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Abstract

Large language models (LLMs) demonstrate re-
markable performance across diverse tasks, yet
their effectiveness frequently depends on costly
commercial APIs or cloud services. Model se-
lection thus entails a critical trade-off between
performance and cost: high-performing LLMs
typically incur substantial expenses, whereas
budget-friendly small language models (SLMs)
are constrained by limited capabilities. Current
research primarily proposes two routing strate-
gies: pre-generation routing and cascade rout-
ing. Both approaches have distinct characteris-
tics, with cascade routing typically offering su-
perior cost-effectiveness and accuracy despite
its higher latency. To further address the limita-
tions of both approaches, we introduce SATER,
a dual-mode compatible approach that fine-
tunes models through shortest-response pref-
erence optimization and a confidence-aware
rejection mechanism. SATER significantly re-
duces redundant outputs and response times,
while improving both the performance of pre-
generation routing and the efficiency of cascade
routing. Experiments across three SLMs and
six datasets, varying in type and complexity,
demonstrate that SATER achieves comparable
performance while consistently reducing com-
putational costs by over 50% and cascade la-
tency by over 80%.

1 Introduction

With the rapid advancement of large language mod-
els (LLMs) (Yang et al., 2024; Liu et al., 2024),
their outstanding performance in diverse natural
language processing tasks has solidified their role
as a cornerstone of artificial intelligence applica-
tions. However, their operation entails significant
computational costs, high energy consumption, and
reliance on specialized hardware, creating substan-
tial financial burdens and raising critical concerns
about environmental sustainability (Kaack et al.,
2022; Luccioni et al., 2024) and technological ac-
cessibility. Consequently, optimizing efficiency

and reducing resource consumption have become
pivotal challenges (Varangot-Reille et al., 2025).
Building on the intuitive assumption that
simple tasks can be effectively managed by
SLMs, with complex tasks allocated to high-
performance LLMs, current research primarily pro-
poses two approaches: pre-generation routing and
post-generation routing (cascade routing). Pre-
generation routing methods, such as HybridLLM
(Ding et al., 2024) and RouteLLM (Ong et al.,
2024), train classifiers to predict task complex-
ity, avoiding generation overhead. In contrast,
cascade routing evaluates response quality for
decision-making, as seen in FrugalGPT (Chen
et al., 2023), which trains an answer correctness
classifier, and AutoMix (Aggarwal et al., 2024)
and MoT (Yue et al., 2024), which assess out-
put confidence through multiple sampling. The
latter demonstrates better adaptability across vari-
ous tasks and generally outperforms pre-generation
routing. Although cascade routing is more stable
and superior, it requires a complete generation pro-
cess. When SLMs’ responses are rejected (com-
mon in complex tasks), regeneration is needed, and
long responses introduce additional latency, lead-
ing to significant latency polarization and increased
costs. These limitations suggest that the perfor-
mance, cost-effectiveness, and latency of both rout-
ing approaches can be further optimized.
However, current evaluation frameworks for
routing strategies present several limitations. In pre-
generation routing, assessment results are highly
susceptible to cases where both SLMs and LLMs
fail to handle queries effectively. Furthermore, ex-
isting metrics such as cost-performance curves,
APGR and CPT (as proposed in RouteLLM)
are subject to “Performance Gap Bias” — a phe-
nomenon where router performance appears in-
flated on benchmarks with minimal performance
differentials between SLMs and LLMs. To over-
come these limitations, we introduce two met-
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Figure 1: Iustration of SATER. We train the SLM in two stages for optimal cost, accuracy, and latency. Stage |
performs preference optimization with the shortest correct and longest incorrect responses, while Stage II employs
prompt-based fine-tuning to teach the SLM to reject complex tasks. During inference, rejected queries are either
routed directly to LLMs (pre-generation) or processed via weighted majority voting (cascade) for refined routing.

rics: Tradeoff Area (ToA) and Tradeoff Gain Ratio
(ToGR), designed to provide more robust evalua-
tion of pre-generation routing strategies. For cas-
cade routing, current methods typically rely on
coarse estimates based on cost per million tokens
and the number of samples. In the context of in-
creasing emphasis on output length and generation
efficiency, such simplifications fail to accurately
capture the impact of generation length on cost
and latency. To address this gap, we introduce an
evaluation framework based on actual generation
length, incorporating two new metrics: Average
Generation Latency (AGL) and Average Routing
Overhead Latency (AROL), to establish a more
comprehensive assessment mechanism.

To enhance the performance of existing routing
strategies and address their limitations, we intro-
duce SATER, a two-stage training approach. In
the first stage, shortest-response preference opti-
mization reduces redundant tokens by over 50%
with minimal performance degradation. In the sec-
ond stage, confidence-based refusal-aware tuning
(Zhang et al., 2023; Cheng et al., 2024; Zhang et al.,
2024) empowers SLMs to proactively reject com-
plex queries based on confidence thresholds, sig-
nificantly reducing invalid outputs and latency in
cascade routing. Refusal instructions based on dif-
ferent confidence levels can also be approximately
applied to pre-generation routing without complex
threshold calibration. Evaluations across six widely
used benchmarks show that SATER achieves su-
perior ToA and ToGR in pre-generation routing
compared to baseline methods. In cascade rout-

ing, SATER cuts AGL by over 50% and AROL by
over 80%, while optimizing cost and accuracy. In
summary, our main contributions are as follows:

* We formalize a comprehensive evaluation
framework to assess routing strategies be-
tween small and large language models.

* We propose SATER, a versatile approach for
both pre-generation and cascade routing that
shows improved performance while signifi-
cantly reducing latency.

* We investigate the comparative advantages
of pre-generation and cascade routing un-
der varying conditions, providing practical
insights for optimal strategy selection.

2 Problem Formulation

2.1 Problem Setting

Routing Decision Function. We denote SLM
and LLM as M, and M, respectively, and focus
on their routing problem. The routing decision
function is then defined as:

1, if s; < 7 (routed to M;)
0, if s; > 7 (routed to M)

r(i) =
where s; represents the confidence score pre-
dicted for the question i of M, and 7 € [0, 1] is
the routing threshold. A higher 7 routes more ques-
tions to M, improving answer quality at the cost
of increased computational resources.

Cost and Performance. To achieve a more pre-
cise evaluation, we perform calculation at the token
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Figure 2: Introduction to Routing Strategies and Metrics. Strategy A routes the hardest questions (beyond LLM’s
capability) to LLM first, while Strategy B only routes questions the SLM cannot solve but the LLM can.

level. Let ¢" and c denote the per-token input
costs for M and M, and ¢ and ¢ denote their
per-token output costs. For a given question ¢ re-
quiring tii“ input tokens, if M generates ¢ output
tokens, its total cost is CF = ¢ x it 4 Ut x ¢2.
Similarly, if M | generates tl output tokens, its total
costis C! = ¢ x " + cOllt x th,
The total cost for pre- routing is:
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The total cost for cascade routing is:
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Here, N is the total number of questions, and K
is the number of samples. The costs are normalized
relative to the cost of using only M; (set to 1).We
define p; and pé as the quality(accuracy) of the
answer of M and M; for the question 7. So, the
average quality for both routing methods is:

. 1 X
pP= N;[l—r pz+r()l}

Since M; may generate excessively long outputs
for complex problems, causing a significant right-
ward shift in the cost-performance curve if raw
token counts are used, thus skewing evaluation re-
sults. To address this, we use the average number of
output tokens at the dataset level as the per-question
cost metric for M;, while M maintains actual to-
ken counts. Additionally, in cascade routing, the
KV cache ensures that inputs are computed only
once, regardless of the number of samples.

2.2 Evaluation Metrics

Cost-Performance Curve. As shown in Figure 2,
we select threshold points at intervals of 0.1 over

7 and include two points corresponding to us-
ing only the M and M;: (Cs, Ps) and (Cj, P).
The curve formed by connecting these points, to-
gether with the reference lines Cost = Cj and
Performance = P, encloses the Trade-off Area
(ToA), which can be calculated by accumulating
trapezoidal areas. The ToA for random routing is
0.5. The Trade-off Gain Area (ToGA) is defined
as the ToA improvement over random routing.

ToA-100 and ToGR. As illustrated in the left
part of Figure 2, the most challenging questions—
those that M fails to answer—significantly affect
the evaluation results. Although Strategy B yields
superior metric performance, it has notable limita-
tions. First, even when M provides less accurate
answers, its responses are generally more informa-
tive and insightful than those of M. Second, M;
possesses a higher capability ceiling, and ongoing
advancements are likely to address its current short-
comings. Third, a robust routing strategy should
not artificially exclude difficult questions to inflate
metrics. Therefore, we propose that Strategy A is
the more principled choice. To facilitate a fairer
evaluation, we extend ToA and ToGA by introduc-
ing ToA-100 and ToGA-100, which assume perfect
performance of M; on all questions.

Moreover, as shown in Figure 2 (middle and
right), traditional cost-performance metrics (such
as APGR and CPT in RouteLLM(Ong et al., 2024))
are prone to performance gap bias: when the perfor-
mance difference between M and M is narrow on
a benchmark with easily distinguishable question
types or difficulties, routing just a few questions
can create the illusion that “low cost approximates
high performance.” This leads to an overestimation
of the router’s performance, masking cases where
many simple questions are misrouted, while also
affecting cross-benchmark evaluation. To mitigate
this, we propose the Tradeoff Gain Ratio (ToGR),
which enables fair comparisons by calculating the



ratio of ToGA-100 between the current routing and
the golden routing.

Latency. In cascade routing, latency should be
a key consideration. In non-long-text scenarios,
the time required for the generation phase typically
far exceeds that of the prefill phase. Moreover, to
eliminate the impact of hardware differences, we
adopt the number of output tokens as a proxy for
latency and define two distinct metrics: 1) Average
Generation Latency (AGL): This represents the
latency incurred when the response is ultimately
completed by M. 2) Average Routing Overhead
Latency (AROL): This quantifies the extra latency
when M fails and the system must fall back to M,
compared to calling M; directly. The AGL reflects
the processing efficiency of M, while the AROL
measures the overhead of routing switches. Dur-
ing parallel sampling, early stopping is triggered
when the threshold is either exceeded or cannot be
reached. Otherwise, the system should default to
the longest sample, as it needs to wait for all sam-
pling to complete before making final decisions.

3 Methodology

Stage I: Long to Short Training. Although
many previous studies have reported that Direct
Preference Optimization (DPO) struggles to re-
duce output length in reasoning models, our exper-
iments demonstrate its strong effectiveness in non-
reasoning models. Specifically, we integrate stan-
dard SFT loss Lsgr with DPO loss Lppo, where
the latter learns shortest-response preference while
the former stabilizes training. The total loss is:

Lot = Lpro + ALsFT

where Lppo is defined as:

7o (y1]x)

iy w | T
“E(s.yn [loga (ﬂlog ToWulr) 500 i

Treet (Y| )
where z is the input text, y,, and y; are positive
and negative responses, 7y is the policy model,
Tt 18 the reference model, S is the temperature
coefficient, and o is the sigmoid function.

To construct training data, we sample each ques-
tion ten times, selecting the shortest correct re-
sponse as the positive example and the longest in-
correct response, exceeding 1.5 times the length of
the positive sample, as the negative example. This
method trains the model to differentiate between
concise, correct responses and verbose, incorrect

ones. Experiments reveal that DPO is highly sen-
sitive to response length: if 5 and A are set too
low, the model generates overly short, low-quality
outputs. Thus, we set 5 = 1 and A = 0.2 to ensure
stable training. Additionally, including the longest
correct response as a negative example reduces av-
erage accuracy by over 2%.

Stage II: Refusal Training. We first use the
model trained in Stage I to resample each question
ten times, computing its accuracy on a scale from
0 to 1.0. Next, we define ten confidence thresh-
olds ranging from 0.1 to 1.0. For each question
and threshold, we generate new training samples
by prepending the prompt: “Please respond with a
confidence level of [threshold]:”. If the question’s
accuracy exceeds the threshold, we randomly select
a correct answer; otherwise, we apply a rejection
template: “Sorry, I can’t answer that.” Using this
training set, we employ the standard SFT loss Lspr
to fine-tune the model, enabling it to adjust its re-
sponses based on confidence levels.

This method can be flexibly applied to vari-
ous routing strategies. In pre-generation rout-
ing, questions rejected by M, are automatically
redirected to M;. For cascade routing, we pro-
pose a confidence-based dynamic weighted vot-
ing mechanism. For a given question ¢, with
K total votes where the k-th answer is a, € A
(A={A1,..., Ap}), each discretized confidence
score p, € {0.1,0.2,...,1.0} is assigned a weight
wy, = 0.55 + a(pr — 0.55), where 0.55 represents
the average confidence and o = 0.5 is a coeffi-
cient that ensures higher-confidence answers re-
ceive greater weight while mitigating decision bias
from individual high-confidence errors. The final
confidence score for candidate answer A,,, is:

Y wi - Nag = An)
ZkK:1 Wk

and the answer with the highest score is selected.
Based on this, we propose two voting schemes:
Ranged Confidence Voting (RCYV), which sam-
ples confidences uniformly from 0.1 to 1.0 for 10
times, and Fixed Confidence Voting (FCV), which
samples only at a confidence of 1.0 for 10 times.
In a pure LLM scenario, refusal training can lead
to over-rejection, significantly reducing usability.
In contrast, over-rejection in routing systems differs
fundamentally: First, it increases computational
costs without compromising system availability, as
all questions ultimately receive answers. Second,

(Ap)
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Figure 3: Average Cost-Accuracy Plot. Results are based on the average of six benchmarks. The top three curves
represent pre-generation routing, while the bottom three display cascade routing (cost ratio: 1:13.75). The Average
Cost-Accuracy(100) Plot and the individual results for each benchmark are presented in Appendix A.1.

in pre-generation routing, over-rejection resembles
an imperfect classifier, whereas in cascade routing,
avoiding repeated sampling of unsolvable questions
offsets additional costs to a certain extent.

4 Experiments

4.1 Experiment Setup

Models. We conduct experiments on three SLMs:
Llama-3.1-8B-Instruct (Grattafiori et al., 2024),
Qwen2.5-7B-Instruct, and Qwen2.5-3B-Instruct
(Yang et al., 2024), as well as one LLM: DeepSeek-
V3-0324 (Liu et al., 2024), a highly cost-effective
and high-performing model. To simplify cost com-
parisons amid opaque API pricing, we adopt Groq’s
pricing for SLMs at $0.08 per million output tokens
and DeepSeek’s official rate for the LLM at $1.10.
Input pricing is set at one-quarter of the respective
output price, resulting in a cost ratio of 1:13.75.

Datasets. We conduct experiments on six widely
used datasets, covering various types of tasks such
as knowledge-based question answering, scientific
reasoning, mathematical reasoning, and logical rea-
soning. These include: MMLU (Hendrycks et al.,
2020), ARC-Challenge and ARC-Easy (Clark et al.,
2018), GSM8K (Cobbe et al., 2021), MATH-500
(Hendrycks et al., 2021), and Reclor (Yu et al.,
2020). For MMLU, lacking a training set, we
use its 14,042-question test set for training and
1,531-question validation set for testing. For Re-
Clor, with unavailable test set answers, we use its
500-question validation set for testing. The models

are trained on the training sets of MMLU, ARC-
Challenge, GSM8K, and MATH-500, with their
test sets used for in-domain evaluation. ARC-Easy
and ReClor served as out-of-domain datasets.

Baselines. In pre-generation routing, we com-
pare three mainstream approaches: a BERT-based
classifier (Ong et al., 2024), a KNN classifier (Hu
et al., 2024), and HybridLLM (Ding et al., 2024),
which trains DeBERTa-v3-large (300M) (He et al.,
2020) using soft labels derived from BART scores
and multiple sampling. As routing modules often
operate in resource-constrained environments, we
avoid larger classification models, which are im-
practical and directly using a larger SLM, such as
Qwen2.5-14B-Instruct is generally more effective.
In cascade routing, we compare the original model
(SC), the model trained only in stage I (SC/TE),
and the model after full two-stage training with two
voting methods (RCV, FCV). For more implemen-
tation details, please refer to Appendix C.

4.2 Main Results

SATER demonstrates superior performance
and adaptability in pre-generation routing. Ex-
periments reveal that SATER consistently outper-
forms baseline methods across three SLMs and six
datasets. As illustrated in Figure 3 and 6, SATER
achieves significantly higher average performance,
with Figure 7, 8 and Table 1 confirming stable ad-
vantages in all single-dataset evaluations. Notably,
SATER exhibits strong task adaptability and gen-
eralizability: It automatically adjusts routing inter-



Model Method MMLU MATH-500 GSMSK ARC_C ReClor ARC_E
ToA-100 ToGR ToA-100 ToGR ToA-100 ToGR ToA-100 ToGR ToA-100 ToGR ToA-100 ToGR
HybridLLM  0.604 0313 0504 0018 0503 0007 0550  0.25 0532 0111 0527  0.062
Llama-3.1- KNN 0596 0290 0583 0415 0519 0050 0542 0107 0522 0076 0518  0.041
8B-Instruct BERT 0618 0358 0606 0529 0618 0308 0569 0173 0554 0190 0535  0.079
SATER 0.655 0469  0.622 0607 0.643 0373 0702 0512 0594 0326  0.667 0379
HybridLLM 0586 0239 0502 0006 0494 —0.0l4 0465 —0080 0512 0032 0455 —0.098
Qwen2.5-  KNN 0619 0332 0666 0498 0576 0168 0512 0026 0467 —0.090 0481  —0.042
7B-Instruct BERT 0.643 0396 0702  0.605 0.650 0334 0566 0148 0545  0.124 0544  0.095
SATER 0.692 0533 0770 0810 0708 0461  0.631 0294  0.639 0385 0593  0.201
HybridLLM  0.618 0352 0512 0042 0483 —0043 0497 —0.006 0512 0039 048  —0.030
Qwen2.5-  KNN 0620 0358 0648 0520 0538 0096 0493 —0.016 0509 0028 0492 —0.017
3B-Instruct BERT 0630 038 0660 0562 0641 0361 0537 0090 0528 0087 0569  0.151
SATER 0.687 0560 0711 0740 0741  0.615  0.685 0445  0.600 0311  0.639 0307
Table 1: ToA-100 and ToGR results across in-domain and out-of domain datasets. Bold indicates the best.
Model Method MMLU MATH-500 GSMSK ARC_C ReClor ARC_E Average
AGL AROL AGL AROL AGL AROL AGL AROL AGL AROL AGL AROL AGL AROL
sc 186 293 365 638 226 306 140 216 150 177 128 195 199 304
Llama-3.1-  SC/TE 68 100 173 211 139 133 49 58 90 90 38 72 93 111
8B-Instruct SC/RCV 48 6 142 31 133 75 40 4 16 4 30 2 8 20
SC/IFCV 47 1 125 7 126 22 38 1 74 2 29 1 73 6
e 182 437 477 825 342 432 126 227 335 421 98 189 260 422
Qwen2.5- SC/TE 114 240 361 533 271 313 75 130 172 262 60 142 176 270
7B-Instruct  SC/RCV 104 12 310 8 250 108 78 7 42 17 64 6 158 39
SC/IFCV 96 4 291 18 243 37 71 6 133 10 63 4 150 13
sc 281 425 481 794 369 425 231 341 432 483 188 327 330 466
Qwen25- SC/TE 148 272 346 504 251 273 101 166 287 345 74 146 201 284
3B-Instruct  SC/RCV 99 9 284 32 225 71 84 12 233 21 62 10 164 26
SC/FCV 87 2 255 3 207 12 78 4 214 3 60 4 150 5

Table 2: AGL and AROL results with threshold 7 = 0.6. Results with 7 = 1.0 are provided in Table 4.

vals based on task complexity and performs well in
out-of-distribution tests, achieving ToGR scores av-
eraging 0.2 higher than the BERT classifier on both
the complex ReClor and simpler ARC_E datasets.

ToGR serves as a superior metric, underscoring
the necessity of fine-grained task difficulty differ-
entiation in pre-generation routing. As shown
in Figure 7 and Table 1, Llama-3.1-8B-Instruct
scores higher on ToA-100 for datasets with smaller
performance gaps, such as GSM8K and ARC, than
those with larger gaps, such as MATH and MMLU.
However, ToGR exhibits an opposite trend, reveal-
ing a performance gap bias and proving a more
robust metric. Although all methods struggle with
small-gap datasets, necessitating further improve-
ment, SATER significantly outperforms baselines,
suggesting that SATER not only enables coarse-
grained domain classification, but also possesses
finer-grained difficulty discrimination capabilities.

Models can assess question difficulty and refuse
to answer, even in reasoning tasks. ToGR in
Table 1 reveals an interesting phenomenon: Model
performance on reasoning tasks is comparable to
knowledge-based tasks, with all models achieving
best results on MATH-500. This suggests that mod-

els can not only identify the knowledge blind spot,
but also anticipate question difficulty in reasoning
tasks and proactively decline to answer.

SATER continuously reduces latency and cost
while improving performance in cascade rout-
ing. As presented in Tables 2, both voting meth-
ods significantly reduce latency, with AGL decreas-
ing by over 50% and AROL by over 80%. Fur-
thermore, Figure 3 and 8 illustrate that SATER
surpasses vanilla SC in both cost and accuracy.
For stronger SLMs, such as Qwen2.5-7B-Instruct,
RCV is more effective in lowering costs by increas-
ing voting opportunities. For weaker SLMs, FCV
improves efficiency by swiftly declining to respond.
In particular, when LLMs are assumed to deliver
optimal responses, the advantages of SATER be-
come even more evident, indicating that the over-
confidence of vanilla SC is partially masking by
the insufficiency of LLM.

S Analysis

5.1 Comparison Between Pre-generation
Routing and Cascade Routing

Different Cost Ratios. Since SLMs are typically
deployed privately, which is also a basic require-
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Figure 4: Comparison plot of cost-accuracy(100) between pre-generation and cascade routing, averaged across all
benchmarks. Results are based on Qwen2.5-7B-Instruct, with three subplots depicting cost ratios of 1:25, 1:50, and
1:100 from left to right. Detailed results for individual benchmarks are available in Appendix A.2 (Figure 9, 10, 11).

ment of our method, their actual costs can be much
lower than $0.08. In contrast, LLMs generally rely
on API calls, with fixed pricing and the potential
to use models more expensive than DeepSeek-V3.
So we further explore scenarios with cost ratios of
1:25, 1:50, and 1:100 in Figure 4. At low cost ra-
tios, cascade routing is less cost-effective than pre-
generation routing due to multiple sampling. As
cost ratios rise, cascade routing’s benefits emerge:
RCYV and FCV outperform pre-generation routing
at a 1:25 ratio, while SC/TE equals BERT classi-
fier at 1:50 and surpasses it at 1:100. Thus, pre-
generation routing excels at low cost ratios, but
cascade routing offers superior cost control and ac-
curacy at high ratios. Although RCV and FCV’s
cost advantages diminish at high ratios, they remain
more cost-effective than vanilla SC, with signifi-
cant advantages in latency control and accuracy.

Different Tasks. Besides overall performance
across six benchmarks, we further analyze the suit-
ability of different routing strategies for various
types of tasks. As shown in Figure 9, 10, and 11,
cascade routing demonstrates a clear advantage
in complex reasoning tasks such as mathematical
reasoning. In contrast, for knowledge-intensive
tasks like factual question answering, direct routing
based on question classification exhibits higher re-
liability, since self-consistency may not adequately
reflect answer accuracy. Notably, SATER consis-
tently outperforms vanilla SC in one or more as-
pects of cost, accuracy, and latency across all ex-
perimental scenarios.

Different Capabilities. Figure 12 illustrates that
under the same cost ratio, the weaker the capa-
bilities of an LLM, the sooner the advantages of
cascade routing become evident. This is primarily
because, despite overconfidence issues in voting-
based routing, some misjudged difficult queries are

actually unsolvable by the LLM, in which case no
routing saves costs instead. A secondary reason
is that the inherent randomness in LLM outputs
may lead to incorrect responses for simple queries
in a single sampling, whereas the SLM’s accurate
voting helps narrow the accuracy gap.

5.2 When Does SATER Help? A Case Study

In pre-generation routing, SATER resembles em-
bedding a classifier within the model, fully lever-
aging its parameters. Compared to methods that
rely on additional small classifiers, SATER sig-
nificantly enhances performance under resource-
constrained conditions. In addition, the consis-
tency between the model and classifier aids in a
fine-grained awareness of capability boundaries.
In cascade routing, long-to-short training acceler-
ates the generation process, while refusal training
enables the model to decline complex queries. To-
gether, two-stage training not only reduces costs
and latency, but also improves accuracy. Figure 5 il-
lustrates several examples from MMLU, Math-500,
and GSMBSK. For overconfident queries, especially
knowledge-based ones, SATER firmly rejects them;
for challenging reasoning tasks, SATER halts gen-
eration with a high rejection probability, reducing
ineffective sampling and AROL; for medium and
simple queries, SATER swiftly generates responses,
further boosting overall efficiency.

5.3 Other Experiments

Table 5 and 6 in Appendix B.2 demonstrate that
SATER reduces token count by over 40% in first-
stage DPO training while preserving high accu-
racy. Table 3 compares SATER and TokenSkip
on GSMS8K and MATH-500, showing SATER’s
superior token compression, accuracy retention,
and readability. These findings highlight DPO’s
effectiveness in shortening output without com-
promising performance. Additionally, Figure 13
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... Posner's approach improperly elevates wealth
maximization to a central normative principle in «—

legal analysis. This criticism aligns with option (C). Routing

Query Original

The basis of Dworkin’s criticism of Posner’s economic
... The most accurate answer is (B) ...

Posner's focus on economic efficiency often overlooks these
non-economic values, which Dworkin believes are crucial to
the proper functioning of a just legal system.

Declined (1/1, 1) Sorry, I can’t answer that. 'l

Fern is trying to decide between buying the Widgeteer 3000, which makes
60 widgets an hour, and the WidgetMaster 9000, which makes 45 widgets an
hour. Each widget sells for $6. How much more money will Fern make from
the Widgeteer 3000 vs. the WidgetMaster 9000 if it runs 24 hours a day for a
month with 30 days?

SATER Original

SATER
.. 1. **Calculate the total number of
widgets produced by each machine:**\n\n -
**Widgeteer 3000:**\n - Production rate:
60 widgets per hour\n - Operating hours per
day: 24 hoursin - Days in a month: 30
days\n - Total widgets produced =

... **Step 1: Calculate
the total number of
widgets produced in a
month**\n\n-

**Widgeteer 3000%*:
60 widgets/hour * 24
hours/day * 30 days =

Production rate x Operating hours per day

x Days in a month\n W[\n \text{Total

a,x% + a;x + aq has integer coefficients, and its roots are
distinet integers. Given that a,, = 2 and @ = 66, what is the

Suppose the polynomial f(x) = a,x™ + @y x" ' + - +
is:\n\\[ \\boxed{0}. \\]

.. Therefore, the least possible value of \( fa_{n-1}| \\)i

43,200 widgets\n ...
Therefore, Fern will
make $64,800 more

widgets (Widgeteer 3000)} = 60 \\times 24
\ttimes 30 = 43200 \\text{ widgets}\n
\\J\n\n ... Therefore, Fern will make $64,800

least possible value of |a,,_; |?

0(0.2/1,936)

... Conclusion\nAfter several trials, the combination
W( (1, 3, -11) \) gives the minimal \\( fa_{n-1}| \\) &<—I—- Declined (0.7/1, 1)

of \( 14 \).\n\n\\boxed {14} Routing

Ans & Conf & AROL

Sorry, I can’t answer that. l'

from the Widgeteer

3000 compared to the
‘WidgetMaster 9000.

more from the Widgeteer 3000 compared to
the WidgetMaster 9000 over a month.

SATER

(P 64800 0.9/1,404)  Ans & Conf & AGL P 64800 (111, 602)

Figure 5: Three examples from SATER. Responses are color-coded: red (incorrect), green (correct), blue (refused).
White box shows the majority-voted answer, confidence score, and AGL or AROL, based on routing decisions.

indicates that lower sampling temperatures reduce
output diversity, leading to accuracy declines in
high-threshold intervals. However, RCV and FCV
still maintain a relatively significant advantage.

6 Related Work

Pre-generation Routing Pre-generation routing
intelligently assigns tasks by evaluating query fea-
tures, mainly through two approaches: domain ex-
pert routing (Stripelis et al., 2024; Lu et al., 2024;
Chen et al., 2024), which identifies the query’s
domain and assigns it to a specialized model for
improved performance, and complexity-adaptive
routing (Ding et al., 2024; Ong et al., 2024), which
allocates queries to models of varying sizes based
on task complexity, optimizing the balance between
quality and cost. Both rely on similar frameworks,
such as supervised classifiers or unsupervised clus-
tering, but differ in implementation details, includ-
ing input query types and label annotations.

Cascade Routing Cascade routing starts with a
smaller model generating a response, evaluated for
quality. If it falls short of a set threshold, the query
is passed to a stronger model until satisfactory. De-
cisions use either task-specific evaluation models
for simple classification tasks (Chen et al., 2023;
Ramirez et al., 2024) or confidence scores for more
complex tasks(Aggarwal et al., 2024; Yue et al.,
2024), which generally require multiple samplings.

LLM Honesty Honesty in LLMs refers to their
ability to produce truthful and reliable outputs. Cur-
rent approaches, including supervised fine-tuning
(Zhang et al., 2024; Cheng et al., 2024), rein-
forcement learning (Xu et al., 2024), and probing

(Kossen et al., 2024), encourage models to admit
uncertainty by saying “I don’t know” or giving
better confidence estimates. While most studies
target knowledge-intensive tasks like factual ques-
tion answering, our work shows that for complex,
multi-step reasoning tasks, models can proactively
decline to answer, thereby optimizing two types of
routing across diverse tasks.

Efficient Reasoning Long CoT reasoning mod-
els often “overthink”, producing redundant steps
that reduce efficiency. Current training solutions in-
clude length-penalized reinforcement learning for
concise reasoning (Luo et al., 2025; Aggarwal and
Welleck, 2025), and supervised fine-tuning with
compact CoT for succinct outputs (Xia et al., 2025;
Munkhbat et al., 2025). Studies like TokenSkip
also indicate that output redundancy persists, even
in non-reasoning models, though less severely.

7 Conclusion

In this work, we introduce a comprehensive evalua-
tion framework and propose SATER, a simple yet
effective two-stage training approach. Extensive
experiments across various SLMs and tasks demon-
strate SATER’s effectiveness, achieving significant
improvements in performance, cost efficiency, and
latency for both pre-generation routing and cas-
cade routing. When the cost ratio between LLM
and SLM exceeds 50, SATER delivers performance
comparable to pure LLM at around 50% of the cost
while maintaining low latency. Further analysis
highlights the suitability of both routing strategies
under diverse conditions, offering a flexible and
cost-effective solution for LLM applications.



Limitation

Although our work demonstrates strong results, cer-
tain limitations remain. First, we primarily focus
on the routing mechanism between a single small
language model and a single large language model.
Future research could explore multi-model collab-
orative routing or cascading to enhance scalability.
Secondly, the prompt-based refusal training strug-
gles to achieve effective routing when the thresh-
old falls below 0.1. However, cross-dataset experi-
ments demonstrate that setting the threshold at 0.1
maintains the overall cost at less than 30% of the
LLM’s cost, indicating that SATER consistently
delivers a practical range of routing costs. Finally,
SATER’s rejection mechanism faces challenges in
scenarios where a response is mandatory but cannot
be routed. In such cases, maintaining an untrained
model copy may be necessary to ensure the system
can still provide complete responses when required.
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A Additional Plots

A.1 Average Cost-Accuracy(100) Plot and
Cost-Accuracy(100) Plot for Each
Benchmark

Figure 6 displays the average cost-accuracy(100)
plot across all benchmarks. The detailed cost-
accuracy(100) performance for individual bench-
marks is shown in Figure 7 (pre-generation routing)
and Figure 8 (cascade routing). All results are ob-
tained using Qwen2.5-7B-Instruct, with a cost ratio
of 1:13.75.

A.2 Comparison Plot of Cost-Accuracy(100)
between Pre-generation Routing and
Cascade Routing for Each Benchmark

Figure 9, 10 and 11 present comparison plots of
cost-accuracy(100) between pre-generation routing
and cascade routing across multiple benchmarks
on Qwen2.5-7B-Instruct, with cost ratios of 1:25,
1:50, and 1:100, respectively.

A.3 Different Capabilities

In Figure 12, we compare the impact of large
language models (LLMs) with varying capa-
bilities—specifically, the actual results from
DeepSeek-V3 versus the assumption that LLMs
always deliver optimal responses—on the perfor-
mance of prefix routing and cascade routing.

A4 Different Temperature Settings

We show the comparison under different tempera-
ture settings in Figure 13.

B Additional Tables

B.1 AGL and AROL Results with Different
Thresholds

We present AGL and AROL results with threshold
7 = 1.0 in Table 4. In mathematical reasoning
tasks, a threshold of 0.6 usually yields satisfactory
results. For other types of tasks, further perfor-
mance improvements can be achieved by adjusting
the threshold within the range of 0.6 to 1.0.

B.2 Effectiveness of Long to Short Training

Table 3 presents the efficiency comparison be-
tween SATER and TokenSkip on the GSM8K and
MATH-500 benchmarks. In Table 5, we report the
average accuracy and average Chain-of-Thought
(CoT) token count across both in-domain and out-
of-domain datasets. Table 6 displays the average

11

accuracy percentage change (A%) and the average
CoT token count percentage change (A%) across
in-domain and out-of-domain datasets.

Method GSMSK MATH-500
Accuracy Tokens Accuracy Tokens

SATER 83.0 117 41.2 212

TokenSkip (0.5) 78.2 113 40.2 292

Table 3: Efficiency comparison between SATER and
TokenSkip on GSM8K and MATH-500 benchmarks.

C Implementation Details

All sampling is conducted using the vLLM frame-
work (Kwon et al., 2023) with a maximum gen-
eration length of 1024 tokens and sampling pa-
rameters set to temperature = 0.7 and top_p = 1.0.
For DeepSeek-V3, on the GSM8SK and MATH-500
datasets, we set temperature = 0 and max_length
= 8192, while other datasets use official default
parameters.

The training process utilizes the LLaMA-Factory
framework (Zheng et al., 2024) and is performed on
four NVIDIA RTX 3090 GPUs. For long-to-short
training, we employ the DPO method with LoRA
fine-tuning (rank = 8, alpha = 16, dropout = 0.1) for
one epoch, using the AdamW optimizer (learning
rate = le-4) with a cosine learning rate schedule
(10% warmup ratio). The per-device batch size
is set to 1 with 4 gradient accumulation steps, a
length limit of 1024 tokens, a Sigmoid preference
loss (8 = 1.0), and an auxiliary loss coefficient of
0.2. For refusal training, we use a pure SFT task
with the same LoRA fine-tuning parameters as the
DPO stage, excluding preference loss parameters,
and train for one epoch.
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Figure 7: Cost-Accuracy(100) plot for each benchmark in pre-generation routing. Results are based on Qwen2.5-
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Figure 9: Comparison plot of cost-accuracy(100) between pre-generation routing and cascade routing for each
benchmark. Results are based on Qwen2.5-7B-Instruct, with a cost ratio of 1:25.
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Figure 10: Comparison plot of cost-accuracy(100) between pre-generation routing and cascade routing for each
benchmark. Results are based on Qwen2.5-7B-Instruct, with a cost ratio of 1:50.
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Figure 11: Comparison plot of cost-accuracy(100) between pre-generation routing and cascade routing for each
benchmark. Results are based on Qwen2.5-7B-Instruct, with a cost ratio of 1:100.
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Figure 12: Comparison between the cost-accuracy plots and the cost-accuracy(100) plots, averaged across all
benchmarks. The upper section presents the actual results from the LLM (DeepSeek-V3), while the lower section
assumes LLMs deliver optimal responses. The results are based on Qwen2.5-7B-Instruct, with three subplots
illustrating cost ratios of 1:13.75, 1:50, and 1:100 (from left to right).
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Figure 13: Comparison between different temperature settings, averaged across all benchmarks. The upper section
shows results at temperature 0.7, while the lower section displays results at temperature 0.3. The results are based
on Qwen?2.5-7B-Instruct, with three subplots illustrating cost ratios of 1:13.75, 1:50, and 1:100 (from left to right).

14



Model Method MMLU MATH-500 GSMSK ARC_C ReClor ARC_E Average
AGL AROL AGL AROL AGL AROL AGL AROL AGL AROL AGL AROL AGL AROL
SC 232 138 310 327 192 180 200 110 184 113 186 105 217 162
Llama-3.1- SC/TE 87 50 149 125 127 94 75 32 107 59 63 27 101 65
8B-Instruct SC/RCV 64 1 148 8 122 28 60 2 95 3 47 1 89 1
SC/FCV 63 1 126 2 117 11 58 1 93 1 46 1 84 3
SC 218 243 503 597 324 312 176 159 390 309 146 126 293 291
Qwen2.5- SC/TE 129 142 375 396 258 249 96 88 216 176 79 79 192 188
7B-Instruct  SC/RCV 109 5 312 19 234 35 96 3 175 4 80 2 168 11
SC/FCV 106 1 278 3 225 14 94 1 168 5 80 1 159 4
SC 312 267 504 542 338 306 291 228 455 380 260 216 360 323
Qwen2.5- SC/TE 161 151 359 362 231 201 145 105 325 246 113 94 222 193
3B-Instruct  SC/RCV 108 2 259 6 201 16 108 5 272 8 87 4 173 1
SC/FCV 107 1 256 2 193 4 104 2 278 5 86 2 171 3
Table 4: AGL and AROL results with threshold 7 = 1.0.
Model Method MMLU MATH-500 GSMSK ARC_C ReClor ARC_E Average
Acc Tokens Acc Tokens Acc Tokens Acc Tokens Acc Tokens Acc Tokens Acc Tokens
Llama-3.1-  Original 70.1 186 47.2 457 85.1 174 83.3 140 62.8 130 89.8 128 73.1 2025
8B-Instruct SATER  68.1 67 41.2 212 83.0 117 81.7 44 60.6 86 89.2 34 70.6 933
Qwen2.5-  Original 72.5 180 73.0 530 92.5 280 89.1 121 74.0 321 92.5 95 823 2545
7B-Instruct SATER  71.5 111 69.2 392 91.0 226 88.9 73 73.2 163 92.8 58 81.1 1705
Qwen2.5-  Original 69.1 262 63.0 555 86.0 297 83.9 214 62.6 415 90.8 176 759 319.8
3B-Instruct SATER  68.6 138 61.8 391 81.5 212 84.4 94 63.2 266 90.7 69 75.0 195.0

Table 5: Average accuracy and average CoT token count (Tokens) across both in-domain and out-of-domain datasets.

MMLU MATH-500 GSMSK ARC_C ReClor ARC_E Average
Model Method
AAcc ATokens AAcc ATokens AAcc ATokens AAcc ATokens AAcc ATokens AAcc ATokens AAcc ATokens
Llama-3.1-8B  SATER  -2.0 -64.2 -6.0 -53.6 2.1 =325 -1.6 -68.2 -2.2 -34.4 -0.6 -73.2 2.4 -54.4
Qwen2.5-7B°  SATER  -1.0 -38.3 -3.8 -26.1 -1.5 -19.0 -0.2 -39.6 -0.8 -49.0 +0.3 -38.3 -1.2 -35.1
Qwen2.5-3B  SATER  -0.5 -47.3 -1.2 -29.4 -4.5 -28.6 +0.5 -56.1 +0.6 -36.1 -0.1 -60.6 -0.9 -43.0

Table 6: Average accuracy percentage change (A%) and average CoT token count percentage change (A%) across
both in-domain and out-of-domain datasets, where a negative value indicates a decrease and a positive value
indicates an increase.
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