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Abstract
The efficient construction of anatomical models is one of the major challenges of patient-
specific in-silico models of the human heart. Current methods frequently rely on linear
statistical models, allowing no advanced topological changes, or requiring medical image
segmentation followed by a meshing pipeline, which strongly depends on image resolution,
quality, and modality. These approaches are therefore limited in their transferability to
other imaging domains. In this work, the cardiac shape is reconstructed by means of three-
dimensional deep signed distance functions with Lipschitz regularity. For this purpose, the
shapes of cardiac MRI reconstructions are learned to model the spatial relation of multiple
chambers. We demonstrate that this approach is also capable of reconstructing anatomical
models from partial data, such as point clouds from a single ventricle, or modalities different
from the trained MRI, such as the electroanatomical mapping (EAM).
Keywords: Deep Signed Distance Function, Shape Reconstruction, Cardiac Modeling,
Lipschitz Regularized Network

1. Introduction

Modern personalized precision medicine frequently targets patient-specific therapies with
improved therapy outcomes, reduced intervention times, and thus lower costs. In the case
of cardiac personalized treatment, this necessitates complex simulation models from patient
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data Corral-Acero et al. (2020). This future vision of personalized cardiac treatment relies
on generated 3D models, which should represent the anatomy of the corresponding patient.

Current methods to generate anatomical models usually require computed tomogra-
phy (CT) or magnetic resonance (MR) images, which are segmented and subsequently
meshed (Strocchi et al., 2020a). Yet, while automatic cardiac image segmentation is well-
researched and constantly improving thanks to machine learning (Painchaud et al., 2020;
Campello et al., 2021; Zhuang et al., 2022), it is limited to a specific image modality and res-
olution. Other modalities such as electroanatomical catheter mapping (Bhakta and Miller,
2008) are difficult to fit within standard frameworks, albeit they are very important for
patient-specific modelling (Ruiz-Herrera et al., 2022).

In this work, we propose the use of implicitly learned representations through signed
distance functions (SDFs). We start from the DeepSDF method (Park et al., 2019), which
encodes SDF-based surfaces through a decoder-only neural network with a small-dimensional
input latent code. The resulting neural network is a cardiac shape atlas. Shape inference
can be achieved from location measurements such as electro-anatomical mappings and is
applicable to arbitrary resolutions. Additionally, interpolation in the latent space yields
shape interpolation in the physical space, a useful feat to create novel shapes. Differently
from the original DeepSDF method, here we take advantage of Lipschitz-regularized neural
networks (Liu et al., 2022) so to avoid overfitting of the network and to enforce smooth
interpolations between samples in the latent space. This method is especially efficient for
learning on relatively small training sets as considered here.

We demonstrate that this Lipschitz-regularized DeepSDF architecture is suited for con-
structing cardiac models by learning from a database of 44 publicly available, post-processed
cardiac models. The resulting DeepSDF model is designed to encode bi-ventricular shapes
and also infer new shapes from sparse point clouds, even if only partial domains are avail-
able (e.g., only endocardial measurements of a single chamber often encountered in elec-
troanatomical mappings). The proposed method shares some similarities with the very
recent work by Sander et al. (2023); however, our approach exhibits several major ad-
vantages compared with this paper: 1. applying a Lipschitz-regularized version of DeepSDF
methodology to the cardiac domain on the example of bi-ventricular models and demonstrat-
ing advantageous accuracy in the presence of sparse data in comparison to state-of-the-art
methods, 2. thanks to the multi-chamber approach both topological constraints are implic-
itly incorporated and adjacent anatomical structures benefit from additional available data,
which might also aid uncertainty quantification in future research, 3. our approach is more
robust against measurement errors modeling noise due to the iterative noise estimation and
the additional prior penalization, which allows for the reconstruction of cardiac shapes from
in-vivo measurements of an electroanatomical mapping procedure.

2. Related work

Surface reconstruction from point clouds is an intensively researched topic and provides
a variety of possible approaches (Ma et al., 2022). Classical approaches assume no prior
knowledge of the given point clouds, but in turn, require dense point clouds and are often
sensitive to noise (Carr et al., 2001; Kazhdan et al., 2006; Kazhdan and Hoppe, 2013; Um-
menhofer and Brox, 2015; Fuhrmann and Goesele, 2014). Modern deep-learning approaches
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try to overcome these limitations by learning prior information about shapes using learned
SDFs (Park et al., 2019; Hanocka et al., 2020), occupancy fields (Mescheder et al., 2019),
level sets (Michalkiewicz et al., 2019) or implicit fields (Chen and Zhang, 2019).

In this context, the DeepSDF method is one of the most active fields of research. Such
methods usually try to infer a multitude of shapes from at least partially dense point clouds.
However, this method is prone to overfitting the data, thus often requiring regularization
both in the latent space, as well as in the neural network by imposing dropout rules (Park
et al., 2019). In Liu et al. (2022), Lipschitz-regularized linear layers are proposed, which
are able to overcome some of these limitations. Alternative forms of regularization are, for
instance, based on the eikonal equation (Gropp et al., 2020), other methods rely on local
SDFs (Chabra et al., 2020; Jiang et al., 2020; Tretschk et al., 2020; Erler et al., 2020),
neural-pulls (Baorui et al., 2021), or learned unsigned distance functions (Chibane et al.,
2020). For further methods and comparisons, we refer the reader to Ma et al. (2022).

Statistical Shape Models (SSMs) are classical methods for (cardiac) shape reconstruc-
tion, which are tailored to the whole heart (Ecabert et al., 2008; Hoogendoorn et al., 2013;
Lötjönen et al., 2004; Ordas et al., 2007; Unberath et al., 2015; Zhuang et al., 2010), the
atria (Nagel et al., 2021), or the ventricles (Bai et al., 2015; Petersen et al., 2017). Only a
few works have shown that deep learning methods can be applied to the cardiac domain to
reconstruct cardiac shapes from point clouds (Beetz et al., 2023; Kong et al., 2023; Xiong
et al., 2022; Sander et al., 2023; Alblas et al., 2023; Wang et al., 2021), whereas most of the
learning based methods heavily rely on image input (Beetz et al., 2022; Kong et al., 2021).

3. Method

In this section, we comment on the representation of cardiac shapes by learned SDFs and
provide details about training and shape completion.

3.1. General setting

We assume that each shape describing the heart is volumetrically represented as an SDF
given by fS : R3 → R mapping from spatial points x ∈ R3 to their respective signed
distances s ∈ R. These signed distances encode the signed projection distance at a point x
to the surface (negative values inside, positive values outside). In such a way, the cardiac
surface is represented as the zero-level set of this SDF, i.e., {x ∈ R3 : fS(x) = 0}. A
straightforward approach to learning such an SDF for arbitrary shapes involves representing
the SDF by a neural network Sθ : R3 → R, in which case the SDF is fully defined by
the network’s architecture and weights θ. However, modeling surfaces solely through their
neural network weights would necessitate a separate SDF and subsequent neural network for
each individual surface, while also neglecting any similarities between the available training
shapes. Following (Park et al., 2019), we instead model all shapes using a single neural
network and additionally provide this network with a d-dimensional latent representation z ∈
Rd of the shape as an additional input, together with the aforementioned spatial coordinates,
i.e. Sθ : R3+d → R. Hence, we encode multiple heart geometries with the same network,
but different latent codes. We propose to model each of the left and right endocardial and
epicardial surfaces with a shared latent code and neural network by letting the DeepSDF
simultaneously estimate a signed distance for each of the closed bi-ventricular surfaces s =
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(s1, s2, s3, s4)
> ∈ R4. In summary, the learned DeepSDF is given by the vector-valued

function Sθ : R3+d → R4.

3.2. Training and network architecture

The anatomical samples Xi := (xk, sk)
Ki
k=1 used for learning are Ki pairs of spatial coordi-

nates xk with their sampled signed distance vector sk for the i-th biventricular shape. The
set of all N available anatomical bi-ventricular samples is denoted as X := (Xi)

N
i=1. To each

anatomical shape i, we associate a coupled latent code representation zi ∈ Rd also learned
from data. We denote the set of learned latent codes as Z := (zi)

N
i=1. Our goal during

training is to minimize the mismatch between the sampled signed distances and the ones
estimated by the network through a simple quadratic loss term. Additionally, to restrict
the latent codes Z, we follow (Park et al., 2019) and assume a zero mean Gaussian prior
distribution with covariance σ2I on the latent codes, which gives rise to the loss term

L(θ, Z) =
1

N

N∑
i=1

∑
(xk,sk)∈Xi

1

4Ki
‖Sθ(xk, zi)− sk‖2 +

1

σ2
‖zi‖22.

The parameter σ is used to balance between reconstruction accuracy for the training shapes
and regularity in the latent space, which is essential for shape completion as described in
Section 3.3. See Section 4.1 for the choice of σ in our model. In Liu et al. (2022), it was
shown that learning L directly may result in overfitting and might provide poor interpola-
tion properties for the latent space. To overcome these issues, a Lipschitz penalization on
the network was proposed in order to better control the smoothness. For this purpose, the
Lipschitz bound L of the network is estimated by L =

∏M
i=1 ‖Wi‖p for an M -layer deep

network, where Wi are the network weights of the i-th layer. We closely follow the im-
plementation of (Liu et al., 2022) where the linear layers of our network are replaced with
Lipschitz-normalized layers. For each layer an additional weight ci is introduced such that
softplus(ci) = ln(1 + eci) serves as an upper bound softplus(ci) ≥ ‖Wi‖p for the Lipschitz
constant. Integrating this Lipschitz-regularization into our previous loss-functional L leads
to our finally used cost-functional

J(θ, Z) = L(θ, Z) + α
∏

ci∈C(θ)

softplus(ci), (1)

where C(θ) = (ci)
M
i=1 denotes the network parameter dependent per-layer Lipschitz bounds.

As mentioned, for samples Xi := (xk, sk)
Ki
k=1 the network inputs are the latent code zi

and the spatial coordinates xi of the sample point. Following Liu et al. (2022) the spatial
coordinates are multiplied by the factor Cs = 100 to balance the Lipschitz regularity of the
latent space and the spatial coordinates. We use 5 hidden layers with 256 neurons and tanh
activation functions. In the third hidden layer, the latent code and the spatial coordinate
are concatenated to the output of the previous layer. The last layer is a linear layer with
four signed distance functions as output, one for each of the left, right, epi- and endocardial
surfaces. The latent code size was chosen as d = 64. A schematic representation of the
network is shown in Figure 1 (left).

For the training of our network, we built a public shape library of watertight 3D shapes
for endo-/epicardium of the left/right ventricles (Grandits et al., 2024) (4 shapes in total)
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Figure 1: Left: a schematic representation of the employed DeepSDF. Right: comparison of ground
truth meshes (LV in red, RV in blue) with reconstruction on the training dataset. The reconstructed
meshes are color-coded with the signed distance to the ground truth mesh in mm.

based on Rodero et al. (2021); Strocchi et al. (2020b). Further details on the construction
of the training data is provided in appendix A.

3.3. Shape completion

After learning the SDF network, a new anatomical bi-ventricular shape can be inferred from
sparse point clouds of any combination of surfaces or given signed distance. For this, we
consider K given samples consisting of triplets Ỹ of spatial coordinates xk ∈ R3, a single
signed distance sk ∈ R, and an index of the surface jk ∈ {1, 2, 3, 4}. If a point xk lies on
the surface jk, then sk = 0. Finding the bi-ventricular reconstruction of a point cloud thus
reduces to finding its latent code representation z by minimizing the following problem

min
z

1

K

∑
(xk,sk,jk)∈Ỹ

(
(Sθ(xk, z))jk − sk

)2
+

β

σ2
‖z‖22, (2)

where the subscript refers to the vector component and β is an additional weight that is
increased depending on the noise of the input point cloud. For noise-free point clouds, we
set β = 1 to obtain the maximum-a-posterior (MAP) estimation (Park et al., 2019).

For noisy input point clouds, the expected data loss of a perfect reconstruction can be
approximated with the variance of the noise ξ. We set β = Cbξ, where Cb = 100 is a chosen
scaling factor. In the case of real-world data, the underlying noise structure is unknown
and estimated as follows: We start with a reconstruction S0

θ for an arbitrary initial noise
estimation ξ̄0. We then iteratively estimate the empirical variance ξ̄2n+1 based on Snθ via

ξ̄2n+1 =
1

K − 1

∑
(xk,sk,jk)∈Ỹ

(
(Snθ (xk, z))jk − sk

)2
. (3)

This estimation exhibits a high experimental convergence rate (see appendix Section F).

4. Experiments

In this section, we state details of the training procedure and the network architecture.
Moreover, we introduce distinct metrics for the evaluation of the surface reconstruction
quality, which are exploited in all benchmarks. Finally, we evaluate the network on in-vivo
measured catheter data.

5



Cardiac DeepSDF

4.1. Numerical experiments

In this section, we present the numerical results obtained with the proposed method. Dur-
ing the training process, we optimize both the network parameters θ and the latent code
representations zi of the training data. The network is fit to 4 surfaces, namely the epi- and
endocardium of the right and left ventricle, and the associated hyperparameters σ and α are
optimized for the best performance of the reconstruction in the shape completion process.
For the loss term, we thus obtained 1/σ2 ≈ 1.8 × 10−7 and α = 1.9 × 10−6. The network
is trained with the Adam optimizer (Kingma and Ba, 2015) for 3000 epochs with a learning
rate of 0.005 which is decreased twice with the factor of 0.2 after 2700 and 2900 epochs. For
the mesh generation, we compute the signed distance function on a 1283 grid on the bound-
ing box of all training points and reconstruct the zero-level set using the contour filter of
PyVista (Sullivan and Kaszynski, 2019), based on marching cubes. The final reconstruction
quality of the training models is depicted in Figure 1 (right).

We test the regularity of our network with respect to the latent space input with inter-
and extrapolation between two latent codes of the training dataset. The shapes of the recon-
structed hearts change uniformly between every inter- and extrapolation point and generate
meaningful results (see appendix Figure 4). Points that are drawn from the prior distri-
bution with covariance σ2I produce meaningful heart geometries (see appendix Figure 5).
With our model, we are able to learn multiple implicit surfaces at the same time and en-
code them in a joint latent space representation. Therefore, it is easily possible to calculate
the latent code during inference time based on an arbitrary subset of surface points. We
test this by sampling sparse point clouds on the endocardium of the left ventricles from
the test set and optimizing the latent code according to (2), still providing us with a full
4-chamber biventricular shape. Not only is our method capable of a close reconstruction of
the endocardium of the left ventricle, but it can also predict possible shapes of the other
three surfaces. We provide visual results for a reconstruction from 50 lv endocardial points
in Figure 2 and Figure 6. Note however that the accuracy of the unmeasured right ventric-
ular shape significantly decreases. Numerical results of the reconstruction quality on the
endocardium of the left ventricle can be found in Section 4.2.

4.2. Validation

Our method is compared with Points2Surf (Erler et al., 2020), Point2Mesh (Hanocka et al.,
2020), and a variant of our network without Lipschitz regularization. In all experiments,
only the endocardium of the left ventricle is considered. All methods are compared on point
clouds with different cardinalities n, ranging from very sparse point clouds with n = 50
to relatively dense ones with n = 2000. Additionally, the coordinates of the points are
perturbed with noise drawn from a Gaussian normal distribution with zero mean and fixed
covariance ξ2I. For each number of points n and level of noise ξ we test the methods
on the same 44-point clouds sampled from the meshes of the data set (for Points2Surf we
apply a pre-trained model (Erler et al., 2020)). In the appendix we additionally provide a
comparison to a SSM (see Appendix C). To test our method on all 44 meshes of the dataset
we selected 11 disjoint test sets and train a different network on each remaining training sets.
For both our unregularized (α = 0) and regularized DeepSDF we take β = max(1, Csξ

2)
and minimize the objective in (2) using the Adam optimizer (Kingma and Ba, 2015) with
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200 - 0.68±0.11 0.72±0.54 0.49±0.09
500 1.66±0.32 0.57±0.08 0.70±0.57 0.45±0.09

2
50 - 2.33±0.54 1.65±0.87 1.38±0.28
200 - 1.16±0.13 1.16±0.57 0.96±0.17
500 1.65±0.14 0.97±0.10 0.97±0.33 0.96±0.11

5
50 - 3.50±0.49 2.6±0.98 2.39±0.48
200 - 3.17±0.62 1.87±0.39 1.84±0.27
500 2.82±0.31 3.85±1.15 2.32±1.00 1.99±0.33
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Figure 2: Left: mean and standard deviation of the Chamfer distance (CD) for different numbers
of input points n and different levels of noise ξ (lowest value in bold magenta, second lowest value
in teal and italic; short version of Table 1 in the appendix). The asterisk denotes the non Lipschitz
regularized version of our network. Right: reconstruction of both endocardia from points on the LV
endocardium (gt mesh in grey, reconstruction color-coded with implicit distance).

a learning rate of 10−2 for 50 000 epochs. In our unregularized network we used standard
linear layers without any regularization and changed the activation functions to ReLu. For
the unregularized layers this seems to improve the performance drastically, whereas for the
regularized case we found that the choice of activation function did not influence the results
too much. The results for n = 50 on four meshes computed with our method are depicted
in Figure 7 in the appendix. For the comparison, we evaluated the performance in terms of
L2-Chamfer-distance (CD), which can be seen in Figure 2. For two point clouds X and Y
the CD is given as dCD(X,Y) = 1

|X|
∑

x∈X miny∈Y ‖x−y‖2+ 1
|Y|
∑

y∈Y minx∈X ‖x−y‖2. In
appendix B and Table 1 further comparisons in terms of Hausdorff-distance (HD), and Large
deformation diffeomorphic metric mapping (LDDMM) with their respective definitions are
provided. For every test case, we state the mean and standard deviation across the four
meshes of the test set. Note that Points2Surf did not converge for sparse point clouds (n = 50
and n = 200). We thus omitted the associated results in the table. Our method performs
particularly well on sparse point clouds compared to the other methods. The obtained
meshes are qualitatively similar to the ground truth meshes and geometric features like the
curvature can be recovered properly (see appendix Figure 8).

4.3. Inference from electroanatomical mapping data

Electro-anatomical mapping (EAM) is a common routine for patients undergoing catheter
ablation. As the catheter is inserted into the heart, it continuously builds a three-dimensional
point cloud that is triangulated into a surface model. Our EAM data consists of a set of
points located on the endocardial surface of the left ventricle. The point cloud is usually
sparse and unevenly distributed, but commonly allows for a reasonable estimate of endocar-
dial geometry. The exact data acquisition process is described in detail in appendix E. The
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EAM data SSM ours, ξ̄ = 3.368

EAM data SSM ours, ξ̄ = 3.368EAM data SSM ours, ξ̄ = 3.368

Figure 3: Reconstruction of the LV endocardium from the EAM data. We compare the SSM
reconstruction (left panel) to our approach for an optimal noise level estimation of σ̄ = 3.368 mm
(right panel). We also report the absolute distance from the geometry provided by the EAM system.

overall LV shape is well-approximated in most regions except for the apex, as can be seen
in Figure 3 and Figure 9, and includes the outflow aortic tract due to the learned modality.
Compared to the LV surface obtained from the EAM system, our shape is much smoother
and is even defined in regions where data is missing. Since the underlying noise structure is
unknown, we estimate the noise variance iteratively as described in (3). For the EAM data,
we obtain an estimate of 3.4 mm, consistent with the size of the electrode’s tip (2− 4 mm).
A table containing the iterates of the estimator can be found in Table 3 in the appendix.

5. Discussion and outlook

We have presented a novel method to represent cardiac anatomy based on signed-distance
functions. The quantitative comparison with other methods shows that our approach can
reconstruct the shape of hearts on a state-of-the-art level, especially for sparse and noisy
data. In contrast to the methods we compared against, our approach does not require
knowledge of the normals at each point of the point cloud. This knowledge however could
be incorporated at the shape completion stage by fitting the normalized gradient of the SDF
against the given normals.

The requirement of point clouds is a mixed blessing, as it requires the construction of a
point cloud from images through a learned method, or by segmenting the image stack and
using its surface. On the other hand, enables the algorithm to operate on different modalities.
Additionally, the algorithms expects the point clouds in a canonical pose (CT-based), which
however could be automated using rigid point registration methods Jian and Vemuri (2010).
Learning multiple SDFs with one network allows the generation of shapes based on input
data from different chambers of the heart or a combination of multiple surfaces.

While the present work only encodes bi-ventricular surfaces, the method itself can be
extended to encode additional chambers and shapes, such as the atria or aorta. This method
has important implications in cardiac modeling, digital twinning for precision medicine, and
the creation of virtual cohort of patients. We plan to further extend it to time-dependent
shape models and shape uncertainty quantification (Gander et al., 2021).
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Appendix A. Dataset

Based on Rodero et al. (2021); Strocchi et al. (2020b), we built a public shape library of
watertight 3D shapes for endo-/epicardium of the left/right ventricles (4 shapes in total).
Note that the dataset is composed of 20 patients that are diagnosed as healthy (no car-
diac conditions detected) Rodero et al. (2021) and 24 patients are diseased with various
heart failures recruited for cardiac resynchronization therapy (CRT) upgrade Strocchi et al.
(2020b,a). The generated shape data is available as a Zenodo record (Grandits et al., 2024).

A.1. Surface mesh generation

As a basis for our meshes, we used the publicly available data described in Rodero et al.
(2021); Strocchi et al. (2020b). Our dataset was produced by applying the following proce-
dure to each of the meshes: First, after loading the data, we localize the left ventricular apex
using the available universal ventricular coordinates (UVCs, (Bayer et al., 2018)) and use it
as the Cartesian origin for each of the meshes. Next, we extract the left/right ventricular
(LV/RV) endo-/epicardia by using the available surface tags. The provided meshes encode
the walls and valves into separate tags, from which we extracted the surfaces. We then iden-
tify all points of the wall that touch the associated valve (e.g. LV wall with mitral and aortic
valves). To identify all reachable points, we compute an eikonal solution using (Grandits,
2021) by placing an initial point on the inside of the wall (closest to the blood pool) with
minimal velocity across points that touch any of the valves. The wall is then separated
into epi- and endocardium by applying a thresholding filter on the solution. Finally, we
remove non-manifold parts, recalculate the inside/outside orientation and close the surface
to receive a watertight, proper manifold surface for the endo- and epicardia separately. Note
that all steps exploit VTK (Schroeder et al., 2006) through PyVista (Sullivan and Kaszynski,
2019).

A.2. Surface sampling

The training data was then generated by sampling 3, 000 surface points (surface samples) and
additional 1, 000 points, displaced in normal direction randomly (uniform) by up to 30mm
(band samples) per surface, i.e. 16, 000 points per patient. This point cloud was sampled with
a curvature-based weighting to create more samples around features of interest (e.g. apex,
valves). Specifically, we generated the dataset samples using face-weights w following Gao
et al. (2019, Eq. 2.6) that are defined as follows: consider a 2-dimensional compact surface
M , isometrically embedded in R3, with its Gaussian curvature κ and mean curvature η. The
weighting function is then defined as

wλ,ρ(x) =
λ|κ(x)|ρ∫

M |κ(ξ)|ρ dvolM (ξ)
+

(1− λ)|η(x)|ρ∫
M |η(ξ)|ρ dvolM (ξ)

. (4)

In our experiments, we used w0.1,0.75 as the curvature weight, purely by visual inspection.
We used the library trimesh (Dawson-Haggerty et al., 2009) for sampling and computing κ
and η.
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t = −0.5 t = 0 t = 0.5 t = 1 t = 1.5

Figure 4: The figure shows the generation of heart models via interpolation and extrapolation
of latent code vectors. In detail, we take two latent code representations z1, z2 from the training
dataset and decode the linear combinations tz1+(1−t)z2. We present the reconstructed endocardia.
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Figure 5: We reconstruct points in the latent space that are sampled from a zero-mean Gaussian
distribution with covariance σ2I.
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LV endo LV epi RV endo RV epi

Figure 6: We reconstruct all four surfaces from 50 points on the endocardium of the left ventricle.
The reconstructed meshes are color-coded with the mesh distance, i.e. the distance to the nearest
point on the ground truth mesh in mm.
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Figure 7: Reconstruction quality of the left ventricle from 50 points with different levels of noise.
We color-coded the implicit distance to the ground truth mesh.
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Appendix B. Metrics

To quantify the quality of reconstructed meshes we use the L2-Chamfer-distance (CD), the
Hausdorff-distance (HD), and a Large deformation diffeomorphic metric mapping (LDDMM)
loss terms between the reconstructed mesh and the ground truth mesh. We calculate the
L2-Chamfer distance and the Hausdorff distance by sampling 50 000 points on each mesh.
For two point clouds X and Y the CD is given as

dCD(X,Y) =
1

|X|
∑
x∈X

min
y∈Y
‖x− y‖2 +

1

|Y|
∑
y∈Y

min
x∈X
‖x− y‖2.

The Hausdorff distance (HD) is defined as

dHD(X,Y) = max{max
x∈X

min
y∈Y
‖x− y‖2,max

y∈Y
min
x∈X
‖x− y‖2}.

With the LDDMM loss, we measure how well the reconstructed meshMr can be registered
to the original ground truth mesh Mgt. To obtain numerically comparable results across
the different methods we first remesh the results to obtain meshes with the same resolution
(for this task, we use the Blender software package (Blender Online Community, 2018) with
a voxel resolution of 0.9 mm). To obtain the LDDMM loss, we calculate the center points
cF , the normals nF and the area AF of every face F from the set of faces Fr and Fgt,
respectively. For γ = 1 let

C(F1,F2) =
∑
F1∈F1

∑
F2∈F2

e−γ‖cF1
−cF2

‖22〈nF1 , nF2〉AF1AF2 .

Then, the LDDMM loss is defined as

dL(Mgt,Mr) = C(Fgt,Fgt) + C(Fr,Fr)− 2C(Fgt,Fr).

Appendix C. Fitting the Statistical Shape Model

The statistical shape model describes a heart shape as a variation of a mean shape µ in
different directions (modes). We used the publicly available SSM from the cardiac atlas
project that is based on 630 healthy Biobank reference patients, further described in Petersen
et al. (2017). A mean point cloud X ∈ RN×3 of N points together with 200 eigenmodes
Vi ∈ RN×3 for i = 1, . . . , 200 and corresponding eigenvalues λ ∈ R200 are provided, which is
restricted to the subset of points corresponding to the endocardium of the left ventricle. For
a given sample with weights α ∈ R200 and a spatial offset b ∈ R3, we obtain a representation
of the resulting point cloud C as C = X + 1Nb

> +
∑200

i=1 αiλiVi. For a given target point
cloud Y we use this model to optimize the asymmetric Chamfer distance daCD(Y,C) =
1
|Y|
∑

y∈Y minx∈C ‖x − y‖2 w.r.t. the weights α and the spatial offset b. Additionally, we
use a standard `2 loss term to obtain the final objective function

JY(α,b) = daCD

(
Y,X + 1Nb

> +

200∑
i=1

αiλiVi

)
+ β‖α‖2.

This loss function is optimized for 5 000 epochs with the Adam optimizer (Kingma and Ba,
2015), with a learning rate of 0.005.
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ξ n Points2Surf Point2Mesh SSM ours* ours
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e

0

50 - 1.74±0.41 3.58±1.04 1.20±0.91 0.75±0.18
200 - 0.68±0.11 2.73±0.77 0.72±0.54 0.49±0.09
500 1.66±0.32 0.57±0.08 2.34±0.76 0.70±0.57 0.45±0.09
2000 0.79±0.17 0.57±0.11 1.87±0.83 0.54±0.32 0.43±0.07

2

50 - 2.33±0.54 3.60±1.38 1.65±0.87 1.38±0.28
200 - 1.16±0.13 2.79±0.82 1.16±0.57 0.96±0.17
500 1.65±0.14 0.97±0.10 2.33±0.68 0.97±0.33 0.96±0.11
2000 1.85±0.42 0.80±0.13 1.88±0.86 1.11±0.78 1.48±0.52

5

50 - 3.50±0.49 3.79±1.34 2.60±0.98 2.39±0.48
200 - 3.17±0.62 3.00±0.88 1.87±0.39 1.84±0.27
500 2.82±0.31 3.85±1.15 2.49±0.70 2.32±1.00 1.99±0.33
2000 3.22±0.32 5.07±0.94 2.08±0.92 4.24±1.50 3.10±0.79

H
au

sd
or
ff
D
is
ta
nc

e

0

50 - 10.86±3.45 11.96±3.69 7.54±7.25 4.40±1.82
200 - 4.23±1.18 9.93±3.88 4.52±5.79 2.57±0.92
500 9.88±3.84 2.45±0.55 9.81±5.45 4.14±5.01 4.43±15.03
2000 6.30±0.73 1.66±1.11 11.29±9.16 2.99±2.91 2.00±0.79

2

50 - 12.86±3.99 12.27±4.58 7.75±4.40 6.01±2.54
200 - 5.82±1.17 10.27±4.04 6.07±4.20 4.36±1.32
500 10.29±1.02 4.53±1.12 9.69±5.07 5.31±5.27 4.41±1.14
2000 10.04±0.73 5.15±2.06 11.52±9.21 7.03±5.38 10.82±5.50

5

50 - 16.13±3.09 12.61±4.10 10.58±5.41 8.72±2.22
200 - 14.94±2.85 11.25±4.35 8.34±2.56 7.78±1.91
500 18.68±2.10 15.83±2.56 10.78±5.02 10.43±4.96 8.66±2.12
2000 19.77±1.46 17.95±3.34 13.20±9.14 19.64±6.48 15.29±4.12

LD
D
M
M

Lo
ss

(×
10

3
) 0

50 - 73.5±24.97 99.21±31.57 53.39±25.22 35.01±14.96
200 - 34.82±14.33 93.53±30.00 29.81±20.54 17.20±8.81
500 75.51±25.72 26.01±11.80 89.67±29.86 27.16±25.30 12.42±6.49
2000 14.07±7.05 25.16±12.85 80.41±26.87 18.93±15.98 11.84±7.21

2

50 - 88.64±26.12 99.05±31.77 72.63±24.63 68.98±22.57
200 - 65.05±19.99 94.76±30.62 57.96±21.68 51.56±17.79
500 78.18±23.83 55.72±18.50 90.19±30.38 50.98±16.10 52.68±14.37
2000 38.39±12.96 43.59±15.17 80.19±26.93 51.79±19.65 63.63±13.81

5

50 - 109.14±27.98 101.57±37.27 91.93±26.39 90.50±24.21
200 - 108.31±26.01 97.98±34.19 82.23±21.85 82.23±21.26
500 89.19±25.25 114.69±18.64 92.37±32.41 88.77±19.81 84.5±21.61
2000 76.54±18.93 131.00±27.89 83.01±26.17 122.25±37.38 98.92±20.20

Table 1: Mean and standard deviation of the Chamfer distance (CD), the Hausdorff distance, and
the LDDMM-loss for different numbers of input points n and different levels of noise ξ. For every
test case, the lowest value is printed in bold and the second lowest value is printed in italic. The
asterisk denotes the non Lipschitz regularized version of our network.
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Figure 8: Mesh quality for different methods on mesh 43. We depict the result for 200 points. We
color-coded the absolute distance to the ground truth mesh on the remeshed results.
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Appendix D. Multichamber Experiments

In this section, we investigate the advantages of jointly encoding of left and right endocardial
shapes in comparison to independently reconstructing the two shapes. We then compare the
average chamfer distances across both endocardia for the case of a separate reconstruction
and a joint reconstruction for four test meshes. Additionally, we perform the same experi-
ment on partially observable regions, where the points on the left ventricle are only sampled
from its top half (ventricular base) and the points of the right ventricle are sampled from its
lower half (ventricular apex). The results of both experiments can be found in Table 2. For
the case of full data availability, the joint reconstruction seems to be advantageous only for
the case of very sparse data (n = 10), but for the cases where only partial data is available,
the joint reconstruction improves the resulting reconstruction in all but two cases.

full data partial data

σ n CDseparate CDjoint CDseparate CDjoint

0

10 2.71 2.47 3.31 2.50
20 1.57 1.86 2.76 2.38
30 1.43 1.42 2.34 2.77
40 1.17 1.31 2.41 2.46

2

10 3.13 3.06 4.16 2.81
20 2.43 2.39 3.24 2.72
30 2.01 2.01 3.35 2.50
40 1.83 2.12 3.24 2.82

5

10 3.63 3.49 3.95 3.92
20 3.42 3.47 4.51 4.12
30 3.04 3.25 3.76 3.70
40 2.86 2.87 3.89 3.71

Table 2: Average reconstruction quality per surface for inference based on n points on the LV
Endocardium only.

Appendix E. Obtaining the EAM data

The EAM data has been acquired with the NOGA-XP system (Biologic Delivery Sys-
tems, Biosense Webster) equipped with a conventional 7-Fr deflectable-tip mapping catheter
(NAVI-STAR, Biosense Webster). Spatial positions of the tip of the catheter were acquired
at 100 Hz, and aligned in time using the automatically detected R-peak of the 12-lead ECG.
Points were accepted by the system according to a set of criteria for catheter stability and
signal quality. The institutional review board approved the study protocol, and all pa-
tients gave written and oral informed consent for the investigation (the study is compliant
with the Declaration of Helsinki). Further information on the study has been previously
reported Maffessanti et al. (2020); Pezzuto et al. (2021). We pre-processed the data by
applying a −90◦ rotation about the X-axis (NOGA to LPS-MRI coordinate system), fol-
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EAM data SSM ours, ξ̄ = 3.368

EAM data SSM ours, ξ̄ = 3.368EAM data SSM ours, ξ̄ = 3.368EAM data SSM ours, ξ̄ = 3.368EAM data SSM ours, ξ̄ = 3.368

Figure 9: Reconstruction of the LV endocardium from the EAM data. We compare the SSM
reconstruction (left panel) to our approach for an optimal noise level estimation of σ̄ = 3.368 mm
(right panel). We also report the absolute distance from the geometry provided by the EAM system.

lowed by a translation to align the LV epicardial apex with the origin. Note that only an
approximate alignment is possible since the epicardium is not present in the EAM data.

Appendix F. Estimation of noise level

In Table Table 3 we present the numerical convergence of the noise estimator ξ̄i for the first
six steps on the EAM data (c.f. Section 4.3). Additionally, the performance of this method
is tested for a synthetic point cloud (Heart 43, n = 500, ξ = 5), where the correct noise level
is obtained.

step synthetic EAM data

ξ̄0 0 15 0 15
ξ̄1 3.159 4.882 1.499 4.672
ξ̄2 4.878 5.063 3.184 3.686
ξ̄3 5.063 5.060 3.344 3.398
ξ̄4 5.060 5.060 3.797 3.367
ξ̄5 5.060 5.060 3.410 3.364
ξ̄6 5.060 5.060 3.368 3.364

Table 3: Iteration of the variance estimation for the synthetic case (Heart 43, n = 500, ξ = 5) and
the EAM data.
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