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Abstract

This paper presents a novel concept learning framework for
enhancing model interpretability and performance in visual
classification tasks. Our approach appends an unsupervised
explanation generator to the primary classifier network and
makes use of adversarial training. During training, the ex-
planation module is optimized to extract visual concepts
from the classifier’s latent representations, while the GAN-
based module aims to discriminate images generated from
concepts from true images. This joint training scheme en-
ables the model to implicitly align its internally learned con-
cepts with human-interpretable visual properties. Compre-
hensive experiments demonstrate the robustness of our ap-
proach, while producing coherent concept activations. We
analyse the learned concepts, showing their semantic concor-
dance with object parts and visual attributes. We also study
how perturbations in the adversarial training protocol impact
both classification and concept acquisition. In summary, this
work presents a significant step towards building inherently
interpretable deep vision models with task-aligned concept
representations - a key enabler for developing trustworthy AI
for real-world perception tasks.

1 Introduction
Deep neural networks (DNNs) have ushered in a revolution
across domains like Computer Vision (Simonyan and Zis-
serman 2015), Natural Language Processing (Brown et al.
2020), Healthcare (Rabbi et al. 2022), and Finance (Heaton,
Polson, and Witte 2016). They have made significant strides
in handling intricate tasks like image recognition, machine
translation, and anomaly detection. However, they come
with a challenge - they are essentially black-box systems.
The increasing complexity of these models has led to a lack
of transparency and interpretability (Lipton 2018; Yeh et al.
2020). This opacity has raised significant concerns within
the scientific community, particularly in critical areas like
healthcare and criminal justice. In healthcare, for instance,
patients would want to know why a disease-diagnosing
model provided them with a certain result. Additionally, be-
ing able to identify and verify false positives and negatives
is essential, as such oversight could have potentially serious
consequences.

Explainable models have become instrumental in estab-
lishing transparency, a key factor in building trust with users.
In recent years, there has been a surge of research in this

area, with most works coming under two broad categories:
post-hoc and ante-hoc methods.

Post-hoc explainability methods attempt to provide ex-
planations as a separate module on already trained models.
Saliency maps (Simonyan, Vedaldi, and Zisserman 2014)
are a prime example of this line of work, introducing a
method that visually highlights the points on an image that
activate neurons, depending on the class predicted by the
model. However, decoupling the explanation method from
the model being explained makes it a challenge to discern
whether the model’s prediction was incorrect or the expla-
nation provided was at fault.

Ante-hoc explainability methods, on the other hand, pro-
vide explanations implicitly during model training itself.
There have been several ante-hoc works in recent times that
make use of concepts (Koh et al. 2020; Doersch, Gupta, and
Efros 2015; Zhang, Isola, and Efros 2017). These methods
assume that each class can be broken down into a set of con-
cepts, i.e. that concepts can be used to signify the distinctive
features or characteristics that make up a particular class.
For example, in the case of MNIST (Deng 2012), concepts
could include straight lines, types of curves in the digits,
or even more specific patterns that may appear in a digit.
Self-explaining neural networks (SENN) (Alvarez-Melis
and Jaakkola 2018) exemplify such approaches, offering a
straightforward means to acquire interpretable concepts by
extending a linear predictor. When presented with an input
image, the prediction is generated based on a weighted com-
bination of these concepts. (Sarkar et al. 2021), introduce a
method to account for varying degrees of concept supervi-
sion in a SENN-like framework.

In this paper, we build upon and extend the findings of
(Sarkar et al. 2021), showing how introducing an adversar-
ial component into the framework can better guide repre-
sentation learning. We propose a modified loss, harness the
benefits of randomization and use labels as supplementary
information for conditioning the reconstruction process.

To summarize, our contributions are as follows:
• We introduce a novel, enhanced architecture that demon-

strates improved performance compared to the baselines.
The key aspect here lies in the integration of a Generative
Adversarial Network (GAN) (Goodfellow et al. 2014)
within the architecture.

• We conduct a series of experiments to analyze and com-



Figure 1: Overview of our Proposed Architecture. N is the number of classes, C is the number of concepts

pare the impact of different GAN variants, such as a
vanilla GAN (Goodfellow et al. 2014) and conditional
GAN (cGAN) (Mirza and Osindero 2014), on perfor-
mance and concept visualization.

• We study several methods for generating noise to under-
stand how noise sampled from a Gaussian distribution
influences concept generation in our framework.

• Our approach capitalizes on the adversarial nature of
GANs and noise generation method to produce higher-
quality images that facilitate more robust concept encod-
ing.

2 Related Work
Post-Hoc Methods: In addition to Saliency Maps (Si-
monyan, Vedaldi, and Zisserman 2014) and Grad-CAM
(Selvaraju et al. 2017), other influential post-hoc techniques
include LIME (Ribeiro, Singh, and Guestrin 2016) and
DeepLift (Shrikumar, Greenside, and Kundaje 2017). LIME
provides model-agnostic local explanations by approxi-
mating any classifier with an interpretable linear model.
DeepLift decomposes the predictions of a Deep Neural Net-
work by backpropagating contribution scores to the inputs.
Most of these methods are gradient-based, with the problem
of the root cause of errors being difficult to diagnose.

Concept-based Models: (Koh et al. 2020) propose con-
cept bottleneck models with a concept layer to improve
interpretability and enable test-time human intervention.
These models are trained on both task labels and user-
specified concepts via a two-step process where inputs pre-
dict concepts and concepts predict labels. This interpretable
structure allows for interventions, where experts can correct
wrong predictions by modifying concept values, enabling
model interaction. However, intervention effectiveness de-
pends on the training approach, highlighting the need to
study factors beyond just accuracy. While subsequent works
expanded these ideas (Chauhan et al. 2023; Zarlenga et al.
2022; Yuksekgonul, Wang, and Zou 2022), there has been

some criticism as to whether these models truly learn as in-
tended (Margeloiu et al. 2021).

Prototype-based Learning: (Li et al. 2018) introduce an
approach for interpreting deep neural networks by integrat-
ing an autoencoder with a prototype layer during training.
The model classifies inputs based on their proximity to en-
coded examples in the prototype layer, facilitating an in-
tuitive case-based reasoning mechanism. The jointly opti-
mized prototypes, guided by various loss terms, connect the
network’s decisions with explanations, visible through vi-
sualization of class-representative prototypes. This line of
work pioneers interpretable deep learning by embedding ex-
planations into model design and training, laying the foun-
dation for ongoing advancements in explainable deep neu-
ral networks. Extensions to prototype-based methods have
been proposed, like (Chen et al. 2019; Donnelly, Barnett,
and Chen 2022)

Other methods: Several prior studies have developed
methods focusing on both high accuracy and explainabil-
ity. Some methods take the approach of making use of auto-
encoders that could enable the reconstruction of images such
as (Zhang, Isola, and Efros 2017). There are some human-
in-the-loop works related to including human feedback and
developing concepts that align with a human’s intuition of
a concept, such as (Lage and Doshi-Velez 2020). Several
derivatives of prototype-based models have proven to be
quite capable of visualizing representations and explana-
tions (Biehl, Hammer, and Villmann 2016).

3 Methodology
3.1 Background
Self Explaining Neural Networks (Alvarez-Melis and
Jaakkola 2018): This was one of the first works to pro-
pose a robust ante-hoc framework along with metrics to
measure interpretability. Starting with a simple linear regres-
sion model, which is inherently interpretable - given that the
model’s parameters are linearly related, the paper succes-



sively generalizes it to more complicated models like neu-
ral networks. With neural networks, several considerations
come into play:

• The concepts representing an image should retain the in-
formation the image holds.

• The concepts visualized for classification should be dis-
tinct from one another.

• The learned and visualized concepts should be human-
understandable.

To address these points, they employ an auto-encoder to
encode the input image into relevant concepts, while using
a combination of reconstruction loss and classification loss
to optimize the model. One limitation we observe is that
the approach derives concepts solely based on the dataset
without utilizing additional information like labels or extra
images. Extensions to this work have attempted to enhance
concept explainability by disentangling and contrastively
learning them (Sawada and Nakamura 2022). Our work, on
the other hand, leverages generative models to guide better
concept learning.

Ante-Hoc Explainability via Concepts (Sarkar et al.
2021): In this work, an ante-hoc framework, allowing for
different levels of supervision, including fully supervised
and unsupervised concept learning, was proposed, building
upon (Alvarez-Melis and Jaakkola 2018). The framework
could be added to any existing backbone model and opti-
mized jointly. The paper primarily introduces the notion of
fidelity loss and a way to visualize the concepts learn by the
model. In our work, we assume the basic setup from this
paper and make specific modifications to enhance it.

3.2 Proposed Architecture
A typical deep learning classification pipeline has a base en-
coder function followed by a classifier function. Let X be
the input space and Y be the label space for our training set
D = {xi, yi}Ni=1, sampled iid from some source distribution
P : X ×Y , where X ∈ Rd, and Y is a one-hot encoded vec-
tor. The base encoder H(.), extracts representation vectors
that are then fed into the classifier Θ(.). One way of mak-
ing such a setup interpretable is to provide explanations via
concepts. In order to do this, a concept encoder Λ(.) is in-
troduced in the pipeline. Λ(.) takes in the representations ex-
tracted by H(.) and learns a set of concepts {λ1, λ2, . . . λC}
that are used to explain the classification by passing them
through T (.). The concepts are latents that represent the at-
tributes of a class. In our framework, we consider the latents
to be scalars representing the degree to which a concept is
present in a given image, i.e a concept score. The predic-
tions given by T and Θ should match, which is enforced
through a fidelity loss LF . Further, the concepts learnt are
passed through a decoder to reconstruct the input image and
as such are enforced to capture image semantics.

Building upon this setup, we have developed a novel ar-
chitecture incorporating a Generative Adversarial Network
(GAN) (Goodfellow et al. 2014) into the framework. GANs

consist of two core components: a generator and a dis-
criminator. The primary task of the generator is to fabri-
cate synthetic images or representations that closely mimic
a specific dataset or probability distribution. While the dis-
criminator, on the other hand, is responsible for discerning
whether an image is authentic or a generated clone. In the
above pipeline, we propose sending the concepts to a GAN
(G(.), D(.)), making use of the adversarial mechanism to
retrieve better concepts. G(.) takes in the concepts, supple-
mented by some noise. The noise introduces a degree of ran-
domness (discussed in Section 4.1), which along with the
concepts is used to generate an image using deconvolution
operations. LR is needed to enforce that the concepts cap-
ture semantics (similar to the role of the decoder in (Sarkar
et al. 2021), with noise as an additional input). D(.) takes in
an image and outputs whether its real or fake. So, the loss
now becomes:

L =Lc + LR + LF + LG (1)

where, Lc is the classification loss, LR is the reconstruc-
tion loss between the input image and the generated image,
LF is the fidelity loss and LG is the GAN loss.

The discriminator D(.) takes a real image xi and performs
a forward pass. The loss and the gradients are then calcu-
lated. D(.) also performs a forward pass on the generated
image x̂i, after which the loss and gradients are calculated.
The gradients calculated are passed through D(.) and G(.)
as they aren’t detached before being sent to the discrimi-
nator. This interconnection ensures that both the generator
and discriminator are jointly optimized, working together to
produce more convincing fake images while still accurately
detecting them. This finishes a single iteration of training the
network and the parameters of generator and discriminator
are updated for the next round of training.

The overall loss function that we would optimize is:

L =αLc (yi, ŷi) + βLR (xi, x̂i)

+ γLF
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In the Eq 2, Lc is cross entropy loss, LR is the L2 loss
between the input image and the generated image, LF is the
MSE between the outputs of Θ and T (Alvarez-Melis and
Jaakkola 2018; Sarkar et al. 2021; Lakkaraju, Arsov, and
Bastani 2020), and the remaining two terms are the GAN
loss LG. α, β, γ, δ are weights associated with the linear
combination of the losses - that have been empirically in-
troduced from an implementation perspective. Note that we
keep β very small to ensure that the generator still functions
as intended. n is the noise that has been sampled using meth-
ods in Section 4.1.

The rationale behind using GANs stems from the desire
to provide a substantially broader spectrum for the concepts



Model VGG Model DAN ICN PCN
Accuracy Aux. Accuracy Accuracy Aux. Accuracy Accuracy Aux. Accuracy

cGAN (B=32, S=10) 11 65.37 45.36 65.15 41.69 65.21 45.44
cGAN (B=32, S=10) 19 64.42 44.92 62.42 44.87 64.00 44.56

Vanilla GAN (B=32, S=10) 11 65.49 45.05 65.13 46.16 65.47 45.80
Vanilla GAN (B=32, S=10) 19 60.71 44.52 58.09 43.78 60.02 46.19

Table 1: Accuracy (in %) and Auxiliary Accuracy (in %) for comparing our models on CIFAR100. cGAN = Conditional GAN, B = Batch
Size, S = size of noise. Aux. Accuracy = Auxiliary Accuracy.

to be learnt from. In a GAN, the input to the generator is typ-
ically sampled from a normal distribution. However, in our
methodology, we adopt an approach that combines inputs
from both a normal distribution and concepts. This choice
effectively enlarges the feature space available to the gen-
erator. This, we posit, ultimately leads to an enhancement
in the encoder’s proficiency in generating more informative
encodings.

4 Experiments and Results
We carry out a set of experiments to compare and demon-
strate the performance of our framework. We show sev-
eral variations of models. The baseline for our work is the
ante-hoc explainability method proposed by (Sarkar et al.
2021), which builds upon and outperforms SENN (Alvarez-
Melis and Jaakkola 2018) on the CIFAR-10 and CIFAR-100
datasets. We reimplement their method using their code and
hyperparameters, while taking care to control factors like
network architecture, training procedure, and hardware to
ensure differences are solely due to the methodology. How-
ever, we also include results from SENN for comparative
analysis. For SENN, we pick the results reported in (Sarkar
et al. 2021). Our evaluation criteria includes Θ classification
accuracy (top 1% accuracy) and T classification accuracy,
which we refer to as accuracy and auxiliary accuracy, re-
spectively. Given the necessity of maintaining faithful and
explainable concepts, while providing accurate image clas-
sification, we give a higher priority to prediction accuracy,
followed next by auxiliary accuracy. We briefly describe our
evaluation criteria below:

Accuracy (top 1% accuracy): This metric corresponds to
the classification accuracy of Θ on the input images with
respect to the ground truth labels.

Auxiliary Accuracy (Alvarez-Melis and Jaakkola
2018): This metric corresponds to the classification accuracy
based on the output from T and its proficiency in predicting
the class labels.

4.1 Datasets and Comparison Methods
Datasets: For our experiments, we choose the CIFAR-10
and CIFAR-100 (Krizhevsky 2009) benchmarks to facilitate
comparisons with prior work. CIFAR-10 consists of 60,000
32x32 coloured images from 10 classes, with 6,000 images
per class. The dataset split of 50,000/10,000 train/test im-
ages providing sufficient data for training deep networks
while maintaining a separate test set for unbiased evalua-
tion. CIFAR-100 is slightly more challenging, containing
the same number of images but partitioning them into 100

classes, each with 600 images. This increased class vari-
ability and lower samples per class simulate real-world fine-
grained classification challenges more closely. Compared to
CIFAR-10, CIFAR-100 tests a model’s ability to discrimi-
nate between subtle inter-class differences.

We chose CIFAR-10 and CIFAR-100 as their moderate
sizes allowed us to conduct extensive experiments in rea-
sonable time to thoroughly test different architectures and
design decisions, as compared to huge datasets such as Ima-
geNet (Deng et al. 2009). Both the datasets contain complex
and diverse real life objects in various backgrounds.

Noise Methods: This study introduces a framework with
an emphasis on the integration of noise into the network,
typically drawn from a Normal distribution N (0, 1). The
impact of various noise sampling techniques on GAN train-
ing has been thoroughly studied. Given the batch size B of
images as 32, concepts of size 10, and a designated noise
size S of 5, the shape of the concepts and the noise would
be 32x10x1 (B × C × 1) and 32x5x1 (B × S × 1), re-
spectively. Once the noise is added, the final shape of the
concepts would be 32x15x1 (B × (C + S)× 1). Different
noise generation strategies are explored. The noise sampled
helped us in determining the effects of different noise per-
turbations on our model.

Method 1: Direct Align Noise (DAN): The noise is
directly aligned with batch size and noise length. Conse-
quently, the sampled noise follows the shape (B × S × 1)
where the entire (B×S×1) matrix is sampled from N (0, 1)
and together represents a Gaussian.

Method 2: Iterative Concat Noise (ICN): The noise is
sampled multiple times to achieve the desired dimension.
Initially, noise is sampled as B×1×1 and then concatenated
S times. Each row of size B × 1 × 1 is sampled from a
Gaussian.

Method 3: Progressive Concat Noise (PCN): The noise
is sampled multiple times, but it begins with an even smaller
dimension. Noise is initially sampled as 1× S × 1 and then
concatenated B times. Each column of size 1 × S × 1 is
sampled from a Gaussian.

We show that introducing noise improves model adapt-
ability, enhancing image quality and overall model effi-
ciency. One point to note is that the ICN and PCN vec-
tors, when concatenated may not represent a Gaussian. Our
framework can be extended to incorporate other noise meth-
ods as well.



Model VGG Model DAN ICN PCN
Accuracy Aux. Accuracy Accuracy Aux. Accuracy Accuracy Aux. Accuracy

Vanilla GAN (B=32, S=10) 8 91.53 90.00 91.57 89.63 91.41 89.57
Vanilla GAN (B=32, S=10) 11 91.38 89.63 90.80 89.37 91.66 90.94

cGAN (B=32, S=10) 8 91.55 90.15 91.44 90.13 91.60 89.94
cGAN (B=32, S=10) 11 91.58 89.90 91.34 89.96 91.28 89.82
cGAN (B=32, S=5) 11 91.36 89.74 91.44 89.77 91.47 89.68

cGAN (B=32, S=10) 19 91.52 90.09 91.76 90.08 91.45 89.99
cGAN (B=32, S=5) 19 91.82 90.23 91.15 89.62 91.44 89.60

Table 2: Accuracy (in %) and Auxiliary Accuracy (in %) for comparing our models on CIFAR10. cGAN = Conditional GAN, B = Batch Size,
S = size of noise. Aux. Accuracy = Auxiliary Accuracy.

4.2 Comparative Analysis
Our objective in the experiments was to first identify opti-
mal models within each GAN category using various VGG
network variations, and subsequently conduct a compara-
tive study with the baselines. To assess the robustness of the
models, we employ a training process repeated five times
with distinct random seeds. The resulting accuracies are av-
eraged to yield a final assessment. We chose a batch size of
32 for processing the images, following (Sarkar et al. 2021),
to keep the results consistent and comparable. Additionally,
the noise length is set to 10, mirroring the size of concepts
in the CIFAR-10 dataset, in order to ensure that the noise
component makes a substantial contribution to the learned
concepts.

Label conditioning impact: Vanilla GAN (Goodfellow
et al. 2014) and cGAN (Mirza and Osindero 2014) are cho-
sen to investigate the impact of label conditioning on our
framework. Vanilla GAN generates images from random
noise without specific constraints, lacking precise control
over image generation. While cGAN leverages labels as an
additional input parameter to control the generation of the
image. For example, if the network is trained on pictures
of different animals, one cannot specify which animal the
generator should create. Some slight modifications are made
to the network to ensure its compatibility with both Vanilla
GAN and cGAN, ensuring that our framework is adaptable
to both types of GANs.

Model VGG Model Method Acc. Aux. Acc.

SENN NA NA 36.57 NA
Baselines NA NA 64.46 44.65

cGAN (B=32, S=10) 11 DAN 65.37 45.36
cGAN (B=32, S=10) 19 DAN 64.42 44.92

Vanilla GAN (B=32, S=10) 11 DAN 65.49 45.05
Vanilla GAN (B=32, S=10) 19 DAN 60.71 44.52

Table 3: Accuracy (in %) and Auxiliary Accuracy (in %) for com-
parison with the baseline and SENN on CIFAR100. cGAN = Con-
ditional GAN, B = Batch Size, S = size of noise. Our method clas-
sifies better.

Vanilla GAN: As shown in Table 2, in the case of CI-
FAR10, for VGG 8, we can observe that ICN gives the best
accuracy of 91.57% as compared to other methods. While
in the case of VGG 11, PCN gives better results, with an
accuracy of 91.66%. As shown in Table 1, in the case of

Model VGG Model Method Acc. Aux. Acc.

Baseline NA NA 91.68 90.86
SENN NA NA 84.50 84.50

Vanilla GAN (B=32, S=10) 8 ICN 91.57 89.63
Vanilla GAN (B=32, S=10) 11 ICN 91.66 90.04

cGAN(B=32, S=10) 8 PCN 91.60 89.94
cGAN(B=32, S=10) 11 DAN 91.58 89.90
cGAN(B=32, S=5) 19 DAN 91.82 90.23

Table 4: Accuracy (in %) and Auxiliary Accuracy (in %) for com-
parison with the baseline and SENN on CIFAR10. cGAN = Con-
ditional GAN, B = Batch Size, S = size of noise. Our method clas-
sifies better.

CIFAR100, for VGG 11 we can observe that DAN has the
best accuracy of 65.49%. DAN also gives the best accuracy
of 60.71% for VGG 19.

cGAN: Here, in addition to a noise size of 10, we also
experiment with a noise size of 5 to examine its effect on
the framework. As shown in Table 2, for CIFAR10, in the
case of VGG 8, PCN gives the best accuracy of 91.60%.
While in the case of VGG 11, for a noise size of 10, we get
better results using DAN - with an accuracy of 91.58%.;
whereas for a noise size of 5, we get better results using
PCN - an accuracy of 91.47%. Finally, in the case of VGG
19, DAN gives the best results with a noise size of 5. As
shown in Table 1, for CIFAR100, we consistently observe
that DAN gives the best results. In the case of VGG 11 with
DAN we get the best accuracy of 65.37%. With VGG 19
with DAN we get the best accuracy of 64.42%.

Table 4 and Table 3 show our frameworks results on CI-
FAR10 and CIFAR100 for experiments on multiple archi-
tectures and parameters. We can see that our framework per-
forms better than the baselines. We can observe from the
table, that the best performing model in terms of accuracy is
cGAN with VGG 19 as the discriminator, and noise size 5
with an accuracy of 91.82%. For CIFAR100, it can be ob-
served that the best performing model in terms of accuracy
is Vanilla GAN with VGG 11 as the discriminator for DAN
method with an accuracy of 65.49%, however the best aux-
iliary accuracy is given by a cGAN with VGG 11 and DAN
method of 45.36%.

Concept Visualization: We visualize the top 5 images
where a particular concept λi had the highest score as com-
pared to the other concepts. So the images visualize the cap-



tured concepts, or activate a particular concept. We also
show that concepts are captured across classes. Using this
method, we show the concepts captured by our model using
CIFAR10 in Fig. 2 and using CIFAR100 in Fig. 3.

Figure 2: Top 5 images for CIFAR10 that activate the learnt con-
cepts using cGAN (VGG 11) DAN (B=32, S=10). Eg: Cpt 2 cap-
tures antlers, Cpt 1 captures the color white - here we see that acti-
vated images are from different classes (ship, car).

Figure 3: Top 5 images for CIFAR100 that activate the learnt con-
cepts (10 concepts from a subset of 100) using cGAN (VGG 19)
DAN (B=32, S=10). Eg: Cpt 5 corresponds to color pink, Cpt 13
corresponds to object in ocean.

4.3 Implementation Details
The generator architecture comprises of multiple deconvo-
lution layers, generating images using learned concepts and
noise, and incorporating labels in the case of cGAN. The dis-
criminator architecture has a VGG network backbone with a
few additional layers to re-purpose it into a binary classifier.
We have tested with different VGG (Simonyan and Zisser-
man 2015) architectures such as VGG 8, VGG 11 and VGG
19.

4.4 Observations
The preceding sections discussed how various VGG models
can influence the performance of our framework. Our ob-
servations underline that GAN-based conditioning, cGAN,
introduces notable improvements. A general trend observed
indicates that VGG model depth correlates with improved
performance, particularly in terms of accuracy. We also see
that a correlation between dataset scale and auxiliary accu-
racy, from the fact that our method consistently gives better
auxiliary accuracy compared to the baselines on CIFAR100.

Another significant observation is that the increasing
complexity of the model due to the GAN integration and
noise sampling methodologies (as detailed in Section 4.1);
increase training time by 1.4 times that of (Sarkar et al.

2021). Despite this, the training efficiency remains consider-
ably superior to that of SENN (Alvarez-Melis and Jaakkola
2018).

5 Conclusion and Future Work
In conclusion, this work presents a method for incorporat-
ing a Generative Adversarial Network (GAN) into an ante-
hoc explainability framework. The design replaces a con-
ventional decoder network with a GAN and fine-tunes the
framework. The exploration of noise sampling methods,
specifically the implementation of DAN, demonstrate supe-
rior performance, proving the effectiveness of a GAN in aid-
ing the process of encoding concepts. We have observed re-
sults that signify an improved overall accuracy and auxiliary
accuracy, highlighting the potential of our architecture for
robust image classification and effective concept learning.

Although, we have made some improvements on enhanc-
ing the explainability of deep neural networks without los-
ing out on classification performance, the work presented is
a small step towards a much more robust and human inter-
pretable model. In the future, we plan on exploring the pos-
sibilities of more advanced and complex architectures that
could involve using much deeper classification models such
as ResNet, EfficientNet, Mask RCNN, etc. We also plan on
making use of the capabilities of some state-of-the-art ar-
chitectures such as Vision Transformers in conjunction with
our framework.
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