06 3.00+121 0.00+0.00 1.16+1.52
2 0.89£0.01 23.74+044 0.20+£0.00 33.85+046
3 0.89 £0.01 23494+040 0.20+0.00 33.39£0.55
VGAE 4 0.80 = 0.01 20.10 =0.43 0.15+0.00 27.83 +0.41
5 091 £0.01 2440+£0.39 0.21+0.00 34.96+0.36
6 0.82£0.01 20.33+043 0.16+:0.00 28.78 £0.36
16 0.85+£0.01 21.76 £0.43 0.18+0.00 31.03 £0.40
128 0.78 £0.38 1538 £5.47 0.12+£0.17 16.02+4.24
GRAN 256 | 571 £041 57.59+£3.00 3.87+048 62.02+3.20
512 | 0.76 £0.20 9.24 +2.00 0.08 +0.04 7.86 = 1.72
EDGE - | 041£0.05 7.82+086 0.04+0.01 7.84+0.95
GraphMaker - | 1.35£0.00 37.68+0.47 0.55+0.01 64.99 +0.47
E-R - | 1.41£0.01 47.08+0.44 0.67£0.01 69.22 + 0.40
BTER - | 004£0.01 1.64+0.32 0.00£0.00 0.00%0.00
mKPGM - | L06£0.01 31.71+0.39 0.33+£0.01 44.86+0.45
DBLP dataset. The following Tables 17 to 19 present the full experimental results for the DBLP
dataset.
Yelp dataset. Here we provide the detailed evaluation for the Yelp dataset. The results for degree

centrality, eigenvalue distribution, and other numerical characteristics are shown in the Tables 20
to 22 respectively.

PolBlogs dataset. Finally, we present the comprehensive results for the PolBlogs dataset. The
subsequent Tables 23 to 25 detail the performance of each method in capturing the structural and
numerical properties of the original network.

27

Table 15: Generation quality in eigenvalue distribution similarity on YouTube dataset. W1 dist. is
reported in its original scale, while KS dist., Energy dist., and MMD are scaled by 1071,

Method Config | W1 dist. KS dist. Energy dist. MMD
2 031+0.06 030+0.07 0.11+x0.05 0.26+0.09
3 0.23+0.04 0.20+£0.06 0.05+0.03 0.08+0.10
SyNG-D 4 0.19+0.04 0.14+0.04 0.03%£0.01 0.01 =0.03
5 0.30+0.08 0.20+0.06 0.07+0.04 0.02+0.05
6 0.40+0.08 028+0.07 0.14+0.07 0.11+0.11
2 0.30+0.06 028+0.06 0.10+0.05 0.24+0.09
3 0.28+0.06 027+0.07 0.09+0.05 0.20%0.11
SyNG-D (MLP) 4 0.19+0.05 0.18+£0.06 0.04+0.03 0.04+0.07
5 0.17+0.04 0.14+0.04 0.03£0.02 0.01 +0.04
6 0.19+0.06 0.14+0.04 0.03+0.02 0.00 +=0.01
2 043+0.07 044+007 024+0.09 0.45+0.09
3 0.38+0.06 0.39+0.07 0.19+0.07 0.39+0.10
SyNG-R 4 033+0.06 036+006 0.15+0.06 0.34+0.09
5 031+0.06 036+006 0.14+0.06 0.32+0.09
6 029+0.05 035+0.06 0.13=0.05 0.31%0.09
2 1.27+0.01 1.51+001 235+0.04 1.85+0.01
3 1.26 +£0.01 1.51+0.01 233+004 1.84+0.01
VGAE 4 115+0.01 141%+0.01 1.94+0.03 1.72+0.01
5 1.29+0.01 1.53+001 241+0.04 1.87+0.01
6 1.17+0.01 142+0.01 2.02+0.03 1.74 £ 0.01
16 1.21+0.01 1.46+0.01 2.14 +£0.04 1.79 £ 0.01
128 097+046 0.70+0.29 1.14+1.25 0.71+0.32
GRAN 256 400+023 240+0.12 1420+1.53 2.58+0.14
512 0.94+0.17 0.76+0.10 099033 0.79+0.08
EDGE - ‘ 034+0.04 039+008 0.14%0.05 0.44=0.07
GraphMaker — ‘ 1.62+0.01 181+0.01 3.68+0.04 2.31+0.01
E-R - ‘ 195+0.01 2.10x0.01 5.54+0.06 2.60=%0.01
BTER — ‘ 0.76 £0.01 0.60+0.01 0.57+0.02 0.64 +0.01
mKPGM - ‘ 172+ 0.01 184x0.01 4.19+0.06 2.24+0.01

28

Table 16: Generation quality in numerical characteristics on YouTube dataset.

_9 . 4

Method Config ‘ Clus (x1072) \ Tri (x10~%)
| RMSE MAE Bias | RMSE MAE Bias
2 228 215 215| 097 092 092
3 169 146 -141| 089 084 084
SyNG-D 4 134 108 -095| 083 078 078
5 150 122 -1.09| 058 052 052
6 142 119 -1.01 | 041 035 035
2 112 088 046 | 135 130 130
3 187 163 154 | 147 143 143
SyNG-D (MLP) 4 158 134 1.15| 162 158 158
5 208 283 280 | 140 136 136
6 313 293 283 | 118 114 114
2 223 208 207 | L15 L11 L1
3 107 087 -040 | 138 134 134
SyNG-R 4 120 096 066 | 153 149 149
5 157 130 119 | 161 157 157
6 184 157 152 | 165 161 161
2 1180 1180 -1180 | 081 081 -081
3 1166 11.66 -11.66| 080 080 -0.80
4 800 800 -8.00| 056 056 -0.56
VGAE 5 1207 1207 -1207 | 083 083 -0.83
6 924 924 924 | 065 065 -0.65
16 987 987 987 | 069 069 -0.69
128 | 1134 1132 -1132| 085 056 054
GRAN 256 530 529 -529| 1505 1495 14.95
512 | 1011 1010 -10.10 | 1.13 1.08 1.08
EDGE ~ | 1445 1381 -1380 | 078 075 -0.50
GraphMaker ~ | 1671 1671 -1671| LI2 LI2 -LI2
ER ~ | 1630 1630 -1630 | 105 105 -1.05
BTER — | 973 973 973 | 002 002 -0.01
mMKPGM ~ | 1600 1600 -1600 | 103 103 -1.03

29

Table 17: Generation quality in degree centralities distribution similarity on DBLP dataset. W1 dist.
and Energy dist. are scaled by 10~2; KS dist. and MMD are scaled by 10~ 1.

Method Config | W1 dist. KS dist. Energy dist. MMD

0.19+0.08 0.75+0.17 0.02+0.01 0.93 +0.23
018 £0.06 091 +0.16 0.02+0.01 1.03+0.19
022+£0.07 122+0.14 0.03+£0.01 1.29+0.17
033+£0.09 174+£0.18 0.05+0.02 1.78+0.20
044 £0.10 2.19£0.18 0.09+0.02 2.22+0.20

031+0.07 181+0.17 0.04+£0.01 1.50+0.16
042+£0.06 133+0.13 0.07£0.02 1.67+0.18
047+£0.15 1.19+0.19 0.06£0.03 1.40+0.25
047+£0.10 136+0.14 0.07+£0.02 1.72+0.16
0.35+£0.06 153+0.18 0.06£0.01 1.734+0.19

0.15+0.07 0.73+0.18 0.01 +0.01 0.75+0.28
0.15+0.07 0.73+0.18 0.01 +0.01 0.75+0.28

SyNG-D

SyNG-D (MLP)

AN RELURN | AUNRELRN|[AUNRWLWN| AU WN

SyNG-R 0.15+£0.07 0.73+0.18 0.01 £0.01 0.77 +£0.28
0.16£0.07 0.74+0.18 0.01 £0.01 0.78 +0.27

0.16 £0.07 0.75+0.17 0.01+0.01 0.80+£0.27

049+£0.01 233£0.08 0.10+0.00 2.84+0.10

0.29 £0.00 2.65+0.07 0.09+0.00 2.80=+0.06

VGAE 0.35+£0.01 320+0.08 0.12+£0.00 3.2840.06
0.35+£0.01 3.16+0.08 0.12+£0.00 3.234+0.07

032+£0.00 296=+0.07 0.11+£0.00 3.02+0.05

0.32£0.00 2.96+0.08 0.10£0.00 2.96 4 0.06

128 148 +£025 3.79+0.88 041+0.14 5.13£0.96

GRAN 256 1.25+0.03 4.61=£0.12 054+002 6.12+0.14
512 1.06 £ 0.01 2.21 +0.08 0.31 +=0.01 2.97 £ 0.09

EDGE -]023+£012 079011 0.02+0.02 0.99 +0.23
GraphMaker - | 1L37£0.01 556=+0.07 0.68+0.01 7.51+0.07
E-R - | 157£0.01 6.63£0.07 1.02+0.02 8.72+0.06
BTER - | 0.08£0.01 0.56+0.05 0.00+0.00 0.46 +0.05
mKPGM - | 1.13£0.01 3.25+0.08 0.37+0.00 4.57+0.08

30

Table 18: Generation quality in eigenvalue distribution similarity on DBLP dataset. W1, KS, and
MMD are scaled by 10~!; Energy dist. is scaled by 10~2.

Method Config | W1 dist. KS dist. Energy dist. MMD
2 3.02+0.32 0.81 +0.06 2.35+0.43 0.88 +0.06
3 2.13+£0.28 091 +0.07 1.57 £ 0.21 0.77 £ 0.05
SyNG-D 4 1.73+£0.17 1.06+0.07 1.65+0.20 0.77 £ 0.05
5 2.56 +0.43 1.32 +0.08 2.99 +0.57 0.96 + 0.08
6 3.80 £ 0.46 1.63 +£0.08 5.62 +0.89 1.28 +0.08
2 2.85+034 1.10+0.07 2.37 £ 0.31 0.93 = 0.05
3 6.09 +0.47 1.10 £ 0.08 8.94 +1.27 1.34 £ 0.07
SyNG-D (MLP) 4 446 +041 0.83+0.05 5.05 +0.87 1.12 £ 0.07
5 575+046 0.97+£0.07 7.42 +1.06 1.32 +0.06
6 5.92 +£0.45 1.03 £0.08 8.06 +1.13 1.31 £ 0.06
2 2.89+0.33 0.63+0.05 2.02 +0.50 0.80 = 0.07
3 225+0.33 0.58+0.05 1.35+0.39 0.65 +0.07
SyNG-R 4 1.70+£0.29 0.50 +0.06 0.83 +0.25 0.49 +0.07
5 1.31+0.30 0.46+0.05 0.52+0.18 0.37 +£0.07
6 1.19+0.32 0.41 % 0.05 0.40 = 0.15 0.27 £ 0.07
2 12.38+0.16 235+003 3767+1.01 2.62+0.03
3 4.04+0.06 098 +0.03 3.47+0.17 1.20 + 0.04
VGAE 4 3.83+0.10 0.67+0.03 2.81 £0.18 0.68 +£0.03
5 3,76 £0.12 0.65+0.03 2.69 +0.21 0.65 +0.03
6 3.51+0.08 0.61%0.02 2.30 £ 0.13 0.64 = 0.03
16 3.57+0.09 0.63+0.03 248 £0.16 0.65 +0.03
128 6.40 = 1.61 1.61 020 14.92+6.20 1.87+0.22
GRAN 256 17.55+048 3.06+0.05 7524+329 3.54+0.06
512 695+024 149+0.05 11.81+1.00 1.76%0.07
EDGE - ‘ 550+1.34 1.22+0.25 9.72 +£4.23 1.39 £ 0.30
GraphMaker — ‘ 1839+ 0.14 3.32+0.02 8540+1.14 3.93+0.02
E-R - ‘ 22.55+0.14 3.77+0.02 121.43+1.26 4.41+0.02
BTER — ‘ 944 +0.11 1.14+0.02 14.67+0.35 1.48+0.03
mKPGM - ‘ 13.13+£0.13 2.52+0.02 43.78+090 3.00 +0.03

31

Table 19: Generation quality in numerical characteristics on DBLP dataset.

_9 . 4

Method Config ‘ Clus (x1072) \ Tri (x10™4)
| RMSE MAE Bias | RMSE MAE Bias
2 622 587 587 | 158 126 0.46
3 534 494 494 | 161 137 -087
SyNG-D 4 551 523 523 | 181 157 -139
5 527 495 495 | 234 213 207
6 571 537 537 | 301 286 -2.86
2 | 1400 1361 -1361 | 291 267 262
3| 2421 2391 2391 | 374 364 364
SyNG-D(MLP) 4 | 1012 992 992 | 363 320 3.13
5 1438 1414 -14.14 | 229 181 147
6 | 1715 1694 -1694 | 1.80 154 -1.37
2 378 328 325 | 143 112 0.1
3 320 269 264 | 144 112 0.19
SyNG-R 4 263 210 -196 | 145 112 025
5 227 176 -151 | 146 1.3 028
6 214 166 -132 | 146 113 031
2 | 6328 6328 6328 | 665 665 -665
3 136 134 -134 | 058 058 -0.58
4 204 293 203 | 028 028 028
VGAE 5 301 300 300 | 026 026 026
6 332 331 331 | 011 010 010
16 | 310 310 310 | 005 005 0.5
128 | 87.63 87.63 -87.63 | 678 673 -6.73
GRAN 256 | 88.93 8893 -8893 | 793 793 -7.93
512 | 8921 8921 -8921| 799 799 -7.99
EDGE " 1327 1086 -1086 | 220 177 177
GraphMaker ~ | 8978 8978 -89.78 | 7.98 798 -7.98
ER T | 8943 8943 8943 | 796 796 -7.96
BTER ~ | 6175 6175 6175 | 609 609 -6.09
mKPGM ~ | 8997 8997 -89.97 | $.00 800 -8.00

32

Table 20: Generation quality in degree centralities distribution similarity on Yelp dataset. All metrics
scaled by 1072,

Method Config \ W1 dist. KS dist. Energy dist. MMD
2 0.15 +0.05 2.49 £+ 0.74 0.54 + 0.19 1.28 + 0.87
3 021 £0.10 3.55+1.26 0.77 £0.34 236+ 143
SyNG-D 4 024 +0.10 4.54+1.12 0.98 + 0.33 3.46 + 1.09
5 036 +0.11 6.02+1.16 1.42 +0.37 5.03 £ 1.15
6 044 +£0.13 7.72+1.42 1.81 =0.44 6.72 £ 1.36
2 0.32+0.12 4.68 =1.36 1.18 +0.43 3.26 +1.42
3 039+0.12 540+£1.30 1.38 £ 0.40 4324+ 1.18
SyNG-D (MLP) 4 0.69 +£0.15 856+ 1.33 2.49 £+ 0.46 7.82 +1.23
5 0.23 +-0.08 522 +1.03 1.01 £+ 0.26 4.17 +£0.79
6 0.30 +0.09 4.80 £ 1.06 1.19 +0.33 4.51 +0.96
2 0.13 +-0.06 2.02 £ 0.80 0.47 +0.22 0.65 + 0.94
3 0.13 +-0.06 1.98 +0.78 0.47 +0.22 0.60 + 0.90
SyNG-R 4 013 +0.06 1.99+0.82 0.47 +0.23 0.62 +0.92
5 0.14 = 0.06 2.05+0.80 0.48 +0.22 0.67 + 0.94
6 0.13 +-0.06 1.98 +0.78 0.47 +0.22 0.62 =091
2 1.65 £ 0.00 22.124+0.23 5.79 +0.02 32.23+0.16
3 1.70 £0.00 23.144+022 598 +0.02 33.32+0.19
VGAE 4 1.71 £0.00 23.50£021 6.03+0.02 33.67=+0.17
5 1.69 £0.00 22.81+£022 5974002 33.38+0.16
6 1.79 £0.00 2447 4+020 6.34+£0.02 3549+0.14
16 1.73£0.00 2337+£021 6.09+0.02 33.74+0.18
GraphMaker - \ 2.59 +0.00 41.44+0.20 10.33+0.01 69.26 +0.15
ER - \ 2.81 +0.00 57.17 +£0.18 12.09 +0.03 77.36 +0.13
BTER - \ 0.04 £0.00 0.97 £0.17 0.14 = 0.01 0.00 = 0.00
mKPGM - \ 310+ 0.00 49.19+0.18 13.07£0.02 49.97 +0.14

33

Table 21: Generation quality in eigenvalue distribution similarity on Yelp dataset. W1 unchanged;
KS, Energy, and MMD scaled by 10~ 1.

Method Config \ W1 dist. KS dist. Energy dist. MMD
2 1.294+0.09 0.53+£0.04 293+024 0.61£0.05
3 1.09+£0.10 044 +£0.05 2434+0.27 0.51 +0.05
SyNG-D 4 0.924+0.08 0.38+0.04 2.03+023 0.43+0.05
5 0.77 £0.08 0.30£0.04 1.62+0.22 0.34+0.05
6 0.64 =0.09 0.23+0.05 1.28+0.25 0.25+0.06
2 2.07+0.10 0.84 £0.04 4.88+0.25 0.96+0.05
3 1.884+£0.10 0.75£0.04 443+025 0.87+0.04
SyNG-D (MLP) 4 200£0.11 0824004 4.794+0.26 0.94 +0.05
5 1.21 +£0.10 0.51 +0.04 2.83+0.25 0.57 +0.05
6 1.554+0.09 0.66+£0.04 373+023 0.75+0.04
2 1.324+0.09 055+0.04 3.04+025 0.64+0.05
3 1.224+0.09 0.51+£0.04 282+025 0.59+0.05
SyNG-R 4 1.10£0.09 047 +£0.04 2554+024 0.54 4+0.05
5 1.00+0.09 044 +0.04 233+024 0.49 +0.05
6 094 +0.09 0.42+0.04 2.21+0.23 0.47 =0.05
2 2444001 1.40+0.00 651+0.02 1.73+0.00
3 246 4+001 1.41+0.00 656+0.02 1.764+0.00
VGAE 4 247 +£001 1414+0.00 6.58+0.02 1.76+0.00
5 248 +£0.01 1.424+0.00 6.60+0.02 1.7540.00
6 2514+001 1.444+000 6.71+0.02 1.794+0.00
16 242 +0.01 1.40+0.00 649 +0.02 1.76=+0.00
GraphMaker - \ 294 4+ 0.01 1.60+0.00 7.63+0.02 2.07 &+ 0.00
E-R - \ 3.83+0.01 2.00£0.00 10.22+0.02 2.45+0.00
BTER - \ 1.75+0.01 0.70+0.00 3.96+0.02 0.83+0.00
mKPGM - \ 206001 091+£0.00 4.77+0.02 0.93+0.00

34

Table 22: Generation quality in numerical characteristics on Yelp dataset.

_9 . 4
Method Config ‘ Clus (x1072) ‘ Tri (x107%)
| RMSE MAE Bias | RMSE MAE Bias
2 256 252 252 | 124 108 -1.05
3 265 261 26l | 171 157 -1.56
SyNG-D 4 201 196 -196 | 159 147 -1.46
5 183 177 -177 | 182 172 -171
6 177 170 <170 | 200 189 -1.88
2 235 231 231 | 074 061 -022
3 105 096 -096 | 140 118 115
SyNG-D (MLP) 4 075 063 058 | 333 318 3.8
5 081 071 -068 | 098 084 -0.72
6 0.65 053 047 | 144 126 123
2 279 276 276 | 149 135 -134
3 240 236 236 | 133 117 -1.15
SyNG-R 4 156 150 -150 | 1.01 085 -0.73
5 009 090 -089 | 083 069 -043
6 076 0.65 -0.61 | 078 0.64 -0.30
2 | 1036 1036 -1036 | 7.36 7.36 -7.36
3 1055 1055 -1055 | 745 745 -745
4 | 1056 1056 -10.56 | 746 746 -746
VGAE 5 1077 1077 -1077 | 749 749 -7.49
6 | 1126 1126 -1126| 767 767 -1.67
16 | 1025 1025 -1025 | 741 741 741
GraphMaker ~ | 1552 1552 -1552 | 882 882 -8.82
ER T 1448 1448 1448 | 812 812 812
BTER T 445 445 445 | 227 221 227
mKPGM ~ | 1598 1598 -1598 | 935 935 .9.35

35

Table 23: Generation quality in degree centralities distribution similarity on PolBlogs dataset. All

metrics scaled by 1072,

Method Config | W1 dist. KS dist. Energy dist. MMD

2 0.18 =0.08 4.53+097 0.01+0.01 097 +1.44

3 0.22 +0.11 502+134 0.01 +0.01 195 £ 2.15

SyNG-D 4 028+0.13 574+164 0.02+002 3.18+2.50
5 044 +£0.14 829+204 0.04+002 649+244

6 052 +0.15 998 +2.11 0.06 + 0.03 8.31 +2.50

2 020+ 0.07 959 +1.21 0.01 + 0.01 147 +£1.71

3 024 +0.10 9.81+1.09 0.01+0.01 3.05 £2.25

SyNG-D (MLP) 4 033 +0.15 1006+149 0.02+0.02 3.20+2.26
5 023+007 899+093 0.01+001 279+1.77

6 019 +0.08 9.16+135 0.01+0.01 141+1.73

2 018 £0.10 447 +092 0.01 001 092+145

3 018 +0.10 449+1.11 0.01+0.01 0.93+1.50

SyNG-R 4 018 +£0.10 457+123 001001 094+1.50
5 0.18 £0.10 468 +1.30 0.01 +0.01 1.06 + 1.62

6 0.18 =0.10 488=+1.49 0.01 +0.01 1.12 +1.67

2 093 +£001 3538+049 024+0.01 3542=+0.61

3 097 +£0.01 3624+053 026+001 37.16+0.51
VGAE 4 094 +£001 3565+052 024+001 36.02+0.60
5 092 +0.01 3531+0.51 0.23+0.01 3533+0.64

6 097 +£0.01 3635+053 026+001 3742+0.57

16 098 £0.01 36.56+049 026+0.01 37.82+0.56

128 0.56 £0.19 15.88+2.70 0.08+0.05 13.86 +2.01

GRAN 256 225+031 3558+3.15 064+0.15 33.78 +3.61
512 930+ 0.67 6337+238 636+0.72 6741 +2.69

EDGE - ‘ 0.06 £0.00 491+044 0.00£0.00 0.00 £ 0.00
GraphMaker — ‘ 1.72 £ 0.01 49.48 £0.60 0.82 +0.01 74.15+0.75
E-R - ‘ 1.83 +0.01 56.70 +-0.56 1.04 +0.01 79.24 + 0.59
BTER — ‘ 0.06 = 0.01 5.69 + 0.62 0.00 = 0.00 0.00 = 0.00
mKPGM - ‘ 157 +0.01 33.09+0.37 0.60=+0.01 50.67%0.90

36

Table 24: Generation quality in eigenvalue distribution similarity on PolBlogs dataset. W1 is unscaled;
KS, Energy, and MMD are scaled by 1072,

Method Config | W1 dist. KS dist. Energy dist. MMD

2 0.21 £0.06 4.82 +0.94 0.92 +£0.51 2.58 +1.37

3 0.20 £0.04 5.02+1.03 0.90 = 0.38 3.15+1.16

SyNG-D 4 0.20 £0.05 4.41+0.96 0.74 £+ 0.32 252 +1.22
5 0.25+0.07 3.22+0.77 0.80 £+ 0.46 1.51 +£1.18

6 0.30 £0.09 3.32 +0.89 1.19 +0.72 1.43 + 1.36

2 046 £0.10 7.00 £+ 0.89 3.36 +1.34 5.54 +1.05

3 037 £0.09 7.01+£0.76 2.51 +1.04 5.27 £+ 0.90

SyNG-D (MLP) 4 0.65 £0.11 8.90 + 0.90 6.88 +1.98 8.17 £ 1.11
5 0.38 £0.10 7.00 £+ 0.89 2.81 +1.18 5.57 +£1.08

6 0.39 £0.10 6.74 £ 0.92 2.80+1.18 535+1.12

2 0.24 £0.08 5.04 £1.10 1.24 £+ 0.82 3.01 £1.59

3 023 +£0.07 545+1.02 1.33 £ 0.76 3.64 +1.34

SyNG-R 4 0.23 £0.07 5.58+1.06 1.35 +£0.79 3.86 +1.32
5 0.22 £0.07 5.68+0.99 1.34 + 0.77 3.98 +1.20

6 0.22 +0.06 5.694+0.98 1.36 = 0.73 4.15+1.17
2 123 +0.01 27.33 £0.18 4220 £ 0.72 31.11 £ 0.20

3 1.27 £0.01 27.67 £0.18 44.05 + 0.82 31.57 £ 0.21
VGAE 4 1.24 +0.01 27.41 £0.18 42.65 +0.74 31.23 +0.20
5 1.23 £ 0.01 27.27 £+ 0.18 41.88 + 0.75 31.10 £ 0.22

6 1.27 £0.01 27.72 +£0.18 44.16 £ 0.74 31.62 +0.19
16 1.28 =0.01 27.81 £0.18 4470 = 0.77 31.80 = 0.20

128 048 £0.18 1091 £ 1.15 4.63 + 2.88 9.04 + 0.98

GRAN 256 1.23 +£0.16 10.89 + 1.18 17.03 +4.31 9.39 + 1.26
512 352+0.19 24554+1.24 12293 +£12.78 26.84 £ 1.41

EDGE - ‘ 0.28 +0.04 8.21 +1.17 1.90 £+ 0.59 4.69 + 1.26
GraphMaker — ‘ 1.78 £ 0.01 32.20 + 0.15 72.49 + 0.85 38.28 + 0.13
E-R - ‘ 2.03 £0.01 34.42 +0.12 93.20 + 0.92 40.10 + 0.11
BTER — ‘ 0.41 = 0.02 4.53 +0.40 1.87 £ 0.17 3.04 +0.34
mKPGM - ‘ 1.31 £0.01 23.36 £ 0.22 31.95 £ 0.46 31.15+£0.22

37

Table 25: Generation quality in numerical characteristics on PolBlogs dataset.

) . —4

Method Config ‘ Clus (x1072) \ Tri (x10™%)
| RMSE MAE Bias | RMSE MAE Bias
2 190 151 115 | 071 055 013
3 156 123 054 | 0.68 056 -0.33
SyNG-D 4 185 145 090 | 078 066 -043
5 166 133 049 | 109 100 -098
6 191 149 093 | 1.9 109 -1.07
2 358 326 323 | 091 069 056
3 223 188 173 | 059 048 -0.16
SyNG-D (MLP) 4 560 545 545 | 180 161 1.60
5 518 477 474 | 115 090 077
6 315 280 272 | 084 065 050
2 245 200 183 | 083 062 039
3 268 223 212 | 085 064 044
SyNG-B 4 288 244 237 | 087 066 049
5 201 250 244 | 089 068 051
6 313 274 269 | 092 071 0.55
2 372 371 371 | 210 210 -2.07
3 449 449 449 | 220 220 220
4 403 402 402 | 214 214 214
VGAE 5 326 325 325 | 207 207 207
6 487 487 -487 | 222 222 222
16 | 454 454 454 | 222 220 222
128 | 1142 1138 -1138 | 157 149 -1.41
GRAN 256 | 1082 1078 -1078 | 442 422 422
512 | 076 060 0.03 | 6494 6445 6445
EDGE " | 569 543 543 | 079 075 075
GraphMaker ~ 12075 2075 2075 | 327 321 327
ER T 12036 2036 2036 | 322 322 322
BTER ~ | 5271 521 527 | 088 088 -0.88
mKPGM T 2143 2143 2143 | 332 332 332

38

Table 26: 4-node graphlet frequency distance (GFD) results on the YouTube, DBLP, PolBlogs, and
Yelp datasets. We report both L1 and L2 distances as measures of similarity, and highlight the best
result for each method in bold. All entries are scaled by 1071,

Method | Config | GFDpr; | GFDps |
| | YouTube DBLP PolBlogs Yelp | YouTube DBLP PolBlogs Yelp

1424091 380+£096 0.76+0.39 0.38%0.09 | 0.70+0.48 197+£0.51 033+0.19 0.16+0.05
1.39£0.97 3.03+098 0.72+042 042+0.11 | 0.68£0.51 1.58+0.52 0.32+0.21 0.17£0.05
145+£098 335+086 086+046 0.30x0.11 | 0.71+0.50 1.75£045 038+023 0.13%0.05
1454097 317090 089+052 032+0.13 | 0.71+£0.50 1.67+£047 0.40+026 0.14+0.06
1.69+1.05 346094 097+051 031%£0.13 | 0.83+0.54 183£049 043+025 0.14%0.06

208+098 692+1.11 1.19£0.52 035+0.11 | 1.04+0.50 3.60£0.59 0.51+£0.26 0.14+0.05
255+1.03 951086 1.23+052 037+0.19 | 1.24+0.50 5.04£048 0.55+£025 0.17%0.10
1.71£0.86 6.17+0.74 147+038 034£0.13 | 0.82£043 3.19+039 0.61+0.18 0.13£0.05
3.02+£096 722+£086 141+0.55 023+£0.14 | 1.45+046 3.73+£045 056+026 0.11+0.07
268+1.14 786+0.73 137+£0.74 027+0.11 | 1.28+0.55 4.08+0.39 0.60+0.38 0.11+0.05

138+1.01 191091 081£039 039+0.11 | 0.67+£0.53 099+0.51 0.35+0.19 0.15+0.04
1.33£1.05 1.60+0.89 0.83+038 0.33+0.11 | 0.65+0.53 0.83+049 0.36+0.18 0.13+0.04

SyNG-D

SyNG-D(MLP)

FOUNBEVUN|[OUNRERWR[OUNEWVLR| AU RWN

SyNG-R 1.34+1.07 131+£0.80 0.86+0.38 023+0.12 | 0.65+0.53 0.67+044 0.36+0.18 0.09+0.05
1.36+1.07 113+0.72 0.87+039 0.18+0.11 | 0.65+0.52 0.58+0.39 0.37+0.18 0.08+0.05
1.37+1.08 1.14+081 0.88+037 0.18%0.11 | 0.66+0.53 0.58+0.44 0.37+0.18 0.08 0.05
6.53+0.04 13.69+0.01 2.95+0.09 3.66+0.01 | 2.97+0.01 7.39+0.01 1.45+0.04 1.530.00
6.50+0.04 254+0.13 321+0.08 3.85+0.01 | 296+0.01 1.14£0.09 1.54+0.04 1.61+0.00
VGAE 591£0.03 157+0.12 3.08+0.08 3.86+0.01 | 2.79+£0.01 0.68+0.06 1.50+0.04 1.61+0.00
6.61+0.03 1.57+£0.14 3.00+£0.08 3.80£0.01 | 3.00+£0.01 0.69+0.07 1.48+0.04 1.58+0.00
6.20+0.03 1.69+0.15 3.19+0.09 4.09+0.01 | 2.88+0.01 0.85+0.07 1.51+0.04 1.70+0.00
6.30+0.03 1.51+0.11 337+0.08 3.93+0.01 | 292+0.01 0.80£0.07 1.62+0.04 1.64+0.00
128 1.90+0.30 18.35+0.14 1.95+0.33 - 0.77+0.14 9.92+0.04 0.79 £0.19 -
GRAN 256 242+0.18 1726+0.15 3.88+0.76 - 1.07+£0.10 849+0.53 1.73+£0.37 -
512 1.67 £0.38 17.17 £0.08 3.04 +£0.30 - 0.67+£0.17 8.22+0.31 1.40+£0.16 -
EDGE | - |535+£049 527£228 1.14x0.29 - [212019 257+£135 045+0.11 -
GraphMaker | - | 7.97+0.00 17.45+0.01 7.88+0.01 5.17£0.00 | 3.48£0.00 8.32+0.00 3.23+0.00 2.14+0.00
ER [- |790£0.00 17.39£0.01 7.80+0.01 5.02+0.00 | 3.47+0.00 832+0.00 3.22+0.00 2.08 +0.00
BTER | - | 224£010 13.84£0.01 2.09+0.09 0.73+0.01 | 0.95+0.05 7.54£0.00 0.98+0.04 0.30%0.01
mKPGM | - | 757001 17.47+0.01 7.83+0.03 4.26+0.01 | 3.32£0.01 8.28+0.00 3.09+0.01 1.74+0.01

39

C.8 SUPPLEMENTARY FOR THE EFFICIENCY COMPARISON

In this section, we begin with a note on e-FLOPs and then present a comparison of training and
sampling time across methods, specifying the device environment used for each.

A note on e-FLOPs. The definition of e-FLOPs considers two types of operations: the float-point
operations on neural nets, and node visit operations on trees. These two operations are not directly
comparable, as node visits involve comparison and branching which are different operations than the
float-point operations on neural nets. In Section 4.3, we use e-FLOPs for a comparison which is less
dependent on the implemented device environments. As a supplementary, we study the wall-block
training and sampling time of each methods with their implemented device environments specified.

10°
—eo— SyNG-D
. EDGE
> 10 —¥— GRAN
) —a— VGAE
E0®
=
(®)]
E) ‘—/—'/'/'_'/'
€ 10
o
|_
10t
102 103

#nodes

Figure 5: Wall-clock training time of different methods for datasets of different sizes.

Evaluation metrics and configuration. We compare training and sampling efficiency between
SyNG-D and the baseline methods through the time they spend during training and sampling. SyNG-
D and VGAE are trained on CPUs, while GRAN and EDGE are trained on a single NVIDIA GeForce
RTX 4090 with memory of 24GB. For each dataset, we train each model using the default training
schedule, sample 128 networks from each model, and record the wall-clock training time and average
sampling time.

Results and discussion. Figure 5 presents the training time comparisons between our method and
the baselines. In particular, our model can be trained in tens of seconds even for graphs with up
to 5,000 nodes, whereas deep learning based methods typically require on the order of hundreds
to thousands of seconds. As network size increases, the training time for our method grows at a
moderate rate, while the training time for VGAE increases much faster. This indicates that the
computational cost of SyNG-D remains relatively stable as network size grows, demonstrating its
advantages on large-scale networks. The training time of EDGE and GRAN remains high across all
dataset sizes.

For sampling speed, on networks with fewer than 1,000 nodes, both SyNG-D and VGAE complete a
single draw in under 0.1 s on average, whereas EDGE and GRAN require a few seconds. SyNG-D
requires only a small number of diffusion steps to generate high-quality latent embeddings. For larger
networks with 5,000 nodes, SyNG-D samples a synthetic network in only a few seconds, significantly
faster than GRAN and EDGE, which require tens of seconds. The sampling time of SyNG-D is also
more stable as network size increases, compared with the other methods.

These results highlight the scalability of SyNG-D and its advantage for large graphs.

C.9 ANALYSIS OF COMPLEXITY

We provide an analysis of the time complexity of the training process. As suggested by Ma et al.
(2020), each iteration of the projected gradient descent involves only matrix multiplication between
the adjacency matrix and the current latent embedding estimate. Therefore, the per-iteration time
complexity of the projected gradient descent in estimating the latent node embeddings is O(n?r),
where n is the number of nodes and r is the latent dimension. Meanwhile, the cost of generating a

40

new group of latent embeddings is O(nr), where the omitted constant depends on the model and
implementation. Since the latent embedding is typically low-dimensional, the overall time complexity
of the training and inference of our approach is O(n?r).

In the context of a large-scale sparse network dataset, the proposed SyNGLER framework remains
scalable with a simple adaptation. Concretely, under the Gaussian link function p(a;; | m;;)
(210%) "2 exp{—(a;; — m;;)?/(20?)}, the embedding estimation problem Eq. (1) can be efficiently
solved with top-r singular value decomposition. According to Saad (2003), the time complexity of
eigen-decomposition for a sparse adjacency matrix A is O(|E(A)|r + nr), where E(A) denotes the
edge set associated with the adjacency matrix A. When the total number of edges is O(n¢) with
¢ < 2, the resulting time complexity grows more slowly than that of using a logistic link. In scenarios
involving very large-scale and sparse networks, this approach is highly computationally efficient. We
empirically study this approach on a network with one million nodes in Appendix D.

For other deep generative models, Zhu et al. (2022) suggests that the per-iteration time complexity to
train a deep generative model over a graph of size n is typically O(n?M), where M is the number
of parameters in the model. Note that deep generative models typically have a large number of
parameters M, which can be much larger than r. Therefore, we conclude that our method has a lower
time complexity than deep generative models, which is consistent with our empirical results.

D EVALUATION OF SYNGLER ON LARGE SCALE NETWORK DATASET

In this section, we evaluate the scalability and effectiveness of SyNGLER on a large-scale synthetic
network. To illustrate the capability of our framework under extreme graph sizes and sparsity levels,
we construct a massive benchmark using the Stochastic Block Model (SBM) and assess whether
SyNGLER is able to faithfully reproduce its structural patterns.

Large-Scale Network Simulation via SBM. We first generate a network with n = 10° nodes
from a three-block Stochastic Block Model. The network is designed to be extremely sparse, with an
average degree of approximately 5. This setup provides a controlled environment to examine whether
SyNGLER can recover community structure and degree behavior at scale.

Latent Space Estimation. We apply our latent space model to embed the one-million-node network
into a continuous low-dimensional space. To ensure computational feasibility at the one-million-node
scale, we apply a linear latent space model to obtain the embeddings.

Generative Resampling via SyNG-D (MLP). Using the estimated latent positions, we train our
SyNG-D (MLP) model to resample latent embeddings. The model learns the distribution of the latent
embeddings and enables resampling of synthetic latent vectors that preserve the structural structure
and cluster patterns present in the original data.

Direct visualization or adjacency-level comparison is infeasible for networks of this scale. Instead, we
validate the generative resampling by examining whether key structures are preserved. In particular,
Figure 6 shows that SyNG-D(MLP) successfully recovers the global community interaction patterns
and preserves important spectral characteristics of the graph.

Original Generated

Real Block Probabilities Generated Block Probabilities 0.015

0010
0010
o BIINEY 8.70e-07 1.17e-06 .., o BEEEMEL-1.68e-07 1.49e-06 M.,
0.005
125 125 0.005 £
~i-8.70e-07 PUELINIES 1.23e-06 || ' ~--1.68e-07 BIEEMIEY 1.11e-06 || 0.000

-0.005

0.000

-0 -0.005
«~-1.17e-06 1.23e-06 6.79e-06 . ~-1.49e-06 1.11e-06 1.68e-06

-0.010
6 i 2 o d i 2 o 0.000 0.002 0.004 0.006 0.008 0.010 70‘0100000 0.002 0.004 0.006 DOOS. 0.010
(a) Estimated 3 x 3 block interaction matrix from the (b) Scatter plot of the first two dimensions of the
generated network compared with the SBM ground eigenvectors of the original and generated networks.
truth.

Figure 6: Evaluation of SyNG-D(MLP) on the one-million-node SBM network.

41

E

DETAILS OF SYNGLER-ATTR AND ITS EVALUATION RESULTS

In this section, we provide additional details on the SYNGLER-Attr procedure and report its empirical
performance on several attributed network datasets. We first present the full algorithmic workflow of
SyNGLER-Attr, including latent factor estimation, attribute decomposition, and the joint mechanism
for network and node attributes generation. The complete procedure is summarized in Algorithm 3.
In practice, we use the sigmoid function as the link function when modeling binary networks, so that
Bernoulli(g(-)) reduces to a standard logistic formulation for edge probabilities.

Algorithm 3 Synthetic Network Generation via Latent Emedding Reconstruction for Attributed
Network

1:
2:

Input: Adjacency matrix A € {0, 1}™*", Attribute matrix Y € R"*?,

Fit the latent space likelihood model (A;;|z1i, 215, a4, ;) ~ Bernoulli (g(zﬂzlj + oy + aj))
to obtain the MLE (Z1, @).

Regress Y on Z; under Y = 1nZZT + 21 /A\IT + R, where R denotes the residual matrix.

Conduct an eigenvalue ratio test on residual R to determine ds, then fit R = ZQA;— +FE, E;. ~
N(0,) to obtain (22, Kg)

Form the full latent embedding 7 = (21, 22) and train a generative model Sampler =
GenModel({(Z;, @)},).

Generate new latent samples (Z;, &;) ~ Sampler, i = 1,...,n, where Z; = (2], ;)"

With sampled latent variables Z;, d;, generate network edges via A;; = Aj; ~ p(- |27, +
&; + dj), and generate attributes via Y = 1,07 + ZlA1r + ZQA;—.
Output:Generated network A and generated attributes Y.

Empirically, we evaluate the SYNGLER-Attr procedure on the Cora dataset, a widely used attributed
network benchmark.

Table 27: Generation performance of SyNG-Attr and GraphMaker on the Cora dataset.

Method | RMSE7,; | RMSEgius | MMDpgiy | MMDpee | | MLR

SyNG-Attryrp 36.07 5.38 0.68 +0.00 2.61+0.15 | 0.98 4 0.01
SYNG-Attrporest 0.54 2.09 0.88 £0.00 0.32+£0.05 | 0.99-+ 0.02
SyNG-Attrg 0.48 521 0.89 £ 0.01 0.50 +0.04 | 1.00 +0.00
GraphMaker | 0.58 7.72 1.03+0.01 2.36+0.01 | 1.00 + 0.00

In comparison with GraphMaker (Li et al., uple 28: KS and MMD distances between row sums

2023), we observe that SyNGLER-Attr pro-

of generated and original attributes for SyNG-Attr and

duces synthetic graphs with close struc- GraphMaker on the Cora dataset.
tural statistics while maintaining compa-

rable attribute-level accuracy. Table 27
reports the structural and ML-utility met-

Method dgs! dw,) MMD]

rics, showing that SYNGLER-Attr achieves SyNG-Attryrp 0.1398 2.8085 0.1676
competitive or superior performance on tri- SyNG-Attrporest 0.1225 1.9584 0.1681
angle density, clustering coefficient, and SyNG-Attrg 0.1457 2.3231 0.1701

spectral and centrality-based measures. For GraphMaker 0.1400 51615 0.1678

the ML-utility metric, we adopt a link pre-

diction task, with the full evaluation pro-

tocol detailed in Appendix F. To further evaluate attribute quality, we compute the Kolmogorov—
Smirnov (KS) distance and Maximum Mean Discrepancy (MMD) between the generated and original
attributes. As reported in Table 28, SyNGLER-Attr achieves smaller discrepancies than GraphMaker,
confirming its ability to preserve attribute distributions.

42

F EVALUATIONS FOR GENERATED GRAPHS ON DOWNSTREAM TASKS

To assess whether a generated graph can serve as a reliable surrogate for downstream machine learning
tasks, we employ a discriminative-model-based evaluation protocol adapted from Li et al. (2023). For
a given dataset, we train a GCN-based graph auto-encoder (GAE) on the training split of the original

graph, yielding a model with parameters WW. We then train the same architecture on a generated graph
G to obtain a second model with parameters WW. Both models are subsequently evaluated on the same

held-out test split of the original graph, resulting in two AUC scores ACC(G | G) and ACC(G | G),
corresponding to the model trained on the original graph and the one trained on the generated graph,
respectively. We use the ratio

ACC(G | G)
ACC(G | G)

as the utility metric. A ratio close to one indicates that the generated graph offers comparable
signal for training the GAE model, and therefore retains the structural information relevant for link
prediction. All hyperparameters are tuned consistently across both training procedures to ensure a
fair comparison. The results across all four datasets are summarized in Table 29.

Table 29: ML utility evaluation of SyNG-D, SyNG-R, EDGE, GRAN, and GraphMaker across four
datasets. Entries marked with “~” indicate OOM issues.

Method Config DBLP PolBlogs YouTube Yelp

1.00 £ 0.00 098 +0.01 0.94+£0.02 0.98+0.00
1.00£0.00 098 £0.01 0.98+0.01 0.99 -+ 0.00
1.00£0.00 099=+0.01 098+0.01 0.99+0.00
1.00 £0.00 099 £0.01 099+0.01 0.99+0.00
1.00£0.00 0.99£0.00 0.99+0.01 0.99 =+ 0.00

1.00£0.00 098 £0.01 0.90+0.02 0.98+£0.00
1.00£0.00 0.99£0.01 0.98+0.01 0.99+0.00
1.00 £0.00 096 +0.01 0.96+0.01 0.99=+0.00
1.00 £0.00 097 +0.01 0.99 +0.00 0.99 & 0.00
1.00 £0.00 098 £0.01 098+0.01 0.99+0.00

1.00£0.00 098£0.01 0.96+0.02 0.98+0.00
1.00 £0.00 098 £0.01 098 +0.01 0.99+0.00

SyNG-D

SyNG-D(MLP)

AROUNBEBLURN| AN ELN|[AUNREWLWN|[AU WRN

SyNG-R 1.00£0.00 098 £0.01 0.98+0.01 0.99 -+ 0.00
1.00 £0.00 098+0.01 0.99+£0.01 1.00=+£0.00
1.00£0.00 0.99£0.01 0.99+0.01 1.00-+0.00
1.00 £0.00 1.01£0.00 1.00£0.00 1.00=+0.00
1.00 £0.00 1.01 +£0.00 1.00=+0.00 1.00=+0.00

VGAE 1.00 £ 0.00 1.01+0.00 1.00+£0.00 1.00=+0.00
1.00 £0.00 1.01£0.00 1.00£0.00 1.00=+0.00
1.00 £0.00 1.01 +£0.00 0.99+0.00 1.00=+0.00
1.00£0.00 1.01 £0.00 0.99+0.00 1.00+£ 0.00

128 098 +0.08 0.92+0.08 1.00=+0.00 -

GRAN 256 0.75+£0.00 1.04£0.00 0.99 %+ 0.00 -

512 0.83+£0.06 1.04+£0.00 0.98+0.02 -

EDGE - 1.00 = 0.00 0.98 +0.01 1.00 £ 0.00 -

GraphMaker - 0.95+0.02 1.00£0.00 099 +0.00 0.83-+0.01

ER - 0.90 +£0.03 1.00£0.00 0.99 +0.00 0.80+ 0.01

BTER - 0.85+0.05 095+0.01 091+0.01 0.94-+0.01

mKPGM - 0.96 +£0.02 1.01 £0.00 0.92+0.01 0.89+0.02

43

We observe that both SyNG-D and SyNG-R consistently produce AUC ratios extremely close to
one, indicating that the generated graphs preserve the predictive signal necessary for training link
prediction models. In particular, SyNG-D achieves stable performance across all latent dimensions,
and SyNG-R demonstrates similarly strong results with small variance. Compared with existing
baselines such as EDGE, GRAN, and GraphMaker, SyNGLER exhibits both higher accuracy and
greater robustness across datasets, further validating its effectiveness as a general-purpose synthetic
graph generator for downstream ML tasks.

G VISUALIZATIONS

Visualization of generated networks. We visualize the YouTube dataset with different layout
algorithms to provide an intuitive comparison of graph generation quality across methods. In
the main text, Figure 2 shows the visualization produced by the spring_layout method in
networkx(Hagberg et al., 2008), which utilize the Fruchterman-Reingold force-directed algorithm
to highlight the structural patterns of network. Since different visualization algorithms may reveal
different aspects of a network’s geometry, we include additional visualizations in this section under
multiple layout schemes to offer a more comprehensive comparison of the generated graphs.

SyNG-D(ours) SyNG-D(MLP)(ours) SyNG-R(ours) GraphMaker

Training graph

VGAE EDGE GRAN ER

Figure 7: Visualization via the Spring layout.

B

* L

SyNG-D(ours) SyNG-D(MLP)(ours) SyNG-R(ours) GraphMaker

—

Training graph

:

VGAE EDGE GRAN ER

Figure 8: Visualization via the Spectral layout.

44

SyNG-D(ours) SyNG-D(MLP)(ours) SyNG-R(ours) GraphMaker

Training graph

VGAE EDGE GRAN ER

Figure 9: Visualization via the Kamada kawai layout.

45

	Introduction
	Synthetic Network Generation via Latent Embedding Reconstruction
	Latent Space Network Models and Network Embedding
	Latent Embedding Reconstruction
	SyNGLER-Attr: Synthetic Network Generation via Latent Embedding Reconstruction for Attributed Network

	Theoretical Analysis
	Experiments
	Structural property recovery
	ML utility evaluation
	Efficiency

	Conclusion
	Proofs in Section 3
	Proof of Section 3.1
	Proof of Section 3.2
	Proof of Section 3.3
	Proof of Section 3.1
	Proof of Section 3.4
	Supporting Lemmas and Proofs

	Connections between Classical Network Generative Models and the LSM
	Supplemental Materials for Experiments
	Deferred Algorithms
	Datasets Details
	Evaluation Details
	Implementation Details
	Evaluation Results on Non-sparse Simulated Network
	Evaluation Results on Sparse Simulated Network
	Evaluation Results on Real-world Datasets
	Supplementary for the Efficiency Comparison
	Analysis of Complexity

	Evaluation of SyNGLER on Large Scale Network Dataset
	Details of SyNGLER-Attr and its Evaluation Results
	Evaluations for Generated Graphs on Downstream Tasks
	Visualizations

