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Abstract
Large language models (LLMs) demonstrate re-001
markable performance across diverse tasks, yet002
their effectiveness frequently depends on costly003
commercial APIs or cloud services. Model se-004
lection thus entails a critical trade-off between005
performance and cost: high-performing LLMs006
typically incur substantial expenses, whereas007
budget-friendly small language models (SLMs)008
are constrained by limited capabilities. Current009
research primarily proposes two routing strate-010
gies: pre-generation routing and cascade rout-011
ing. Both approaches have distinct characteris-012
tics, with cascade routing typically offering su-013
perior cost-effectiveness and accuracy despite014
its higher latency. To further address the limita-015
tions of both approaches, we introduce SATER,016
a dual-mode compatible approach that fine-017
tunes models through shortest-response pref-018
erence optimization and a confidence-aware019
rejection mechanism. SATER significantly re-020
duces redundant outputs and response times,021
while improving both the performance of pre-022
generation routing and the efficiency of cascade023
routing. Experiments across three SLMs and024
six datasets, varying in type and complexity,025
demonstrate that SATER achieves comparable026
performance while consistently reducing com-027
putational costs by over 50% and cascade la-028
tency by over 80%.029

1 Introduction030

With the rapid advancement of large language mod-031

els (LLMs) (Yang et al., 2024; Liu et al., 2024),032

their outstanding performance in diverse natural033

language processing tasks has solidified their role034

as a cornerstone of artificial intelligence applica-035

tions. However, their operation entails significant036

computational costs, high energy consumption, and037

reliance on specialized hardware, creating substan-038

tial financial burdens and raising critical concerns039

about environmental sustainability (Kaack et al.,040

2022; Luccioni et al., 2024) and technological ac-041

cessibility. Consequently, optimizing efficiency042

and reducing resource consumption have become 043

pivotal challenges (Varangot-Reille et al., 2025). 044

Building on the intuitive assumption that 045

simple tasks can be effectively managed by 046

SLMs, with complex tasks allocated to high- 047

performance LLMs, current research primarily pro- 048

poses two approaches: pre-generation routing and 049

post-generation routing (cascade routing). Pre- 050

generation routing methods, such as HybridLLM 051

(Ding et al., 2024) and RouteLLM (Ong et al., 052

2024), train classifiers to predict task complex- 053

ity, avoiding generation overhead. In contrast, 054

cascade routing evaluates response quality for 055

decision-making, as seen in FrugalGPT (Chen 056

et al., 2023), which trains an answer correctness 057

classifier, and AutoMix (Aggarwal et al., 2024) 058

and MoT (Yue et al., 2024), which assess out- 059

put confidence through multiple sampling. The 060

latter demonstrates better adaptability across vari- 061

ous tasks and generally outperforms pre-generation 062

routing. Although cascade routing is more stable 063

and superior, it requires a complete generation pro- 064

cess. When SLMs’ responses are rejected (com- 065

mon in complex tasks), regeneration is needed, and 066

long responses introduce additional latency, lead- 067

ing to significant latency polarization and increased 068

costs. These limitations suggest that the perfor- 069

mance, cost-effectiveness, and latency of both rout- 070

ing approaches can be further optimized. 071

However, current evaluation frameworks for 072

routing strategies present several limitations. In pre- 073

generation routing, assessment results are highly 074

susceptible to cases where both SLMs and LLMs 075

fail to handle queries effectively. Furthermore, ex- 076

isting metrics such as cost-performance curves, 077

APGR and CPT (as proposed in RouteLLM) 078

are subject to “Performance Gap Bias” – a phe- 079

nomenon where router performance appears in- 080

flated on benchmarks with minimal performance 081

differentials between SLMs and LLMs. To over- 082

come these limitations, we introduce two met- 083
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DPO Dataset

Query: If a new moon occurred on June 2, when will the next new moon occur?
(A) June 30 (B) June 28 (C) June 23 (D) June 15
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SFT Dataset

Query: If a new moon occurred on June 2, when will the next new moon occur?
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𝑥 − 3 ! +
𝑥 − 7 ! =
2𝑥 − 10 !.
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To find the roots of the equation ... 
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Stage I: Long to Short Training Stage II: Refusal Training

Figure 1: Illustration of SATER. We train the SLM in two stages for optimal cost, accuracy, and latency. Stage I
performs preference optimization with the shortest correct and longest incorrect responses, while Stage II employs
prompt-based fine-tuning to teach the SLM to reject complex tasks. During inference, rejected queries are either
routed directly to LLMs (pre-generation) or processed via weighted majority voting (cascade) for refined routing.

rics: Tradeoff Area (ToA) and Tradeoff Gain Ratio084

(ToGR), designed to provide more robust evalua-085

tion of pre-generation routing strategies. For cas-086

cade routing, current methods typically rely on087

coarse estimates based on cost per million tokens088

and the number of samples. In the context of in-089

creasing emphasis on output length and generation090

efficiency, such simplifications fail to accurately091

capture the impact of generation length on cost092

and latency. To address this gap, we introduce an093

evaluation framework based on actual generation094

length, incorporating two new metrics: Average095

Generation Latency (AGL) and Average Routing096

Overhead Latency (AROL), to establish a more097

comprehensive assessment mechanism.098

To enhance the performance of existing routing099

strategies and address their limitations, we intro-100

duce SATER, a two-stage training approach. In101

the first stage, shortest-response preference opti-102

mization reduces redundant tokens by over 50%103

with minimal performance degradation. In the sec-104

ond stage, confidence-based refusal-aware tuning105

(Zhang et al., 2023; Cheng et al., 2024; Zhang et al.,106

2024) empowers SLMs to proactively reject com-107

plex queries based on confidence thresholds, sig-108

nificantly reducing invalid outputs and latency in109

cascade routing. Refusal instructions based on dif-110

ferent confidence levels can also be approximately111

applied to pre-generation routing without complex112

threshold calibration. Evaluations across six widely113

used benchmarks show that SATER achieves su-114

perior ToA and ToGR in pre-generation routing115

compared to baseline methods. In cascade rout-116

ing, SATER cuts AGL by over 50% and AROL by 117

over 80%, while optimizing cost and accuracy. In 118

summary, our main contributions are as follows: 119

• We formalize a comprehensive evaluation 120

framework to assess routing strategies be- 121

tween small and large language models. 122

• We propose SATER, a versatile approach for 123

both pre-generation and cascade routing that 124

shows improved performance while signifi- 125

cantly reducing latency. 126

• We investigate the comparative advantages 127

of pre-generation and cascade routing un- 128

der varying conditions, providing practical 129

insights for optimal strategy selection. 130

2 Problem Formulation 131

2.1 Problem Setting 132

Routing Decision Function. We denote SLM 133

and LLM as Ms and Ml, respectively, and focus 134

on their routing problem. The routing decision 135

function is then defined as: 136

r(i) =

{
1, if si < τ (routed to Ml)
0, if si ≥ τ (routed to Ms)

137

where si represents the confidence score pre- 138

dicted for the question i of Ms, and τ ∈ [0, 1] is 139

the routing threshold. A higher τ routes more ques- 140

tions to Ml, improving answer quality at the cost 141

of increased computational resources. 142

Cost and Performance. To achieve a more pre- 143

cise evaluation, we perform calculation at the token 144
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Figure 2: Introduction to Routing Strategies and Metrics. Strategy A routes the hardest questions (beyond LLM’s
capability) to LLM first, while Strategy B only routes questions the SLM cannot solve but the LLM can.

level. Let cin
s and cin

l denote the per-token input145

costs for Ms and Ml, and cout
s and cout

l denote their146

per-token output costs. For a given question i re-147

quiring tin
i input tokens, if Ms generates tsi output148

tokens, its total cost is Cs
i = cin

s × tin
i + cout

s × tsi .149

Similarly, if Ml generates tli output tokens, its total150

cost is C l
i = cin

l × tin
i + cout

l × tli.151

The total cost for pre-routing is:152

C̃pre =

∑N
i=1

[
(1− r(i))Cs

i + r(i)C l
i

]∑N
i=1C

l
i

153

The total cost for cascade routing is:154

C̃cascade =

∑N
i=1

[
K · Cs

i + r(i) · C l
i

]∑N
i=1C

l
i

155

Here, N is the total number of questions, and K156

is the number of samples. The costs are normalized157

relative to the cost of using only Ml (set to 1).We158

define psi and pli as the quality(accuracy) of the159

answer of Ms and Ml for the question i. So, the160

average quality for both routing methods is:161

P̃ =
1

N

N∑
i=1

[
(1− r(i))psi + r(i)pli

]
162

Since Ml may generate excessively long outputs163

for complex problems, causing a significant right-164

ward shift in the cost-performance curve if raw165

token counts are used, thus skewing evaluation re-166

sults. To address this, we use the average number of167

output tokens at the dataset level as the per-question168

cost metric for Ml, while Ms maintains actual to-169

ken counts. Additionally, in cascade routing, the170

KV cache ensures that inputs are computed only171

once, regardless of the number of samples.172

2.2 Evaluation Metrics173

Cost-Performance Curve. As shown in Figure 2,174

we select threshold points at intervals of 0.1 over175

τ and include two points corresponding to us- 176

ing only the Ms and Ml: (Cs, Ps) and (Cl, Pl). 177

The curve formed by connecting these points, to- 178

gether with the reference lines Cost = Cl and 179

Performance = Ps, encloses the Trade-off Area 180

(ToA), which can be calculated by accumulating 181

trapezoidal areas. The ToA for random routing is 182

0.5. The Trade-off Gain Area (ToGA) is defined 183

as the ToA improvement over random routing. 184

ToA-100 and ToGR. As illustrated in the left 185

part of Figure 2, the most challenging questions— 186

those that Ml fails to answer—significantly affect 187

the evaluation results. Although Strategy B yields 188

superior metric performance, it has notable limita- 189

tions. First, even when Ml provides less accurate 190

answers, its responses are generally more informa- 191

tive and insightful than those of Ms. Second, Ml 192

possesses a higher capability ceiling, and ongoing 193

advancements are likely to address its current short- 194

comings. Third, a robust routing strategy should 195

not artificially exclude difficult questions to inflate 196

metrics. Therefore, we propose that Strategy A is 197

the more principled choice. To facilitate a fairer 198

evaluation, we extend ToA and ToGA by introduc- 199

ing ToA-100 and ToGA-100, which assume perfect 200

performance of Ml on all questions. 201

Moreover, as shown in Figure 2 (middle and 202

right), traditional cost-performance metrics (such 203

as APGR and CPT in RouteLLM(Ong et al., 2024)) 204

are prone to performance gap bias: when the perfor- 205

mance difference between Ms and Ml is narrow on 206

a benchmark with easily distinguishable question 207

types or difficulties, routing just a few questions 208

can create the illusion that “low cost approximates 209

high performance.” This leads to an overestimation 210

of the router’s performance, masking cases where 211

many simple questions are misrouted, while also 212

affecting cross-benchmark evaluation. To mitigate 213

this, we propose the Tradeoff Gain Ratio (ToGR), 214

which enables fair comparisons by calculating the 215
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ratio of ToGA-100 between the current routing and216

the golden routing.217

Latency. In cascade routing, latency should be218

a key consideration. In non-long-text scenarios,219

the time required for the generation phase typically220

far exceeds that of the prefill phase. Moreover, to221

eliminate the impact of hardware differences, we222

adopt the number of output tokens as a proxy for223

latency and define two distinct metrics: 1) Average224

Generation Latency (AGL): This represents the225

latency incurred when the response is ultimately226

completed by Ms. 2) Average Routing Overhead227

Latency (AROL): This quantifies the extra latency228

when Ms fails and the system must fall back to Ml,229

compared to calling Ml directly. The AGL reflects230

the processing efficiency of Ms, while the AROL231

measures the overhead of routing switches. Dur-232

ing parallel sampling, early stopping is triggered233

when the threshold is either exceeded or cannot be234

reached. Otherwise, the system should default to235

the longest sample, as it needs to wait for all sam-236

pling to complete before making final decisions.237

3 Methodology238

Stage I: Long to Short Training. Although239

many previous studies have reported that Direct240

Preference Optimization (DPO) struggles to re-241

duce output length in reasoning models, our exper-242

iments demonstrate its strong effectiveness in non-243

reasoning models. Specifically, we integrate stan-244

dard SFT loss LSFT with DPO loss LDPO, where245

the latter learns shortest-response preference while246

the former stabilizes training. The total loss is:247

LTotal = LDPO + λLSFT248

where LDPO is defined as:249

−E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
250

where x is the input text, yw and yl are positive251

and negative responses, πθ is the policy model,252

πref is the reference model, β is the temperature253

coefficient, and σ is the sigmoid function.254

To construct training data, we sample each ques-255

tion ten times, selecting the shortest correct re-256

sponse as the positive example and the longest in-257

correct response, exceeding 1.5 times the length of258

the positive sample, as the negative example. This259

method trains the model to differentiate between260

concise, correct responses and verbose, incorrect261

ones. Experiments reveal that DPO is highly sen- 262

sitive to response length: if β and λ are set too 263

low, the model generates overly short, low-quality 264

outputs. Thus, we set β = 1 and λ = 0.2 to ensure 265

stable training. Additionally, including the longest 266

correct response as a negative example reduces av- 267

erage accuracy by over 2%. 268

Stage II: Refusal Training. We first use the 269

model trained in Stage I to resample each question 270

ten times, computing its accuracy on a scale from 271

0 to 1.0. Next, we define ten confidence thresh- 272

olds ranging from 0.1 to 1.0. For each question 273

and threshold, we generate new training samples 274

by prepending the prompt: “Please respond with a 275

confidence level of [threshold]:”. If the question’s 276

accuracy exceeds the threshold, we randomly select 277

a correct answer; otherwise, we apply a rejection 278

template: “Sorry, I can’t answer that.” Using this 279

training set, we employ the standard SFT loss LSFT 280

to fine-tune the model, enabling it to adjust its re- 281

sponses based on confidence levels. 282

This method can be flexibly applied to vari- 283

ous routing strategies. In pre-generation rout- 284

ing, questions rejected by Ms are automatically 285

redirected to Ml. For cascade routing, we pro- 286

pose a confidence-based dynamic weighted vot- 287

ing mechanism. For a given question i, with 288

K total votes where the k-th answer is ak ∈ A 289

(A = {A1, . . . , AM}), each discretized confidence 290

score pk ∈ {0.1, 0.2, . . . , 1.0} is assigned a weight 291

wk = 0.55 + α(pk − 0.55), where 0.55 represents 292

the average confidence and α = 0.5 is a coeffi- 293

cient that ensures higher-confidence answers re- 294

ceive greater weight while mitigating decision bias 295

from individual high-confidence errors. The final 296

confidence score for candidate answer Am is: 297

δ(Am) =

∑K
k=1wk · I(ak = Am)∑K

k=1wk

298

and the answer with the highest score is selected. 299

Based on this, we propose two voting schemes: 300

Ranged Confidence Voting (RCV), which sam- 301

ples confidences uniformly from 0.1 to 1.0 for 10 302

times, and Fixed Confidence Voting (FCV), which 303

samples only at a confidence of 1.0 for 10 times. 304

In a pure LLM scenario, refusal training can lead 305

to over-rejection, significantly reducing usability. 306

In contrast, over-rejection in routing systems differs 307

fundamentally: First, it increases computational 308

costs without compromising system availability, as 309

all questions ultimately receive answers. Second, 310
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Figure 3: Average Cost-Accuracy Plot. Results are based on the average of six benchmarks. The top three curves
represent pre-generation routing, while the bottom three display cascade routing (cost ratio: 1:13.75). The Average
Cost-Accuracy(100) Plot and the individual results for each benchmark are presented in Appendix A.1.

in pre-generation routing, over-rejection resembles311

an imperfect classifier, whereas in cascade routing,312

avoiding repeated sampling of unsolvable questions313

offsets additional costs to a certain extent.314

4 Experiments315

4.1 Experiment Setup316

Models. We conduct experiments on three SLMs:317

Llama-3.1-8B-Instruct (Grattafiori et al., 2024),318

Qwen2.5-7B-Instruct, and Qwen2.5-3B-Instruct319

(Yang et al., 2024), as well as one LLM: DeepSeek-320

V3-0324 (Liu et al., 2024), a highly cost-effective321

and high-performing model. To simplify cost com-322

parisons amid opaque API pricing, we adopt Groq’s323

pricing for SLMs at $0.08 per million output tokens324

and DeepSeek’s official rate for the LLM at $1.10.325

Input pricing is set at one-quarter of the respective326

output price, resulting in a cost ratio of 1:13.75.327

Datasets. We conduct experiments on six widely328

used datasets, covering various types of tasks such329

as knowledge-based question answering, scientific330

reasoning, mathematical reasoning, and logical rea-331

soning. These include: MMLU (Hendrycks et al.,332

2020), ARC-Challenge and ARC-Easy (Clark et al.,333

2018), GSM8K (Cobbe et al., 2021), MATH-500334

(Hendrycks et al., 2021), and Reclor (Yu et al.,335

2020). For MMLU, lacking a training set, we336

use its 14,042-question test set for training and337

1,531-question validation set for testing. For Re-338

Clor, with unavailable test set answers, we use its339

500-question validation set for testing. The models340

are trained on the training sets of MMLU, ARC- 341

Challenge, GSM8K, and MATH-500, with their 342

test sets used for in-domain evaluation. ARC-Easy 343

and ReClor served as out-of-domain datasets. 344

Baselines. In pre-generation routing, we com- 345

pare three mainstream approaches: a BERT-based 346

classifier (Ong et al., 2024), a KNN classifier (Hu 347

et al., 2024), and HybridLLM (Ding et al., 2024), 348

which trains DeBERTa-v3-large (300M) (He et al., 349

2020) using soft labels derived from BART scores 350

and multiple sampling. As routing modules often 351

operate in resource-constrained environments, we 352

avoid larger classification models, which are im- 353

practical and directly using a larger SLM, such as 354

Qwen2.5-14B-Instruct is generally more effective. 355

In cascade routing, we compare the original model 356

(SC), the model trained only in stage I (SC/TE), 357

and the model after full two-stage training with two 358

voting methods (RCV, FCV). For more implemen- 359

tation details, please refer to Appendix C. 360

4.2 Main Results 361

SATER demonstrates superior performance 362

and adaptability in pre-generation routing. Ex- 363

periments reveal that SATER consistently outper- 364

forms baseline methods across three SLMs and six 365

datasets. As illustrated in Figure 3 and 6, SATER 366

achieves significantly higher average performance, 367

with Figure 7, 8 and Table 1 confirming stable ad- 368

vantages in all single-dataset evaluations. Notably, 369

SATER exhibits strong task adaptability and gen- 370

eralizability: It automatically adjusts routing inter- 371
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Model Method MMLU MATH-500 GSM8K ARC_C ReClor ARC_E
ToA-100 ToGR ToA-100 ToGR ToA-100 ToGR ToA-100 ToGR ToA-100 ToGR ToA-100 ToGR

Llama-3.1-
8B-Instruct

HybridLLM 0.604 0.313 0.504 0.018 0.503 0.007 0.550 0.125 0.532 0.111 0.527 0.062
KNN 0.596 0.290 0.583 0.415 0.519 0.050 0.542 0.107 0.522 0.076 0.518 0.041
BERT 0.618 0.358 0.606 0.529 0.618 0.308 0.569 0.173 0.554 0.190 0.535 0.079
SATER 0.655 0.469 0.622 0.607 0.643 0.373 0.702 0.512 0.594 0.326 0.667 0.379

Qwen2.5-
7B-Instruct

HybridLLM 0.586 0.239 0.502 0.006 0.494 −0.014 0.465 −0.080 0.512 0.032 0.455 −0.098
KNN 0.619 0.332 0.666 0.498 0.576 0.168 0.512 0.026 0.467 −0.090 0.481 −0.042
BERT 0.643 0.396 0.702 0.605 0.650 0.334 0.566 0.148 0.545 0.124 0.544 0.095
SATER 0.692 0.533 0.770 0.810 0.708 0.461 0.631 0.294 0.639 0.385 0.593 0.201

Qwen2.5-
3B-Instruct

HybridLLM 0.618 0.352 0.512 0.042 0.483 −0.043 0.497 −0.006 0.512 0.039 0.486 −0.030
KNN 0.620 0.358 0.648 0.520 0.538 0.096 0.493 −0.016 0.509 0.028 0.492 −0.017
BERT 0.630 0.389 0.660 0.562 0.641 0.361 0.537 0.090 0.528 0.087 0.569 0.151
SATER 0.687 0.560 0.711 0.740 0.741 0.615 0.685 0.445 0.600 0.311 0.639 0.307

Table 1: ToA-100 and ToGR results across in-domain and out-of domain datasets. Bold indicates the best.

Model Method MMLU MATH-500 GSM8K ARC_C ReClor ARC_E Average

AGL AROL AGL AROL AGL AROL AGL AROL AGL AROL AGL AROL AGL AROL

Llama-3.1-
8B-Instruct

SC 186 293 365 638 226 306 140 216 150 177 128 195 199 304
SC/TE 68 100 173 211 139 133 49 58 90 90 38 72 93 111
SC/RCV 48 6 142 31 133 75 40 4 76 4 30 2 78 20
SC/FCV 47 1 125 7 126 22 38 1 74 2 29 1 73 6

Qwen2.5-
7B-Instruct

SC 182 437 477 825 342 432 126 227 335 421 98 189 260 422
SC/TE 114 240 361 533 271 313 75 130 172 262 60 142 176 270
SC/RCV 104 12 310 83 250 108 78 7 142 17 64 6 158 39
SC/FCV 96 4 291 18 243 37 77 6 133 10 63 4 150 13

Qwen2.5-
3B-Instruct

SC 281 425 481 794 369 425 231 341 432 483 188 327 330 466
SC/TE 148 272 346 504 251 273 101 166 287 345 74 146 201 284
SC/RCV 99 9 284 32 225 71 84 12 233 21 62 10 164 26
SC/FCV 87 2 255 3 207 12 78 4 214 3 60 4 150 5

Table 2: AGL and AROL results with threshold τ = 0.6. Results with τ = 1.0 are provided in Table 4.

vals based on task complexity and performs well in372

out-of-distribution tests, achieving ToGR scores av-373

eraging 0.2 higher than the BERT classifier on both374

the complex ReClor and simpler ARC_E datasets.375

ToGR serves as a superior metric, underscoring376

the necessity of fine-grained task difficulty differ-377

entiation in pre-generation routing. As shown378

in Figure 7 and Table 1, Llama-3.1-8B-Instruct379

scores higher on ToA-100 for datasets with smaller380

performance gaps, such as GSM8K and ARC, than381

those with larger gaps, such as MATH and MMLU.382

However, ToGR exhibits an opposite trend, reveal-383

ing a performance gap bias and proving a more384

robust metric. Although all methods struggle with385

small-gap datasets, necessitating further improve-386

ment, SATER significantly outperforms baselines,387

suggesting that SATER not only enables coarse-388

grained domain classification, but also possesses389

finer-grained difficulty discrimination capabilities.390

Models can assess question difficulty and refuse391

to answer, even in reasoning tasks. ToGR in392

Table 1 reveals an interesting phenomenon: Model393

performance on reasoning tasks is comparable to394

knowledge-based tasks, with all models achieving395

best results on MATH-500. This suggests that mod-396

els can not only identify the knowledge blind spot, 397

but also anticipate question difficulty in reasoning 398

tasks and proactively decline to answer. 399

SATER continuously reduces latency and cost 400

while improving performance in cascade rout- 401

ing. As presented in Tables 2, both voting meth- 402

ods significantly reduce latency, with AGL decreas- 403

ing by over 50% and AROL by over 80%. Fur- 404

thermore, Figure 3 and 8 illustrate that SATER 405

surpasses vanilla SC in both cost and accuracy. 406

For stronger SLMs, such as Qwen2.5-7B-Instruct, 407

RCV is more effective in lowering costs by increas- 408

ing voting opportunities. For weaker SLMs, FCV 409

improves efficiency by swiftly declining to respond. 410

In particular, when LLMs are assumed to deliver 411

optimal responses, the advantages of SATER be- 412

come even more evident, indicating that the over- 413

confidence of vanilla SC is partially masking by 414

the insufficiency of LLM. 415

5 Analysis 416

5.1 Comparison Between Pre-generation 417

Routing and Cascade Routing 418

Different Cost Ratios. Since SLMs are typically 419

deployed privately, which is also a basic require- 420
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Figure 4: Comparison plot of cost-accuracy(100) between pre-generation and cascade routing, averaged across all
benchmarks. Results are based on Qwen2.5-7B-Instruct, with three subplots depicting cost ratios of 1:25, 1:50, and
1:100 from left to right. Detailed results for individual benchmarks are available in Appendix A.2 (Figure 9, 10, 11).

ment of our method, their actual costs can be much421

lower than $0.08. In contrast, LLMs generally rely422

on API calls, with fixed pricing and the potential423

to use models more expensive than DeepSeek-V3.424

So we further explore scenarios with cost ratios of425

1:25, 1:50, and 1:100 in Figure 4. At low cost ra-426

tios, cascade routing is less cost-effective than pre-427

generation routing due to multiple sampling. As428

cost ratios rise, cascade routing’s benefits emerge:429

RCV and FCV outperform pre-generation routing430

at a 1:25 ratio, while SC/TE equals BERT classi-431

fier at 1:50 and surpasses it at 1:100. Thus, pre-432

generation routing excels at low cost ratios, but433

cascade routing offers superior cost control and ac-434

curacy at high ratios. Although RCV and FCV’s435

cost advantages diminish at high ratios, they remain436

more cost-effective than vanilla SC, with signifi-437

cant advantages in latency control and accuracy.438

Different Tasks. Besides overall performance439

across six benchmarks, we further analyze the suit-440

ability of different routing strategies for various441

types of tasks. As shown in Figure 9, 10, and 11,442

cascade routing demonstrates a clear advantage443

in complex reasoning tasks such as mathematical444

reasoning. In contrast, for knowledge-intensive445

tasks like factual question answering, direct routing446

based on question classification exhibits higher re-447

liability, since self-consistency may not adequately448

reflect answer accuracy. Notably, SATER consis-449

tently outperforms vanilla SC in one or more as-450

pects of cost, accuracy, and latency across all ex-451

perimental scenarios.452

Different Capabilities. Figure 12 illustrates that453

under the same cost ratio, the weaker the capa-454

bilities of an LLM, the sooner the advantages of455

cascade routing become evident. This is primarily456

because, despite overconfidence issues in voting-457

based routing, some misjudged difficult queries are458

actually unsolvable by the LLM, in which case no 459

routing saves costs instead. A secondary reason 460

is that the inherent randomness in LLM outputs 461

may lead to incorrect responses for simple queries 462

in a single sampling, whereas the SLM’s accurate 463

voting helps narrow the accuracy gap. 464

5.2 When Does SATER Help? A Case Study 465

In pre-generation routing, SATER resembles em- 466

bedding a classifier within the model, fully lever- 467

aging its parameters. Compared to methods that 468

rely on additional small classifiers, SATER sig- 469

nificantly enhances performance under resource- 470

constrained conditions. In addition, the consis- 471

tency between the model and classifier aids in a 472

fine-grained awareness of capability boundaries. 473

In cascade routing, long-to-short training acceler- 474

ates the generation process, while refusal training 475

enables the model to decline complex queries. To- 476

gether, two-stage training not only reduces costs 477

and latency, but also improves accuracy. Figure 5 il- 478

lustrates several examples from MMLU, Math-500, 479

and GSM8K. For overconfident queries, especially 480

knowledge-based ones, SATER firmly rejects them; 481

for challenging reasoning tasks, SATER halts gen- 482

eration with a high rejection probability, reducing 483

ineffective sampling and AROL; for medium and 484

simple queries, SATER swiftly generates responses, 485

further boosting overall efficiency. 486

5.3 Other Experiments 487

Table 5 and 6 in Appendix B.2 demonstrate that 488

SATER reduces token count by over 40% in first- 489

stage DPO training while preserving high accu- 490

racy. Table 3 compares SATER and TokenSkip 491

on GSM8K and MATH-500, showing SATER’s 492

superior token compression, accuracy retention, 493

and readability. These findings highlight DPO’s 494

effectiveness in shortening output without com- 495

promising performance. Additionally, Figure 13 496

7



… Therefore, the least possible value of \\( |a_{n-1}| \\)
is:\n\\[ \\boxed{0}. \\]

Original

SATER

Query
Suppose the polynomial 𝑓 𝑥 = 𝑎!𝑥! + 𝑎!"#𝑥!"# +⋯+
𝑎$𝑥$ + 𝑎#𝑥 + 𝑎%	has integer coefficients, and its roots are 
distinct integers. Given that 𝑎! = 2	and 𝑎% = 66, what is the 
least possible value of 𝑎!"# ?

... Conclusion\nAfter several trials, the combination
\\( (1, 3, -11) \\) gives the minimal \\( |a_{n-1}| \\)
of \\( 14 \\).\n\n\\boxed{14}

Sorry, I can’t answer that.

Ans & Conf & AROL

Declined (0.7/1, 1)
Routing

0 (0.2/1, 936)

The basis of Dworkin’s criticism of Posner’s economic
analysis of law ... The most accurate answer is (B) ...
Posner's focus on economic efficiency often overlooks these
non-economic values, which Dworkin believes are crucial to
the proper functioning of a just legal system.

Original

SATER

Query
Posner’s economic analysis of law is roundly attacked by
Dworkin who says the theory ‘has not achieved the
beginning of a beginning.’ What is the basis of this criticism?
(A)Posner’s approach fails to offer a means by which to
calculate individual prosperity.
(B) It neglects the importance of individual choice.
(C) It regards wealth as a value, which it is not.
(D) The theory is economically unsound.

... Posner's approach improperly elevates wealth
maximization to a central normative principle in
legal analysis. This criticism aligns with option (C).

Sorry, I can’t answer that.

Ans & Conf  & Lat

Declined (1/1, 1)
Routing

B (1/1, 144)

Query
Fern is trying to decide between buying the Widgeteer 3000, which makes
60 widgets an hour, and the WidgetMaster 9000, which makes 45 widgets an
hour. Each widget sells for $6. How much more money will Fern make from
the Widgeteer 3000 vs. the WidgetMaster 9000 if it runs 24 hours a day for a
month with 30 days?

OriginalSATER

... **Step 1: Calculate
the total number of
widgets produced in a
month**\n\n-
**Widgeteer 3000**:
60 widgets/hour * 24
hours/day * 30 days =
43,200 widgets\n …
Therefore, Fern will
make $64,800 more
from the Widgeteer
3000 compared to the
WidgetMaster 9000.

... 1. **Calculate the total number of
widgets produced by each machine:**\n\n -
**Widgeteer 3000:**\n - Production rate:
60 widgets per hour\n - Operating hours per
day: 24 hours\n - Days in a month: 30
days\n - Total widgets produced =
Production rate × Operating hours per day
× Days in a month\n \\[\n \\text{Total
widgets (Widgeteer 3000)} = 60 \\times 24
\\times 30 = 43200 \\text{ widgets}\n
\\]\n\n ... Therefore, Fern will make $64,800
more from the Widgeteer 3000 compared to
the WidgetMaster 9000 over a month.

64800 (0.9/1, 404) Ans & Conf & AGL 64800 (1/1, 602)

Figure 5: Three examples from SATER. Responses are color-coded: red (incorrect), green (correct), blue (refused).
White box shows the majority-voted answer, confidence score, and AGL or AROL, based on routing decisions.

indicates that lower sampling temperatures reduce497

output diversity, leading to accuracy declines in498

high-threshold intervals. However, RCV and FCV499

still maintain a relatively significant advantage.500

6 Related Work501

Pre-generation Routing Pre-generation routing502

intelligently assigns tasks by evaluating query fea-503

tures, mainly through two approaches: domain ex-504

pert routing (Stripelis et al., 2024; Lu et al., 2024;505

Chen et al., 2024), which identifies the query’s506

domain and assigns it to a specialized model for507

improved performance, and complexity-adaptive508

routing (Ding et al., 2024; Ong et al., 2024), which509

allocates queries to models of varying sizes based510

on task complexity, optimizing the balance between511

quality and cost. Both rely on similar frameworks,512

such as supervised classifiers or unsupervised clus-513

tering, but differ in implementation details, includ-514

ing input query types and label annotations.515

Cascade Routing Cascade routing starts with a516

smaller model generating a response, evaluated for517

quality. If it falls short of a set threshold, the query518

is passed to a stronger model until satisfactory. De-519

cisions use either task-specific evaluation models520

for simple classification tasks (Chen et al., 2023;521

Ramírez et al., 2024) or confidence scores for more522

complex tasks(Aggarwal et al., 2024; Yue et al.,523

2024), which generally require multiple samplings.524

LLM Honesty Honesty in LLMs refers to their525

ability to produce truthful and reliable outputs. Cur-526

rent approaches, including supervised fine-tuning527

(Zhang et al., 2024; Cheng et al., 2024), rein-528

forcement learning (Xu et al., 2024), and probing529

(Kossen et al., 2024), encourage models to admit 530

uncertainty by saying “I don’t know” or giving 531

better confidence estimates. While most studies 532

target knowledge-intensive tasks like factual ques- 533

tion answering, our work shows that for complex, 534

multi-step reasoning tasks, models can proactively 535

decline to answer, thereby optimizing two types of 536

routing across diverse tasks. 537

Efficient Reasoning Long CoT reasoning mod- 538

els often “overthink”, producing redundant steps 539

that reduce efficiency. Current training solutions in- 540

clude length-penalized reinforcement learning for 541

concise reasoning (Luo et al., 2025; Aggarwal and 542

Welleck, 2025), and supervised fine-tuning with 543

compact CoT for succinct outputs (Xia et al., 2025; 544

Munkhbat et al., 2025). Studies like TokenSkip 545

also indicate that output redundancy persists, even 546

in non-reasoning models, though less severely. 547

7 Conclusion 548

In this work, we introduce a comprehensive evalua- 549

tion framework and propose SATER, a simple yet 550

effective two-stage training approach. Extensive 551

experiments across various SLMs and tasks demon- 552

strate SATER’s effectiveness, achieving significant 553

improvements in performance, cost efficiency, and 554

latency for both pre-generation routing and cas- 555

cade routing. When the cost ratio between LLM 556

and SLM exceeds 50, SATER delivers performance 557

comparable to pure LLM at around 50% of the cost 558

while maintaining low latency. Further analysis 559

highlights the suitability of both routing strategies 560

under diverse conditions, offering a flexible and 561

cost-effective solution for LLM applications. 562
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Limitation563

Although our work demonstrates strong results, cer-564

tain limitations remain. First, we primarily focus565

on the routing mechanism between a single small566

language model and a single large language model.567

Future research could explore multi-model collab-568

orative routing or cascading to enhance scalability.569

Secondly, the prompt-based refusal training strug-570

gles to achieve effective routing when the thresh-571

old falls below 0.1. However, cross-dataset experi-572

ments demonstrate that setting the threshold at 0.1573

maintains the overall cost at less than 30% of the574

LLM’s cost, indicating that SATER consistently575

delivers a practical range of routing costs. Finally,576

SATER’s rejection mechanism faces challenges in577

scenarios where a response is mandatory but cannot578

be routed. In such cases, maintaining an untrained579

model copy may be necessary to ensure the system580

can still provide complete responses when required.581
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A Additional Plots751

A.1 Average Cost-Accuracy(100) Plot and752

Cost-Accuracy(100) Plot for Each753

Benchmark754

Figure 6 displays the average cost-accuracy(100)755

plot across all benchmarks. The detailed cost-756

accuracy(100) performance for individual bench-757

marks is shown in Figure 7 (pre-generation routing)758

and Figure 8 (cascade routing). All results are ob-759

tained using Qwen2.5-7B-Instruct, with a cost ratio760

of 1:13.75.761

A.2 Comparison Plot of Cost-Accuracy(100)762

between Pre-generation Routing and763

Cascade Routing for Each Benchmark764

Figure 9, 10 and 11 present comparison plots of765

cost-accuracy(100) between pre-generation routing766

and cascade routing across multiple benchmarks767

on Qwen2.5-7B-Instruct, with cost ratios of 1:25,768

1:50, and 1:100, respectively.769

A.3 Different Capabilities770

In Figure 12, we compare the impact of large771

language models (LLMs) with varying capa-772

bilities—specifically, the actual results from773

DeepSeek-V3 versus the assumption that LLMs774

always deliver optimal responses—on the perfor-775

mance of prefix routing and cascade routing.776

A.4 Different Temperature Settings777

We show the comparison under different tempera-778

ture settings in Figure 13.779

B Additional Tables780

B.1 AGL and AROL Results with Different781

Thresholds782

We present AGL and AROL results with threshold783

τ = 1.0 in Table 4. In mathematical reasoning784

tasks, a threshold of 0.6 usually yields satisfactory785

results. For other types of tasks, further perfor-786

mance improvements can be achieved by adjusting787

the threshold within the range of 0.6 to 1.0.788

B.2 Effectiveness of Long to Short Training789

Table 3 presents the efficiency comparison be-790

tween SATER and TokenSkip on the GSM8K and791

MATH-500 benchmarks. In Table 5, we report the792

average accuracy and average Chain-of-Thought793

(CoT) token count across both in-domain and out-794

of-domain datasets. Table 6 displays the average795

accuracy percentage change (∆%) and the average 796

CoT token count percentage change (∆%) across 797

in-domain and out-of-domain datasets. 798

Method GSM8K MATH-500

Accuracy Tokens Accuracy Tokens

SATER 83.0 117 41.2 212
TokenSkip (0.5) 78.2 113 40.2 292

Table 3: Efficiency comparison between SATER and
TokenSkip on GSM8K and MATH-500 benchmarks.

C Implementation Details 799

All sampling is conducted using the vLLM frame- 800

work (Kwon et al., 2023) with a maximum gen- 801

eration length of 1024 tokens and sampling pa- 802

rameters set to temperature = 0.7 and top_p = 1.0. 803

For DeepSeek-V3, on the GSM8K and MATH-500 804

datasets, we set temperature = 0 and max_length 805

= 8192, while other datasets use official default 806

parameters. 807

The training process utilizes the LLaMA-Factory 808

framework (Zheng et al., 2024) and is performed on 809

four NVIDIA RTX 3090 GPUs. For long-to-short 810

training, we employ the DPO method with LoRA 811

fine-tuning (rank = 8, alpha = 16, dropout = 0.1) for 812

one epoch, using the AdamW optimizer (learning 813

rate = 1e-4) with a cosine learning rate schedule 814

(10% warmup ratio). The per-device batch size 815

is set to 1 with 4 gradient accumulation steps, a 816

length limit of 1024 tokens, a Sigmoid preference 817

loss (β = 1.0), and an auxiliary loss coefficient of 818

0.2. For refusal training, we use a pure SFT task 819

with the same LoRA fine-tuning parameters as the 820

DPO stage, excluding preference loss parameters, 821

and train for one epoch. 822
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Figure 6: Average Cost-Accuracy(100) Plot.

Figure 7: Cost-Accuracy(100) plot for each benchmark in pre-generation routing. Results are based on Qwen2.5-
7B-Instruct, with a cost ratio of 1:13.75.

Figure 8: Cost-Accuracy(100) plot for each benchmark in cascade routing. Results are based on Qwen2.5-7B-
Instruct, with a cost ratio of 1:13.75.
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Figure 9: Comparison plot of cost-accuracy(100) between pre-generation routing and cascade routing for each
benchmark. Results are based on Qwen2.5-7B-Instruct, with a cost ratio of 1:25.

Figure 10: Comparison plot of cost-accuracy(100) between pre-generation routing and cascade routing for each
benchmark. Results are based on Qwen2.5-7B-Instruct, with a cost ratio of 1:50.

Figure 11: Comparison plot of cost-accuracy(100) between pre-generation routing and cascade routing for each
benchmark. Results are based on Qwen2.5-7B-Instruct, with a cost ratio of 1:100.
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Figure 12: Comparison between the cost-accuracy plots and the cost-accuracy(100) plots, averaged across all
benchmarks. The upper section presents the actual results from the LLM (DeepSeek-V3), while the lower section
assumes LLMs deliver optimal responses. The results are based on Qwen2.5-7B-Instruct, with three subplots
illustrating cost ratios of 1:13.75, 1:50, and 1:100 (from left to right).

Figure 13: Comparison between different temperature settings, averaged across all benchmarks. The upper section
shows results at temperature 0.7, while the lower section displays results at temperature 0.3. The results are based
on Qwen2.5-7B-Instruct, with three subplots illustrating cost ratios of 1:13.75, 1:50, and 1:100 (from left to right).
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Model Method MMLU MATH-500 GSM8K ARC_C ReClor ARC_E Average

AGL AROL AGL AROL AGL AROL AGL AROL AGL AROL AGL AROL AGL AROL

Llama-3.1-
8B-Instruct

SC 232 138 310 327 192 180 200 110 184 113 186 105 217 162
SC/TE 87 50 149 125 127 94 75 32 107 59 63 27 101 65
SC/RCV 64 1 148 8 122 28 60 2 95 3 47 1 89 7
SC/FCV 63 1 126 2 117 11 58 1 93 1 46 1 84 3

Qwen2.5-
7B-Instruct

SC 218 243 503 597 324 312 176 159 390 309 146 126 293 291
SC/TE 129 142 375 396 258 249 96 88 216 176 79 79 192 188
SC/RCV 109 5 312 19 234 35 96 3 175 4 80 2 168 11
SC/FCV 106 1 278 3 225 14 94 1 168 5 80 1 159 4

Qwen2.5-
3B-Instruct

SC 312 267 504 542 338 306 291 228 455 380 260 216 360 323
SC/TE 161 151 359 362 231 201 145 105 325 246 113 94 222 193
SC/RCV 108 2 259 6 201 16 108 5 272 8 87 4 173 7
SC/FCV 107 1 256 2 193 4 104 2 278 5 86 2 171 3

Table 4: AGL and AROL results with threshold τ = 1.0.

Model Method MMLU MATH-500 GSM8K ARC_C ReClor ARC_E Average

Acc Tokens Acc Tokens Acc Tokens Acc Tokens Acc Tokens Acc Tokens Acc Tokens

Llama-3.1-
8B-Instruct

Original 70.1 186 47.2 457 85.1 174 83.3 140 62.8 130 89.8 128 73.1 202.5
SATER 68.1 67 41.2 212 83.0 117 81.7 44 60.6 86 89.2 34 70.6 93.3

Qwen2.5-
7B-Instruct

Original 72.5 180 73.0 530 92.5 280 89.1 121 74.0 321 92.5 95 82.3 254.5
SATER 71.5 111 69.2 392 91.0 226 88.9 73 73.2 163 92.8 58 81.1 170.5

Qwen2.5-
3B-Instruct

Original 69.1 262 63.0 555 86.0 297 83.9 214 62.6 415 90.8 176 75.9 319.8
SATER 68.6 138 61.8 391 81.5 212 84.4 94 63.2 266 90.7 69 75.0 195.0

Table 5: Average accuracy and average CoT token count (Tokens) across both in-domain and out-of-domain datasets.

Model Method MMLU MATH-500 GSM8K ARC_C ReClor ARC_E Average

∆Acc ∆Tokens ∆Acc ∆Tokens ∆Acc ∆Tokens ∆Acc ∆Tokens ∆Acc ∆Tokens ∆Acc ∆Tokens ∆Acc ∆Tokens

Llama-3.1-8B SATER -2.0 -64.2 -6.0 -53.6 -2.1 -32.5 -1.6 -68.2 -2.2 -34.4 -0.6 -73.2 -2.4 -54.4

Qwen2.5-7B SATER -1.0 -38.3 -3.8 -26.1 -1.5 -19.0 -0.2 -39.6 -0.8 -49.0 +0.3 -38.3 -1.2 -35.1

Qwen2.5-3B SATER -0.5 -47.3 -1.2 -29.4 -4.5 -28.6 +0.5 -56.1 +0.6 -36.1 -0.1 -60.6 -0.9 -43.0

Table 6: Average accuracy percentage change (∆%) and average CoT token count percentage change (∆%) across
both in-domain and out-of-domain datasets, where a negative value indicates a decrease and a positive value
indicates an increase.
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