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Abstract
In this paper, we develop a structured critique
of robotic simulations for real-world manipula-
tion, by arguing that scaling simulators is neither
necessary nor sufficient for making progress in
general-purpose real-world robotic manipulation
agents that are compliant with human preferences.
With the ubiquity of robotic simulators, and re-
cent efforts to scale them for diverse tasks, and
at the same time the interest in generally capable
real-world manipulation systems, we believe it is
important to address the limitations of using sim-
ulation for real-world manipulation, so that as a
community, we can focus our collective resources,
energy, and time on approaches that have more
principled odds of success. We further demon-
strate the unique challenges that real-world ma-
nipulation presents, and show through examples
and arguments why scaling simulation doesn’t get
us closer to solving these challenges required for
diverse real-world deployment.

“The world is its own best model.”

- Rodney Brooks

1. Introduction
Imagine a world where robots are everywhere, interacting
with humans in the most basic everyday tasks like cook-
ing and cleaning, while remaining compliant with human
preferences. In such a world, we would expect robot ma-
nipulators to exhibit out-of-the-box zero-shot generalization
capabilities. When prompted to do a task, the robot should
just do it!. It shouldn’t require any form of self-practice or
fine-tuning for the specific task it’s asked to perform. In
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addition, it should perform the task while respecting human
preferences and without creating any unsafe intermediate
scenarios.

Recent advances in machine learning and robot hardware
design has helped move the world described above from a
Utopian existence a couple of decades ago, to a practical
possibility in the near future. As very prominently wit-
nessed in computer vision and natural language processing
(NLP), a number of advances including but not limited to
availability of large datasets, ubiquity of compute resources,
and improvements in deep learning based algorithms has
positively impacted all research areas where machine learn-
ing is widely used. The story of robot learning has been no
different. However, unlike computer vision and NLP, the
success stories of robot learning approaches, in particular
for manipulation have been significantly underwhelming.
Approaches that just work zero-shot in diverse unseen sce-
narios are far from being realized in manipulation, compared
to systems like Segment-Anything (Kirillov et al., 2023) and
GPT-4 (Achiam et al., 2023) in vision and NLP.

Anecdotally, as observed by Jitendra Malik in a talk, until
recently, experiments in robot manipulation papers were in
such restrictive scenarios that just by looking at the back-
ground color of video results, one could form a reasonable
guess of where the paper is from - for example, green back-
ground for Berkeley and red for CMU (Levine et al., 2016;
Shaw et al., 2023; Maitin-Shepard et al., 2010). The lack
of generalization in robotics results should not come as a
surprise because most robotics tasks involve reasoning over
time horizons much longer than that of typical vision tasks,
and the state-space is much higher-dimensional than that
in NLP tasks. If this weren’t enough of a challenge, the
real world is also very dynamic, and in several practical
manipulation tasks, the environment might change during
execution of the task itself.

We consider two desiderata of widely usable real-world ma-
nipulation systems: 1) zero-shot deployability and 2) com-
pliance with human preferences. Machine learning has the
potential to transform robot manipulation by helping learn
policies that can generalize across diverse real-world scenar-
ios, and can adapt to human preferences. Hence the question
of how should machine learning be used for manipulation
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- including the type of datasets and learning mechanisms,
is very pertinent. Understanding the limitations of exist-
ing approaches will help us make progress towards solving
the hard problem of manipulation, and in democratizing
robotics more broadly for human assistance.

In order to simplify the complexity of real-world robot ma-
nipulation, several papers have sought to learn manipulation
policies in simulated environments and then transfer them to
the real-world typically through approaches that bridge the
simulation-to-reality (sim2real) gap (Akkaya et al., 2019;
Sadeghi & Levine, 2016; Yan et al., 2017). This approach of
sim2real transfer has become a leading paradigm in training
manipulation policies. While simulation in and of itself may
be helpful for understanding sequential-decision making,
in the context of real-robot manipulation that generalizes
to diverse scenarios and is compliant with human prefer-
ences, this paper takes the position that simulation as a tool
is neither necessary nor sufficient.

Our position is that scaling simulation, in the form of de-
signing more realistic simulated robots and environments,
improving the speed and parallelism of simulation environ-
ments, and attempting to develop more realistic simulators
are not crucial in the path to developing widely usable real-
robot manipulation systems. We argue that over-indexing on
simulations for real-robot manipulation can be detrimental
to the eventual goal of generalizable manipulation in the
real-world and lead to misleading notions of progress.

Given that robotics, particularly robot manipulation holds
immense potential to significantly impact humanity and
stands to benefit greatly from advances in machine learning,
it is essential for the community to reconsider where and
how we prioritize our efforts. In this paper we demonstrate
why scaling simulation is probably not the right approach,
and provide an alternate vision for how we can develop
generalizable and compliant robot manipulation systems
that can be beneficial in diverse scenarios.

2. Desiderata for Widely Usable Real-World
Manipulation

In this section, we describe two key criteria for robot manip-
ulation systems that are widely usable in diverse scenarios.
Our focus is on manipulation systems that are aimed to be
deployed in-the-wild in scenarios like homes, offices, and
kitchens for helping us in everyday tasks. We do not con-
sider structured manipulators that may be useful only for
specific industrial automation tasks.

Zero-Shot Deployment. For a manipulation system to be
widely adopted in homes, offices and other generic environ-
ments, we posit that it needs to work out-of-the-box. When a
user specifies a task, the system should just execute the task,

without requiring any exploration or fine-tuning through
interaction for this task. This is important for efficiency in
automation, so that a manipulator can be repeatedly used
for different tasks, without having to wait more than the
time it would take a human to complete the task. For truly
reliable zero-shot deployment, the manipulator must be able
to generalize to diverse scenarios that are previously unseen.
For example, a home robot built to assist with household
tasks such as cooking and cleaning should generalize to arbi-
trary kitchens and homes, without requiring any fine-tuning
through interactions in the test environment.

Zero-Shot deployment capabilities are a key requirement for
making robot manipulators ubiquitous in everyday life for
helping humans in different tasks. If we draw analogies with
modern appliances like computers, vacuum cleaners, tele-
visions etc., they all work out of the box, sometimes quite
literally. It is only reasonable to necessitate that robots that
are as ubiquitous as these current appliances should have
similar properties. Note that zero-shot deployment does not
preclude fine-tuning that doesn’t involve unsafe/exploratory
interactions with the environment. For example, we cus-
tomize our televisions and computers to suit our specific
needs. Similarly, through mechanisms like human prefer-
ence elicitation, we could fine-tune the robot manipulator to
suit our specific needs. An example of this in cooking could
be, we would want the robot to always wipe the counter
top after handling meat, before proceeding with other tasks.
Zero-shot deployment simply means that the robot can per-
form all the tasks it might ever be asked to perform, in
a reasonably safe way, but not necessarily in the way an
end-user wants. For the latter, it might require some minor
fine-tuning to become compliant with human preferences.

Examples of recent real-world systems that perform diverse
manipulation tasks but do not really fit the zero-shot deploy-
able criteria are Bahl et al. (2022) (requires online explo-
ration for 1-2 hours given a new task) and Mahi Shafiullah
et al. (2023) (requires collecting demonstrations for a new
task to train a policy that works only for that specific task in
that specific scene). Some recent systems that are closer in
principle to this criteria are (Zitkovich et al., 2023; Brohan
et al., 2022; Padalkar et al., 2023b; Bharadhwaj et al., 2023c;
Shridhar et al., 2023; Bharadhwaj et al., 2024) (given a new
task specified through a goal, the respective policies can
directly execute the task in one go without any fine-tuning).

Compliance with Human Preferences. In addition to
being zero-shot deployable, robot manipulators should be
safe and compliant with human preferences. Broadly, com-
pliance refers to comformity with a rule, specification, or
policy. In machine learning, it is an implied understanding
that algorithms should align with human preferences. This
alignment is assumed to be a key goal. We anticipate that
the algorithm, once trained, will act in accordance with the
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Figure 1. Illustration of the desiderata for widely usable real-world manipulation: zero-shot deployment [left] and compliance with human
preferences [right] as discussed in section 2.

objective function set during its training. This objective
function is assumed to represent the preferences of the per-
son who designed the algorithm, serving as a stand-in for
their desires. There are two key challenges: firstly, opti-
mizing algorithms based on a given objective function, and
secondly, the initial creation of that objective function.

A large part of the the machine learning community is en-
gaged in the first challenge, striving to enhance optimization
by developing more effective learning algorithms or creat-
ing superior neural network architectures. Generally, this
is not problematic since, for numerous supervised learning
tasks (like classification using cross-entropy loss) or un-
supervised learning tasks (such as image generation with
pixel-reconstruction error), the predefined objectives tend
to effectively meet the intended outcomes. For instance,
in sequential decision-making scenarios like game-based
reinforcement learning, the game’s rules often inherently
dictate the reward function, eliminating the need for manual
construction. However, the situation becomes more com-
plex and less straightforward when applying these principles
to intricate, real-world control problems involving robots,
where the formulation of an appropriate reward function is
less obvious.

This is difficult to achieve because oftentimes humans them-
selves cannot quantify their own choices precisely, and so
constructing a reward function that can optimize for this is
tricky. However, given two or more options, humans are
good at choosing the the option they like. In other words,
they are good at relative preference elicitation. For robotic

systems that must interact with humans during deployment,
it seems plausible that they should also be exposed to hu-
man interaction during training. Indeed recent works have
attempted this (Hejna III & Sadigh, 2023; Sadigh et al.,
2017) for developing manipulators that are more aligned
with human preferences. Compared to LLMs, where RLHF
(Reinforcement Learning from Human Feedback) is easy to
achieve, for robotics this is non-trivial due to safety consid-
erations in online improvement.

3. Preliminaries on Simulation for
Manipulation

In this paper, by simulation, we mean physics simulations
for robotic manipulation. Some examples of popular simula-
tors for robot manipulation include MuJoCo (Todorov et al.,
2012; Brockman et al., 2016), Isaac (Makoviychuk et al.,
2021), Brax (Freeman et al., 2021), PyBullet (Coumans &
Bai, 2016–2021) etc. These simulators serve as platforms
for replicating real-world dynamics by making several ap-
proximations to the physical properties of objects and envi-
ronments. The key idea across simulators is to simulate the
forward dynamics of the world i.e. provide answer to the
question given a current state of the world and some force,
what is the next state of the world? The dynamics models
are algorithms that compute the motion of components in
the scene including robots, based on forces, torques, and in-
teractions with the environment. They ensure that simulated
movements closely replicate real-world physics, taking into
account factors like friction, inertia, and material properties
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of objects.

Most current robotic simulators are extremely inaccurate
in properly simulating realistic physics (Afzal et al., 2020;
Lidec et al., 2023; Yoon et al., 2023). This is especially
true for robotic manipulation where contacts are high di-
mensional, the complexity of motions are much higher, and
the range of motions and types of objects are much diverse,
compared to typical locomotion or navigation scenarios. So,
unlike locomotion and navigation (Kumar et al., 2021; Szot
et al., 2021; Lee et al., 2020; Tan et al., 2018), simulation
for manipulation has had much less success in enabling real-
world generalization. Beyond considerations like modeling
contacts and collisions, to be truly effective, simulation
frameworks need to overcome other challenges like offering
real-time feedback and high-fidelity visuals, which have
also been difficult to achieve in practice.

Recognizing that any simulation of the real-world is likely to
be imperfect, recent approaches have attempted to mitigate
the sim to real gap through several techniques like domain
adaption, domain randomization, reality check-pointing,
and noise-modeling. Here, we briefly describe some of these
techniques, which is in no way meant to be an exhaustive
list.

Domain Randomization: This technique involves ran-
domizing aspects of the simulation during the training phase.
Parameters like lighting, object textures, and physical prop-
erties like friction, mass, damping, inertia etc. are varied.
This creates a wide variety of training scenarios, encourag-
ing the model to learn features and behaviors that are robust
to the variations found in the real world.

Domain Adaptation: This approach focuses on adapting
a model trained in a simulated environment to perform well
in the real world. Techniques like fine-tuning the model on
a small set of real-world data or using adversarial training
to align the feature distributions of the simulated and real-
world data are common.

Reality Checkpoints: Incorporating intermittent real-
world interactions during the training phase can help in
mitigating the domain gap. The model is primarily trained
in simulation but is periodically updated or corrected based
on real-world data or feedback through rollouts in the real
world. This helps in gradually reducing the reality gap.

Sensor Calibration and Noise Modeling: Accurately
modeling sensor noise and calibrating sensor readings in the
simulation to match those in the real world can significantly
improve the transferability of the learned behaviors. This
is also called system identification and can be performed
adaptively, similar to reality checkpoints.

Each of these techniques can be used independently or in
combination, depending on the specific requirements of the
task and the nature of the reality gap in a given application.
The choice of technique is also influenced by factors such
as the availability of real-world data, the computational
resources, and the specific characteristics of the task and the
morphology of the robots.

4. Scaling Simulation is not Sufficient
In order to achieve widely usable real-world manipulation
systems, specifically those that satisfy the desiderata in sec-
tion 2, we take the position that scaling robotic simulations
is not sufficient. We believe it is important to address this
because a large volume of recent works in scaling robot
learning for manipulation are extensively trying to scale up
simulation. In this section, we consider robot manipulation
policies that are trained entirely in simulated environments
i.e. without the use of any data or interactions with physi-
cal robots. Several recent works adopt this philosophy of
training entirely in simulation and deploying either in purely
simulated environments, or on a physical robot with lim-
ited real-world environment variations (Handa et al., 2023;
Akkaya et al., 2019).

4.1. Even the best simulators cannot match reality

For a simulation system to be useful as a proxy for real-
world manipulation, the physics of object-object interactions
and object-robot interactions needs to be accurate across a
ramge of real world scenarios. While it is now possible to
create a near accurate physical simulation of the robot arm
in isolation, it is difficult to manually create accurate simula-
tions of contacts, and motions of most common objects, let
alone all possible objects. A part of this difficulty is obtain-
ing 3D assets of common objects in the real-world, which
is necessary for creating simulation environments. Even
large scale datasets of assets (Downs et al., 2022; Szot et al.,
2021; Savva et al., 2019) only contain a few categories of
objects, and are not comparable to real-world diversity. In
addition to assets of objects, simulating all possible physical
forces is tricky for several types of objects, and recreating
the visual appearance of real scenes with diversity similar
to that of real-world distributions is further non-trivial.

Simple everyday tasks like pouring coffee from a cup, wash-
ing dishes in the sink, chopping vegetables on a table, fold-
ing clothes etc. are extremely difficult to reliably simulate
owing to high complexity of the respective state-spaces.
Scaling simulation frameworks is unlikely to directly help
with these tasks as each of these would require separate
nuanced considerations for faithful simulation. Indeed, cre-
ating a very accurate simulation of reality is a painstaking
process, and one that is unlikely to be possible with an ac-
curacy high enough for direct real-world deployment. Even
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if some aspects of reality like visual realism of scenes is
achieved with high fidelity, simulating accurate physics and
modalities beyond vision like tactile sensing will still remain
non-trivial at scale. Since direct transfer from simulation
to diverse real world scenarios is probably unlikely, hence
simulation alone is not sufficient for training real-world
manipulation policies.

4.2. Sim2Real requires solving a more difficult problem
to solve a simpler problem

Consider the task of pouring water from a jug to a cup,
shown in Fig. 2. Solving this task probably requires an
approximate reasoning of how water flows, its viscosity, and
based on that an estimate of how much to tilt the jug for
water to flow slow enough without creating a big slash, and
fast enough without waiting the entire day for it to gradually
drip. This task probably doesn’t require reasoning about
how each ‘particle’ of water is likely to interact under the
effect of all possible forces with its neighboring particles,
with gravity, the surface of the jug, and the base of the cup.
Indeed, simulating the process of water being poured from
a jug is arguably a more difficult problem than designing a
policy to pour water from the jug.

This example of pouring in terms of difficulty in simulation
is not a contrived edge case, but is abundant in everyday
tasks (Fig. 2). In order to know how to do something, we
do not need to know the ‘what’ of everything involved in
the process. Even as humans, we do several everyday tasks
without knowing how exactly the world will evolve is re-
sponse to our actions. We chop onions without knowing
how many pieces will be formed on each strike, and where
on the chopping board they will fall, we throw trash into the
bin without knowing where in the bin it will land, we pour
ingredients into the soup without knowing the viscosity at
each step of cooking - the list can be endless. In fact, for
most everyday tasks, we do not have an accurate forward
simulation of each intermediate step. Through experience
we have developed models of what to focus on and what
not to (or what cannot be focused on with the limited at-
tention span we have). However, when designing physics
based simulations, there is no way to factor in this likelihood
of “salient” events worth focusing on. One can only hope
to simulate everything accurately, thereby solving a much
harder task than what is needed for manipulation.

4.3. Simulations provide a false notion of progress in
manipulation

The flurry of easily usable computer simulations for manip-
ulation has had an unintended consequence of researchers
over-indexing on simulation experiments for drawing con-
clusions about manipulation in general. It is our position
that simulation experiments, no matter how rigorous and

diverse, are simply not sufficient for justifying anything
substantial about real-world manipulation. Even if a task-
specific policy for a task like “opening a drawer” works with
90% success rate across 100 different drawers in simula-
tion, when this policy is deployed on an arbitrary real-world
drawer with the same robot, the odds of success are not nec-
essarily going to be close to 90%, simply because it is not
possible to simulate all types of drawer that are likely to nat-
urally exist in the world. When we extend this argument to a
generalist agent capable of multi-task behaviors, which this
paper focuses on, the conclusions from simulation become
even weaker in the real world.

So, do simulation experiments not provide any useful indica-
tion of progress? Of course they do! Simulation studies are
a great way for prototyping sequential decision making algo-
rithms, for example those based on reinforcement learning
(RL). If a particular RL algorithm succeeds in simulation,
for example in Atari games, the takeaway is precisely that
this algorithm is good for Atari games! If it also succeeds in
simulated articulation manipulation tasks, then the takeaway
is that it also succeeds in simulated articulated manipula-
tion tasks! If it succeeds in a wide diversity of simulated
control tasks ranging from video games to locomotion to
manipulation, then the takeaway is that this algorithm is
good for a wide diversity of simulated control tasks! Several
recent generalist agents have been developed in simulation
that fit this criteria (Hafner et al., 2019; 2023; Hansen et al.,
2022) However, concluding that a policy trained with this
algorithm is simulation will also be helpful directly for real-
world control tasks is over-statement!

Some recent papers have attempted to demonstrate this point
quantitatively through experiments. In (Dasari et al., 2023),
the authors find that pre-trained visual representations that
enable high success rates in simulated robot manipulation
tasks, do not perform well in the real world. More gen-
erally, there is very less correlation between performance
in simulation and in real tasks, when agents are deployed
with the same pre-trained visual representation backbone.
Similar observations about the connection between scaling
robot policies in simulation and their applicability in the
real world not being straightforward are made in anotehr
recent work (Pumacay et al., 2024) In summary, while sim-
ulation environments may be useful for their own sake, for
real-world manipulation they are not likely to be sufficient
even at scale.

5. Scaling Simulation is not Necessary
In this section we argue that scaling simulation frameworks
is not necessary for reliable real-world manipulation. We
establish this by demonstrating that whatever benefits can
be accrued from simulation for real-world manipulation can
be achieved through alternate means in much easily scalable

5



Scaling Simulation is Neither Necessary Nor Sufficient for In-The-Wild Robot Manipulation

Figure 2. Illustration of everyday tasks where simulating the task is a much difficult problem than actually executing the task. Tasks
such as these are ubiquitous in everyday life, and only require a coarse reasoning of the forward dynamics of the scene for successful
execution.

ways.

5.1. Priors for Interaction

A line of simulation based robotics research uses policy
learning techniques in simulated environments to pre-train a
manipulation policy that is fine-tuned in the real-world. This
fine-tuning is done either through real-world reinforcement
learning (Bahl et al., 2022) or through imitation learning
with a few demonstrations (Ma et al., 2022). This pre-
training followed by fine-tuning is akin to a type of do-
main adaptation described in section 3. For pre-training in
simulation, several techniques like domain randomization,
combined with reinforcement learning can be used.

This recipe of incorporating priors for real-world manipula-
tion, although plausible for narrow deployment scenarios,
is unlikely to scale to diverse real-world tasks in diverse
scenes. This is due to a number of issues ranging from
the visual artifacts of scenes in simulation differing signifi-
cantly from what real-world scenes look like (large visual
domain gap), the challenges of designing reward functions
for each task separately (for having reinforcement learning
as the pre-training objective in simulation), the difficulty of
collecting expert demonstrations (for imitation learning as
the pre-training objective in simulation). Although some of
these issues have been made more feasible by large models,
for example reward design with LLMs (Chen et al., 2023a;
Qi et al., 2023), and semantic augmentations for visual di-
versity (Yu et al., 2023; Bharadhwaj et al., 2023c; Mandi
et al., 2022; Chen et al., 2023b), the sim2real gap for a di-
verse set of tasks is still likely to be significant to the extent

that just a little fine-tuning in the real world is unlikely to
be sufficient. Indeed, results from recent papers adopting
this recipe have only been able to show successes in narrow
domains (Qi et al., 2023; Chen et al., 2023a).

We argue that simulation is in fact not necessary for pre-
training, and a much simpler, more scalable route exists with
higher likelihood of reducing domain gap both in terms of
visual representations and action trajectories. This approach
makes use of pre-training with diverse passive videos on the
web. Videos on the web, of humans doing everyday tasks are
abundant, and are freely available. There are already several
successes of this in recent robot manipulation works, both
for visual pre-training and action pre-training (Nair et al.,
2022; Ma et al., 2022; Bharadhwaj et al., 2023b; Xiao et al.,
2022; Bahl et al., 2023). Scaling approaches to leverage
these passive datasets is a much more tractable direction
to pursue as it doesn’t require the significant engineering
efforts of designing realistic simulators.

Of course, leveraging passive video datasets for robotics is
not trivial, due to the huge domain gap, but being abundant,
diverse, and freely available is a major benefit compared
to simulation. In addition, recent advances in computer
vision techniques like 3D human pose estimation (Mehta
et al., 2017; Kocabas et al., 2023; Ye et al., 2023a), hand-
object pose estimation from RGB videos (Rong et al., 2020;
Ye et al., 2022; Yang et al., 2022; Pavlakos et al., 2023),
affordance prediction (Ye et al., 2023b; Goyal et al., 2022),
and tracking points and objects in videos (Karaev et al.,
2023; Doersch et al., 2022; Yang et al., 2023a) have made
it possible to leverage useful priors for manipulation from
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these passive datasets. Several of these approaches can be
conveniently scaled with data and compute, are thus not tied
to tedious engineering efforts involved in creating accurate
physical simulations.

5.2. Safety Considerations

A generally important use case of simulations across re-
search fields is to perform tests of algorithms that will be
eventually deployed in real-world safety critical scenarios.
Since failures in simulations are not fatal, trial and error
based learning is especially amenable for simulation envi-
ronments. Testing in simulation is a critical step for safety-
critical systems where direct real-world experimentation can
be hazardous, costly, or impractical. Such simulation-based
testing has been particularly successful for closed systems
like nuclear power plants, and electric grids, where safety
is not conditioned on interaction with an ever changing
and hard to predict environment. Beyond widely deployed
systems, in robotics research, simulation based develop-
ment has been helpful for navigation and locomotion (Ku-
mar et al., 2021; Hwangbo et al., 2019; Yang et al., 2023b;
Truong et al., 2023) where the degrees of freedom of the
system are low and the factors of variation in the environ-
ment are enumerable. For locomotion with quadrupeds and
bipeds, a recent wave of domain randomization based RL
algorithms that change the structure, terrain, and friction of
the ground in simulation has been successful for sim2real
transfer (Kumar et al., 2022; Agarwal et al., 2023).

However, for manipulation, the notions of safety are much
more subtle, task-dependent, and in many cases directly
dependent on the human alongside whom the manipulator
is deployed (Thananjeyan et al., 2021; Bharadhwaj et al.,
2020; Thumm & Althoff, 2022). In many scenarios, a safe
behavior is related to notions of compliance described in
section 2. When a robot is moving a full cup of coffee from
one end of the table to the other, we would not want it spill
any on the laptop that is next to cup. A compliant robot
might do something similar to what a human would in this
scenario - simply move the laptop aside first before grasp-
ing the cup! Although simple to describe, such behaviors
are difficult to simulate especially autonomously. Hence,
simulations are not necessary for developing safe real-world
manipulators compliant with human preferences.

A much simpler approach to safe real-world manipulation
is to have certain basic constraints directly in the real-world
and perform preference based optimization of compliance.
Examples of simple task-agnostic constraints include hav-
ing smooth trajectories without jerky motions, collision
detection and avoidance with on-arm sensors, and a well-
defined workspace around the robot beyond which any part
of the arm doesn’t venture. In addition to these physical
constraints on behavior, the priors on the learned policy,

especially action priors also help in constraining the manip-
ulation behaviors to a constrained super-set of compliant
behaviors. Further, fine-tuning with real-robot trajectories,
and with human-in-the-loop feedback are easily usable tech-
niques for further constraining the robot behaviors to lie
within a subset of compliant trajectories for different use
cases.

5.3. Sub-optimal Data

An argument for scaling simulation is that it allows for gen-
eration of significantly high quantity of data at minimal
cost (Mandlekar et al., 2023; Dalal et al., 2023). Typical
approaches for automating such simulated robot data col-
lection rely on scripted policies rolled out with scene vari-
ations, and pre-trained agents (for example agents trained
with task-specific reward functions via RL). However, prior
works relying on such automatic data generation strate-
gies are typically bottle-necked by the diversity of gen-
erations, since it is intractable to automatically define re-
ward functions for different manipulation tasks in diverse
scenarios (Ma et al., 2023; Mandi et al., 2022). As such
the behaviors are restricted to table-top manipulations in
structured scenes (Shridhar et al., 2023; Mandi et al., 2022;
Mandlekar et al., 2023). Hence, being able to collect an
abundance of data through simulation is unhelpful if they
are not representative of the real world diversity of tasks and
scenes.

For generalizable real-world manipulation, we believe that
recent approaches in democratizing tool use will play a
key role in enabling diverse real world data collection in
a scalable manner (Chi et al., 2024; Wang et al., 2024).
Easily usable tools like these that humans can wear and
perform everyday tasks will likely have a huge impact in
collecting real world datasets for robot manipulation. In
addition to these tools, widely adoptable teleoperation sys-
tems, like ALOHA (Fu et al., 2024) are going to further
enable collecting expert datasets of high quality that can be
used for imitation learning. Such real-world data collection
systems can also be equipped with sensing modalities be-
yond vision like tactile sensing with easily available tactile
sensors (Yuan et al., 2017; Bhirangi et al., 2021) for multi-
modal real-world learning instead of relying on imperfect
tactile simulators.

In order to learn from such diverse real-world datasets (of
different robot embodiments in different scenarios), a popu-
lar approach is to define an action space that is embodiment-
agnostic, and train policies across diverse datasets through
a single model. A recent example of this is the Open-X
system (Padalkar et al., 2023a). Further, going beyond robot
datasets, some recent papers (Bharadhwaj et al., 2023a; Bahl
et al., 2023) have also used human video datasets (web data)
in conjunction with robot data to learn unified models, by
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abstracting out relevant details from the human datasets (like
hand and object poses). Overall, we believe such scalable
approaches will be able to address the issue of data paucity
for manipulation in a much more useful manner, compared
to scaling simulation.

6. Discussion
In this paper we argued as to why scaling simulation is nei-
ther necessary nor sufficient for generalizable real-world ma-
nipulation that is compliant with human preferences. How-
ever something can be neither necessary nor sufficient, and
still be “useful.” So, is simulation useful in this context?
Maybe! But significantly only in contrived and highly struc-
tured scenarios. The claims in this paper do not necessarily
apply to structured settings like industrial automation tasks,
where the task definitions, the environment, and all aspects
of the scene are largely pre-determined and unchanging.
Instead, we focused on manipulation systems that are aimed
to be deployed in-the-wild in scenarios like homes, offices,
and kitchens for helping us in diverse everyday tasks. A cen-
tral theme of this position paper has been that the potential
benefits of simulation are outweighed by the complexity of
designing and scaling simulation frameworks in a manner
that is aligned with the goals of diverse real-robot manip-
ulation. Properly scaling simulation is not trivial, requires
significant engineering efforts, and in the end is still likely
to fall short of accurately modeling real-world physics.

In recent years, owing to the fact that all simulators are
imperfect, approaches for sim2real transfer have become
increasingly popular. The most popular among them is
domain randomization, since it requires simulation-specific
training and can in-principle be directly deployed in the real
world. A common narrative around domain randomization
is that if the simulation parameters are randomized “enough”
during training, say for n different combinations where n is
very large, then the trained policy should generalize to the
real world, since reality is just the n+ 1th simulation.

This couldn’t further be from what happens because an im-
perfect simulation not just doesn’t have the parameter values
of the real world right, it doesn’t have the parameters right
to begin with! Especially for robotic manipulation, where
the tasks are contact-rich, involve diverse objects includ-
ing deformable objects, and a lot of visual and structural
variations in the scene, estimating the right parameters to
quantify factors of variation through simulation is hard, al-
most intractable. So, no amount of domain randomization
is likely to be enough to capture the diversity of real-world
variations.

Perhaps, more philosophically, over-reliance on simulation
based benchmarks has distracted the robot learning commu-
nity in recent years, to the point where there are significant

differences in the types of tasks targeted by robotics re-
searchers who work on non-learning methods, and robot
learning researchers who demonstrate results on simple sim-
ulation benchmarks. Thankfully this trend is starting to
change but still a lot of papers claim to improve robotics but
demonstrate results only in simulation. This is harmful for
the the machine learning community broadly as it doesn’t
bring us any closer to useful autonomous robots in the real
world while providing us a misleading sense of progress in
this direction. Only by deploying robots in the real world
can we quantify the limitations of current machine learning
algorithms for robotics, and develop solutions to improve
them.

While this paper specifically targeted robotic manipulation,
several of the arguments also apply to locomotion and nav-
igation research. It is true that a lot of recent progress in
developing autonomous quadrupeds that can walk in diverse
terrains, and home robots that can perform goal directed
navigation in generic homes has been fueled largely by ad-
vances in simulation-based training, the scope of real-world
deployment is still far from what we should be comfortable
with as end-users of these systems.

7. Conclusion
Machine Learning for robot manipulation poses unique chal-
lenges owing to high-dimensional state-action spaces and
complex long-horizon decision making. In order to build
robot manipulation systems that are useful in everyday life,
we need to mitigate these challenges by developing scalable
approaches that can enable diverse real-world generaliza-
tion while being compliant with human preferences. In
this paper we argue that scaling robotic simulators is un-
likely to help towards this goal of generalizable real-world
manipulation, and can in fact serve as a misleading metric
of progress towards this goal. We specifically argued that
scaling simulation is neither necessary not sufficient for
developing generalizable and compliant real-world manipu-
lation that can be used for diverse tasks in diverse scenarios.
We showed that while this does not preclude simulation
from being helpful or convenient in certain scenarios, for
robotic manipulation, there exist simpler and more easily
scalable techniques with higher odds of succcess. We be-
lieve that as community we should focus our resources on
techniques and data sources that are more likely to yield
big wins. Most of the critique in this paper, as is typical
in position papers is based on conceptual arguments, and
evidence of prior research works. We welcome arguments
and research methodologies that challenge the takeaways of
this position paper, and hope that this structured critique of
scaling simulations for real-world manipulation will spark
discussions in the community, grounded in specifics rather
than philosophical disagreements.
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Impact Statement
This is a position paper argument for re-thinking the role
of simulation in real-world robotic manipulation. There are
many potential societal consequences of our work, specif-
ically the deployment of robotic manipulation systems at
large scale in people’s homes, offices, kitchens etc.
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