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ABSTRACT

Quadratic Programming (QP) is an important class of mathematical optimization
problems widely used in various fields such as economics, engineering, finance,
and machine learning. Recently, with the development of Learning to Optimize ,
many studies have attempted to solve QP problems using Graph Neural Networks
(GNNs), but they suffer from relatively poor performance compared to traditional
algorithms. In this paper, we introduce the Primary-Dual Diffusion (PDD) model
for solving QP problems. The model uses a diffusion approach to simultaneously
learn both primary and dual variables in order to predict an accurate solution.
Based on this prediction, only a small number of KKT-based correction and par-
allelizable post-processing iterations (e.g, PDHG, ADMM) are needed to ensure
that the solution satisfies the constraints and converges to the optimal solution.
Notably, our PDDQP is the first QP neural solver capable of obtaining the opti-
mal solution. Additionally, to address the slow convergence issue of the diffusion
model, we adopt a consistency distillation method to develop a one-step diffusion
solver for QP. Experimental results demonstrate that our approach achieves state-
of-the-art performance in learning-based QP solvers while remaining competitive
with traditional methods.

1 INTRODUCTION

Quadratic Programming (QP) stands as a fundamental class of optimization problems, finding
widespread application across diverse fields, including robotics and control Bemporad et al. (2002);
Kouzoubov et al. (2019). In finance Markowitz (1952), in machine learning Cortes & Vapnik
(1995);Szeliski (2006); Shrivastava & Szeliski (2015), in power systems Zhang & Xiao (2017).Its
ability to model a convex quadratic objective function subject to linear constraints makes it a pow-
erful tool for solving problems that balance competing goals while adhering to physical or logical
limits. Beyond these direct applications, QP also plays a crucial role as a building block for solving
more complex, non-linear optimization challenges. Many advanced algorithms, such as sequential
quadratic programming Han (1977) and trust-region methods Moré (1983), repeatedly solve a series
of simplified QP subproblems to find a solution to the original, more difficult problem.

Current solving frameworks for quadratic programming problems face two major challenges. On
the one hand, traditional optimization algorithms, such as interior-point methods Karmarkar (1984);
Nocedal & Wright (2006) and first-order methods, possess solid theoretical convergence guarantees.
However, their application is often hindered by high computational costs or slow convergence rates.
For instance, the computational complexity of matrix decomposition in interior-point methods can
be as high as O(n³), while first-order methods may require thousands of iterations to achieve high
accuracy, making them unsuitable for many real-time applications. On the other hand, data-driven
methods represented by Graph Neural Networks (GNNs) have emerged to improve solving effi-
ciency Chen et al. (2024); Wu et al. (2024). Nevertheless, when these purely supervised learning
paradigms are used to directly predict the primal solution, they exhibit significant shortcomings:
firstly, the predictive accuracy is limited, making it difficult to approximate the optimal solution
for complex problems; secondly, the lack of theoretical guarantees means the predicted solutions
often violate problem constraints. Consequently, relying solely on end-to-end prediction cannot en-
sure solution quality and feasibility. To overcome these deficiencies, it is crucial to integrate the
fundamental properties of optimization problems—such as the primal-dual variables and KKT con-
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ditions—as physical constraints into the model training process. This guides the model to generate
solutions that are both efficient and theoretically sound.

Contributions. This paper proposes a novel diffusion model-based quadratic programming (QP)
solving framework called PDDQP (and its refined variant PDDQP-R), which deeply integrates deep
learning with classical optimization methods to achieve an effective balance between computational
efficiency and solution accuracy. The main contributions are as follows:

(1) Unlike previous approaches that only learn primal variables, we propose a joint learning method
for primal and dual variables to improve prediction accuracy. Our approach aligns with the struc-
ture of QP problems, which can be represented as bipartite graphs. We introduce a message-passing
graph neural network (GNN) that simultaneously processes information from variable nodes and
constraint nodes, enabling synchronous and high-accuracy prediction of both primal and dual vari-
ables.

(2) We apply diffusion models to QP and obtain a single-step solver through consistency distillation.
We argue that this distillation paradigm is among the most suitable diffusion learning frameworks
for QP tasks. According to our experiments, other efficient inference generative models, such as
self-trained consistency models based on ODEs and flow matching-based one-step generators, have
proven inadequate for quadratic programming, which is highly sensitive to numerical accuracy. In
contrast, our method samples point pairs along the diffusion trajectory and directly minimizes the
output discrepancy between student and teacher models at the denoised solution. This provides
strong supervision for the student’s solution mapping, demonstrating an effective way to compress
the multi-step process into a single-step sampler while retaining high-fidelity numerical priors. Ad-
ditionally, during the sampling process of the teacher model, we incorporated additional gradient
guidance using the KKT conditions. This approach enables the generation of primal-dual variables
that more closely adhere to the KKT conditions, particularly the stationarity condition.

(3) We have explored and proposed several post-refinement processing methods that integrate tra-
ditional algorithms. When addressing convex optimization problems with linear constraints such
as QP, conventional optimization algorithms often involve simultaneous updates of primal and dual
variables (e.g., ADMM, PDHG), which aligns closely with our objective of concurrently outputting
both primal and dual variables. The output of our diffusion model provides a favorable start-
ing point for these optimization methods. Empirical results demonstrate that, building upon the
diffusion-based learning process, only a few steps of parallel post-processing are sufficient to obtain
a convergent, constraint-satisfying, and near-optimal solution. As the problem dimension increases,
industrial-grade solvers such as Gurobi exhibit significant computational slowdown, whereas our
diffusion-based approach demonstrates growing advantages in this regime.explored and proposed
some post-refinement processing methods, including utilizing KKT conditions to optimize dual and
primal variables, and employing traditional algorithms for iterative refinement. Empirically, by
building upon the diffusion-based learning process, we show that only a few steps of parallel post-
processing are sufficient to obtain a convergent, constraint-satisfying, and near-optimal solution. In
our experiments, as the problem dimension increases, industrial-grade solvers such as Gurobi exhibit
significant computational slowdown, whereas our diffusion-based approach demonstrates growing
advantages in this regime.

2 PRELIMINARY AND RELATED WORK

A convex quadratic programming (QP) problem and its corresponding dual problem can be ex-
pressed as:

min
x∈Rn

1

2
x⊤Qx+ c⊤x s.t. Ax = b, x ≥ 0, (1)

where x ∈ Rn is the primal decision vector, and the problem data is given by ζ = {Q ∈ Sn++, c ∈
Rn, A ∈ Rm×n, b ∈ Rm}. For each primal QP, we introduce dual variables y ∈ Rm associated with
the equality constraints Ax = b, and dual variables s ≥ 0 associated with the non-negativity con-
straints x ≥ 0. These dual variables measure the sensitivity of the optimal objective to perturbations
in the constraints. For instance, y indicates how the optimal value changes with modifications to b,
while s reflects the shadow price of enforcing the non-negativity constraints. And the dual problem
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can be expressed as follows:

max
y∈Rm,s∈Rn

−1

2
(A⊤y + s− c)⊤Q−1(A⊤y + s− c) + b⊤y s.t. s ≥ 0. (2)

At optimality, the primal variables x⋆ and the dual variables (y⋆, s⋆) must satisfy the Karush-Kuhn-
Tucker (KKT) conditions:

Qx⋆ + c−A⊤y⋆ − s⋆ = 0, (Stationarity)
Ax⋆ = b, (Primal Feasibility)
x⋆ ≥ 0, s⋆ ≥ 0, (Primal and Dual Feasibility)
x⋆ ⊙ s⋆ = 0. (Complementary Slackness)

(3)

These conditions illustrate that the primal and dual solutions are interdependent and collectively
characterize optimality. In particular, the complementary slackness condition (x⋆⊙ s⋆ = 0) directly
links the primal variables to the dual variables of the non-negativity constraints. It implies that if
a primal variable x⋆

i is positive (i.e., the constraint xi ≥ 0 is not binding), then its corresponding
dual variable s⋆i must be zero. This information is crucial for sensitivity analysis, constraint ad-
justments, and data-driven prediction methods.Traditional algorithms such as ADMM Boyd et al.
(2011) and PDHG He et al. (2014) employ iterative optimization methods, simultaneously updating
dual and primal variables while providing rigorous theoretical convergence guarantees. Specifically,
ADMM and PDHG share the core concept of alternating updates, decomposing complex problems
into simpler subproblems solved sequentially, making them naturally suitable for distributed com-
puting environments . Interior-Point Methods (IPMs) are often regarded as state-of-the-art (SOTA)
for solving medium-scale QP problems. By following the ”central path” within the feasible region to
converge to the optimal solution, IPMs offer theoretical guarantees of polynomial-time complexity
Nesterov & Nemirovskii (1994). Despite their higher computational cost per iteration, their super-
linear convergence rate makes them the preferred algorithm in many commercial solvers.However,
despite their solid theoretical foundations, traditional algorithms exhibit significant limitations when
dealing with ultra-large-scale problems, real-time requirements, or data-driven scenarios. ADMM
and PDHG generally suffer from slow convergence rates, often requiring a large number of itera-
tions to achieve high precision. Their performance is highly sensitive to parameter selection (e.g.,
step size, penalty parameters), necessitating extensive parameter tuning in practical applications.
Although IPMs demonstrate fast convergence and high accuracy, each iteration requires the com-
putation and storage of large-scale Hessian matrices or their approximations, along with solving
linear systems. Their computational and memory complexity becomes prohibitive for ultra-high-
dimensional problems.

Machine Learning for Quadratic Programming. Learning to Optimize has emerged as a promi-
nent research focus in recent years. The pioneering work OptNet proposed by Amos et al. Amos
& Kolter (2017) embeds constrained optimization problems such as quadratic programming (QP)
as differentiable layers into neural networks, providing significant inspiration for subsequent re-
search in this area.Algorithm unrolling represents a major category within learning to optimize.
For instance, HEAP Feng et al. introduces a neural operator solver by reformulating constrained
high-dimensional PDEs as QP problems and unrolling several steps of an adaptive primal–dual
hybrid gradient (A-PDHG) algorithm. Through end-to-end learning of step sizes and momentum
parameters, HEAP significantly reduces computational cost while maintaining accuracy and con-
straint satisfaction. Distributed learning-to-optimize methods have recently begun to demonstrate
their advantages, though this direction remains largely unexplored. DeepDistributedQP Saravanos
et al. (2024) proposes a distributed deep learning architecture that unrolls a novel DistributedQP al-
gorithm into neural network layers to learn optimal parameter policies. This approach can scale
to very high-dimensional problems, supported by PAC-Bayes McAllester (2013) generalization
guarantees. Beyond learning-based optimization, another line of work employs machine learning
methods—particularly graph neural networks (GNNs)—to produce end-to-end solutions. The study
Expressive Power of Graph Neural Networks for (Mixed-Integer) Quadratic Programs Chen et al.
(2024) rigorously analyzes the theoretical expressive power of GNNs in solving QP problems, open-
ing new avenues for Quadratic Programming solving. Despite these promising advances, such meth-
ods still face notable limitations. Unrolled optimization networks often suffer from limited general-
ization beyond the distribution of training instances, and their stability can be sensitive to hyperpa-
rameter choices. GNN-based solvers, while expressive, struggle with scalability to very large-scale
problems and often lack interpretability. Moreover, the theoretical understanding of the convergence
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and robustness of learned optimizers—especially in constrained and distributed settings—remains
incomplete. These challenges point to critical directions for future research in bridging machine
learning and mathematical optimization.

Diffusion-Based Models for Solving Optimization Problems. In recent years, deep learning, and
in particular generative models, have been increasingly applied to combinatorial and continuous op-
timization problems, including quadratic and linearly constrained programs. Diffusion models, as a
powerful class of generative models, have recently demonstrated promising results in this context.
The T2T (Training to Testing) framework Li et al. (2023) leverages a generative model during train-
ing to learn the distribution of high-quality solutions and employs a gradient-based search during
testing to identify optimal solutions. This approach achieved significant performance improvements
on combinatorial optimization tasks such as the Traveling Salesman Problem and Maximum Inde-
pendent Set Problem. Similarly, DIFUSCO Sun & Yang (2023) introduces a graph-based diffusion
framework for solving NP-complete combinatorial problems, surpassing prior state-of-the-art meth-
ods across multiple benchmarks. Zhao et al. (2024) introduced fundamental improvements target-
ing the core challenges of efficiency and sampling, leading to breakthroughs in both performance
and computational speed. The success of T2T and DIFUSCO highlights the potential of diffusion-
based methods to bring new breakthroughs to combinatorial and high-dimensional optimization,
suggesting a promising direction for future research and practical applications.While diffusion ar-
chitectures have demonstrated considerable potential in combinatorial optimization problems, to
the best of our knowledge, their progress in planning problems—particularly continuous planning
domains—remains limited. Our work fills this gap.

3 PRIMARY DUAL DIFFUSION FOR LEARNING QUADRATIC PROGRAMMING

3.1 JOINT PRIMARY AND DUAL VARIABLE LEARNING WITH DIFFUSION MODEL

This paper proposes an innovative one-step sampling diffusion model for efficiently solving
quadratic programming (QP) problems citesong2023consistency. We have experimented with var-
ious training methods for diffusion models, such as self-training consistency models and Flow
Matching-based consistency models Lipman et al. (2022). However, the results failed to match
the superior performance of distillation-based techniques. According to the experimental results,
the teacher diffusion model can find the optimal solution for the QP problem very accurately and
stably through multi-step sampling. By integrating the strengths of diffusion models and consistency
models, it transforms traditional optimization processes into a generative task.

The core of this consistency model involves training a Graph Neural Network (GNN) to perform
reverse denoising on a combined solution vector z = [x,y], which comprises the primal variables
x and dual variables y Equation 2. During the training phase, the model receives a noisy vector zt,
generated from a ground-truth solution, along with the corresponding problem data, and outputs a
prediction of the noise-free solution, ẑ0, to compute the loss. At inference time, the model starts
with a pure noise vector zT and the problem data, generating a high-quality initial solution ẑ0
through one or more denoising steps. This initial solution can then be further refined by classical
optimization algorithms like ADMM or PDHG to ultimately yield a final, optimized solution.

The framework first introduces a Denoising Diffusion Probabilistic Model (DDPM)Ho et al. (2020)
as a teacher model. The forward diffusion process generates a noisy state zt by progressively adding
Gaussian noise to the ground truth solution z0. At any time step t, the distribution of zt can be
expressed as:

q(zt|z0) = N (zt;
√
ᾱtz0, (1− ᾱt)I). (4)

where ᾱt is a predefined schedule parameter that controls the amount of noise added.

To facilitate the distillation process, our teacher model was trained to predict the solution directly.
This is a valid reparameterization of the standard DDPM objective of predicting the noise ϵ, as they
are linked by the algebraic relation z0 = (zt −

√
1− ᾱtϵ)/

√
ᾱt. And they are mathematically

equivalent in form. The z0-prediction paradigm is particularly suitable for consistency training. The
network’s prediction function is parameterized as:

ẑ0 = fθ(G, zt, t). (5)
where G represents the QP problem data formulated as a graph (including objective function and
constraint parameters). For improved accuracy, the teacher model can employ a multi-step sampling
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Figure 1: Illustration of our PDDQP. We first train a DDPM-like multi-step model for QP learning,
and then apply consistency distillation to learn a one-step diffusion model for solving QP.

process. This process begins with a pure noise vector, zT ∼ N (0, I), and progressively refines the
solution. At each step i (from ti to ti−1), the model first predicts a clean solution ẑ0 from the current
noisy state zti :

ẑ0 = fθ(G, zti , ti). (6)

The noisy input for the next step, zti−1
, is then computed by adding a controlled amount of new

noise to the predicted clean solution:

zti−1 =
√

ᾱti−1
ẑ0 +

√
1− ᾱti−1

ϵ. (7)

where ϵ ∼ N (0, I). This process can be repeated for a set number of steps, gradually reducing the
noise level until a final solution is obtained.

3.2 ONE-STEP DIFFUSION SOLVER WITH CONSISTENCY DISTILLATION

To achieve one-shot inference, a consistency model fθ′ , is distilled from the pre-trained and frozen
teacher model fθ. The distillation process trains the student model fθ′ to map any point (zt, t) on a
trajectory to its endpoint z0. This is achieved by enforcing consistency between the outputs of adja-
cent points on a single trajectory, following the methodology in your implementation. Specifically,
for each training step:

We sample a discrete time step n ∈ {1, . . . , T −1} and define two adjacent noisy states on the same
trajectory: zt corresponding to the noisier time t = n+ 1, and ztnext corresponding to the less noisy
time tnext = n.

The frozen teacher model fθ provides a target prediction by denoising the less noisy state ztnext :

ẑteacher
0 = fθ(G, ztnext , tnext). (8)

The student model (the consistency model) fθ′ makes its own prediction from the noisier state zt:

ẑstudent
0 = fθ′(G, zt, t). (9)

The parameters θ′ of the student model are updated by minimizing the Mean Squared Error between
its prediction and the teacher’s target, ensuring consistency along the trajectory:

Ldistill = Ez0,n,ϵ

[
α ∥fθ′,x(G, zt, t)− fθ,x(G, ztnext , tnext)∥2︸ ︷︷ ︸

Primal Variable Loss

+ (1− α) ∥fθ′,y(G, zt, t)− fθ,y(G, ztnext , tnext)∥2︸ ︷︷ ︸
Dual Variable Loss

]
.

(10)

This distillation-based consistency training enables single-step generation from any noise level. The
core solver of the consistency model is implemented using a Graph Neural Network (GNN), whose
structure will be detailed in the next section.

In summary, by reformulating optimization as a generative task and leveraging consistency training
to accelerate inference, this framework offers a novel, efficient, and theoretically grounded solution
for solving QP problems.
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3.3 KKT GUIDANCE METRIC

The goal of guidance techniques in diffusion models is to enhance controllability, steering the gen-
eration process not only to match the data distribution but also to satisfy specific attributes or con-
straints. Early methods such as Classifier Guidance Dhariwal & Nichol (2021) employed an aux-
iliary classifier to provide gradients of log-likelihood with respect to a desired class, significantly
improving both quality and controllability, though at the cost of training an additional model and
risks of overfitting. The subsequent Classifier-Free Guidance (CFG) Ho & Salimans (2022) elim-
inated this dependency by jointly training a single diffusion model with conditional and uncondi-
tional objectives, and extrapolating between the two at inference time. CFG has since become the
mainstream approach for controllable image, speech, and text generation.

Building on this, researchers introduced more general Energy-Based Guidance Liu et al. (2022),
which no longer relies on an explicit classifier but instead uses a differentiable energy function to
evaluate whether generated samples satisfy desired properties. The gradient of this energy serves as
the steering signal. This paradigm has inspired variants such as Reward Guidance or Reinforcement
Learning-Guided Diffusion, which optimize generations against a learned reward model or human
preference, as well as Contrastive Guidance, which leverages contrastive learning signals. Together,
these developments reflect the broader trend of diffusion models evolving from unconditional gen-
eration towards goal-driven generation.

In this work, we present KKT Guidance, which can be seen as a domain-specific instance of energy-
based guidance Guo et al. (2024) tailored to constrained optimization. Importantly, KKT Guidance
is applied only during inference of the DDPM teacher model, not during training of the student
consistency model. At each sampling step, the teacher model predicts a candidate solution ẑ0 =
[x̂0, ŷ0]

T , where x̂0 are the primal variables and ŷ0 are the dual variables. A differentiable energy
function is then used to measure the violation of the Karush-Kuhn-Tucker (KKT) conditions:

E(z) = λpeq ∥Ax̂0 − b∥2 + λpineq ∥max(0,−x̂0)∥2

+ λdineq ∥max(0,−(Qx̂0 + c+AT ŷ0))∥2

+ λcs ∥x̂0 ⊙ (Qx̂0 + c+AT ŷ0)∥2.
(11)

This formulation encompasses equality constraint residuals, inequality constraint residuals, dual
feasibility, and complementary slackness. The energy reaches zero if and only if the candidate
solution fully satisfies the KKT conditions.

To enforce feasibility, the gradient of the energy with respect to the solution is computed, and the
prediction is corrected as:

z̃0 = ẑ0 − s · ∇zE(z)
∣∣
z=ẑ0

,

where s is the guidance scale hyperparameter. The corrected solution z̃0 is then passed to the ODE
solver for the next time step. By iteratively performing this “predict–evaluate–correct” cycle, the
generation trajectory is guided into the feasible region while approaching optimality.

The benefits of this approach are clear: the generation process is no longer limited to mimicking
the training data distribution, but becomes a solution process with a well-defined objective. Specif-
ically, KKT Guidance does not rely solely on external models to evaluate the quality of generated
outputs. Instead, it directly uses the mathematical conditions for optimality (the KKT conditions)
as the guiding principle, ensuring the diffusion model naturally adheres to these constraints during
generation.

3.4 GNN FOR QUADRATIC PROGRAMMING

The QP instance can be represented as a bipartite graph, which is brought up by Chen et al. (2024).
And this paper provides a detailed theoretical analysis of the representational capabilities of GNNs,
which offers significant inspiration for the content of our work. The GNN operates on a bipar-
tite graph consisting of variable and constraint nodes, and employs a multi-layer message-passing
scheme where information alternates between the two sets of nodes. To adapt this GNN to the
diffusion framework, we introduce some modifications. The details are in Appendix A.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.5 PARALLEL POST-PROCESSING COMPUTATIONS

Applying deep learning models to quadratic programming problems is an effective way to quickly
obtain approximate solutions. However, the outputs of such data-driven methods often fail to strictly
satisfy the constraints. To address this, we propose a post-processing framework that leverages the
KKT conditions and the structure of traditional algorithms to correct these initial guesses. The ob-
jective is to generate a new point (xcorrected, ycorrected) with improved consistency with the problem’s
optimality criteria. Within this framework, we present two classes of approaches.

ADMM Refinement. The first category comprises primal-dual algorithms from traditional opti-
mization (e.g., ADMM, PDHG, ALM) in Appendix D, designed to fully leverage the primal and
dual variable information output by the diffusion model. Taking our proposed ADMM-based ap-
proach as an example, the complete predicted solution pair (xinit, yinit) generated by the diffusion
model is directly used as the initial starting point for the algorithm. To ensure numerical stabil-
ity and computational correctness, each x-update step within the ADMM iteration is performed by
solving the corresponding KKT linear system, which concurrently yields the optimal primal and
dual variables for the subproblem. This design facilitates a seamless transition from the generative
model to the iterative solver, effectively leveraging the prior knowledge acquired by the model in
the primal-dual space to achieve accelerated convergence and high-fidelity feasible solutions.

Iterable KKT Corrector. The second class consists of correction strategies that directly exploit the
KKT conditions. This method assumes that the primal solution xinit is a reliable estimate, and seeks
a dual solution y that is mathematically consistent with it. The approach is motivated by iterative
application of the KKT stationarity condition Qx+c+AT y−z = 0 together with the dual feasibility
condition z ≥ 0. The detailed derivation of the two methods is provided in Appendix C.

In summary, these two approaches—refinement through traditional solvers and KKT-based correc-
tion provide complementary pathways for bridging the gap between fast, data-driven approximations
and the rigorous optimality requirements of classical optimization.

4 EXPRIMENTS

All experiments were conducted on a single NVIDIA RTX 4090 GPU. The code will be made
publicly available to ensure reproducibility. For detailed guarantees, please refer to section 5.

4.1 DATASETS

The dataset utilized in this study was specifically designed for quadratic programming (QP) prob-
lems, with its generation Gondzio (1997) process following a rigorous procedure to ensure data
quality and verifiability. The test set was specifically designed to include both dense and sparse
Q matrices. Both sparse and dense Q have their own application scenarios Boykov & Veksler
(2006),Platt (1998). The dataset contains 1,280 instances for training and is evaluated on a sepa-
rate test set of 128 instances. Each instance in the dataset adopts the standard form in Eq. 1. The
test cases in the experiment were processed one by one without multiple instance computation (i.e.
batchsize is set to 1 in inference process).

4.2 EVALUATION AND BASELINES

We compare the objective function value obtained by different solvers, denoted as f(x), with the
ground-truth optimal value, f(xtrue). The objective function f(x) for the quadratic program is
defined as:f(x) = 1

2x
⊤Qx+ c⊤x.

Based on this, we evaluate the accuracy using the following metrics:

Relative Cost Gap (Gap): To account for the scale of the objective values, we compute the average
of instance-wise relative errors. Each error is normalized by the magnitude of the true objective
value, with a small constant ϵ added for numerical stability:

Gaprel = E
[
|f(x)− f(xtrue)|
|f(xtrue)|+ ϵ

]
. (12)
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Table 1: Results on sparse Q instances with 100 variables and 80 constraints.

Method Obj MAE Gap (%) Time (s) PrimalRes DualRes Solved
Real (Optimal) -17.40 - - - - - -

Gurobi-TimeLimit -17.40 - - 1.30 - - all
ADMM -17.56 1.00 5.5 7.80 1.26 0.57 all
PDHG -17.16 1.78 5.4 2.79 1.75 2.30 all
GNN -17.75 1.6 22.9 0.5 0.7 4.1 all
PDDQP -17.01 1.00 8.0 1.57 2.00 1.10 all
PDDQP-R -17.41 0.02 0.2 2.42 0.00 0.06 all

Table 2: Results on sparse Q instances with 500 variables and 100 constraints.

Method Obj MAE Gap (%) Time (s) PrimalRes DualRes Solved
Real (Optimal) -32.22 - - - - - -

Gurobi -TimeLimit -32.22 - - 113 - - 65/113
ADMM -34.5 2.32 7.0 10.21 1.0 0.3 all
PDHG -30.5 1.78 5.5 4.26 1.7 3.0 all
GNN -2.3 30.0 99 1.92 2.9 10.2 all
PDDQP -32.29 0.79 3.0 1.60 2.0 7.3 all
PDDQP-R -32.25 0.066 0.2 3.74 0 0.14 all

Primal Residual (rprimal): The feasibility of a solution is measured by the degree of violation of the
equality constraints Ax = b, quantified using the L2-norm:

rprimal = ∥Ax− b∥2. (13)

Dual Residual (rdual): This metric quantifies the violation of the dual feasibility conditions, serving
as a measure of optimality. Its significance lies in ensuring that no feasible direction at the current
solution can further reduce the objective function, providing a necessary gradient-based condition
for optimality:

rdual =
∥∥max

(
0,−

(
Qx+ c+ATy

))∥∥
2
. (14)

Computational Efficiency: The total wall-clock time required to solve all test instances is measured
to evaluate computational efficiency. All problems are processed sequentially.

We compare the proposed method with various techniques, including the industrial-grade optimizer
Gurobi, conventional optimization algorithms such as ADMM Boyd et al. (2011) and PDHG He
et al. (2014)and PDHG, and a supervised learning approach based on Graph Neural Networks
(GNN). Besides, our proposed PDDQP-R (refinement) is obtained by integrating one-step sampling
with a few iterations of the KKT corrector, followed by a fixed number (10) of ADMM iterations.

4.3 EXPERIMENTAL RESULTS

Our PDDQP model is capable of rapidly generating high-quality solutions. Even without subsequent
refinement steps, the model maintains strong performance. When combined with post-optimization
procedures, solution quality can be further enhanced with just a few iterations. Particularly on rela-
tively high-dimensional data, PDDQP-R can produce solutions with near-zero constraint violations
(on the order of 10−5), indicating that the solutions found by the model lie almost entirely within
the feasible region defined by the constraints Ax = b.

Graph Neural Networks (GNNs) underperform in high-dimensional scenarios and even fail to con-
verge entirely in cases involving dense graphs with, for example, 200 variables and 80 constraints.
Moreover, solutions output directly by GNNs may exhibit significant constraint violations, some-
times even finding solutions with a lower objective function value but at the cost of feasibility.
While GNNs show considerably better performance on some simpler datasets (a detailed discussion
is provided in Appendix E), their performance on such datasets still falls far short of Gurobi’s.

8
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Table 3: Results on dense Q instances with 50 variables and 40 constraints.

Method Obj MAE Gap (%) Time (s) PrimalRes DualRes Solved
Real (Optimal) -31.73 - - - - - all

Gurobi-TimeLimit -31.73 - - 19.0 - - all
ADMM -31.76 0.30 0.9 2.10 0.25 0.10 all
PDHG -31.54 0.60 1.8 2.60 0.95 1.56 all
GNN -28.9 3.05 13.4 0.4 0.58 2.0 all
PDDQP -31.57 0.30 0.9 1.00 0.60 6.10 all
PDDQP-R -31.72 0.05 0.2 1.62 0.12 1.26 all

Table 4: Results on dense Q instances with 200 variables and 80 constraints.

Method Obj MAE Gap (%) Time (s) PrimalRes DualRes Solved
Real (Optimal) -147.40 - - - - - -

Gurobi-TimeLimit -147.40 - - 65 - - 75/128
ADMM -146.18 2.16 7.0 10.19 1.36 0.48 all
PDHG -146.18 1.78 5.5 4.26 2.3 4.7 all
PDDQP -147.62 0.93 0.6 1.60 1.88 6.4 all
PDDQP-R -147.40 0.05 0.03 2.96 0 0.13 all

Gurobi undoubtedly produces the most reliable solutions with virtually zero constraint violation
and achieves remarkable speed on low-dimensional problems. However, its performance degrades
significantly in high-dimensional settings, which is precisely where PDDQP demonstrates its ad-
vantages.TimeLimit indicates that Gurobi failed to find all optimal solution within a relatively long
time (1–2 minutes).

Traditional algorithms, such as ADMM and PDHG, are highly dependent on the selection of initial
parameters and require a relatively large number of iterations to converge to a valid solution, thus
resulting in slightly inferior performance. Nevertheless, these traditional algorithms are straightfor-
ward, interpretable, and their potential remains worthy of further exploration.

5 CONCLUSION AND FUTURE WORK

In previous work, dual variables are not directly predicted but are instead utilized to construct La-
grangian functions for reformulating the optimization objective. Through empirical validation, this
study confirms that it is entirely feasible to generate high-quality dual variables without compro-
mising the quality of the primal variables, thereby providing multiple options for subsequent refine-
ment. We argue that the methodology presented in this paper can be extended as a novel training
paradigm to other bipartite graph tasks, and even to graph problems involving multiple node types.
Our PDDQP method was originally designed to fully leverage the information from both types of
nodes in such representations. The primary rationale for employing diffusion models lies in their
ability to progressively refine high-quality solutions from noise, which helps circumvent the lim-
itations of one-shot predictions inherent in GNNs and demonstrates greater potential in terms of
solution robustness and accuracy. Furthermore, our method aims to harness the advantages of tradi-
tional algorithms, particularly their high precision and convergence guarantees.

We believe that future improvements to this work should focus on two key aspects. First, the highest
priority should be given to modifications of the Graph Neural Network architecture. For instance,
incorporating self-attention mechanisms could enhance model performance Veličković et al. (2017).
Second, regarding post-optimization methods, while the currently employed ADMM algorithm is
effective and straightforward, integrating the post-optimization process into the network architecture
for end-to-end training may yield superior results.

9
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A GNN

To adapt this GNN to the diffusion framework, we introduce two key modifications. First, to make
the model aware of the current noisy state, the noisy primal and dual variables (xt,yt) are concate-
nated with the static node features at the input layer, augmenting the representation of each node
with the current solution estimate. Second, to make the model time-aware, the diffusion time step
t is mapped into a high-dimensional vector et via a dedicated embedding module. This embedding
is then added to the hidden states of both variable and constraint nodes at every layer, allowing the
network to modulate its denoising strength according to the noise level.In the original GNN paper,
upper and lower bound information was incorporated for each variable node. However, in our task,
due to the inclusion of dual variables and time steps (primarily the dual variables), this means the
bounds can only correspond to a subset of the input information. Therefore, we have removed them.

Formally, let h(l)
v and h

(l)
c denote the features of variable and constraint nodes at layer l. The update

from variables to constraints is given by

h(l+1)
c = Updatec

h(l)
c ,

∑
v∈N (c)

Acv gv(h
(l)
v ), et

 , (15)

where Updatec applies residual connections, normalization, and time embedding injection. Con-
versely, the update for a variable node v incorporates both constraint messages and quadratic cou-
plings with neighboring variables:

h(l+1)
v = Updatev

h(l)
v ,

∑
c∈N (v)

Acv gc(h
(l+1)
c ),

∑
v′∈N (v)

Qvv′ gv(h
(l)
v′ ), et

 . (16)

After the final message-passing layer, the network prepares the node embeddings for prediction.
A global context vector is first obtained by aggregating features across all nodes, which is then
concatenated with each node’s local representation. Finally, two parallel MLP output heads are
applied: one predict the primal variables x from variable node embeddings, while the other predict
the dual variables y from constraint node embeddings.

B DATA GENERATION

Initially, the core parameters of the problems are generated randomly. The matrix Q is constructed as
a sparse, positive-definite, and symmetric matrix by invoking the make sparse spd matrix function
from the scikit-learn library, with its sparsity precisely controlled by a parameter. The matrix A
is set as a random sparse matrix, and the non-zero ratio of A is 10%. To guarantee that a feasible
solution exists for every instance, we first generate a random feasible solution vector xfeas with non-
negative elements, and then determine the equality constraint vector b by computing b = Axfeas.
Finally, all successfully solved problem instances with their exact labels and parameters are saved
and categorized, forming the complete dataset for subsequent research.

Algorithm 1 Data generation method
1: Input: Problem dimensions m,n; non-zero count nnz.
2: Output: QP instance (Q,A, b, c) and its optimal solution x.
3: Generate:

Sparse matrix A ∈ Rm×n with nnz non-zero entries.
Symmetric positive definite matrix Q ∈ Rn×n.
Primal solution x̂ ∈ Rn

+.
Dual variables (ŷ, ŝ) ∈ Rm × Rn

+ such that KKT conditions hold.
4: b← Ax̂
5: c← A⊤ŷ + ŝ−Qx̂
6: Validate: Solve the QP instance (Q,A, b, c) to ensure (x̂, ŷ, ŝ) are optimal.

12
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Algorithm 2 Iterable KKT Consistency Corrector

1: Input: Initial solution (xinit, yinit), problem data (Q, c,A), number of iterations K.
2: Output: Corrected dual solution ycorrected.
3: Pre-computation:
4: Compute the static term: S ← Qxinit + c.
5: Compute the pseudo-inverse of the transposed constraint matrix: (AT )†.
6: Initialize: y0 ← yinit.
7: for k = 0, 1, . . . ,K − 1 do
8: Compute implied dual slack: zk ← S +AT yk.
9: Project to enforce dual feasibility: zk+1 ← max(0, zk).

10: Update dual variable using pre-computed inverse: yk+1 ← (AT )†(zk+1 − S).
11: end for
12: Return ycorrected ← yK .

C KKT-BASED REFINEMENT

D CLASSIC METHOD REFINEMENT

Alternating Direction Method of Multipliers (ADMM). This algorithm addresses the QP problem
in Equation 1 by reformulating it with a splitting variable z and a consensus constraint x = z. This
allows for decoupling the non-negativity constraint, leading to the equivalent formulation:

min
x,z

1
2x

TQx+ cTx+ I≥0(z)

subject to Ax = b, x− z = 0,
(17)

where I≥0(z) is the indicator function for the non-negative cone. The augmented Lagrangian for
the consensus constraint is:

Lρ(x, z, u) =
1
2x

TQx+ cTx+ uT (x− z) + ρ
2∥x− z∥22,

where u is the dual variable for the consensus constraint. Our hybrid approach combines the
strengths of data-driven initialization and the rigorous convergence properties of classical opera-
tor splitting methods.

Primal-Dual Hybrid Gradient (PDHG). This algorithm operates on the primal-dual optimality
conditions derived from the problem’s Lagrangian. The Lagrangian for this problem (ignoring the
non-negativity constraint, which will be handled by a proximal step) is:

L(x, y) = 1
2x

TQx+ cTx+ yT (Ax− b) (18)

where y is the dual variable associated with the equality constraint Ax = b. PDHG is an iterative
method that alternates between a gradient ascent step on the dual variable y and a proximal gradient
descent step on the primal variable x. The implementation in the code also includes an extrapolation
step on the primal variable to accelerate convergence. In the (k + 1)-th iteration:

Augmented Lagrangian Method (ALM). This algorithm iteratively solves a series of uncon-
strained (or simply constrained) subproblems to find a solution to the original constrained problem.
The QP optimization problem being solved has the following standard form in Equation 1.

The core of the ALM is the augmented Lagrangian function, which incorporates the equality con-
straints into the objective function using both a Lagrange multiplier term and a quadratic penalty
term. The function is defined as:

Lρ(x, y) =
1
2x

TQx+ cTx+ yT (Ax− b) + ρ
2∥Ax− b∥22 (19)

where y is the vector of Lagrange multipliers (the dual variables) associated with the constraint
Ax = b, and ρ > 0 is the penalty parameter. The ALM algorithm alternates between minimizing Lρ

with respect to the primal variable x, and then updating the dual variable y and the penalty parameter
ρ. In the (k + 1)-th iteration:

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 3 ADMM for QP Refinement with Dual Variable Initialization
][t]

1: Input: Initial primal solution xinit, initial dual solution yinit, problem data (Q, c,A, b), penalty
parameter ρ > 0, tolerance ϵ > 0.

2: Output: Refined primal solution x, refined dual solution y.
3: Initialize: k ← 0, x0 ← xinit, y0 ← yinit, z0 ← max(0, x0), u0 ← 0.
4:
5: Pre-computation: Construct the constant KKT matrix:

K ←
[
Q+ ρI AT

A 0

]
6: while not converged do
7: x, y-update: Solve the linear KKT system for xk+1 and yk+1 simultaneously:

K

[
xk+1

yk+1

]
=

[
ρzk − uk − c

b

]
8: z-update: zk+1 ← max

(
0, xk+1 +

1
ρuk

)
{Projection step for non-negativity}

9: u-update: uk+1 ← uk + ρ(xk+1 − zk+1) {Dual update for the splitting constraint}
10: Check convergence:
11: if k > 0 and ∥xk+1 − xk∥2 ≤ ϵ and ∥xk+1 − zk+1∥2 ≤ ϵ then
12: break
13: end if
14: k ← k + 1
15: end while
16: return xk+1, yk+1

Algorithm 4 PDHG for QP

1: Input: Problem data (Q, c,A, b), step sizes τ, σ > 0, tolerances ϵprimal, ϵchange > 0.
2: Output: Solution x.
3: Initialize: k ← 0, compute initial x0 (e.g., via pseudoinverse A†b), y0 ← 0, x̄0 ← x0.
4: while not converged do
5: Dual update (gradient ascent):
6:

yk+1 ← yk + σ(Ax̄k − b)

7: Primal update (proximal gradient descent): Solve the subproblem for xk+1:
8:

xk+1 ← argmin
x≥0

{
1
2x

TQx+ cTx+ yTk+1Ax+
1

2τ
∥x− xk∥22

}
9: Extrapolation step:

10:
x̄k+1 ← xk+1 + (xk+1 − xk)

11: Check convergence:
12: if k > 10 and ∥Axk+1 − b∥2 ≤ ϵprimal and ∥xk+1 − xk∥2 ≤ ϵchange then
13: break
14: end if
15: k ← k + 1
16: end while
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Algorithm 5 ALM for QP

1: Input: Problem data (Q, c,A, b), initial penalty ρ0 > 0, tolerances ϵprimal, ϵchange > 0.
2: Output: Solution x.
3: Initialize: k ← 0, x0 ← 0, y0 ← 0, ρ0.
4:
5: while not converged do
6: x-update (Primal Minimization): Solve the subproblem for xk+1. The non-negativity con-

straint x ≥ 0 is enforced after this minimization step (e.g., by projection).

xk+1 ← projection≥0

(
argmin

x
Lρk

(x, yk)
)

7: y-update (Dual Update):
yk+1 ← yk + ρk(Axk+1 − b)

8: ρ-update (Penalty Parameter Update):
9: if the constraint violation ∥Axk+1 − b∥2 is not improving sufficiently then

10: ρk+1 ← ρk · factor
11: else
12: ρk+1 ← ρk
13: end if
14: Check convergence:
15: if k > 0 and ∥Axk+1 − b∥2 ≤ ϵprimal and ∥xk+1 − xk∥2 ≤ ϵchange then
16: break
17: end if
18: k ← k + 1
19: end while

E LOW-DIMENSIONAL TESTING

According to the paper Chen et al. (2024), this dataset demonstrates relatively strong performance
for GNNs. Since there are certain discrepancies between our data and those in the paper, to ensure
rigor, our experimental results are largely consistent with the performance reported in the original
study on this type of dataset. However, testing on such a dataset fails to fully showcase the model’s
powerful capabilities. The main reason is that when the number of constraints is small, without
strictly controlling constraint violations, the process essentially resembles sampling in an uncon-
strained space. Even if treated as an unconstrained problem, the obtained solution would not deviate
significantly. Moreover, for such problems, industrial-grade optimizer like Gurobi can easily handle
them and deliver valid solutions within a very short time.

Table 5: Results on sparse Q instances (50 variables, 10 constraints)

Method Obj MAE Gap (%) Time (s) PrimalRes PrimalRes Solved
Real (Optimal) -1.61 - - - - - -

Gurobi -1.61 - - 0.52 - - all
PDDQP-R -1.61 0.01 1.5 1.56 0.02 0.08 all
PDDQP -1.55 0.10 23.0 1.23 0.05 0.32 all
ADMM -1.63 0.06 7.0 2.00 0.03 0.11 all
PDHG -1.59 0.08 5.0 2.50 0.03 0.12 all
GNN -1.59 0.09 4.8 0.38 0.04 0.19 all
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F OTHER REFINEMENT METHOD TEST

Selecting an effective post-refinement method is crucial for PDDQP. Although ALM, as a classical
algorithm, possesses theoretical convergence guarantees, it suffers from practical limitations such as
high sensitivity to penalty parameter selection and numerical instability. These issues often prevent
convergence to the optimal solution after multiple iterations. However, with the improved initial
point provided by PDDQP, ALM demonstrates significantly enhanced performance.

Table 6: Results on sparse Q instances (500 variables, 100 constraints, 5000 nnz)

Method Obj MAE Gap (%) Time (s) PrimalRes DualRes Solved
Real (Optimal) -32.22 - - - - - -

Gurobi - - - * - - 65/113
PDDQP-R -31.68 0.54 2.0 1.81 0.3 - 0.14 all
PDDQP -32.29 0.79 3.0 1.60 2.0 7.3 all
ALM -27.27 5.0 15.2 34.3 0.028 0.14 all
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