
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OptimAI: Optimization from Natural Lan-
guage Using LLM-Powered AI Agents

Anonymous authors
Paper under double-blind review

Abstract

Optimization plays a vital role in scientific research and practical applica-
tions. However, formulating a concrete optimization problem described in
natural language into a mathematical form and selecting a suitable solver
to solve the problem requires substantial domain expertise. We introduce
OptimAI, a framework for solving Optimization problems described in
natural language by leveraging LLM-powered AI agents, and achieve supe-
rior performance over current state-of-the-art methods. Our framework is
built upon the following key roles: (1) a formulator that translates natural
language problem descriptions into mathematical formulations; (2) a plan-
ner that constructs a high-level solution strategy prior to execution; and (3)
a coder and a code critic capable of interacting with the environment and
reflecting to refine future actions. Ablation studies confirm that all roles
are essential; removing the planner or code critic results in 5.8× and 3.1×
drops in productivity, respectively. Furthermore, we introduce UCB-based
debug scheduling to dynamically switch between alternative plans, yielding
an additional 3.3× productivity gain. Our design emphasizes multi-agent
collaboration, and our experiments confirm that combining diverse models
leads to performance gains. Our approach attains 88.1% accuracy on the
NLP4LP dataset and 82.3% on the Optibench dataset, reducing error rates
by 58% and 52%, respectively, over prior best results.

1 Introduction

Optimization plays a foundational role across a broad spectrum of scientific and engineering
disciplines, serving as a core framework for decision-making, resource allocation, system
design, and beyond Gill et al. (2019). In recent years, its importance has grown even
more pronounced with the rise of data-driven methodologies. Modern machine learning, in
particular, is fundamentally built on solving large-scale optimization problems. Training a
model typically involves minimizing a loss function, often over high-dimensional, nonconvex
landscapes, and tasks such as hyperparameter tuning, model selection, and policy learning
in reinforcement learning are likewise formalized as optimization problems Boyd (2004);
Bottou et al. (2018).
Despite its foundational role, optimization remains largely inaccessible to non-experts be-
cause real-world objectives are rarely expressed mathematically. Translating goals like min-
imizing delivery time or balancing risk into formal models demands substantial expertise
in both problem formulation and solver selection, which significantly impacts efficiency and
feasibility. Recent progress in natural language processing and symbolic reasoning opens
the door to automated systems that bridge this gap. By interpreting intuitive problem de-
scriptions and constructing valid optimization formulations, such systems can significantly
lower the entry barrier and expand access to powerful optimization technologies.
Large Language Models (LLMs) have emerged as powerful tools for interacting with complex
tasks through natural language, offering a user-friendly interface and significant computa-
tional capabilities. This work aims to reduce the barrier of translating real-world problems
into formal mathematical models, support users in solving these problems, and investigate
the extent to which LLMs can reason about optimization. Recent studies have demonstrated

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

that LLMs exhibit a nontrivial degree of math, coding, and logical Guan et al. (2025); Li
et al. (2025a); Zhang et al. (2024b); Achiam et al. (2023) reasoning abilities. Our study con-
tributes to this growing body of research by evaluating the reasoning capabilities of LLMs
in the context of optimization tasks.
We introduce OptimAI, a framework for solving optimization problems described in natural
language by leveraging LLM-powered AI agents. OptimAI comprises four stages (Figure 1),
each handled by a specialized agent. OptimAI offers several key advantages. First, it
adopts a plan-before-code strategy, generating multiple solution plans before code gen-
eration. Second, we introduce UCB-based debug scheduling to dynamically switch
between alternative plans during debugging, enabling adaptive plan selection based on ob-
served feedback. Practically, distinct mathematical formulations and solver backends can
yield large gaps in solution quality and compute cost; exploring alternative models often
shrinks problem size substantially, which benefits non-experts who lack domain heuristics.
Third, it naturally supports multi-agent collaboration, allowing different roles to be
handled by distinct LLMs best suited for each task. In our experiments, we observed that
combining different LLMs can yield synergistic effects. These design choices contribute
to OptimAI’s superior performance over prior methods. Table 1 compares the functional
capabilities of OptimAI and previous methods.
Comprehensive experiments show that our approach consistently outperforms state-of-the-
art methods on several benchmarks. Specifically, compared to the previous best approach,
we reduce the error rate on NLP4LP by 58%, and on the four Optibench subsets (Linear
w/o Table, Linear w/ Table, Nonlinear w/o Table, and Nonlinear w/ Table) by 48%, 47%,
68%, and 41%, respectively. Ablation studies confirm that all roles are essential; removing
the planner or code critic results in 5.8× and 3.1× drops in productivity, respectively.
Furthermore, UCB-based debug scheduling yields an additional 3.3× productivity gain.
Moreover, OptimAI is broadly applicable. Beyond standard mathematical programming, it
also handles NP-hard combinatorial optimization problems, demonstrating strong generality.

Table 1: Comparison of Functional Capabilities between OptimAI and Prior Methods.
Functional Capabilities OptiMUS Optibench CoE OptimAI
Natural language input ✗ ✓ ✓ ✓
Planning before coding ✗ ✗ ✓ ✓
Multi-solver support ✗ ✗ ✗ ✓
Switching between plans ✗ ✗ ✗ ✓
Code generation ✓ ✓ ✓ ✓
Distinct LLM collaboration ✗ ✗ ✗ ✓

2 Related Work

The application of LLMs to complex computational tasks has received growing attention
in recent years. Our work lies at the intersection of three emerging research directions:
leveraging LLMs for solving optimization problems, enhancing their reasoning capabilities,
and enabling multi-agent collaboration for coordinated problem solving. In this section, we
review recent advances in each of these areas, which collectively motivate our integration of
these components into a unified framework for solving optimization tasks.

Table 2: Previous work on using LLMs for optimization.
Work Dataset Proposed Size Problem Type(s)
NL4Opt Competition Ramamonjison et al. (2023) NL4Opt 289 LP
Chain-of-Experts (CoE) Xiao et al. (2023) ComplexOR 37 LP, MILP
OptiMUS AhmadiTeshnizi et al. (2023; 2024; 2025) NLP4LP 67 LP, MILP
Optibench Yang et al. (2024) Optibench 605 LP, NLP, MILP, MINLP
OR-LLM-AgentZhang & Luo (2025) OR-LLM-Agent 83 LP, MILP

Abbreviations: LP - Linear Programming, NLP - Nonlinear Programming, MI - Mixed-Integer.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.1 LLM for Optimization

Recent work has explored the use of LLMs to model, interpret, and solve optimization prob-
lems directly from natural language descriptions, enabling new interfaces between human
intent and mathematical problem solving. Approaches range from prompting LLMs with
structured problem templates to integrating them with external solvers for tasks such as
(mixed-integer) linear and nonlinear programming problems. Table 2 summarizes exist-
ing works, including the datasets they propose, the size of each dataset, and the types of
optimization problems they support.
NL4Opt Ramamonjison et al. (2023) introduced the natural language for optimization com-
petition, which comprised two sub-tasks: (1) recognition of optimization problem entities
and (2) generation of math formulations. Notably, GPT-3.5 outperformed the competition
winner in both tasks. However, ChatGPT exhibited common errors such as incorrect con-
straint coefficients, redundant constraints, and omitted variables. These findings highlight
both the potential and limitations of LLMs in optimization.
OptiMUS AhmadiTeshnizi et al. (2023; 2024; 2025) is a series of studies that LLMs to
solve Linear Programming (LP) and Mixed Integer Linear Programming (MILP) problems
directly from natural language descriptions. As part of this effort, the authors introduced
the NLP4LP dataset, which comprises a diverse collection of LP and MILP problems curated
from academic textbooks and lecture materials.
Optibench Yang et al. (2024) is a benchmark for assessing LLMs on LP and MILP model-
ing, covering diverse problem instances from logistics, scheduling, and resource allocation.
It introduces ReSocratic, a data synthesis method that generates high-quality synthetic
problems to augment training. Training with such data improves LLMs’ ability to inter-
pret natural language, build mathematical models, and produce optimal solutions, making
Optibench a state-of-the-art resource for NLP–optimization research.
Beyond this, Bertsimas & Margaritis (2024) applies LLMs to robust and adaptive robust
optimization, while the Chain-of-Experts framework Xiao et al. (2023) uses multiple contexts
of a single LLM to solve OR tasks via the ComplexOR dataset. Unlike this single-model
setup, OR-LLM-Agent Zhang & Luo (2025) offers an end-to-end agentic approach, along
with a dataset of 83 real-world OR problems, advancing practical LLM-based optimization.

2.2 Reasoning in LLM

Recent advancements in AI reasoning are shifting from System 1 (fast, intuitive thinking)
to System 2 (slow, deliberate thinking), as comprehensively reviewed by Li et al. (2025b).
A prevalent approach in this context involves leveraging reward models and Monte Carlo
Tree Search (MCTS) to backtrack the solution process, using the problem and its answer
to guide the exploration, which is then integrated into reinforcement learning (RL). The
most closely related works to this paper are those that apply LLMs to solve mathematical
problems Shao et al. (2024); Guan et al. (2025); Li et al. (2025a) and coding problems Zhang
et al. (2024b); Yu et al. (2024b).

2.3 Multi-Agent Collaboration

A substantial body of research has focused on multi-agent collaboration using LLMs. Com-
prehensive reviews of this area can be found in Sun et al. (2024); Chen et al. (2025). In
these studies, multiple LLMs are often integrated to tackle a diverse range of tasks, includ-
ing reasoning Liu et al. (2024), planning Kannan et al. (2024), coding Hong et al. (2024),
financial marketing Gao et al. (2024); Li et al. (2024), education Yu et al. (2024a); Zhang
et al. (2024c), and scientific research Baek et al. (2025); Ghafarollahi & Buehler (2024).
In many of these works, LLMs are assigned distinct roles to handle different facets of a
problem. However, some approaches adopt a framework in which agents perform nearly
identical tasks, with the final results being aggregated in the end Cheng et al. (2023). This
approach, while effective, should be viewed more as an ensemble method rather than true
multi-agent collaboration.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Beyond static role assignment, several studies aim to evolve more dynamic roles and in-
teractions among agents, emphasizing the potential for agents to adapt and specialize over
time Hu et al. (2024); Zhuge et al. (2024); Qian et al. (2025). Notably, Qian et al. (2025)
proposed a scaling law for LLM-based multi-agent systems, suggesting that such systems
may exhibit predictable behavior as they grow in size and complexity. Furthermore, more
advanced works explore the use of data generated by multi-agent systems for reinforcement
learning, which holds promise for enhancing the capabilities of LLMs in cooperative tasks
Park et al. (2025); Nagpal et al. (2025); Zhang et al. (2024a). This direction represents an
exciting avenue for future research and development in LLM-based multi-agent systems.

3 Methodology

In this section, we present a detailed description of our proposed approach. We begin by
outlining the overall pipeline and then highlight two key components: a multi-agent collab-
oration framework and a multi-armed bandit strategy tailored for the debugging phases. A
formal specification of the workflow is provided in Appendix A.

3.1 Pipeline

Our agent transforms a natural-language description of an optimization problem into both
an executable solver and its corresponding solution. The end-to-end pipeline (illustrated in
Figure 1) consists of four sequential stages (S1–S4). The full set of prompts used in our
pipeline is presented in Appendix B.
S1 Optimization modeling. This stage translates the natural-language problem state-
ment into a well-defined mathematical optimization problem. The formulation includes
identifying the decision variables, specifying the objective function, defining any constraints
that must be satisfied, characterizing the problem domain (e.g., continuous, discrete, or
mixed), and determining the expected format of the output solution.
S2 Planning. In this stage, the agent analyzes the mathematical formulation and pro-
poses multiple candidate strategies. The planner not only selects solvers but also suggests
algorithmic strategies and coding insights, with the potential to leverage literature retrieval.
In this work, the supported solvers include PuLP, Pyomo, Gekko, OR-Tools, SCIP, MOSEK,
IPOPT, and Gurobi, covering a broad spectrum of linear, nonlinear, and mixed-integer op-
timization techniques.
S3 Solver code generation. Given the optimization problem, its mathematical formula-
tion, and a selected solution strategy, this stage generates the corresponding Python solver
code. The generated code is required to include data validation and error handling to ensure
robustness, solution validation to verify correctness, and informative comments to enhance
readability and maintainability.
S4 Reflective debugging. The generated code is executed in a runtime environment,
where initial execution may often fail due to errors or unexpected behavior. At this stage,
the LLM analyzes the code and the resulting error messages, engages in a process of self-
reflection to diagnose the underlying issues, and formulates feedback for refining the current
strategy. Guided by this reflection, the LLM then iteratively debugs and modifies the code
to resolve the identified problems and improve overall reliability.

3.2 Multi-Agent Extension

Recent studies have demonstrated that incorporating a multi-agent setting within LLM
frameworks can significantly enhance overall performance Hu et al. (2024); Zhuge et al.
(2024); Qian et al. (2025). Building on this line of research, we propose to integrate a
multi-agent architecture into our system design to enable more effective coordination, spe-
cialization, and problem-solving capabilities.
To fully leverage the advantages of a multi-agent system, our pipeline allows different stages
to be assigned to different LLMs. Corresponding to the four stages (S1-S4) in our pipeline,
we instantiate four roles: formulator, planner, coder, and code critic. In addition, we

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 1: Overview of the OptimAI Pipeline.

introduce two supplementary roles: decider and verifier. The decider scores plans based
on the problem, the proposed plan, and the current code. It helps the system recover from
ineffective strategies, as repeated failures prompt the decider to switch to alternative plans.
In practice, the probability of selecting the ultimately successful plan on the first attempt
is about 39.7%. The verifier ensures that the final outputs satisfy all specified constraints.
Our framework provides flexible configuration options, allowing the entire pipeline to operate
with either a single LLM or multiple LLMs assigned to distinct roles. This design not only
facilitates the evaluation of individual model performance but also enables us to explore the
potential synergistic effects of combining different models for enhanced outcomes.
Remark 1 Evidently, reinforcement learning (RL) frameworks leveraging multi-agent ar-
chitectures tend to exhibit greater robustness and adaptability, particularly in complex or un-
certain environments Park et al. (2025). Incorporating such multi-agent RL techniques into
our framework could enhance its overall effectiveness, especially in dynamic or error-prone
stages such as strategy selection and code debugging. Exploring this integration remains a
promising research direction for future research.

3.3 Debug Scheduling as a Multi-Armed Bandit

During the planning phase, the system generates multiple candidate plans to solve the
problem. OptimAI then selects the most promising one to initiate implementation, based
on evaluations from a separate language model. However, as coding progresses, the initially
selected plan may prove ineffective after several rounds of debugging. When this occurs,
OptimAI adapts by switching to an alternative plan, mirroring the way humans revise their
strategies during problem-solving.
We formulate the problem of selecting which plan to debug next as a multi-armed bandit
problem Slivkins et al. (2019). In this abstraction, each plan is treated as an arm. For each
plan and its corresponding code, the decider provides a score r̃i reflecting how promising
it appears and the likelihood of successful debugging. The next arm (plan) is then chosen
using the Upper Confidence Bound (UCB) algorithm, where the UCB is defined as

UCBi := r̃i + c

√
ln(

∑
j

nj)/ni, i ∈ [n],

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 UCB-based Debug Scheduling
Require: Problem description
Ensure: A working code solution
1: Generate plans {Plan1, . . . , Plann} using planner
2: Generate code Codei for each plan using the coder
3: Initialize ni ← 1 for all i
4: while no code has succeeded do
5: Get score r̃i from decider for each

(Plani, Codei)
6: UCBi ← r̃i + c

√
ln(

∑
j nj)/ni

7: Select i∗ ← arg maxi(UCBi)
8: Debug code Codei∗

9: Update ni∗ ← ni∗ + 1
10: end while
11: return working code Figure 2: Demonstration of the

UCB-based Debug Scheduling.

where c is the exploration coefficient Kocsis & Szepesvári (2006); Auer & Ortner (2010), and
ni is the number of times plan i has been debugged. In the worst case, if the decider assigns
the same score to every plan (i.e., lacks discernment), the UCB algorithm naturally reduces
to uniform sampling, thereby debugging all plans equally. The full procedure is detailed in
Algorithm 1, and Figure 2 illustrates the operation described above.

4 Experiments

4.1 Experimental Setting

Datasets We aim to demonstrate the effectiveness and versatility of our approach by
evaluating it on multiple heterogeneous and challenging datasets, as outlined in the following.

NLP4LP. The NLP4LP dataset AhmadiTeshnizi et al. (2024) is a curated collection
of 65 LPs aimed at bridging natural language processing and optimization. It includes
problem descriptions, parameter data files, and optimal solutions, covering diverse areas
like facility location, network flow, scheduling, and portfolio management.
Optibench. The Optibench Yang et al. (2024) contains a diverse set of 605 optimization
problems, including linear and nonlinear programming with or without tabular data. This
is the first large-scale benchmark to include nonlinear and tabular optimization problems,
going beyond the linear programming focus of previous benchmarks.
TSPLIB. The TSPLIB Reinhelt (2014) is a publicly available library of benchmark in-
stances for the Traveling Salesman Problem (TSP), which is known as a standard dataset
for evaluating the performance of TSP algorithms.
SelfJSP. The SelfJSP dataset Corsini et al. (2024) is a large-scale benchmark designed
for studying neural approaches to solving Job Shop Scheduling Problems (JSP) using
supervised learning.
We also consider some Set Covering Problems from IBM ILOG CPLEX Optimization
Studio documentation IBM Corporation (2025).

Baselines To evaluate the effectiveness of our approach, we compare it against two repre-
sentative state-of-the-art baselines: OptiMUS AhmadiTeshnizi et al. (2024) and Optibench
Yang et al. (2024). We reproduced their code and ran it on GPT-4o to measure the evalu-
ation metrics.

Evaluation Metrics We evaluate OptimAI on multiple datasets under the zero-shot
prompting setting by measuring the proportion of problems correctly solved in a single
call (Pass@1). In addition, we assess the quality of the generated solutions using four
metrics: Executability, Token Usage, Productivity, and Revisions.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Executability is based on human evaluation as defined in Hong et al. (2024), where a
score of 4 indicates a completely correct solution; 3 means minor issues; 2 corresponds
to barely runnable code with notable problems; and 1 denotes completely non-functional
output.
Token Usage refers to the average number of tokens consumed by the pipeline to solve
a given problem; lower is better.
Productivity measures how many lines of code are generated per 1,000 tokens. A higher
value indicates better efficiency.
Revisions captures the number of debugging attempts to produce executable code.

4.2 Main Result

Table 3: Accuracy comparison between OptimAI and state-of-the-art methods.

Agent
Dataset NLP4LP Optibench Linear Optibench Nonlin.

w/o Tab. w/ Tab. w/o Tab. w/ Tab.

OptiMUS 71.6% - - - -
Optibench - 75.4% 62.5% 42.1% 32.0%
Ours w/ GPT-4o 79.1% 81.2% 73.8% 72.0% 48.0%
Ours w/ GPT-4o+o1-mini 88.1% 84.2% 80.0% 77.3% 56.0%
Ours w/ QwQ (by Qwen) 79.1% 86.2% 77.5% 81.6% 50.0%
Ours w/ DeepSeek-R1 82.1% 87.4% 78.8% 79.5% 60.0%

All evaluations were conducted under a zero-shot prompting setting. GPT-4o+o1-mini refers to using o1-mini as
the planner while employing GPT-4o for all other roles.

Table 3 presents the accuracy of our method on the NLP4LP and Optibench datasets, along
with a comparison against previous state-of-the-art approaches. Our approach consistently
outperforms prior methods regardless of the underlying LLM employed. Notably, over 99%
of the code generated executes without error regardless of the underlying LLM employed.
When using DeepSeek-R1, OptimAI achieves an overall accuracy of 82.3% on the Optibench
dataset, outperforming the previous best by 8.1 standard deviations.
We further evaluate the executability, token usage, and productivity on the hard subset1 of
the Optibench dataset using GPT-4o. This evaluation is summarized in Table 4. OptimAI
outperforms OptiMUS across all metrics and surpasses Optibench in terms of executability.
Compared to Optibench, OptimAI incurs a higher token cost but achieves broader problem
coverage. Solving a single problem with OptimAI using GPT-4o costs approximately $0.1
on average. The solver usage shows diversity, though Pyomo dominates (48.6%).

Table 4: The Statistical Analysis on OptimAI.
Statistical Metric Optibench OptiMUS OptimAI
Executability 3.4 3.1 3.5
Token Usage 955 20302 18072
Productivity (lines of code/1k tokens) 45 0.72 2.32

Beyond mathematical programming problems, we further evaluate OptimAI on several rep-
resentative NP-hard combinatorial optimization problems, including the traveling salesman
problem (TSP), job shop scheduling problem (JSP), and set covering problem (SCP). As
shown in Table 5, the consistent performance across a diverse set of tasks highlights the
robustness and generality of our approach. Notably, it can effectively solve a wide range of
challenging combinatorial problems without relying on any problem-specific customization.
Detailed examples of how these problems are addressed can be found in Appendix C.

4.3 Synergistic Effects of Combining Distinct Models

As the Latin proverb goes, Tres faciunt collegium2, combining heterogeneous models can
lead to complementary knowledge and improved performance. Our framework supports

1Hard problems are defined as those requiring more than three debug iterations to reach a
runnable state.

2Three make company.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 5: Generalization of OptimAI across NP-hard combinatorial optimization problems.
Math Programming TSP JSP Set Covering

OptimAI ✓ ✓ ✓ ✓
OptiMUS ✓ ✗ ✗ ✗
Optibench ✓ ✗ ✗ ✗

assigning distinct LLMs to different roles, enabling specialization and coordination. To
investigate the synergistic effects of mixing heterogeneous LLMs, we assign one model as
the planner and another model the remaining roles, and evaluate their performance on
the Optibench dataset. The results are presented in Table 6. We observe that combining
different LLMs can outperform each individual model. For instance, using Llama 3.3 70B or
Gemma 2 27B alone yields accuracies of 59% and 54%, respectively. However, when Gemma
2 27B is assigned as the Planner and Llama 3.3 70B handles the other roles, the accuracy
rises to 77%, outperforming any single-model configuration.

Table 6: Synergistic effects of combining heterogeneous LLMs.

Planner

Remaining
Roles Llama 3.3 70B DeepSeek-R1 14B Gemma 2 27B

Llama 3.3 70B 59% 54% 54%
DeepSeek-R1 14B 68% 50% 41%
Gemma 2 27B 77% 59% 54%

4.4 Ablation Study

The Effectiveness of UCB-based Debug Scheduling To assess the effect of UCB-
based debug scheduling, we conduct an ablation study using GPT-4o on the hard subset
of the Optibench dataset. As shown in Table 7, disabling the UCB-based debug schedul-
ing results in significantly higher token usage and lower productivity. Specifically, enabling
UCB-based debug scheduling reduces token usage by 3.6× and improves productivity by
3.3×, while maintaining comparable accuracy and slightly improving executability. These
results demonstrate the effectiveness of UCB-based strategies in optimizing debugging effi-
ciency without compromising the quality of outcomes.

Table 7: Ablation study on the impact of UCB-based debug scheduling in OptimAI.
Evaluation Metric OptimAI w/o UCB OptimAI w/ UCB
Executability 3.4 3.5
Pass@1 Accuracy 69% 69%
Token Usage 64,552 18,072
Productivity 0.70 2.32

The Effectiveness of Roles To understand the impact of different roles and ensure
that each component in our pipeline is necessary, we ablated individual stages (roles) and
observed the system’s performance on the Optibench dataset. As shown in Table 8, removing
any single stage leads to a performance drop, confirming the critical contribution of each role
to the overall effectiveness of the pipeline. In particular, removing the planner significantly
hampers the framework’s ability to produce functional code: it requires 4.6× more revisions
to reach a runnable state, resulting in a 5.8× drop in productivity. Similarly, omitting the
code critic increases the number of revisions by 3.6× and decreases productivity by 3.1×.
These results highlight the necessity of both high-level planning and post-generation critique
in optimizing performance.

Optimal Exploration Constant In our prompt, we instruct the decider to return a
score between 1 and 10. Assuming a uniform distribution over these scores, the theoretically
optimal exploration constant c is 10

√
2. However, in practice, the theoretically optimal value

may not always yield the best empirical performance. Therefore, we also experimented with

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 8: Ablation study on roles.
Formulator Planner Code Critic Revisions Executability Productivity

✓ ✓ ✓ 1.7 3.6 6.8
✗ ✓ ✓ 2.0 3.2 6.3
✓ ✗ ✓ 7.8 3.1 1.2
✓ ✓ ✗ 6.2 3.3 2.2

c = 10 and c = 20 on the same set of problems used in Table 7. The results, shown in
Table 9, indicate that 10

√
2 is a reasonably good choice for the exploration constant in our

setting.

Table 9: Comparison for Different Exploration Constants c.
Exploration Constant c 10 10

√
2 20

Token Usage 18,672 18,072 19,989
Accuracy 69% 69% 69%
Productivity 2.29 2.32 2.1

Optimal Number of Plans In our framework, the number of plans generated by the
planner, denoted as n, is an important hyperparameter. A larger n increases the likelihood of
producing at least one feasible plan, which should, in principle, lead to better performance.
However, the decider is not particularly strong, so a larger n also increases the chance that
the decider selects a non-working plan, potentially degrading performance. We experimented
with values of n ranging from 1 to 8 on the same set of problems used in Table 7, and the
results are shown in Table 10. We find that n = 3 or 4 strikes a good balance. Moreover,
we expect that the optimal n will increase as the decider becomes more capable.

Table 10: Comparison for Different Plan Number n.
Plan Number n 1 2 3 4 5 6 8
Token Usage 45,300 31,789 18,072 19,368 22,999 25,524 29,732
Accuracy 46.2% 53.8% 69% 76.9% 69% 61.5% 53.8%

5 Conclusion

We have presented OptimAI, a framework that leverages LLM-powered AI agents to solve
optimization problems specified in natural language, achieving superior performance com-
pared to current state-of-the-art methods. Extensive experiments involving four LLMs and
five challenging datasets have demonstrated the effectiveness and robustness of our approach.
OptimAI’s performance is stable across different version of prompts. Looking ahead, we
identify several promising directions for future work: (1) reinforcing the framework with
RL, especially for fine-tuning the decider component, which has the potential to yield sub-
stantial gains with modest computational cost; (2) scaling up OptimAI to tackle large-scale
problems that typically require a team of human experts and engineers, moving beyond the
current scope, where its performance is comparable to a single skilled programmer. Con-
sequently, OptimAI offers a flexible and extensible foundation for further exploration of
multi-agent LLM systems in real-world optimization scenarios.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al.
GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Ali AhmadiTeshnizi, Wenzhi Gao, and Madeleine Udell. OptiMUS: Optimization modeling
using MIP solvers and large language models, 2023. URL https://arxiv.org/abs/
2310.06116.

9

https://arxiv.org/abs/2310.06116
https://arxiv.org/abs/2310.06116

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ali AhmadiTeshnizi, Wenzhi Gao, and Madeleine Udell. OptiMUS: Scalable optimization
modeling with (MI)LP solvers and large language models, 2024. URL https://arxiv.
org/abs/2402.10172.

Ali AhmadiTeshnizi, Wenzhi Gao, Herman Brunborg, Shayan Talaei, Connor Lawless, and
Madeleine Udell. OptiMUS-0.3: Using large language models to model and solve opti-
mization problems at scale, 2025. URL https://arxiv.org/abs/2407.19633.

Peter Auer and Ronald Ortner. UCB revisited: Improved regret bounds for the stochastic
multi-armed bandit problem. Periodica Mathematica Hungarica, 61(1-2):55–65, 2010.

Jinheon Baek, Sujay Kumar Jauhar, Silviu Cucerzan, and Sung Ju Hwang. Researchagent:
Iterative research idea generation over scientific literature with large language models,
2025. URL https://arxiv.org/abs/2404.07738.

Dimitris Bertsimas and Georgios Margaritis. Robust and adaptive optimization under a
large language model lens. arXiv preprint arXiv:2501.00568, 2024.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale
machine learning. SIAM review, 60(2):223–311, 2018.

Stephen Boyd. Convex optimization. Cambridge UP, 2004.

Shuaihang Chen, Yuanxing Liu, Wei Han, Weinan Zhang, and Ting Liu. A survey on llm-
based multi-agent system: Recent advances and new frontiers in application, 2025. URL
https://arxiv.org/abs/2412.17481.

Yi Cheng, Wenge Liu, Jian Wang, Chak Tou Leong, Yi Ouyang, Wenjie Li, Xian Wu, and
Yefeng Zheng. Cooper: Coordinating specialized agents towards a complex dialogue goal,
2023. URL https://arxiv.org/abs/2312.11792.

Andrea Corsini, Angelo Porrello, Simone Calderara, and Mauro Dell’Amico. Self-labeling
the job shop scheduling problem. Arxiv, 2024.

Shen Gao, Yuntao Wen, Minghang Zhu, Jianing Wei, Yuhan Cheng, Qunzi Zhang, and Shuo
Shang. Simulating financial market via large language model based agents, 2024. URL
https://arxiv.org/abs/2406.19966.

Alireza Ghafarollahi and Markus J. Buehler. Sciagents: Automating scientific discovery
through multi-agent intelligent graph reasoning, 2024. URL https://arxiv.org/
abs/2409.05556.

Philip E Gill, Walter Murray, and Margaret H Wright. Practical optimization. SIAM, 2019.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and
Mao Yang. rStar-Math: Small LLMs can master math reasoning with self-evolved deep
thinking, 2025. URL https://arxiv.org/abs/2501.04519.

Sirui Hong, Mingchen Zhuge, Jiaqi Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jürgen Schmidhuber. Metagpt: Meta programming for a multi-
agent collaborative framework, 2024. URL https://arxiv.org/abs/2308.00352.

Yue Hu, Yuzhu Cai, Yaxin Du, Xinyu Zhu, Xiangrui Liu, Zijie Yu, Yuchen Hou, Shuo
Tang, and Siheng Chen. Self-evolving multi-agent collaboration networks for software
development, 2024. URL https://arxiv.org/abs/2410.16946.

IBM Corporation. Ibm ilog cplex optimization studio documentation, 2025. URL https:
//www.ibm.com/docs/en/icos. Accessed: 2025-04-14.

Shyam Sundar Kannan, Vishnunandan L. N. Venkatesh, and Byung-Cheol Min. Smart-
llm: Smart multi-agent robot task planning using large language models, 2024. URL
https://arxiv.org/abs/2309.10062.

10

https://arxiv.org/abs/2402.10172
https://arxiv.org/abs/2402.10172
https://arxiv.org/abs/2407.19633
https://arxiv.org/abs/2404.07738
https://arxiv.org/abs/2412.17481
https://arxiv.org/abs/2312.11792
https://arxiv.org/abs/2406.19966
https://arxiv.org/abs/2409.05556
https://arxiv.org/abs/2409.05556
https://arxiv.org/abs/2501.04519
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2410.16946
https://www.ibm.com/docs/en/icos
https://www.ibm.com/docs/en/icos
https://arxiv.org/abs/2309.10062

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In European
conference on machine learning, pp. 282–293. Springer, 2006.

Nian Li, Chen Gao, Mingyu Li, Yong Li, and Qingmin Liao. EconAgent: Large language
model-empowered agents for simulating macroeconomic activities. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), pp. 15523–15536, Bangkok,
Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.acl-long.829. URL https://aclanthology.org/2024.acl-long.829/.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. LIMR: Less is more for rl scaling, 2025a. URL
https://arxiv.org/abs/2502.11886.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao,
Haotian Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, Yingying Zhang, Fei Yin, Jiahua
Dong, Zhijiang Guo, Le Song, and Cheng-Lin Liu. From system 1 to system 2: A survey
of reasoning large language models, 2025b. URL https://arxiv.org/abs/2502.
17419.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. A dynamic llm-powered agent
network for task-oriented agent collaboration, 2024. URL https://arxiv.org/abs/
2310.02170.

Kartik Nagpal, Dayi Dong, Jean-Baptiste Bouvier, and Negar Mehr. Leveraging large
language models for effective and explainable multi-agent credit assignment, 2025. URL
https://arxiv.org/abs/2502.16863.

Chanwoo Park, Seungju Han, Xingzhi Guo, Asuman Ozdaglar, Kaiqing Zhang, and Joo-
Kyung Kim. Maporl: Multi-agent post-co-training for collaborative large language models
with reinforcement learning, 2025. URL https://arxiv.org/abs/2502.18439.

Chen Qian, Zihao Xie, YiFei Wang, Wei Liu, Kunlun Zhu, Hanchen Xia, Yufan Dang,
Zhuoyun Du, Weize Chen, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Scaling large
language model-based multi-agent collaboration, 2025. URL https://arxiv.org/
abs/2406.07155.

Rindranirina Ramamonjison, Timothy T. Yu, Raymond Li, Haley Li, Giuseppe Carenini,
Bissan Ghaddar, Shiqi He, Mahdi Mostajabdaveh, Amin Banitalebi-Dehkordi, Zirui Zhou,
and Yong Zhang. NL4Opt competition: Formulating optimization problems based on their
natural language descriptions, 2023. URL https://arxiv.org/abs/2303.08233.

G Reinhelt. {TSPLIB}: a library of sample instances for the tsp (and related problems)
from various sources and of various types. URL: http://comopt. ifi. uniheidelberg. de/-
software/TSPLIB95, 2014.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. DeepSeekMath: Pushing the limits
of mathematical reasoning in open language models, 2024. URL https://arxiv.org/
abs/2402.03300.

Aleksandrs Slivkins et al. Introduction to multi-armed bandits. Foundations and Trends®
in Machine Learning, 12(1-2):1–286, 2019.

Chuanneng Sun, Songjun Huang, and Dario Pompili. Llm-based multi-agent reinforcement
learning: Current and future directions, 2024. URL https://arxiv.org/abs/2405.
11106.

Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, Yuan Jessica Wang, Xiongwei Han,
Xiaojin Fu, Tao Zhong, Jia Zeng, Mingli Song, and Gang Chen. Chain-of-Experts: When
LLMs meet complex operations research problems. In International Conference on Learn-
ing Representations (ICLR), 2023.

11

https://aclanthology.org/2024.acl-long.829/
https://arxiv.org/abs/2502.11886
https://arxiv.org/abs/2502.17419
https://arxiv.org/abs/2502.17419
https://arxiv.org/abs/2310.02170
https://arxiv.org/abs/2310.02170
https://arxiv.org/abs/2502.16863
https://arxiv.org/abs/2502.18439
https://arxiv.org/abs/2406.07155
https://arxiv.org/abs/2406.07155
https://arxiv.org/abs/2303.08233
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2405.11106
https://arxiv.org/abs/2405.11106

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhicheng Yang, Yiwei Wang, Yinya Huang, Zhijiang Guo, Wei Shi, Xiongwei Han, Liang
Feng, Linqi Song, Xiaodan Liang, and Jing Tang. OptiBench meets ReSocratic: Measure
and improve LLMs for optimization modeling, 2024. URL https://arxiv.org/abs/
2407.09887.

Jifan Yu, Zheyuan Zhang, Daniel Zhang-li, Shangqing Tu, Zhanxin Hao, Rui Miao Li, Haox-
uan Li, Yuanchun Wang, Hanming Li, Linlu Gong, Jie Cao, Jiayin Lin, Jinchang Zhou,
Fei Qin, Haohua Wang, Jianxiao Jiang, Lijun Deng, Yisi Zhan, Chaojun Xiao, Xusheng
Dai, Xuan Yan, Nianyi Lin, Nan Zhang, Ruixin Ni, Yang Dang, Lei Hou, Yu Zhang,
Xu Han, Manli Li, Juanzi Li, Zhiyuan Liu, Huiqin Liu, and Maosong Sun. From mooc
to maic: Reshaping online teaching and learning through llm-driven agents, 2024a. URL
https://arxiv.org/abs/2409.03512.

Zhuohao Yu, Weizheng Gu, Yidong Wang, Zhengran Zeng, Jindong Wang, Wei Ye, and
Shikun Zhang. Outcome-refining process supervision for code generation, 2024b. URL
https://arxiv.org/abs/2412.15118.

Bowen Zhang and Pengcheng Luo. OR-LLM-Agent: Automating modeling and solving
of operations research optimization problem with reasoning large language model, 2025.
URL https://arxiv.org/abs/2503.10009.

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B. Tenenbaum,
Tianmin Shu, and Chuang Gan. Building cooperative embodied agents modularly with
large language models, 2024a. URL https://arxiv.org/abs/2307.02485.

Yuxiang Zhang, Shangxi Wu, Yuqi Yang, Jiangming Shu, Jinlin Xiao, Chao Kong, and Jitao
Sang. o1-Coder: an o1 replication for coding, 2024b. URL https://arxiv.org/abs/
2412.00154.

Zheyuan Zhang, Daniel Zhang-Li, Jifan Yu, Linlu Gong, Jinchang Zhou, Zhanxin Hao,
Jianxiao Jiang, Jie Cao, Huiqin Liu, Zhiyuan Liu, Lei Hou, and Juanzi Li. Simulating
classroom education with llm-empowered agents, 2024c. URL https://arxiv.org/
abs/2406.19226.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and
Jürgen Schmidhuber. Language agents as optimizable graphs, 2024. URL https://
arxiv.org/abs/2402.16823.

12

https://arxiv.org/abs/2407.09887
https://arxiv.org/abs/2407.09887
https://arxiv.org/abs/2409.03512
https://arxiv.org/abs/2412.15118
https://arxiv.org/abs/2503.10009
https://arxiv.org/abs/2307.02485
https://arxiv.org/abs/2412.00154
https://arxiv.org/abs/2412.00154
https://arxiv.org/abs/2406.19226
https://arxiv.org/abs/2406.19226
https://arxiv.org/abs/2402.16823
https://arxiv.org/abs/2402.16823

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A Formal Description of Methodology

We model OptimAI as a sequential decision-making system that manipulates a mutable
state memory S, while several specialized roles act upon this memory throughout the work-
flow. Each role r ∈ R is instantiated by a prompt-based agent composed of an underlying
language model Fθr and a role-specific prompt template Tr. The role policy induced by this
configuration is written as

πr(S) = Fθr
(Tr(S)), (1)

where πr denotes the behavior of role r when applied to the current state S. We define the
role set as

R = {form, plan, code, critic, dec, ver}, (2)
corresponding respectively to the formulator, planner, coder, code critic, decider, and veri-
fier. The initial state memory S0 is a set containing only the problem description S0 = {P}.
Given a current state St, OptimAI selects a role r ∈ R and applies its policy πr to the state
to produce an updated state St+1. Below, we describe the forward process in detail.

S1 Optimization Modeling The formulator constructs a structured representation of
the problem based on the initial text description. This process is defined as

mf ← πform(S0), S1 ← S0 ∪ {mf}, (3)
where mf is the message generated by the formulator, and S1 denotes the updated state
containing the modeling output.

S2 Planning The planner generates multiple high-level strategies (or plans) that describe
alternative solution pathways. Each plan corresponds to a different reasoning or program-
ming approach. Formally, we sample n plans from the planner policy

plani ∼ πplan(S1) independently for i = 1, . . . , n; (4)

S(i)
2 ← S1 ∪ {plani}, i = 1, . . . , n. (5)

Each sampled plan induces a distinct branch in the reasoning trajectory, resulting in n

candidate states {S(1)
2 , . . . ,S(n)

2 } that can be explored in parallel or selected among in later
stages.

S3 Solver code generation Each candidate branch S(i)
2 is passed to the coder, which

attempts to synthesize an executable program based on the plan and prior context. The
code is then executed in a sandbox environment, and both the code and the execution result
are appended to the state

(codei, execi)← πcode(S(i)
2), S(i)

3 ← S(i)
2 ∪ {codei, execi}. (6)

If the execution result indicates success, the updated state is passed to the verifier, which
assesses the correctness of the result

vi ← πver(S(i)
3). (7)

If vi = pass, the process terminates and returns S(i)
3 as the final output.

S4 Reflective debugging If none of the branches pass verification, the system proceeds
to debugging. First, each branch is evaluated by the decider, which assigns a quality score
based on factors such as code structure, execution logs, or plan plausibility

r̃i,t = πdec(S(i)
t), i = 1, . . . , n. (8)

To balance exploration and exploitation across candidate plans, we adopt the UCB strategy
to select a branch for further refinement. The UCB score for each branch is defined as

UCBi,t = r̃i,t + c

√
ln(

∑
j nj)

ni
, (9)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

where ni denotes the number of times branch i has been previously selected for debugging,
and c > 0 is an exploration hyperparameter. The branch selected for debugging is

i⋆
t = arg max

i
UCBi,t. (10)

The selected state S(i⋆
t)

t is first passed to the code critic, which analyzes the prior code and
execution and suggests edits or corrections

commenti⋆
t
← πcritic(S(i⋆

t)
t), S(i⋆

t)
t+1 ← S

(i⋆
t)

t ∪ {commenti⋆
t
}. (11)

The updated state S(i⋆
t)

t+1 is then reapplied to the coder for regeneration and re-execution

(codei⋆
t
, execi⋆

t
)← πcode(S(i⋆

t)
t+1), S(i⋆

t)
t+1

↶{codei⋆
t
, execi⋆

t
}. (12)

Here, the symbol ↶denotes replacement of prior entries for code and execution in the state,
as opposed to appending new messages. Finally, we update the selection count

ni⋆
t
← ni⋆

t
+ 1. (13)

Finally, the updated state S(i⋆
t)

t+1 is passed to the verifier. If verification succeeds, the sys-
tem terminates and returns S(i⋆

t)
t+1 as the final output. Otherwise, the system repeats the

debugging process beginning from Eq. equation 8, continuing until verification succeeds or
a predefined iteration limit Tmax is reached.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B Prompt Examples

Formulator

You are an expert in Optimization Modeling.
Analyze the following optimization problem and extract its key components:

Optimization Problem:
{state["messages"][0].content}

Task:
First, analyze the optimization problem and then provide the following components:
- Decision Variables: Include their types and domains. Make their names descriptive
- Objective Function: Specify the objective expression.
- Constraints: List all constraints.
- Problem Type: Specify the type of optimization problem (e.g., Linear Programming, Mixed-Integer \

Linear Programming, Non-Linear Programming, Mixed-Integer Non-Linear Programming, Quadratic \
Programming, etc.). This information needs to be very precise and accurate.

- Table Description: Provide an easy-to-understand description of the table if there is a table \
present in the question, else return an empty string. Note that the table description should \
effectively describe each and every value inside the table.

Response Format:
Return your response as a JSON object with the keys:
"Decision Variables", "Objective Function", "Constraints", "Problem Type", and "Table Description".
"""

else:
Use the feedback prompt if human feedback is available
prompt = f"""You are an expert in Optimization Modeling.

Revise the extracted components of the following optimization problem based on human feedback.

Optimization Problem:
{state["messages"][0].content}

Current Components:
- Decision Variables: {state["components"]["decision_variables"]}
- Objective Function: {state["components"]["objective_function"]}
- Constraints: {state["components"]["constraints"]}
- Problem Type: {state["components"]["problem_type"]}
- Table Description: {state["componenets"]["table_description"]}

Human Feedback:
{state["components"]["user_feedback"]}

Task:
Revise the components based on the feedback while ensuring accuracy.

Response Format:
Return your response as a JSON object enclosed in ‘‘‘json‘‘‘ tags with the keys:
"Decision Variables", "Objective Function", "Constraints", "Problem Type", and "Table Description".

Planner

You are an Optimization solver code planning expert.
Your responsibility is to provide three best strategies to implement the source code to solve an \

Optimization Problem.

First, carefully analyze the optimization problem, try to understand the type of problem it is, \
and, if given, examine the user recommendations for specific requirements, preferences, or \
domain knowledge that should influence your solution approach.

Next, thoroughly analyse the optimization model components, constraints, variables, and objective \
function.

Then, understand the available solvers and modeling tools we have = {Available_Tools}.
Analyse the strengths and weaknesses of each solver and decide the ones that align best with the \

given problem and its type.

Then think about the three most effective strategies that can be implemented to generate the solver \
code for this problem.

Each strategy must include the following:
1) suitable Optimization solver for the task (You can only use the solvers and the modelling tools \

from the list we provided you)
2) details about the algorithm to implement
3) any other information to be kept in mind while implementing the solver code. (Do not include \

information on solver installation)
Make sure your strategies are elaborated in depth, which will enable better code generation using \

them.

Only make use of reliable sources, such as academic papers and official documentations, during your \
tool calls to the tavily_tool to arrive at your conclusion

However, do not include the sources in your final strategies.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Only after completing this thorough analysis, provide your response.

Optimization Problem:
{state["messages"][0].content}

User recommendations (if any)
{UserFeedbackRecord.user_recommendations}

Optimization Model
{state["components"]}

Response Format:
Your response should ONLY contain a list of the three strategies without any additional formatting.

Decider

You are an Optimization solver code implementation expert.
Your responsibility is to provide the scores (from 1 to 10, with 10 being the best) for the \

strategies to implement a solver code for an optimization problem.

First, carefully analyse the optimization problem and its components.
Then, understand and analyse the provided strategies to implement the code to solve the \

optimization problem.
Finally, score these strategies and provide your response in the requested format.

Optimization Problem:
{state["messages"][0].content}

Strategies to implement the solver code
{state["messages"][-1].content}

Task:
Rate the strategies to implement the code to solve the given optimization problem from 1 to 10, \

with 10 being the best:
- Consider which strategy would lead to the most efficient code that would give us the most \

accurate result.
- The ratings should be relative to each other

Do not modify any strategy given to you.

Response Format:
Return your response as a JSON object with the following keys:
"Strategy1", "Strategy2", and "Strategy3".
"Strategy1" should map to the score for the provided Strategy1, "Strategy2" should map to the score \

for the provided Strategy2, and "Strategy3" should map to the score for the provided Strategy3.

Coder

You are a Python coding expert for solving Optimization problems.
Your responsibility is to provide the Python code to get the solution to a given optimization \

problem.

First, carefully analyze the optimization problem and the optimization model components, \
constraints, variables, and objective function.

Then, understand and analyse the given strategy to generate the code to solve that problem and the \
requirements specified for the desired code.

Then think about the most effective way to generate the solver code using the provided strategy for \
this problem.

Only after completing this thorough analysis, provide the desired Python code.

Optimization Problem:
{state["messages"][0].content}

Optimization Model
{state["components"]}

Strategy to Implement the Solver Code
{state[active_branch][0]["strategy"]}

Requirements For the Python Code
The code must only contain a single function named ’solver’.
Generate code that:

- Follows the given strategy.
- Includes all necessary imports
- Implements proper data validation and error handling
- Creates all variables with correct types and bounds
- Defines the objective function exactly as shown
- Implements all constraints from the model

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

- Solves the model and checks the solution status
- Format output as a dictionary with variable values
- Report errors clearly by returning the "error" in the dictionary
- Returns and prints both the optimal solution and the objective value
- Includes the arguments in the function definition, if any
- Handles unit conversions appropriately
- Validates that output
- Includes comments

Make sure you are returning the value requested in the question.
Focus on the accuracy of the final solution and make sure it satisfies all the requirements given \

in the optimization problem.

Make sure that the final answer logically makes sense, i.e., a variable in the solution does not \
have a decimal value when it logically can not.

The code you return, when run by itself using Python’s exec() function, should give the final \
solution to the optimization problem.

Basically, your code should be self-sufficient to run by itself and give the final solution to the \
given optimization problem.

There should NOT be any need to make any adjustments to your code, like calling a function, putting \
parameter values, etc., to get the desired solution to the optimization problem.

Response Format:
Your response should ONLY contain the Python code, which only contains a single function named \

’solver’, with no additional formatting.

Code Critic

You are an expert at analyzing Python optimization solver code.
Your job is to provide feedback to debug the given code to solve an optimization problem.
Also, you have to score the code on a scale of 1 to 10 on how likely it is to get debugged by LLM \

API calls.
First, carefully analyze the provided Optimization Problem, Optimization Model, and the Strategy to \

Implement the Solver Code. Then, analyse the provided Code to solve this problem and the \
error returned to understand the problem.

Finally, understand your task and provide your response in the requested format. Make sure that the \
constraints in the question and the model are followed precisely; this is very important.

Optimization Problem:
{state["messages"][0].content}

Optimization Model
{state["components"]}

Strategy to Implement the Solver Code
{state[active_branch][len(state[active_branch]) - 1]["strategy"]}

Code to Solve the Problem
{solver_code}

Error Returned by the Code
{error_msg}

Task
You need to provide feedback to help debug the code to generate the requested solution for a given \

optimization problem.

Keep in mind that the feedback you provide should be such that the debugged code should be able to \
execute by itself using Python’s exec() function without any additional steps.

Only provide the feedback to help debug the code in simple English; do not provide any debug code \
in your feedback.

Lastly, also provide the score, between 1 to 10, on the likelihood of the given code being \
successfully debugged using successive LLM API Calls. (Note 1 being the lowest and 10 being \
the highest)

Response Format

Your response must be a JSON object with the keys: "feedback" and "score".
The key "feedback" should map to the valid feedback to help debug the code. It should contain only \

the feedback to help debug the code without any formatting.
The "score" key should map to the score of the likelihood of this code being debugged by successive \

api calls.

Code Debug

You are a Python expert at debugging code for solving Optimization problems.
Your responsibility is to debug the provided Python code to get the solution for a given \

optimization problem.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

First, carefully analyze the optimization problem and the optimization model components, \
constraints, variables, and objective function.

Then, understand and analyse the given code, the strategy to generate the code to solve that \
problem, and the requirements specified for the desired code.

Then analyse the error and the feedback to debug the code.

Then, think about debugging the given code while maintaining the strategy being employed and the \
requirements for the code.

Only after completing this thorough analysis, provide the desired debugged Python code.
The code must only contain a single function named ’solver’.

Optimization Problem:
{state["messages"][0].content}

Optimization Model
{state["components"]}

Strategy to Implement the Solver Code
{state[active_branch][current_length - 1]["strategy"]}

Solver Code
{state[active_branch][current_length - 1]["code"]}

Error
{state[active_branch][current_length - 1]["error"]}

Feedback to debug the code
{state[active_branch][current_length - 1]["critique"]}

Requirements for the debugged Python Code
Generate debugged code without altering the characteristics of the provided code.
The code must only contain a single function named ’solver’.
Essentially, the debugged code should:

- Follows the given strategy.
- Includes all necessary imports
- Implements proper data validation and error handling
- Creates all variables with correct types and bounds
- Defines the objective function exactly as shown
- Implements all constraints from the model
- Solves the model and checks the solution status
- Format output as a dictionary with variable values
- Report errors clearly by returning the "error" in the dictionary
- Returns and prints both the optimal solution and the objective value
- Includes the arguments in the function definition, if any
- Handles unit conversions appropriately
- Validates that output
- Includes comments

Focus on the provided feedback to help debug the code.
Make sure you are returning the value requested in the question.
Focus on the accuracy of the final solution and make sure it satisfies all the requirements given \

in the optimization problem.

Make sure that the final answer logically makes sense, i.e., a variable in the solution does not \
have a decimal value when it logically can not.

The code you return, when run by itself using Python’s exec() function, should give the final \
solution to the optimization problem.

Basically, your code should be self-sufficient to run by itself and give the final solution to the \
given optimization problem.

There should NOT be any need to make any adjustments to your code, like calling a function, putting \
parameter values, etc., to get the desired solution to the optimization problem.

Response Format:
Your response should ONLY contain the Python code, which only contains a single function named \

’solver’, with no additional formatting.

Verifier

You are an expert at analyzing whether a certain optimization code evaluates the optimization \
problem successfully by fulfilling all the constraints.

Your job is to provide Python code that verifies whether a given optimization problem fulfills a \
set of constraints.

First, carefully analyze the provided Optimization Problem, Optimization Model, the Strategy to \
Implement the Solver Code, and the solver code itself.

Then, analyse the final result produced by the code.

Finally, understand your task and provide a Python code to verify if the results follow the problem \
constraints to solve the problem.

Optimization Problem:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

{state["messages"][0].content}

Optimization Model
{state["components"]}

Strategy to Implement the Solver Code
{state[active_branch][len(state[active_branch]) - 1]["strategy"]}

Code to Solve the Problem
{state[’final_code’]}

Result produced by the code
{state[’final_output’]}

Task
You need to provide Python code to check if the given solution produced by the given code adheres \

to the constraints in the provided optimization problem.
The code must ONLY contain a single function named ’solver’.
Generate code that:
- Includes all necessary imports, inside the function
- Implements proper data validation and error handling
- Creates all variables with correct types and bounds
- Implements all constraints from the model and the problem
- Format output as a dictionary with the following specifications:

The dictionary should have just a single key named "evaluation".
It should map to "correct" if the solution follows the set of constraints.
Else, it should map to a comma-separated list of variable names that do not follow the set of \

constraints.

The code you return, when run by itself using Python’s exec() function, should give the final \
solution to the optimization problem.

Basically, your code should be self-sufficient to run by itself and give the final solution to the \
given optimization problem.

There should NOT be any need to make any adjustments to your code, like calling a function, putting \
parameter values, etc., to get the desired solution to the optimization problem.

Response Format
Your response should ONLY contain the Python code, which only contains a single function named \

’solver’, with no additional formatting.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C Case Study

C.1 Traveling Salesperson Problems with 280 cities

This is the a280 problem from the popular TSPLIB dataset Reinhelt (2014). The total time
to solve TSP is 0.82 seconds.

Optimization Modeling

{
"Decision Variables": {

"x_ij": {
"Description": "Binary variable indicating whether the edge from node i to node j is included \

in the tour.",
"Type": "Binary",
"Domain": "x_ij \\in \\{0, 1\\} for all i, j \\in \\{1, 2, ..., 280\\}"

},
"u_i": {
"Description": "Continuous variable used for subtour elimination (Miller-Tucker-Zemlin \

formulation) representing the position of node i in the tour.",
"Type": "Continuous",
"Domain": "2 \\leq u_i \\leq 280 for all i \\in \\{2, 3, ..., 280\\}"

}
},
"Objective Function": {

"Description": "Minimize the total Euclidean distance of the tour.",
"Expression": "Minimize \\sum_{1 \\leq i \\neq j \\leq 280} (d_ij * x_ij)",
"Where": "d_ij is the Euclidean distance between node i and node j."

},
"Constraints": {

"1_Flow_Conservation": {
"Description": "Ensure that exactly one outgoing edge leaves each node.",
"Expression": "\\sum_{1 \\leq j \\leq 280, j \\neq i} x_ij = 1 for all i \\in \\{1, 2, ..., \

280\\}"
},
"2_Flow_Conservation": {
"Description": "Ensure that exactly one incoming edge enters each node.",
"Expression": "\\sum_{1 \\leq i \\leq 280, i \\neq j} x_ij = 1 for all j \\in \\{1, 2, ..., \

280\\}"
},
"3_Subtour_Elimination": {
"Description": "Eliminate subtours using the Miller-Tucker-Zemlin (MTZ) constraints.",
"Expression": "u_i - u_j + 280 * x_ij \\leq 279 for all i, j \\in \\{2, 3, ..., 280\\}, i \

\\neq j"
},
"4_Start_Node": {
"Description": "Define the starting node of the tour.",
"Expression": "u_start = 1",
"Note": "Assuming a specific starting node is selected, otherwise this constraint can be \

omitted or adjusted."
}

},
"Problem Type": "Mixed-Integer Linear Programming (MILP)"

}

Plans

1) Asks the user if they want to input suggestions for the strategies to implement the solver \
code. Human inputs "I want the output to be the most optimal solution to the given TSP, and I \
also want the code to be feasible to run on my laptop, a Macbook Air".

2) Planner Agent makes the following tool calls to search the web:
query: Optimal code for Symmetric TSP problems
query: pyconcorde solving TSP Concorde documentation
query: Using OR-Tools for TSP
3) Finally, the Planner Agent provides the following strategies:

1) Utilize the Pyconcorde Solver:
- Suitable Solver: Pyconcorde
- Algorithm Details: Pyconcorde is a Python wrapper for the Concorde TSP Solver. Concorde is a \

highly optimized and specialized solver for the TSP based on branch-and-cut algorithms. \
It’s particularly suitable for this problem due to its efficiency in handling large \
instances of TSP by dynamically adding constraint cuts to eliminate fractional solutions \
and subtours within the branch-and-bound tree.

- Additional Information: Ensure input data is correctly formatted for Pyconcorde. It requires \
the adjacency matrix or list of city coordinates. Consider pre-processing the distances \
using Euclidean calculation to speed up data provision. Pyconcorde will handle solving \
with minimal setup complexity, suitable for a 280-node problem.

2) Implement with OR-Tools and SCIP:
- Suitable Solver: OR-Tools with SCIP backend

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

- Algorithm Details: OR-Tools supports TSP through routing solvers utilizing the Constraint \
Programming and MILP approaches. SCIP, accessed via OR-Tools, employs effective numerics \
and heuristics along with branch-and-bound strategies. With constraint propagation and \
optional LNS solvers in OR-Tools, this strategy converges quickly on optimum solutions.

- Additional Information: Leverage OR-Tools to set up TSP in a routing problem context. Use \
distance callbacks to integrate the Euclidean distance matrix. The use of parallel \
processing and heuristic guidance within SCIP via OR-Tools enhances performance for \
optimization, potentially complemented by metadata to improve node ordering and path \
searches.

3) Use Gurobi for MILP Modeling:
- Suitable Solver: Gurobi
- Algorithm Details: Gurobi is a powerful MILP solver with robust algorithms for solving \

large-scale MIPs. Use the Miller-Tucker-Zemlin (MTZ) sub-tour elimination constraints. \
Gurobi’s advanced presolve techniques, cutting planes, and node-level parallel executions \
make it apt for exact TSP modeling as per MILP formulations.

- Additional Information: Set up the problem with binary decision variables for routing between \
cities and continuous variables for subtour elimination based on the MTZ model. Ensure \
model environment settings in Gurobi exploit multi-core processing and memory efficiently. \
Preprocessing steps should involve constructing accurate distance matrices and tuning \
solver parameters like MIPGap, NodeLimit, and heuristics to balance speed and solution \
precision.

Decider

Decider Agent:

The decider agent ranks the strategies in the following order:

1)Utilize the Pyconcorde Solver
2)Implement with OR-Tools and SCIP
3)Use Gurobi for MILP Modeling

Final Result

{’optimal_route’: [1, 2, 242, 243, 244, 241, 240, 239, 238, 237, 236, 235, 234, 233, 232, 231, 246, \
245, 247, 250, 251, 230, 229, 228, 227, 226, 225, 224, 223, 222, 221, 220, 219, 218, 217, \
216, 215, 214, 213, 212, 211, 210, 209, 208, 207, 206, 205, 204, 203, 202, 201, 200, 144, \
145, 199, 198, 197, 196, 195, 194, 193, 192, 191, 190, 189, 188, 187, 186, 185, 184, 183, \
182, 181, 176, 180, 179, 150, 178, 177, 151, 152, 156, 153, 155, 154, 129, 128, 127, 126, \
125, 124, 123, 122, 121, 120, 119, 157, 158, 159, 160, 175, 161, 162, 163, 164, 165, 166, \
167, 168, 169, 170, 171, 172, 173, 174, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
96, 95, 94, 93, 92, 91, 90, 89, 109, 108, 110, 111, 114, 113, 112, 88, 87, 84, 83, 82, 81, \
80, 79, 78, 77, 75, 76, 74, 73, 72, 71, 70, 67, 69, 68, 58, 57, 56, 55, 54, 53, 52, 51, 50, \
49, 48, 47, 46, 45, 44, 59, 63, 64, 66, 65, 85, 86, 116, 115, 117, 118, 62, 61, 60, 43, 42, \
41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 22, 25, 23, 24, 14, 15, 13, \
12, 11, 10, 8, 9, 7, 6, 5, 4, 277, 276, 275, 274, 273, 272, 271, 16, 17, 18, 19, 20, 21, 130, \
131, 132, 133, 134, 270, 269, 135, 136, 268, 267, 137, 138, 139, 149, 148, 147, 146, 143, \
142, 141, 140, 266, 265, 264, 263, 262, 261, 260, 259, 258, 257, 254, 253, 252, 255, 256, \
249, 248, 278, 279, 3, 280], ’total_distance’: 2579.0}

C.2 Job Scheduling Problem with 20 Jobs and 5 Machines

This is the la11.jsp problem from SelfJSP Corsini et al. (2024).

Optimization Modeling

{
"Decision Variables": {

"Start_Time_jk": {
"Description": "Start time of the k-th operation of job j",
"Type": "Continuous",
"Domain": "Non-negative real numbers"

},
"Makespan": {
"Description": "Overall completion time of all jobs",
"Type": "Continuous",
"Domain": "Non-negative real numbers"

}
},
"Objective Function": {

"Expression": "Minimize Makespan"

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

},
"Constraints": [

{
"Description": "Precedence constraints within each job",
"Mathematical_Form": "For each job j and for each operation k > 1, Start_Time_jk \\geq \

Start_Time_j(k-1) + Processing_Time_j(k-1)"
},
{
"Description": "No overlap on each machine",
"Mathematical_Form": "For any two operations (j1, k1) and (j2, k2) assigned to the same \

machine m, either Start_Time_j1k1 + Processing_Time_j1k1 \\leq Start_Time_j2k2 or \
Start_Time_j2k2 + Processing_Time_j2k2 \\leq Start_Time_j1k1"

},
{
"Description": "Completion time of each job does not exceed Makespan",
"Mathematical_Form": "For each job j, Start_Time_jK + Processing_Time_jK \\leq Makespan"

},
{
"Description": "Start times are non-negative",
"Mathematical_Form": "For all jobs j and operations k, Start_Time_jk \\geq 0"

}
],
"Problem Type": "Mixed-Integer Linear Programming (MILP)"

}

Plans

1) Strategy 1:
- Suitable Optimization Solver: CP-SAT Solver from OR-Tools
- Algorithm: The CP-SAT solver utilizes a combination of SAT (satisfiability testing) and \

constraint programming approaches to efficiently solve the scheduling problem. Model the \
problem using interval variables for each operation to represent their start times and \
processing durations. Leverage no-overlap constraints within the solver to handle the \
machine assignment to avoid conflicts, and enforce job precedence constraints to maintain \
operation order within jobs.

- Other Considerations: Keep in mind the solver’s ability to handle large search spaces with \
advanced search heuristics, and utilize the solver’s objective function capabilities to \
minimize the makespan effectively, while using decision variable strategies like \
warm-start or hinting when appropriate to speed up the solution process.

2) Strategy 2:
- Suitable Optimization Solver: OR-Tools (Using its Job Shop Scheduling and Integer Linear \

Programming functionalities)
- Algorithm: Embed the operations and jobs within the Job Shop Scheduling framework, which is \

specifically designed for handling machine scheduling problems with constraints. Use \
integer programming to model the decision variables as integer values leading to efficient \
computation of start times and precedence. Explore OR-Tools’ symmetry breaking constraints \
and specialized cutting planes for optimizing the schedule.

- Other Considerations: Make full use of OR-Tools’ scalable performance on large instances of \
scheduling problems. Consider breaking down the problem into smaller subproblems where \
possible and apply iterative solving techniques like Lagrangian relaxation to ensure more \
consistent convergence to optimal solutions.

3) Strategy 3:
- Suitable Optimization Solver: Pyomo with Gurobi
- Algorithm: Use Pyomo’s flexible modeling environment to express the MILP model of the \

scheduling problem, including variables, objectives, and constraints as defined. Integrate \
with Gurobi’s solver capabilities, which include powerful branch-and-cut algorithms to \
optimize the makespan. This combination allows fine-tuning of variable bounds and solver \
parameters to efficiently explore the solution space.

- Other Considerations: Gurobi’s optimization suite has extensive parameter tuning \
possibilities, like tweaking MIP gap tolerances, setting relative and absolute termination \
criteria, and using Gurobi’s heuristics to achieve faster solutions. While Pyomo allows \
for simplicity in expressing complex relations, ensure computational resource constraints \
are accounted for when dealing with the CPU- and time-intense parts of the solving \
process, especially for evaluating inherent delays in large-scale problems.

Decider

The decider agent ranks the strategies in the following order:

1)CP-SAT Solver from OR-Tools
2)OR-Tools (Using its Job Shop Scheduling and Integer Linear Programming functionalities)
3)Suitable Optimization Solver: Pyomo with Gurobi

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Code Critic

Ensure that the ‘cp_model‘ is correctly imported by verifying that the line ‘from \
ortools.sat.python import cp_model‘ is present and properly placed before any usage of \
‘cp_model‘. Make sure there are no typos in the import statement and that it is accessible \
within the scope where ‘cp_model‘ is used.

Final Result

{’Makespan’: 1222.0, ’Start_0_0’: 66, ’Start_0_1’: 298, ’Start_0_2’: 627, ’Start_0_3’: 689, \
’Start_0_4’: 917, ’Start_1_0’: 680, ’Start_1_1’: 744, ’Start_1_2’: 842, ’Start_1_3’: 1040, \
’Start_1_4’: 1138, ’Start_2_0’: 436, ’Start_2_1’: 458, ’Start_2_2’: 509, ’Start_2_3’: 674, \
’Start_2_4’: 1015, ’Start_3_0’: 0, ’Start_3_1’: 66, ’Start_3_2’: 438, ’Start_3_3’: 798, \
’Start_3_4’: 932, ’Start_4_0’: 353, ’Start_4_1’: 637, ’Start_4_2’: 822, ’Start_4_3’: 913, \
’Start_4_4’: 1039, ’Start_5_0’: 325, ’Start_5_1’: 466, ’Start_5_2’: 535, ’Start_5_3’: 627, \
’Start_5_4’: 788, ’Start_6_0’: 0, ’Start_6_1’: 165, ’Start_6_2’: 242, ’Start_6_3’: 371, \
’Start_6_4’: 458, ’Start_7_0’: 242, ’Start_7_1’: 325, ’Start_7_2’: 666, ’Start_7_3’: 707, \
’Start_7_4’: 1162, ’Start_8_0’: 404, ’Start_8_1’: 500, ’Start_8_2’: 701, ’Start_8_3’: 745, \
’Start_8_4’: 1166, ’Start_9_0’: 93, ’Start_9_1’: 223, ’Start_9_2’: 423, ’Start_9_3’: 560, \
’Start_9_4’: 936, ’Start_10_0’: 258, ’Start_10_1’: 353, ’Start_10_2’: 781, ’Start_10_3’: \
1012, ’Start_10_4’: 1103, ’Start_11_0’: 517, ’Start_11_1’: 540, ’Start_11_2’: 931, \
’Start_11_3’: 1054, ’Start_11_4’: 1081, ’Start_12_0’: 0, ’Start_12_1’: 172, ’Start_12_2’: \
858, ’Start_12_3’: 1116, ’Start_12_4’: 1183, ’Start_13_0’: 145, ’Start_13_1’: 319, \
’Start_13_2’: 772, ’Start_13_3’: 1088, ’Start_13_4’: 1116, ’Start_14_0’: 429, ’Start_14_1’: \
448, ’Start_14_2’: 535, ’Start_14_3’: 635, ’Start_14_4’: 1009, ’Start_15_0’: 91, \
’Start_15_1’: 778, ’Start_15_2’: 815, ’Start_15_3’: 922, ’Start_15_4’: 968, ’Start_16_0’: \
527, ’Start_16_1’: 638, ’Start_16_2’: 796, ’Start_16_3’: 853, ’Start_16_4’: 931, \
’Start_17_0’: 549, ’Start_17_1’: 745, ’Start_17_2’: 843, ’Start_17_3’: 856, ’Start_17_4’: \
1056, ’Start_18_0’: 81, ’Start_18_1’: 189, ’Start_18_2’: 329, ’Start_18_3’: 707, \
’Start_18_4’: 1054, ’Start_19_0’: 0, ’Start_19_1’: 100, ’Start_19_2’: 145, ’Start_19_3’: 223, \
’Start_19_4’: 992}

23

	Introduction
	Related Work
	LLM for Optimization
	Reasoning in LLM
	Multi-Agent Collaboration

	Methodology
	Pipeline
	Multi‑Agent Extension
	Debug Scheduling as a Multi‑Armed Bandit

	Experiments
	Experimental Setting
	Main Result
	Synergistic Effects of Combining Distinct Models
	Ablation Study

	Conclusion
	Formal Description of Methodology
	Prompt Examples
	Case Study
	Traveling Salesperson Problems with 280 cities
	Job Scheduling Problem with 20 Jobs and 5 Machines

