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Conformal Prediction for Hierarchical Data
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Abstract
We consider conformal prediction of multivariate
data series, which consists of outputting predic-
tion regions based on empirical quantiles of point-
estimate errors. We actually consider hierarchical
multivariate data series, for which some compo-
nents are linear combinations of others. The in-
tuition is that the hierarchical structure may be
leveraged to improve the prediction regions in
terms of their sizes for given coverage levels. We
implement this intuition by including a projec-
tion step (also called reconciliation step) in the
split conformal prediction [SCP] procedure and
prove that the resulting prediction regions are in-
deed globally smaller than without the projection
step. The associated strategies and their analyses
rely on the literatures of both SCP and forecast
reconciliation. We also illustrate the theoretical
findings, both on artificial and on real data.

1. Introduction
This article combines two post-hoc procedures (two proce-
dures that are applied after initial forecasts were computed):
conformal prediction and forecast reconciliation for hierar-
chical data, both in a regression setting. Hierarchical data
refers to multivariate observations abiding by some linear
structure such that some components (referred to as in the
higher levels of the hierarchy) are given by linear combina-
tions of a subset of the components (referred to as the lower
level of the hierarchy).

Multivariate conformation prediction. Conformal predic-
tion is a general approach to output prediction sets, based
on finite samples and on any underlying forecasting method,
under mild assumptions—typically, exchangeability of data.
It was first made formal by Vovk et al. (2005) and gained
attention since the work by Lei et al. (2018). We are inter-
ested in the multivariate (also called multitarget) extensions
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of conformal predictions, discussed by Johnstone & Cox
(2021), Messoudi et al. (2021; 2022), and Feldman et al.
(2023); see Appendix E for more details. These works deal
with prediction regions providing joint coverage guaran-
tees, while we will rather be interested in component-wise
coverage guarantees.

Forecast reconciliation. Forecast reconciliation is about
taking into account the hierarchical structure of the mul-
tivariate data to improve forecasts. The intuition guiding
this approach is that observations at the higher levels of the
hierarchy are often easier to forecast, and that these fore-
casts can be leveraged to improve the forecasts at the lower
levels of the hierarchy. Conversely, valuable local infor-
mation from the lower levels can be leveraged to improve
forecasts at the higher ones. We mainly focus on a series of
works (Hyndman et al., 2011, Wickramasuriya et al., 2019,
Panagiotelis et al., 2021) that approach reconciliation by pro-
jections onto the subspace of so-called coherent forecasts;
see Appendix D for more details.

Contributions and challenges. This article combines (for
the first time) both theories, to provide improved conformal
predictions in the case of hierarchical data. The benchmark
procedure consists of the split conformal prediction proce-
dure (Lei et al., 2018) run on signed non-conformity scores
(as in Linusson et al., 2014) and in a component-wise fash-
ion. The improved version only differs from this benchmark
through the application of a projection to the regression
function learned on the train set—in the spirit of forecast
reconciliation. However, the challenge, and our contribu-
tions, lie in showing that for a given coverage level, the
resulting prediction regions indeed leverage the hierarchical
structure of the data and are more efficient, i.e., smaller
in some sense to be made precise. Actually (and only be-
cause we are interested in component-wise coverage, see
Appendix E.2), the main difficulty was to state and control
the corresponding criterion, referred to as (⋆⋆) in the sequel.
To do so, we show that one can resort to some known trace
inequalities of the literature of forecast reconciliation, and
also introduce some new such trace inequalities.

A more precise description of the challenges overcome may
be found after the sketch of the proof of Theorem 3.7 in Sec-
tion 3.2 (see also the specific discussions in Appendices E.2
and D.2).
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Conformal Prediction for Hierarchical Data

Unrelated references. The terminology “hierarchical” also
appears in Lee et al. (2023), Dunn et al. (2023) and Duchi
et al. (2024) in the contexts of predictive inference or con-
formal prediction. However, this line of research is about
a completely different setting (data coming from different
sources) and bears no relationship to the hierarchical struc-
ture we consider. Actually, Duchi et al. (2024) rather use the
terminology “multi-environment” in that context to avoid
potential confusions.

Outline. In Section 2, we formally state the setting consid-
ered, the objectives targeted, and the methodology followed.
The objectives consist of a component-wise coverage objec-
tive (⋆) and of an efficiency (small-length) objective (⋆⋆).
The methodology consists of taking the split conformal pro-
cedure (run component-wise with signed non-conformity
scores) as a benchmark, and discuss how to improve it by
adding a reconciliation step through projections. Section 3
then states the theoretical results achieved: the coverage
guarantees in Theorem 3.2, and efficiency results (weak and
practical version in Theorem 3.7, strong and oracle version
in Theorem 3.10). We only provide a sketch of the proof
of Theorem 3.7 (to give an idea of how we connected the
tools of conformal prediction and of forecast reconciliation),
and defer full proofs of all these results in Appendices A–
Appendix B–Appendix C. Finally, Section 4 illustrates the
theoretical finds both on artificial and on real data, with full
details of the simulations to be found in Appendix F. The
real data concern the charging of electric vehicles. We recall
that Appendices D and E discuss the literature of forecast
reconciliation and multivariate split conformal prediction,
respectively, and review their classic results.

Notation. For an integer n ⩾ 1, let [n] = {1, . . . , n}. For
a real number x ⩾ 0, we let ⌊x⌋ and ⌈x⌉ denote the lower
and upper integer parts, respectively. For a vector u ∈ Rm

and n ⩽ m, let u1:n = (u1, . . . , un)
⊤ be the vector of the

first n components of u. The null vector of Rm is denoted
by 0 = (0, . . . , 0)⊤. We let diag(w) denote the m × m
diagonal matrix with diagonal elements given by w ∈ Rm.
We denote by Idm the m×m identity matrix. The trace of
square matrix M is denoted by Tr(M).

2. Objectives and methodology
Setting. We consider a multivariate regression problem of
observations y ∈ Rm, where m ⩾ 3, based on features x ∈
Rd, where d ⩾ 1. The observations enjoy some hierarchical
structure: some of their components (henceforth referred
to as aggregated levels) are given by sums over subsets
of other components (henceforth referred to as the most
disaggregated levels). More formally, up to reordering the
components of y, there exist 2 ⩽ n < m and a m × n

Total
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Figure 1. Two examples of hierarchical structures and their asso-
ciated structural matrices H .

matrix H of the form

H =

[
Idn
Hsub

]
such that y = Hy1:n , (1)

where Hsub is any (m− n)× n matrix of real numbers. The
matrix H encoding the hierarchical summation constraints
is called the structural1 matrix. Two examples are provided
in Figure 1, of the “bottom-up” form (i.e., with matrices
Hsub of some specific form, but we recall that we will require
no specific assumption on Hsub).

Definition 2.1. Vectors u ∈ Rm satisfying the linear con-
straints u = Hu1:n are called coherent. The subspace
Im(H) of all such vectors is called the coherent subspace.

2.1. Objectives

We assume that i.i.d. data (xt,yt)1⩽t⩽T is available to per-
form the regression task (we do so for the sake of exposition;
Assumption 3.1 will later relax this requirement). We now
describe the objective(s) targeted: constructing prediction
rectangles with a coverage objective (⋆) and a small-length
objective (⋆⋆).

The primary objective is to construct prediction sets based
on this T–sample, of the form C1 × . . .× Cm, where each
Ci : x ∈ Rd 7→ Ci(x) is an application taking subsets of
R as values. Consider a new data point (xT+1,yT+1) i.i.d.
from the T–sample. The prediction sets should be such
that each component yT+1,i of the observations yT+1 be
predicted by Ci(xT+1) with a coverage level of approxima-
tively 1− α:

∀i ∈ [m], P
(
yT+1,i ∈ Ci(xT+1)

)
≈ 1− α , (⋆)

where the probability P is with respect to both
(xT+1,yT+1) and (xt,yt)1⩽t⩽T .

1In the literature of forecast reconciliation, this matrix is usually
denoted by S. We rather keep this letter for non-conformity scores.
Also, the most disaggregated levels are often the last n components,
while we consider the first n components.
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Conformal Prediction for Hierarchical Data

This objective is different from the typical objective in other
contributions on multivariate conformal prediction (see Mes-
soudi et al., 2021, Messoudi et al., 2022, Feldman et al.,
2023), which is about a global (not component-wise) cov-
erage guarantee: output a prediction region C(xT+1) such
that

P
(
yT+1 ∈ C(xT+1)

)
≈ 1− α . (2)

We are interested in the objective (⋆) because we want to
possibly concentrate on specific nodes within the hierarchy
and get individual coverage guarantees for them. For in-
stance, in our real-data application (see Section 4), this could
correspond to making sure that each recharging station is
well-dimensioned.

In addition, we discuss a simple way of leveraging the ap-
proach developed later in this article for the joint-coverage
objective (2): see Appendix E.

A secondary objective is to ensure that the prediction sets
output are efficient, i.e., are as small as possible. We will
be mostly interested in rectangles C1(x) × . . . × Cm(x)
based on intervals Ci(x) =

[
µi(x)+ai(x), µi(x)+bi(x)

]
,

whose respective lengths are denoted by

ℓ
(
Ci(x)

)
= bi(x)− ai(x) .

One quantification of the size of such a rectangle is given by
m∑
i=1

wi ℓ
(
Ci(x)

)2
,

where we fix some vector w = (w1, . . . , wm)⊤ of positive
numbers. The weights w may be used to ponder the compo-
nents based on their respective importance. The secondary
objective then formally corresponds to

minimizing E

[
m∑
i=1

wi ℓ
(
Ci(xT+1)

)2]
, (⋆⋆)

where, again, the expectation E is with respect to both
(xT+1,yT+1) and (xt,yt)1⩽t⩽T .

2.2. Hierarchical Split Conformal Prediction

Positioning. Lei et al. (2018) introduced a variant of con-
formal prediction called split conformal prediction [SCP],
a procedure based on splitting data between a training set
(to learn a regressor function) and a calibration set (to com-
pute estimation errors, a.k.a. residuals or non-conformity
scores). This procedure has been extensively studied in the
univariate case, and often through considering the absolute
values of the non-conformity scores, which leads to centered
intervals. We are interested in two extensions of this basic
setting: multivariate SCP and signed non-conformity scores.

Signed non-conformity scores were already considered in
the univariate case by Linusson et al. (2014). They are handy

in our setting because we consider linear constraints: the
signed non-conformity scores ŝ = y − ŷ between coherent
observations y and forecasts ŷ are also coherent, while the
vector of their absolute values is not coherent in general.

Multivariate SCP was already studied by Messoudi et al.
(2021) but with somewhat different objectives: in particular,
the design of prediction regions for the vectors yT+1, while
our objective (⋆⋆) is about separate prediction intervals for
each component. A more-in-depth discussion of the links
and differences between the objectives of Messoudi et al.
(2021) and (⋆⋆) may be found in Appendix E.

Formal description: plain multivariate version. For-
mally, the component-wise coverage objectives (⋆) may be
achieved by a component-wise SCP, as follows. Data split-
ting corresponds to partitioning [T ] into the subsets Dtrain

and Dcalib, with respective cardinalities denoted by Ttrain and
Tcalib. With pairs (xt,yt) indexed by t ∈ Dtrain, a regressor
function µ̂ : x ∈ Rd 7→ µ̂(x) ∈ Rm is built, thanks to
some regression algorithm A provided as input parameter
to the SCP procedure. Then, on the calibration set, i.e., for
each t ∈ Dcalib, point estimates ŷt = µ̂(xt) and signed
non-conformity scores (also known as signed estimation
errors or signed residuals) ŝt = yt − ŷt are computed. The
component-wise character of the procedure appears in the
third and final step, where prediction intervals are output
component by component. Indeed, for each component
i ∈ [m], we order separately the i–th components ŝt,i of
the non-conformity scores ŝt, where t ∈ Dcalib; the ordered
values are denoted as follows, by using the standard notation
of order statistics:

ŝ(1),i ⩽ . . . ⩽ ŝ(Tcalib),i .

We also define ŝ(0),i = −∞ and ŝ(Tcalib+1),i = +∞. Fi-
nally, the prediction interval for yT+1,i based on the corre-
sponding features xT+1 is

Ĉi(xT+1) =

[
µ̂i(xT+1) + ŝ(

⌊(Tcalib+1)α/2⌋
)
,i
,

µ̂i(xT+1) + ŝ(
⌈(Tcalib+1)(1−α/2)⌉

)
,i

]
,

where 1 − α ∈ (0, 1) is the confidence level targeted and
where µ̂i(xT+1) is the i–th component of the point esti-
mate µ̂(xT+1). The prediction rectangle for yT+1 is the
Cartesian product of the prediction intervals Ĉi(xT+1).

The thus-defined plain multivariate version of SCP with
signed non-conformity scores is summarized in Algorithm 1.
We use it as a benchmark and now introduce a generalization
of this algorithm taking the hierarchical structure H into
account.

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Conformal Prediction for Hierarchical Data

Algorithm 1 Plain multivariate SCP with signed scores
Parameters: confidence level 1 − α; regression algo-

rithm A; partition of [T ] into subsets Dtrain and Dcalib

of respective cardinalities Ttrain and Tcalib

1: Build the regressor µ̂( · ) = A
(
(xt,yt)t∈Dtrain

)
2: Denote µ̂( · ) =

(
µ̂1( · ), . . . , µ̂m( · )

)
3: for t ∈ Dcalib let ŷt = µ̂(xt) and ŝt = yt − ŷt

4: for each i ∈ [m] do
5: order the (ŝt,i)t∈Dcalib into ŝ(1),i ⩽ . . . ⩽ ŝ(Tcalib),i

and define ŝ(0),i = −∞ and ŝ(Tcalib+1),i = +∞
6: let q̂(i)α/2 = ŝ(

⌊(Tcalib+1)α/2⌋
)
,i

and q̂
(i)
1−α/2 = ŝ(

⌈(Tcalib+1)(1−α/2)⌉
)
,i

7: set Ĉi( · ) =
[
µ̂i( · ) + q̂

(i)
α/2, µ̂i( · ) + q̂

(i)
1−α/2

]
8: return Ĉ1(xT+1), . . . , Ĉm(xT+1)

Algorithm 2 Hierarchical SCP with signed scores
Parameters: confidence level 1 − α; regression algo-

rithm A; partition of [T ] into subsets Dtrain and Dcalib

of respective cardinalities Ttrain and Tcalib; matrix P

1: Build the regressor µ̂( · ) = A
(
(xt,yt)t∈Dtrain

)
2: Denote P µ̂( · ) = µ̃( · ) =

(
µ̃1( · ), . . . , µ̃m( · )

)
3: for t ∈ Dcalib let ỹt = µ̃(xt) and s̃t = yt − ỹt

4: for each i ∈ [m] do
5: order the (s̃t,i)t∈Dcalib into s̃(1),i ⩽ . . . ⩽ s̃(Tcalib),i

and define s̃(0),i = −∞ and s̃(Tcalib+1),i = +∞
6: let q̃(i)α/2 = s̃(

⌊(Tcalib+1)α/2⌋
)
,i

and q̃
(i)
1−α/2 = s̃(

⌈(Tcalib+1)(1−α/2)⌉
)
,i

7: set C̃i( · ) =
[
µ̃i( · ) + q̃

(i)
α/2, µ̃i( · ) + q̃

(i)
1−α/2

]
8: return C̃1(xT+1), . . . , C̃m(xT+1)

Formal description: hierarchical version of SCP. The
hierarchical version of SCP is stated in Algorithm 2 and
only differs from the plain multivariate version stated as
Algorithm 1 in line 2, where a projection matrix P onto
the coherent subspace Im(H) should be used: the regres-
sor function considered is µ̃ = P µ̂, instead of simply µ̂,
and thus outputs point estimates that are coherent in the
case where Im(P ) ⊆ Im(H). The rest of the procedure is
similar.

Algorithm 1 is a special case of Algorithm 2, for the choice
P = Idm. We however provide two separate statements
to clarify the notation: ·̂ –type quantities are for the plain
multivariate version (Algorithm 1), which we use as a bench-
mark, while ·̃ –type quantities refer to the hierarchical ver-
sion (Algorithm 2) to be used with a projection matrix P
onto Im(H).

Projection matrices. As indicated, we will be mostly
interested in projection matrices P onto Im(H) for Al-
gorithm 2. We will most often take them of the form
PW = H

(
H⊤WH

)−1
H⊤W , where W is a symmetric def-

inite positive matrix; see Lemma B.5 in Appendix B for a
proof that the PW are indeed projections onto Im(H), as
well as a statement of additional properties that they enjoy.

3. Statements of the theoretical results
In conformal prediction, results typically hold in great gen-
erality. In particular, we will require no direct assumption
on the regression algorithm A, which will be treated as a
black-box regression procedure that does not even have to
output coherent point estimates (hence the consideration of
a projection matrix P in Algorithm 2). No assumption will
be required on the data split between Dtrain and Dcalib, but the
following key assumption of i.i.d. behavior will be issued
on the data (or only on the non-conformity scores).

Assumption 3.1. The non-conformity scores ŝt = yt − ŷt,
for t ∈ Dcalib ∪ {T + 1} of the plain multivariate version of
SCP (Algorithm 1) are i.i.d. This is in particular the case
when data (xt,yt)1⩽t⩽T+1 is i.i.d.

The second part of Assumption 3.1 follows from the fact
that ŝt = yt − µ̂(xt), where µ̂ only depends on the data
in Dtrain and is therefore independent from the data (xt,yt)
for t ∈ Dcalib ∪ {T + 1}.

3.1. Coverage objective (⋆)

The theorem below is related to objective (⋆). It of course
holds for Algorithm 1, given that it is a special case of
Algorithm 2 with P = Idm. At this stage, no assumption
is required on the matrix P . The standard proof (together
with references to earlier similar proofs) may be found in
Appendix A.

Theorem 3.2 (Coverage). Fix α ∈ (0, 1). Algorithm 2,
used with any regression algorithm A and any matrix P
such that PH = H , ensures that whenever Assumption 3.1
(i.i.d. scores) holds,

∀i ∈ [m], P
(
yT+1,i ∈ C̃i(xT+1)

)
⩾ 1− α .

In addition, if the non-conformity scores
(
ŝt
)
t∈Dcalib∪{T+1}

are almost surely distinct, then

∀i ∈ [m], P
(
yT+1,i ∈ C̃i(xT+1)

)
⩽ 1−α+

2

Tcalib + 1
.

3.2. Small-length objective (⋆⋆), weak version

We now move on to the small-length objective (⋆⋆), and start
with a weak version thereof, relying on one fixed weight
vector w (see next section for a stronger version).
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Conformal Prediction for Hierarchical Data

As mentioned above, we issue no direct assumption on
the regression algorithm A. However, we output a mild
assumption on the distribution of the non-conformity scores,
which may be seen as un indirect assumption on A. This
assumption falls within the model-agnostic gist of conformal
prediction and is standard in the literature of probabilistic
forecast reconciliation (see, e.g., Panagiotelis et al., 2023
or Wickramasuriya, 2024). It states that non-conformity
scores follow a distribution, called an elliptical distribution,
derived from a spherical distribution; for more details, see
Appendix B (which in turns refers to Kollo & von Rosen,
2005, Section 2.3).

Definition 3.3. A random vector z follows a spherical dis-
tribution over Rk if z and Γz have the same distribution for
all k × k orthogonal matrices Γ.

Definition 3.4. An elliptical distribution over Rm is of the
form c+Mz, for a deterministic vector c ∈ Rm, a m× k
matrix M such that MM⊤ has rank k, and a random vector
z following a spherical distribution over Rk.

A given spherical distribution thus generates a family F of
elliptical distributions enjoying a stability property through
linear transformations.

Example 3.5. The simplest example of elliptical distribu-
tions consists of multivariate normal distributions (which
are light-tailed distributions). Other examples include mul-
tivariate t–distributions and symmetric multivariate Laplace
distributions (both heavy tailed) and the uniform distribution
on an ellipse (no tail).

We are now ready to state the key assumption used to es-
tablish in Theorem 3.7 that the hierarchical version of SCP
performs better than its plain multivariate version.

Assumption 3.6. The (i.i.d.) non-conformity scores
ŝt = yt − ŷt, for t ∈ Dcalib, of the plain multivariate ver-
sion of SCP (Algorithm 1) follow some elliptical distribution
(whose parameters are unknown to the learner).

Theorem 3.7. Let w ∈ Rm be a vector of positive numbers.
Under Assumptions 3.1 and 3.6 (i.i.d. scores with elliptical
distribution), the hierarchical version of SCP (Algorithm 2)
run with P = Pw, where

Pw
def
= H

(
H⊤diag(w)H

)−1
H⊤diag(w) , (3)

provides prediction rectangles that are more efficient than
the ones output by the plain multivariate version of SCP
(Algorithm 1) in the following sense:

E

[
m∑
i=1

wi ℓ
(
C̃i(xT+1)

)2]
⩽ E

[
m∑
i=1

wi ℓ
(
Ĉi(xT+1)

)2]
.

Sketch of proof. The centered scores s̃t − E
[
s̃t
]

are i.i.d.
according to a centered elliptical distribution as t ∈ Dcalib.

Thus, their i–th components have the same distribution ν up
to a scaling factor denoted by

√
γi. Let (vt)t∈Dcalib be i.i.d.

variables distributed according to ν, consider their order
statistics v(1) ⩽ . . . ⩽ v(Tcalib), and set

Lα = v(
⌈(Tcalib+1)(1−α/2)⌉

) − v(
⌊(Tcalib+1)α/2⌋

) .
We thus have that ℓ

(
C̃i(xT+1)

)
has the same distribution

as
√
γi Lα, for each i ∈ [m]. Therefore,

E

[
m∑
i=1

wi ℓ
(
C̃i(xT+1)

)2]
= E

[
L2
α

] ∑
i∈[m]

wiγi . (4)

It may be shown that γi is the (i, i)–th element of a matrix
of the form PwΓP⊤

w, where Γ is symmetric positive semi-
definite. A similar result holds for the Ĉi, with scaling
factors given by the diagonal elements of Γ. It thus suffices
to show that∑

i∈[m]

wiΓi,i ⩾
∑
i∈[m]

wi

(
PwΓP⊤

w

)
i,i

, (5)

i.e., that Tr
(
diag(w) Γ

)
⩾ Tr

(
diag(w)PwΓP⊤

w

)
. The

latter result essentially follows from taking expectations of
a Pythagorean inequality, and is a result of our own, though
inspired by the literature of forecast reconciliation.

The complete proof may be found in Appendix B, including
a justification of why Pw is well defined.

Some words on the challenges overcome. We sketched
above how we connected the tools of conformal prediction
and of forecast reconciliation.

The difficulty mostly lied in the component-wise approach,
imposed by the component-wise coverage guarantees (⋆)
targeted. Indeed, Appendix E.2 explains in detail why effi-
ciency results are straightforward when some joint coverage
is targeted.

More precisely (and as detailed in Appendix D.2), the main
blocking point was to relate the minimization of squared
lengths (4) to what may be rephrased as some trace min-
imization (5). Such relationships are classic in the litera-
ture of forecast reconciliation, but they rely on assumptions
of unbiasedness (i.e., of centered non-conformity scores,
which we are not ready to consider). However, by resort-
ing to signed scores, the expectations of the scores cancel
out: the distribution of Lα is stable when the (vt)t∈Dcalib are
translated.

3.3. Objective (⋆⋆): stronger but oracle version

We resort to tools from the theory of forecast reconciliation
to improve the results of Theorem 3.7 and have them hold
simultaneously for all possible positive weight vectors w.

5
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Conformal Prediction for Hierarchical Data

However, this improvement is only for an oracle strategy
relying on a projection matrix PΣ−1 depending on the co-
variance matrix Σ of the scores (unknown to the learner).
This is why we state next (see Algorithm 3) a “practical”
implementation of this oracle, which adds an estimation
step for Σ to the hierarchical SCP procedure stated as Algo-
rithm 2.

Assumption 3.8. The (i.i.d.) non-conformity scores
ŝt = yt − ŷt, for t ∈ Dcalib, of the plain multivariate ver-
sion of SCP (Algorithm 1) have a bounded second-order
moment. We denote by Σ their (positive definite) covariance
matrix.

The projection PΣ−1 to be considered in Theorem 3.10 is
the one used in the Minimum-Trace projection in forecast
reconciliation (Wickramasuriya et al., 2019). The name
comes from the following optimality result, for which we
provide an elementary proof in Appendix C (this proof may
be considered in itself as a result of interest). Let

PΣ−1
def
= H

(
H⊤Σ−1H

)−1
H⊤Σ−1 . (6)

Lemma 3.9 (Minimum-Trace projection). Let W and Σ be
two symmetric m × m matrices, where W positive semi-
definite and Σ is positive definite. Then, for all projection
matrices P onto Im(H),

Tr
(
WPΣ−1ΣP⊤

Σ−1

)
⩽ Tr

(
WPΣP⊤) .

We now state our main results, Theorem 3.10 and Corol-
lary 3.11. Their proofs may be found in Appendix C and
consist of direct adaptations of the proof of Theorem 3.7,
together with an application of Lemma 3.9.

To do so, we denote by C̃⋆
1 (xT+1)× . . .× C̃⋆

m(xT+1) the
prediction rectangles output by the hierarchical version of
SCP (Algorithm 2) run with P = PΣ−1 defined in (6), and
keep the notation C̃1(xT+1) × . . . × C̃m(xT+1) for the
prediction rectangles output by the same strategy run with
any other choice of a projection matrix.

We obtain the following efficiency result, which is actually
stronger than the objective (⋆⋆) stated, as the comparison
holds component-wise.

Theorem 3.10. Under Assumptions 3.1, 3.6, and 3.8 (i.i.d.
scores with elliptical distribution admitting a second-order
moment), the hierarchical version of SCP (Algorithm 2)
run with P = PΣ−1 provides prediction rectangles more
efficient than with any other choice of a projection matrix
onto Im(H):

∀i ∈ [m], E
[
ℓ
(
C̃⋆

i (xT+1)
)2]

⩽ E
[
ℓ
(
C̃i(xT+1)

)2]
.

Corollary 3.11. In the setting and under the assumptions
of Theorem 3.10, we also have

∀i ∈ [m], E
[
ℓ
(
C̃⋆

i (xT+1)
)2]

⩽ E
[
ℓ
(
Ĉi(xT+1)

)2]
,

where the prediction rectangle Ĉ1(xT+1)×. . .×Ĉm(xT+1)
is output by the plain multivariate version of SCP (Algo-
rithm 1).

The component-wise comparisons stated above in Theo-
rem 3.10 and Corollary 3.11 correspond to inequalities simi-
lar to the ones of Theorem 3.7 holding for all positive weight
vectors w:

∀w ∈ (0,+∞)m, E

[
m∑
i=1

wi ℓ
(
C̃⋆

i (xT+1)
)2]

⩽ E

[
m∑
i=1

wi ℓ
(
C̃i(xT+1)

)2]
.

(and not just for a single vector w as in Theorem 3.7).

However, the covariance matrix Σ is unknown and therefore,
running Algorithm 2 with PΣ−1 is an oracle strategy. We
turn it into a practical strategy by adding an estimation step.

3.4. Hierarchical SCP with estimated covariance matrix

Theorem 3.10 advocates using Algorithm 2 with PΣ−1 but
the covariance matrix Σ of the (unprojected) non-conformity
scores is unknown. A natural idea is of course to estimate it:
this is why data is now split into three subsets Dtrain (train
set), Destim (estimation set), and Dcalib (calibration set) of
respective cardinalities Ttrain, Testim and Tcalib. A regression
function µ̂ is still learned on data of Dtrain, in some black-box
way. The covariance matrix of the non-conformity scores
built based on µ̂ is estimated on a fraction of the remain-
ing data, indexed by Destim. This estimate then determines
a projection matrix P to be used to run the final part of
Algorithm 2: project scores, rank their components, and
deduce the prediction intervals of each component based on
the latter rankings.

More precisely, based on the scores ŝt = yt − µ̂(xt), for
t ∈ Destim, we compute the sample mean s and sample
covariance matrix Σ̂:

s =
1

Testim

∑
t∈Destim

ŝt , Σ̂ =
1

Testim

∑
t∈Destim

(
ŝt−s

)(
ŝt−s

)⊤
.

We assume that Σ̂ is symmetric positive definite, which
was always the case in our simulations. A projection ma-
trix P = P

(
Σ̂
)

onto Im(H) is then computed based on Σ̂,
through some function P that operates on symmetric posi-
tive definite m×m matrices. Examples of such functions
include

PMinT : M 7−→ H
(
H⊤M−1H

)−1
H⊤M−1 , (7)
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Algorithm 3 Hierarchical SCP with estimated covariances
Parameters: confidence level 1 − α; regression algo-

rithm A; partition of [T ] into three subsets Dtrain, Destim,
and Dcalib of respective cardinalities Ttrain, Testim and
Tcalib; function P operating on m×m matrices

1: Build the regressor µ̂( · ) = A
(
(xt,yt)t∈Dtrain

)
{—–Modifications w.r.t. Algorithm 2 start here—–}

2: for t ∈ Destim let ŷt = µ̂(xt) and ŝt = yt − ŷt

3: Compute the sample mean of the (ŝt)t∈Destim ,

s =
1

Testim

∑
t∈Destim

ŝt, and their

covariance matrix Σ̂ =
1

Testim

∑
t∈Destim

(
ŝt − s

)(
ŝt − s

)⊤
4: Let P = P

(
Σ̂
)

{—–Modifications w.r.t. Algorithm 2 stop here—–}

5: Denote P µ̂( · ) = µ̃( · ) =
(
µ̃1( · ), . . . , µ̃m( · )

)
6: for t ∈ Dcalib let ỹt = µ̃(xt) and s̃t = yt − ỹt

7: for each i ∈ [m] do
8: order the (s̃t,i)t∈Dcalib into s̃(1),i ⩽ . . . ⩽ s̃(Tcalib),i

and define s̃(0),i = −∞ and s̃(Tcalib+1),i = +∞
9: let q̃(i)α/2 = s̃(

⌊(Tcalib+1)α/2⌋
)
,i

and q̃
(i)
1−α/2 = s̃(

⌈(Tcalib+1)(1−α/2)⌉
)
,i

10: set C̃i( · ) =
[
µ̃i( · ) + q̃

(i)
α/2, µ̃i( · ) + q̃

(i)
1−α/2

]
11: return C̃1(xT+1), . . . , C̃m(xT+1)

which mimics the expression for PΣ−1 in Theorem 3.10,
corresponding to the Min-Trace projection, hence the MinT
subscript. Other examples are discussed below.

The procedure is summarized in Algorithm 3. The statement
of the latter only differs from the one of Algorithm 2 through
the additional lines 2–3–4, which consider the estimation
set Destim and build the projection P based on Σ̂.

Coverage guarantees. The coverage guarantees of
Theorem 3.2 hold also for Algorithm 3 when data
(xt,yt)1⩽t⩽T+1 is i.i.d. Indeed, the non-conformity scores
s̃t = yt − ỹt, for t ∈ Dcalib ∪ {T + 1}, are then still i.i.d.,
which is the only property needed in the proof of Theo-
rem 3.2 (located in Appendix A; see the end of its first
paragraph). This follows from the fact that these scores are
defined based on µ̂, on Σ̂, and on (xt,yt)t∈Dcalib∪{T+1},
where the latter are independent from µ̂ and Σ̂, which only
depend on data of Dtrain and Destim.

Other examples of projection functions P . When data
is scarce, the estimates Σ̂ may be poor, which would cause
issues when taking its inverse as in (7). A more robust
approach is to consider the vector of the inverses of the

Table 1. Summary of the algorithms implemented: nicknames and
corresponding formal definitions, through the algorithm number,
the required parameter P or P (if applicable), and the defining
equation of the latter. The first five algorithms are practical algo-
rithms, while the sixth algorithm is an oracle.

Nickname Algorithm Parameter Equation

Direct Alg. 1
OLS Alg. 2 P1 Eq. (3) + (9)
MinT Alg. 3 PMinT Eq. (7)
WLS Alg. 3 PWLS Eq. (8)
Combi Alg. 3 PCombi Eq. (10)

Oracle MinT Alg. 2 PΣ−1 Eq. (6)

diagonal elements of Σ̂ only (i.e., the vector of the inverses
of the variances of the components of the scores) and the as-
sociated projection matrix Pw, as in Theorem 3.7. This cor-
responds to some data-based weighted least squares [WLS],
as pointed out by Hyndman et al. (2016):

PWLS : M 7−→ H
(
H⊤D−1

M H
)−1

H⊤D−1
M , (8)

where DM = diag
(
(Mi,i)i∈[m]

)
. In contrast, an ordinary

least squares [OLS] approach (considered, for instance, in
Hyndman et al., 2011) would be based on the orthogonal
projection onto Im(H), which corresponds to P1 in (3):

P1 = H
(
H⊤H

)−1
H⊤, where 1 = (1, . . . , 1)⊤. (9)

Another robust approach could be to use a combination
(hence the subscript “Combi”) of the P functions defined
above, as suggested by Hollyman et al. (2021), who argued
that this combination does not have to be complicated to be
efficient. We therefore consider

PCombi : M 7−→ 1

3

(
P1+PWLS(M)+PMinT(M)

)
. (10)

Lemma B.5 in Appendix B states that the PMinT, PWLS,
and thus PCombi take projection matrices as values.

4. Simulations on artificial and real data
We compare the performance achieved by the algorithms
presented in this article, as summarized in Table 1: we do so
in terms of component-wise coverage levels and of lengths
of the prediction intervals. We consider two simulation
settings: one on artificially generated data, and one on real
data consisting of daily energy demand to charge electric
vehicles in Palo Alto, CA. In both cases, the hierarchical
structure is the three-level hierarchy (with 8 nodes, of the
form 5–2–1) described in the right-hand side of Figure 1.

Full details of the simulation settings (both for artificially
generated data and real data) may be found in Appendix F.
We only summarize below the main observations.
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Figure 2. Component-wise coverage levels and prediction-interval lengths (top graphs) and total lengths (bottom graphs), for artificially
generated data (left graphs) and real data of energy demand (right graphs). Empirical averages are reported, with standard errors (in both
the x–axis and y–axis directions for top graphs). The layout of top graphs follows the tree-representation of the hierarchy.

Artificially generated data. We generate 1 000 runs of
some experimental setting and obtain empirical estimates
of the component-wise coverage levels (x–axis positions in
the top graphs of Figure 2) and root-mean squared lengths
(y–axis positions of the same graphs). All algorithms obtain
component-wise coverage levels close to each other and
close to the target value 1 − α = 90%. However, differ-
ences are clearer in terms of component-wise lengths, with
our preferred strategy, MinT, i.e., Algorithm 3 with PMinT,
outperforming all others (as hoped from Theorem 3.10),
especially at the lower levels of the hierarchy. Simpler
strategies like OLS, i.e., Algorithm 2 with a plain Euclidean
projection, provide shorter lengths than Direct, the plain
SCP method, but are less efficient than MinT. These differ-
ences in lengths are significant as far as the total lengths are
concerned: see the bottom graphs of Figure 2, where the
confidence intervals on the expected means are all disjoint.
The strategies are thus clearly ranked.

Real data of energy demand. The data consists of daily
charging loads for 5 charging points in two different parking

lots (containing respectively 3 and 2 charging points, hence
the stated 5–2–1 hierarchy). We consider that the daily
data are i.i.d. and generate 360 runs of some experimental
setting consisting, in particular, of selecting fractions of the
data at random for the train, estimation, and calibration sets.
We report empirical averages, as in the case of artificially
generated data. All strategies obtain similar component-
wise coverage guarantees, close to 90.5%. This outcome
is in line with Theorem 3.2, which states that the coverage
level is actually possibly slightly larger than 1−α, of a factor
of order 1/Tcalib. The sample sizes are much smaller on this
use case (T = 1780 vs. T = 105 for artificial data), which
explains why the slightly larger coverage target appears
clearly. Length-wise, the MinT strategy performs relatively
poorly, which may be explained by the poor estimation of
the covariance matrix (due to lack of data). The WLS and
Combi strategies are more robust, as stated Section 3.4. The
oracle version of MinT performs the best, as expected (but
is an oracle).
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here. (The application to real-data
of optimizing the charging of electric vehicles is an example
of a positive societal consequence, but is only an example
among many other possible ones.)
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Appendices
The appendices contain the following material: first, detailed proofs of all claims made in the main body, namely,

• A proof of the coverage result (Theorem 3.2), in Appendix A;
• A proof of the efficiency result for fixed weights w (Theorem 3.7), in Appendix B;
• A proof of the component-wise efficiency results (Theorem 3.10 and Corollary 3.11), in Appendix C;

second, detailed reviews (literature review and formal description of classic results) of two topics:

• Forecast reconciliation, in Appendix D;
• Multi-target (multivariate) split conformal prediction, in Appendix E;

third,

• Full details for the simulations on artificial and real data, in Appendix F.

A. Proof of the coverage result (Theorem 3.2)
Theorem 3.2 (Coverage). Fix α ∈ (0, 1). Algorithm 2, used with any regression algorithm A and any matrix P such that
PH = H , ensures that whenever Assumption 3.1 (i.i.d. scores) holds,

∀i ∈ [m], P
(
yT+1,i ∈ C̃i(xT+1)

)
⩾ 1− α .

In addition, if the non-conformity scores
(
ŝt
)
t∈Dcalib∪{T+1} are almost surely distinct, then

∀i ∈ [m], P
(
yT+1,i ∈ C̃i(xT+1)

)
⩽ 1− α+

2

Tcalib + 1
.

The proof below uses a standard methodology in the literature of conformal prediction (see, for instance, Tibshirani et al.,
2019, proof of Theorem 1), with rather immediate adaptations due to the multivariate context and to the choice of signed
non-conformity scores.

Proof. The condition PH = H means that P leaves elements of Im(H) unchanged. Since observations yt are coherent,
we have, for all t ∈ Dcalib,

s̃t
def
= yt − P ŷt = P

(
yt − ŷt

)
= P ŝt .

Assumption 3.1 thus entails that the non-conformity scores s̃t, where t ∈ Dcalib ∪{T +1}, are also i.i.d., thus exchangeable—
which is the only property we will use in the rest of this proof.

Fix i ∈ [m]. By definition of C̃i(xT+1) and of the score s̃T+1 = yT+1 − µ̃(xT+1), the event of interest may be rewritten
as {

yT+1,i ∈ C̃i(xT+1)
}
=

{
s̃(

⌊(Tcalib+1)α/2⌋
)
,i
⩽ s̃T+1,i ⩽ s̃(

⌈(Tcalib+1)(1−α/2)⌉
)
,i

}
. (11)

If α ∈ (0, 1) is so small that (Tcalib + 1)α/2 < 1, i.e., α < 2/(Tcalib + 1), then s̃(
⌊(Tcalib+1)α/2⌋

)
,i
= s̃(0) = −∞ and

s̃(
⌈(Tcalib+1)(1−α/2)⌉

)
,i
= s̃(Tcalib+1) = +∞. Thus,

P
(
yT+1,i ∈ C̃i(xT+1)

)
= 1

satisfies the claimed statements ⩾ 1 − α and ⩽ 1 − α + 2/(Tcalib + 1). Otherwise, s̃(
⌊(Tcalib+1)α/2⌋

)
,i

and
s̃(

⌈(Tcalib+1)(1−α/2)⌉
)
,i

correspond respectively to some s̃t,i for some t ∈ Dcalib.

We apply arguments of exchangeability in the latter case. The new score s̃T+1,i is equally likely to fall into any of the
Tcalib + 1 intervals defined by the (s̃t)t∈Dcalib . More formally, by Assumption 3.1, and when scores are almost-surely distinct,

P
(
s̃T+1,i < s̃(1),i

)
= P

(
s̃T+1,i > s̃(Tcalib),i

)
=

1

Tcalib + 1

and ∀k ∈ [Tcalib − 1], P
(
s̃(k),i < s̃T+1,i < s̃(k+1),i

)
=

1

Tcalib + 1
.

11
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Therefore, when scores are almost-surely distinct, the event of interest (11) rewrites{
yT+1,i ∈ C̃i(xT+1)

}
a.s.
=

{
s̃(

⌊(Tcalib+1)α/2⌋
)
,i
< s̃T+1,i < s̃(

⌈(Tcalib+1)(1−α/2)⌉
)
,i

}
and has a probability

P
(
yT+1,i ∈ C̃i(xT+1)

)
=

⌈(Tcalib + 1)(1− α/2)⌉ − ⌊(Tcalib + 1)α/2⌋
Tcalib + 1

⩽

(
(Tcalib + 1)(1− α/2) + 1

)
−
(
(Tcalib + 1)α/2− 1

)
Tcalib + 1

= 1− α+
2

Tcalib + 1
,

as claimed.

We now prove that P
(
yT+1,i ∈ C̃i(xT+1)

)
⩾ 1− α whether or not scores are almost-surely distinct. To do so, we show

below that

∀k ∈ [Tcalib], P
(
s̃T+1,i ⩽ s̃(k),i

)
⩾

k

Tcalib + 1
and P

(
s̃T+1,i < s̃(k),i

)
⩽

k

Tcalib + 1
, (12)

so that, given the rewriting (11), we will end up with

P
(
yT+1,i ∈ C̃i(xT+1)

)
⩾

⌈(Tcalib + 1)(1− α/2)⌉ − ⌊(Tcalib + 1)α/2⌋
Tcalib + 1

⩾
(Tcalib + 1)(1− α/2)− (Tcalib + 1)α/2

Tcalib + 1
= 1−α .

It only remains to show (12). The event
{
s̃T+1,i ⩽ s̃(k),i

}
is exactly the fact that s̃T+1,i is among the k smallest elements

of the (s̃t)t∈Dcalib∪{T+1}. By exchangeability, the probability of the latter event is at least k/(Tcalib + 1); it may be larger if
several scores take the same value as the k–th smallest value. Similarly, the event {s̃T+1,i < s̃(k),i} is exactly the fact that
s̃T+1,i is among the k smallest elements of the (s̃t)t∈Dcalib∪{T+1} and that there are no ties at the k–th smallest value. Due
to the additional no-tie condition, and by exchangeability, the probability of the latter event is at most k/(Tcalib + 1).

B. Proof of the efficiency result for fixed weights w (Theorem 3.7)
We first state some elementary properties of elliptical distributions.

Property B.1. The marginals of a spherical distribution are identically distributed. A spherical distribution with a first-order
moment is centered: E[z] = 0. A spherical distribution with a second-order moment has a covariance matrix proportional to
the identity: there exists σ2 ∈ [0,+∞) such that E

[
zz⊤

]
= σ2 Idk.

Proof. The first property is proved by considering permutation matrices Γ. The second property holds because u = 0
is the only vector u ∈ Rk such that Γu = u for all orthogonal matrices (first consider permutation matrices to get that
all components of u are equal). For the third property, denote by Σ the covariance matrix of z. Since it is symmetric
(positive semi-definite), there exists an orthogonal matrix Γ and a vector λ ∈ Rk (with non-negative elements) such that
ΓΣΓ = diag(λ). Now, Γ⊤z has the same distribution as z, thus their covariance matrices are equal, which shows that
Σ = diag(λ). As marginals have the same distribution, we finally get Σ = σ2 Idk for some σ2 ∈ [0,+∞), which is actually
positive except if the distribution of z is a Dirac at 0.

A slightly more advanced result provides the form of the characteristic function of an elliptical distribution. Its proof is
based on first showing that characteristic functions of spherical distributions are exactly of the form u 7→ ϕ

(
u⊤u

)
, which is

consistent with the fact that spherical distributions are centered. Actually, it may be seen that ϕ is the characteristic function
of the common distribution of the marginals of z.

Lemma B.2 (Kollo & von Rosen, 2005, Theorem 2.3.5). Consider a random variable following an elliptical distribution
over Rm, of the form c+Mz, for a deterministic vector c ∈ Rm, a m× k matrix M such that MM⊤ has rank k, and a
random vector z following a spherical distribution over Rk. The characteristic function of c+Mz is of the form

∀u ∈ Rm, E
[
exp
(
iu⊤(c+Mz)

)]
= exp

(
iu⊤c) ϕ

(
u⊤MM⊤u

)
,

for some function ϕ : R → C that only depends on the distribution of z.
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Lemma B.2 is instrumental in showing that the normalized marginals of (a linear transformation of) an elliptical distribution
have comparable univariate distributions (that are homothetical), as stated next.

Lemma B.3. With the setting and the notation of Lemma B.2, let N be any m×m matrix and consider the random vector
s = N(c+Mz). Let Λ = NMM⊤N⊤. There exists a random variable v, following a univariate distribution induced by
the spherical distribution of z, such that

∀i ∈ [m], si − E[si]
(d)
=
√

Λi,i v .

Proof. By Lemma B.2, the characteristic function of s− E[s] is u ∈ Rm 7→ ϕ
(
u⊤Λu

)
. Thus, the characteristic function

of each si − E[si] is u ∈ R 7→ ϕ(Λi,iu
2). This shows the stated result, for a random variable v with characteristic

function ϕ.

A final preliminary is result justifies that the matrix Pw introduced in the statement of Theorem 3.7 is well defined.

Lemma B.4. The matrices H⊤H and H⊤WH are n× n symmetric positive definite matrices, where W is itself a m×m
symmetric positive definite matrix. Thus, these matrices are invertible.

Proof. The form (1) of H entails that H⊤H = Idn +H⊤
subHsub, where H⊤

subHsub is symmetric positive semi-definite. Thus,
H⊤H is symmetric positive definite. Given it is symmetric positive definite, the matrix W may be decomposed as W = N⊤N
for some n× n invertible matrix N . The matrix H⊤WH = (NH)⊤NH is symmetric positive semi-definite. We show that
it is even symmetric positive definite: u⊤(NH)⊤NHu = 0 is equivalent to the standard Euclidean norm of NHu being
null, thus to Hu = 0 (as N is invertible); given the form (1) of H , we conclude that u⊤(NH)⊤NHu = 0 is equivalent to
u = 0, which is the definition of H⊤WH = (NH)⊤NH being definite.

We are now ready to prove Theorem 3.7, which we restate first.

Theorem 3.7. Let w ∈ Rm be a vector of positive numbers. Under Assumptions 3.1 and 3.6 (i.i.d. scores with elliptical
distribution), the hierarchical version of SCP (Algorithm 2) run with P = Pw, where

Pw
def
= H

(
H⊤diag(w)H

)−1
H⊤diag(w) , (3)

provides prediction rectangles that are more efficient than the ones output by the plain multivariate version of SCP
(Algorithm 1) in the following sense:

E

[
m∑
i=1

wi ℓ
(
C̃i(xT+1)

)2]
⩽ E

[
m∑
i=1

wi ℓ
(
Ĉi(xT+1)

)2]
.

Proof. The matrix Pw satisfies PwH = H , thus, as in the beginning of the proof of Theorem 3.2, we have that for all
t ∈ Dcalib,

s̃t
def
= yt − Pwŷt = Pw

(
yt − ŷt

)
= Pw ŝt .

We let, for all t ∈ Dcalib and i ∈ [m],

ξ̂t,i = ŝt,i − E
[
ŝ1,i
]

and ξ̃t,i = s̃t,i − E
[
s̃1,i
]
.

By Assumption 3.1 (i.i.d. scores), for each i ∈ [m], the univariate random variables ξ̂t,i, where t ∈ Dcalib are i.i.d.; a similar
statement holds for the ξ̃t,i, where t ∈ Dcalib. By Assumption 3.6 and Lemma B.3, there exist a matrix Γ of the form
Γ = MM⊤ and a random variable v such that, for each i ∈ [m],

ξ̂t,i
(d)
=
√

Γi,i v and ξ̃t,i
(d)
=
√
Γ′
i,i v , where Γ′ = PwΓP⊤

w .

Let (vt)t∈Dcalib be i.i.d. random variables with the same distribution as v. We conclude from the facts above that for each
i ∈ [m],(

ŝt,i
)
t∈Dcalib

(d)
=
(
E
[
ŝ1,i
]
+
√

Γi,i vt

)
t∈Dcalib

and
(
s̃t,i
)
t∈Dcalib

(d)
=
(
E
[
s̃1,i
]
+
√
Γ′
i,i vt

)
t∈Dcalib

.

13



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Conformal Prediction for Hierarchical Data

The same equalities in distributions hold for the corresponding order statistics: for each i ∈ [m],(
ŝ(t),i

)
1⩽t⩽Tcalib

(d)
=
(
E
[
ŝ1,i
]
+
√
Γi,i v(t)

)
1⩽t⩽Tcalib

and
(
s̃(t),i

)
1⩽t⩽Tcalib

(d)
=
(
E
[
s̃1,i
]
+
√
Γ′
i,i v(t)

)
1⩽t⩽Tcalib

.

By following the conventions of Section 2.2 and letting v(0) = −∞ and v(Tcalib+1) = +∞, we even have these equalities in
distribution over vectors indexed by 0 ⩽ t ⩽ Tcalib + 1: for each i ∈ [m],(
ŝ(t),i

)
0⩽t⩽Tcalib+1

(d)
=
(
E
[
ŝ1,i
]
+
√
Γi,i v(t)

)
0⩽t⩽Tcalib+1

and
(
s̃(t),i

)
0⩽t⩽Tcalib+1

(d)
=
(
E
[
s̃1,i
]
+
√
Γ′
i,i v(t)

)
0⩽t⩽Tcalib+1

.

Now, for each i ∈ [m], by design of Algorithms 1 and 2, the lengths of the intervals Ĉi(xT+1) and C̃i(xT+1) output equals

ℓ
(
Ĉi(xT+1)

)
= ŝ(

⌈(Tcalib+1)(1−α/2)⌉
)
,i
− ŝ(

⌊(Tcalib+1)α/2⌋
)
,i

and ℓ
(
C̃i(xT+1)

)
= s̃(

⌈(Tcalib+1)(1−α/2)⌉
)
,i
− s̃(

⌊(Tcalib+1)α/2⌋
)
,i
.

Thus, letting Lα = v(
⌈(Tcalib+1)(1−α/2)⌉

) − v(
⌊(Tcalib+1)α/2⌋

), where Lα ⩾ 0 a.s., we finally proved that for each i ∈ [m],

ℓ
(
Ĉi(xT+1)

) (d)
=
√
Γi,i Lα and ℓ

(
C̃i(xT+1)

) (d)
=
√
Γ′
i,i Lα .

We showed so far that

E

[
m∑
i=1

wi ℓ
(
Ĉi(xT+1)

)2]
=

(
m∑
i=1

wi Γi,i

)
E
[
L2
α

]
and E

[
m∑
i=1

wi ℓ
(
C̃i(xT+1)

)2]
=

(
m∑
i=1

wi Γ
′
i,i

)
E
[
L2
α

]
,

where E
[
L2
α

]
⩾ 0 is possibly infinite (in which case the stated result holds). The proof is concluded in the case E

[
L2
α

]
< +∞

by noting that

Tr
(
diag(w) Γ

)
=

m∑
i=1

wi Γi,i ⩾
m∑
i=1

wi Γ
′
i,i = Tr

(
diag(w) Γ′) = Tr

(
diag(w)PwΓP⊤

w

)
,

which is guaranteed by the lemma below with W = diag(w), since Γ = MM⊤ for some m× k matrix.

The first part of Lemma B.5 is elementary. Its second part is inspired by Panagiotelis et al. (2021, Theorem 3.2), which
is a result about using orthogonal projections in the ∥ · ∥W –norm to derive distance-reducing properties, and by trace-
minimization results that are classic in the literature of forecast reconciliation (like Lemma 3.9 to be found in Appendix C).
We however see this second part as a new result of our own. See Appendix D.1, and in particular, the comments after(15),
for more details.

Lemma B.5. Fix a symmetric positive definite matrix W and consider the associated inner product and induced norm

u,u′ ∈ Rm 7−→ ⟨u, u′⟩W =
√
u⊤Wu′ and u ∈ Rm 7−→ ∥u∥W

def
=

√
u⊤Wu .

Then, PW
def
= H

(
H⊤WH

)−1
H⊤W is the orthogonal projection onto Im(H) in the ∥ · ∥W –norm.

Furthermore, for all m× k matrices M ,

0 ⩽ Tr
(
WPWMM⊤P⊤

W

)
⩽ Tr

(
WMM⊤) .

Proof. First, PW is indeed a projection onto Im(H): namely, PWPW = PW and PWH = H . To show that PW is an
orthogonal projection for the ∥ · ∥W –norm, it suffices to note that for all u,u′ ∈ Rm,

⟨PWu, u′⟩W
def
= (PWu)⊤Wu′ = u⊤WPWu′ def

= ⟨u, PWu′⟩W ,

where we used that P⊤
WW = WPW , given the closed-form expression of PW .
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Now, let z′ be a standard Gaussian random k–vector: z′ ∼ N (0, Idk). On the one hand, given the orthogonality proved for
PW and by a Pythagorean theorem,

∥PWMz′∥2W ⩽ ∥Mz′∥2W a.s. (13)

Now, by definition of the ∥ · ∥W –norm and by elementary properties of the trace,

E
[
∥PWMz′∥2W

]
= E

[
(PWMz′)⊤WPWMz′] = E

[
Tr
(
WPWMz′(PWMz′)⊤

)]
= Tr

(
WPWM E

[
z′(z′)⊤

]︸ ︷︷ ︸
=Idk

M⊤P⊤
W

)
= Tr

(
WPWMM⊤P⊤

W

)
.

Similarly, E
[
∥Mz′∥2W

]
= Tr

(
WMM⊤).

The inequality (13) and the two equalities proved above conclude the proof.

C. Proof of the component-wise efficiency results (Theorem 3.10 and Corollary 3.11)
The proof of Theorem 3.10, which we restate below, is based on a key equality established in the proof of Theorem 3.7 and
on a result that is central in the theory of forecast reconciliation, namely Lemma 3.9 (re-stated and re-proved at the end of
this section).

We recall that we denoted by

C̃⋆
1 (xT+1)× . . .× C̃⋆

m(xT+1) and C̃1(xT+1)× . . .× C̃m(xT+1)

the prediction rectangles output by the hierarchical version of SCP (Algorithm 2) run with PΣ−1 = H
(
H⊤Σ−1H

)−1
H⊤Σ−1

and any other choice of a projection matrix P onto Im(H), respectively.

Theorem 3.10. Under Assumptions 3.1, 3.6, and 3.8 (i.i.d. scores with elliptical distribution admitting a second-order
moment), the hierarchical version of SCP (Algorithm 2) run with P = PΣ−1 provides prediction rectangles more efficient
than with any other choice of a projection matrix onto Im(H):

∀i ∈ [m], E
[
ℓ
(
C̃⋆

i (xT+1)
)2]

⩽ E
[
ℓ
(
C̃i(xT+1)

)2]
.

Proof. The proof of Theorem 3.7 did not rely on the existence of a second-order moment, i.e., of a covariance matrix Σ for
the distribution of the scores ŝt. (It did not even rely on the existence of a first-order moment.)

When such a second-order moment exists, we may modify the proof of Theorem 3.7 in the following way, to obtain expected
lengths depending on Σ. We also note that though we wrote the beginning of that proof for a specific projection matrix Pw

onto Im(H), it holds for all projection matrices P onto Im(H), and even for all matrices P such that PH = H . Namely,
when Algorithm 2 is run with any projection matrix P onto Im(H),

E

[
m∑
i=1

wi ℓ
(
C̃i(xT+1)

)2]
=

(
m∑
i=1

wi Γ
′
i,i

)
E
[
L2
α

]
= Tr

(
diag(w)PΓP⊤) E[L2

α

]
,

where Γ = MM⊤ for some matrix M such that scores ŝt have the same distribution as some c +Mz with z following
some spherical distribution. In particular, Assumption 3.8 and Property B.1 impose that M is a m ×m matrix and they
entail that there exists σ2 > 0 such that Σ = σ2MM⊤= σ2Γ.

Therefore, we actually have, when Algorithm 2 is run with any projection matrix P onto Im(H),

E

[
m∑
i=1

wi ℓ
(
C̃i(xT+1)

)2]
=

(
m∑
i=1

wi Γ
′
i,i

)
E
[
L2
α

]
= Tr

(
diag(w)PΣP⊤) E

[
L2
α

]
σ2

.

Lemma B.5 shows that PΣ−1 is a projection matrix onto Im(H). Lemma 3.9 below shows that for all projections P
onto Im(H) and all positive vectors w ∈ Rm,

Tr
(
diag(w)PΣ−1ΣP⊤

Σ−1

)
⩽ Tr

(
diag(w)PΣP⊤) .
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Collecting all elements, whether E
[
L2
α

]
= +∞ or E

[
L2
α

]
∈ [0,+∞), we proved so far that when Algorithm 2 is run with

any projection matrix P onto Im(H) to output prediction intervals C̃i,

∀w ∈ (0,+∞)m, E

[
m∑
i=1

wi ℓ
(
C̃⋆

i (xT+1)
)2]

⩽ E

[
m∑
i=1

wi ℓ
(
C̃i(xT+1)

)2]
. (14)

We obtain the claimed component-wise inequalities by taking wi = 1 for one component i and letting wj → 0 for j ̸= i.

We now move on to the proof of Corollary 3.11.

Corollary 3.11. In the setting and under the assumptions of Theorem 3.10, we also have

∀i ∈ [m], E
[
ℓ
(
C̃⋆

i (xT+1)
)2]

⩽ E
[
ℓ
(
Ĉi(xT+1)

)2]
,

where the prediction rectangle Ĉ1(xT+1)×. . .×Ĉm(xT+1) is output by the plain multivariate version of SCP (Algorithm 1).

Proof. The result follows from Theorems 3.7 and 3.10 (which both hold under the stronger set of assumptions of Theo-
rem 3.10). More precisely, for each w ∈ (0,+∞)m, denote by C̃w

i the prediction intervals output by Algorithm 2 run with
P = Pw. Theorem 3.7 ensures that

∀w ∈ (0,+∞)m , E

[
m∑
i=1

wi ℓ
(
C̃w

i (xT+1)
)2]

⩽ E

[
m∑
i=1

wi ℓ
(
Ĉi(xT+1)

)2]
.

Equality (14) in the proof of Theorem 3.10 states that

∀w ∈ (0,+∞)m, E

[
m∑
i=1

wi ℓ
(
C̃⋆

i (xT+1)
)2]

⩽ E

[
m∑
i=1

wi ℓ
(
C̃w

i (xT+1)
)2]

.

Combining these two inequalities, we have

∀w ∈ (0,+∞)m, E

[
m∑
i=1

wi ℓ
(
C̃⋆

i (xT+1)
)2]

⩽ E

[
m∑
i=1

wi ℓ
(
Ĉi(xT+1)

)2]
,

and we conclude the proof with the same limit arguments as after (14) in the proof of Theorem 3.10.

The following lemma is a deep and central result in the theory of forecast reconciliation. First stated for W = Idm
by Wickramasuriya et al. (2019), this result has since been extended to symmetric positive semi-definite matrices W in
Panagiotelis et al. (2021) and Ando & Narita (2024). We provide a short and elementary proof, which may actually be seen
as a simplification of the proof by Ando & Narita (2024), an article entirely devoted to proving Lemma 3.9. The latter article
sees the minimization problem at hand as a constrained minimization problem (given how projections onto Im(H) may be
written), thus introduced a Lagrangian and discussed Karush-Kuhn-Tucker conditions to solve it.

Lemma 3.9 (Minimum-Trace projection). Let W and Σ be two symmetric m×m matrices, where W positive semi-definite
and Σ is positive definite. Then, for all projection matrices P onto Im(H),

Tr
(
WPΣ−1ΣP⊤

Σ−1

)
⩽ Tr

(
WPΣP⊤) .

Proof. We first show that projection matrices P onto Im(H) are exactly the matrices of the form HG, where G is a n×m
matrix such that GH = Idn. Indeed, such a matrix HG satisfies HGHG = HG and HGH = H , which characterizes
projections onto Im(H). Conversely, fix a projection P onto Im(H) and a basis u1, . . . ,um of Rm: each Pui belongs to
Im(H), thus is of the form Hgi for some gi ∈ Rn. Denote by G the n×m matrix with columns given by g1, . . . , gm. By
linearity of P and given that u1, . . . ,um is a basis, we have P = HG. We denote by h1, . . . ,hn the columns of the m× n
structural matrix H . Since P is a projection onto Im(H), we have in particular Phi = hi for all i ∈ [n], or put differently,
PH = H . Substituting P = HG and multiplying both sides by H⊤, we proved so far that H⊤HGH = H⊤H , where (see
Lemma B.4), the matrix H⊤H is invertible. All in all, we thus proved GH = Idn.
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Given the characterization above, the projection matrices P onto Im(H) are also exactly the matrices of the form

P = PΣ−1 +HA = H
((

H⊤Σ−1H)−1H⊤Σ−1 +A
)
, for n×m matrices A such that AH = [0]n ,

where [0]n denotes the n× n null matrix. Keeping in mind that Σ and Σ−1 are symmetric, this decomposition entails that

WPΣP⊤= W
(
H
(
H⊤Σ−1H)−1H⊤Σ−1

)
Σ
(
Σ−1H

(
H⊤H)−1H⊤

)
+W (HA) Σ

(
Σ−1H

(
H⊤Σ−1H)−1H⊤

)
+W

(
H
(
H⊤Σ−1H)−1H⊤Σ−1

)
Σ
(
A⊤H⊤)

+W (HA) Σ (HA)⊤.

The second term in the decomposition simplifies into

W (HA) Σ
(
Σ−1H

(
H⊤Σ−1H)−1H⊤

)
= WH

=[0]n︷︸︸︷
AH

(
H⊤Σ−1H)−1H⊤= [0]m .

Similarly, the third term is also null, due to the term H⊤Σ−1ΣA⊤= (AH)⊤. The proof is concluded by noting that for all
matrices A, the trace of the fourth term in the decomposition of WPΣP⊤ is non-negative. Indeed, given that W and Σ are
positive semi-definite, we may write them as W = MM⊤ and Σ = NN⊤ for m×m matrices M and N . Then, together
with elementary properties of the trace,

Tr
(
W (HA) Σ (HA)⊤

)
= Tr

(
MM⊤(HA)NN⊤(HA)⊤

)
= Tr

(
M⊤(HA)NN⊤(HA)⊤M

)
= Tr

((
M⊤(HA)N

)(
M⊤(HA)N

)⊤)
⩾ 0 ,

given that the trace of a symmetric positive semi-definite matrix is non-negative.

D. Forecast reconciliation: review and connections made
For a complete review on the forecast reconciliation literature, we refer the reader to Athanasopoulos et al. (2024) and only
provide a brief overview below.

At the origins, forecasts in the hierarchical setting were conducted using a single-level approach (most notably, in the
bottom-up or top-down fashion), i.e., by choosing a level of the hierarchy (typically, either the bottom level or the top
level) to generate forecasts, and then, by propagating these forecasts (typically in a linear fashion). A notable pitfall of the
single-level approaches is that potentially valuable information from all other levels are ignored. To overcome this issue, the
concept of forecast reconciliation was introduced by Athanasopoulos et al. (2009) and Hyndman et al. (2011): the idea is to
combine forecasts from different levels of aggregation through linear combinations. Recently, developments were made in
reconciliation through projections (Wickramasuriya et al., 2019, Panagiotelis et al., 2021), which we review and detail in the
next section.

Probabilistic hierarchical forecasting and reconciliation is an emerging field. Notable works include the one by Wickrama-
suriya (2024), which studied probabilistic forecast reconciliation for Gaussian distributions, while Panagiotelis et al. (2023)
provided reconciled forecasts based on the minimization of a probabilistic score through gradient descent. However, we did
not leverage results from this literature for our own probabilistic approach.

D.1. Review of forecast reconciliation through projections

We summarize and review the approach followed by Hyndman et al. (2011), Wickramasuriya et al. (2019), and Panagiotelis
et al. (2021).

The setting is the one described in Section 2, with stochastic observations following some hierarchical structure y = Hy1:n;
features are possibly available. Initial point forecasts ŷ are provided by some regression method A; these forecasts are
possibly incoherent, i.e., do not belong to Im(H). The goal of forecast reconciliation is to leverage the hierarchical structure
to improve the point forecasts.
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A typical assumption made in this literature is that the point forecasts ŷ are unbiased, or, put differently, that the forecasting
errors ŝ = y − ŷ are centered. A natural performance criterion then is the mean-square error [MSE]: letting ∥ · ∥2 denote
the Euclidean norm and Σ the covariance matrix of ŝ = y − ŷ,

MSE
(
ŷ,y

) def
= E

[
∥ŝ∥22

]
= E

[
ŝ⊤ ŝ

]
= E

[
Tr
(
ŝ ŝ⊤

)]
= Tr

(
E
[
ŝ ŝ⊤

]) def
= Tr(Σ) .

The equalities above may be generalized to W–norms (as defined in Lemma B.5), where W is a symmetric definite positive
matrix:

MSE
(
ŷ,y,W

) def
= E

[
∥ŝ∥2W

]
= E

[
ŝ⊤W ŝ

]
= E

[
Tr
(
W ŝŝ⊤

)]
= Tr(WΣ) .

Natural improvements of the unbiased point forecasts are exactly given by projections thereof onto Im(H), as justified below
in Lemma D.1. Let P be a projection onto Im(H) and denote ỹ = P ŷ. By linearity of a projection, the point forecasts ỹ
are also unbiased. Since observations are coherent, we have

y − ỹ
def
= y − P ŷ = P

(
y − ŷ

)
= P ŝ

def
= s̃ .

The mean-squared error of ỹ in W–norm thus equals

MSE
(
ỹ,y,W

)
= E

[
Tr
(
W s̃ s̃⊤

)]
= Tr

(
W P E

[
ŝ ŝ⊤

]
P⊤
)
= Tr

(
W PΣP⊤) .

Actually, the formula above holds more generally for all matrices P such that PH = H .

Optimal unbiased point forecasts in the sense of the mean-square error thus exactly correspond to minimizing Tr
(
W PΣP⊤),

a problem that we discuss below. Before we do so, we justify why (only) projections onto Im(H) are considered.

Why (only) projections onto Im(H) are considered. This follows from the lemma below, given that the literature of
forecast reconciliation considers, implicitly or explicitly, two restrictions: that forecasts should be unbiased; that improved
forecasts should be obtained by linear combinations of the original forecasts (and be coherent, of course).

Lemma D.1 (Hyndman et al., 2011). Assume that the point forecasts ŷ are unbiased. Let M be a m×m matrix taking
values in the coherent subspace Im(H). Then the linear combinations ỹ = M ŷ are unbiased if and only if M is a projection
onto Im(H).

Proof. Being unbiased means the following in Hyndman et al. (2011): we denote by m = Hβ the expectation of y, i.e.,
E[y] = m = Hβ, and assume that the model is rich enough so that all values of β ∈ Rn, i.e., all values of m ∈ Im(H),
may be obtained when the specifications of the model vary.

That ỹ = M ŷ is unbiased thus corresponds to the equalities

∀β ∈ Rn, MHβ = Hβ , i.e., MH = H.

Now, the proof of Lemma 3.9 in Appendix C shows that since M takes values in Im(H), it is of the form M = HG for
some n×m matrix G. The equality MH = H may be rewritten as HGH = H . Again as in the proof of Lemma 3.9, by
multiplying both sides of this equality by

(
H⊤H)−1H⊤, we obtain GH = Idn, which yields M2 = HGHG = HG = M .

Thus, M is indeed a projection onto Im(H).

Trace optimization, part 1: known covariance matrix. As explained above, original unbiased forecasts ŷ and their
(still unbiased, linear) transformations ỹ = P ŷ, where P is a projection onto Im(H) may be compared through their
mean-squared errors in W–norm:

MSE
(
ŷ,y,W

)
= Tr(WΣ) vs. MSE

(
ỹ,y,W

)
= Tr

(
W PΣP⊤) .

This consideration leads to the central result in forecast reconciliation: the optimality of the so-called Minimum Trace
reconciliation method from Wickramasuriya et al. (2019), formally re-stated below as Lemma 3.9. This method consists of
projecting according to PΣ−1

def
= H

(
H⊤Σ−1H

)−1
H⊤Σ−1, where we recall that Σ is the (unknown) covariance matrix of

the forecast errors ŝ. Of course, this theoretically optimal method must be turned into a practical method, e.g., by replacing
Σ in the formula above by some empirical estimate.
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Lemma 3.9 was originally stated by Wickramasuriya et al. (2019) in the case W = Idm, and later extended to symmetric
positive semi-definite matrices W by Panagiotelis et al. (2021) and Ando & Narita (2024). As discussed in Appendix C, we
provide a more elementary proof.

Lemma 3.9 (Minimum-Trace projection). Let W and Σ be two symmetric m×m matrices, where W positive semi-definite
and Σ is positive definite. Then, for all projection matrices P onto Im(H),

Tr
(
WPΣ−1ΣP⊤

Σ−1

)
⩽ Tr

(
WPΣP⊤) .

Trace optimization, part 2: a more practical approach. The drawback with the approach above is that it relies on the
knowledge of the covariance matrix Σ, but its advantage is that it holds for all weight matrices W . We now show how to
exchange the roles of W and Σ, and get a trace-reduction result for a given weight matrix W but for all possible covariance
matrices Γ, i.e., symmetric positive semi-definite matrices.

This result is inspired from Panagiotelis et al. (2021), who recommend to use the orthogonal projection in W–norm, whose
closed-form expression (see Lemma B.5) reads PW

def
= H

(
H⊤WH

)−1
H⊤W . A Pythagorean theorem ensures that, for all

point forecasts ŷ and (coherent) observations y,wwy − PW ŷ
ww2

W
=
wwPW (y − ŷ)

ww2

W
⩽
ww(y − ŷ)∥2W a.s.,

thus, by taking expectations,

Tr
(
W PWΣP⊤

W

)
= MSE

(
PW ŷ,y,W

)
⩽ MSE

(
ŷ,y,W

)
= Tr(WΣ) .

The equality above holds no matter the specific value of the covariance matrix Σ, which corresponds to the following
trace-reduction inequality, stated as the second part of Lemma B.5: for all symmetric positive semi-definite matrices Γ,

0 ⩽ Tr
(
WPWΓP⊤

W

)
⩽ Tr

(
WΓ

)
. (15)

The inequality above (i.e., Lemma B.5) is a result of our own though it was inspired by both Lemma 3.9 and the approach
by Panagiotelis et al. (2021) relying on PW –projections.

D.2. How we leveraged and transferred these results (and why it was not immediate)

On the unnecessity of unbiasedness. As we made clear several times in Section D.1, a key assumption in the literature of
forecast reconciliation is that point forecasts are unbiased, or put differently, that the forecasting errors ŝ are centered.

This is in sharp contrast with the non-conformity scores ŝ considered in this article, which we do not want (nor need)
to assume are centered. None of Assumptions 3.1–3.6–3.8 are about this. We rather assume that these scores follows
a so-called elliptic distribution, with possibly a non-null expectation. Elliptic distributions were considered, not in the
literature of reconciliation of point forecasts but of probabilistic forecasts, see Panagiotelis et al. (2023). Now, the proof of
Theorem 3.7 in Appendix B reveals that our construction of prediction rectangles is such that the length of the i–th defining
interval is given by

ℓ
(
Ĉi(xT+1)

)
= ŝ(

⌈(Tcalib+1)(1−α/2)⌉
)
,i
− ŝ(

⌊(Tcalib+1)α/2⌋
)
,i
.

Non-null expectations of the underlying elliptic distribution cancel out in the above equation, hence the unnecessity of an
assumption of unbiasedness. The cancellation is only possible because we considered signed non-conformity scores (which
is unusual in the literature of conformal prediction).

On the component-wise objective (⋆⋆). As we detail in Appendix E (see the comments before Theorem E.3), the theory
provided in this article is only worth being detailed because we do not target joint-coverage guarantees but component-wise
coverage guarantees. We had to find out a component-wise efficiency objective that we could handle. With the literature of
forecast reconciliation in mind, we somehow had to build an intuition a such an efficiency criterion.

The proof of Theorem 3.7 in Appendix B explains how we could relate our (component-wise) small-length objective (⋆⋆),
namely,

minimizing E

[
m∑
i=1

wi ℓ
(
Ci(xT+1)

)2]
, (16)
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to problems of the form
minimizing Tr

(
diag(w)PΓP

)
, (17)

for some symmetric positive semi-definite matrix Γ, so as to leverage inequality (15), which is of our own. The proof of
Theorem 3.10 reveals that when non-conformity scores have a bounded second-order moment, the matrix Γ is proportional
to their covariance matrix Σ, which opened the avenue of the Minimum Trace approaches of Lemma 3.9.

Summary of the challenges overcome. In a nutshell, the main challenge overcome was to relate the two minimization
problems (16) and (17), and in the first place, state suitably the efficiency criterion (16). The main tools used were to resort
to signed non-conformity scores, which are not necessarily unbiased, and to exploit properties of elliptic distributions, in
terms of stability of the shapes of these distributions under certain affine transformations.

E. Multi-target split conformal prediction: Reminder and extension
Conformal prediction is a framework initially introduced to quantity the uncertainty around univariate targets thanks to
univariate non-conformity scores. In this section, we focus on extensions of conformal prediction to multivariate targets as
introduced by Johnstone & Cox (2021) and Messoudi et al. (2022). The key idea of these methods is to consider A–norms
of non-conformity scores, where A a data-based definite positive matrix designed to capture the potential multivariate
dependencies of the targets. (The choice of A is the key for efficient prediction regions in practice; see the statement of
Lemma B.5 for a reminder of the definition of A–norms.) In a nutshell, and as formally detailed below, the consideration of
data-based norms effectively matches vector predictions to scalar non-conformity scores.

E.1. Overview of existing results

We first state the objectives and then review the methodology followed. We consider multivariate data (features xt ∈ Rd

and observations yt ∈ Rm) but with no specific hierarchical structure—unlike in Section E.2 below.

We now denote the prediction regions by E(x) because they will typically be given by ellipsoids. (Messoudi et al., 2022
empirically illustrated that ellipsoidal predictive regions are more efficient than hyper-rectangular ones in terms of volumes.)

Objectives. The cited references are interested in joint coverage guarantees and replace the component-wise coverage
objective (⋆) by the design of prediction regions E : x 7→ E(x) ⊆ Rm such that

P
(
yT+1 ∈ E(xT+1)

)
≈ 1− α , (♢)

where the probability P is with respect to both (xT+1,yT+1) and (xt,yt)1⩽t⩽T .

The secondary objective of ensuring that the prediction sets output are efficient, i.e., as small as possible. We could state it
through volumes, as given by the Lebesgue measure L over Rm, and replace objective (⋆⋆) by

minimizing E
[
L
(
E(xT+1)

)]
, (♢♢)

where again, the expectation is with respect to both (xT+1,yT+1) and (xt,yt)1⩽t⩽T . In Theorem E.3, we are actually able
to prove an even stronger result of uniform domination: a prediction region E is uniformly more efficient than a prediction
region E′ if E(x) ⊆ E′(x) for all x ∈ Rd.

Methodology and algorithm. We actually present a generalization of the methodology and algorithm considered
by Johnstone & Cox (2021), in the spirit of Algorithm 3. The proof of the joint coverage result below, Theorem E.2, only
relies on Assumption E.1, which holds as long as the matrix A is chosen based on data of Dtrain and Dest only (just as was
the case in Section 3.4).

The exact procedure is stated in Algorithm 4. A regressor µ̂ is built based on the data of the train set Dtrain and on a regression
algorithm A. Then, based on data Dtrain and Destim, but preferably only on µ̂ and on data from Destim, some symmetric definite
positive matrix A is computed in some black-box fashion; this is why Algorithm 4 takes a procedure E as input. This
matrix A is used to define a weighted norm (see Lemma B.5):

u ∈ Rm 7−→ ∥u∥A
def
=

√
u⊤Au .
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Algorithm 4 Multivariate SCP through data-based norms
Parameters: confidence level 1−α; regression algorithm A; partition of [T ] into subsets Dtrain, Destim and Dcalib of respective

cardinalities Ttrain, Testim and Tcalib; estimation procedure E of the matrix used to define the norm
1: Build the regressor µ̂( · ) = A

(
(xt,yt)t∈Dtrain

)
2: Compute a symmetric definite positive matrix A = E

(
(xt,yt)t∈Dtrain∪Destim

)
3: for t ∈ Dcalib let ŷt = µ̂(xt) and št = ∥yt − ŷt∥A
4: Order the (št)t∈Dcalib into š(1) ⩽ . . . ⩽ š(Tcalib) and define š(0) = 0 and š(Tcalib+1) = +∞
5: Let q̌1−α = š(

⌈(Tcalib+1)(1−α)⌉
)

6: Set Ě( · ) =
{
y ∈ Rm :

∥∥y − µ̂( · )
∥∥
A
⩽ q̌1−α

}
7: return Ě(xT+1)

The multivariate prediction errors yt − µ̂(xt) for t ∈ Dcalib are then transformed into the univariate non-conformity scores
through A–norms:

št = ∥yt − ŷt∥A .

Some threshold q̌1−α is determined based on the empirical quantiles of the series of these scores, and finally, the following
prediction regions are output, which are ellipsoids:

Ě( · ) =
{
y ∈ Rm :

∥∥y − µ̂( · )
∥∥
A
⩽ q̌1−α

}
.

For instance, Johnstone & Cox (2021) use the so-called Mahalanobis distance, which corresponds to taking A as the inverse
of the covariance matrix of the forecasting errors (in the same spirit as in Algorithm 3).

Coverage guarantees. They rely on an i.i.d. assumption on the non-conformity scores (just as for Theorem 3.2 and as,
more generally, in the literature of conformal prediction).

Assumption E.1. The non-conformity scores št = ∥yt − µ̂(xt)∥A are i.i.d. for t ∈ Dcalib ∪ {T + 1}. This is in particular
the case when data (xt,yt)1⩽t⩽T+1 is i.i.d.

Theorem E.2. Fix α ∈ (0, 1). Algorithm 4, used with any regression algorithm A and any estimation procedure E , ensures
that whenever Assumption E.1 (i.i.d. scores) holds,

P
(
yT+1 ∈ Ě(xT+1)

)
⩾ 1− α .

In addition, if the non-conformity scores
(
št
)
t∈Dcalib∪{T+1} are almost surely distinct, then

∀i ∈ [m],P
(
yT+1 ∈ Ě(xT+1)

)
⩽ 1− α+

1

Tcalib + 1
.

Proof. We first note that by definition,{
yT+1 ∈ Ě(xT+1)

}
=
{
šT+1 ⩽ š(

⌈(Tcalib+1)(1−α)⌉
)} .

The rest of the proof consists of the same classical arguments that were already detailed in the proof of Theorem 3.2 in
Appendix A.

E.2. Extension to hierarchical data

We now assume that the observations yt follow a hierarchical structure, as in (1). We adapt Algorithm 4 into Algorithm 5
in the same way we obtained Algorithm 2 from Algorithm 1, by merely adding a projection step right before computing
the non-conformity scores on Dcalib. We resort to the orthogonal projection matrix onto Im(H) in ∥ · ∥A–norm, whose
closed-form expression reads (see Lemma B.5)

PA = H(H⊤AH)−1H⊤A .
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Algorithm 5 Hierarchical SCP through data-based norms
Parameters: confidence level 1−α; regression algorithm A; partition of [T ] into subsets Dtrain, Destim and Dcalib of respective

cardinalities Ttrain, Testim and Tcalib; estimation procedure E of the matrix used to define the norm
1: Build the regressor µ̂( · ) = A

(
(xt,yt)t∈Dtrain

)
2: Compute a symmetric definite positive matrix A = E

(
(xt,yt)t∈Dtrain∪Destim

)
3: Let PA = H(H⊤AH)−1H⊤A and consider µ̊( · ) = PAµ̂( · )
4: for t ∈ Dcalib let ẙt = µ̊(xt) and s̊t = ∥yt − ẙt∥A
5: Order the (̊st)t∈Dcalib into s̊(1) ⩽ . . . ⩽ s̊(Tcalib) and define s̊(0) = 0 and s̊(Tcalib+1) = +∞
6: Let q̊1−α = s̊(

⌈(Tcalib+1)(1−α)⌉
)

7: Set E̊( · ) =
{
y ∈ Rm :

∥∥y − µ̂( · )
∥∥
A
⩽ q̊1−α

}
8: return E̊(xT+1)

Instead of considering the regressor µ̂, which may yield point estimates not abiding by the hierarchical constraints, we resort
to µ̊ = PAµ̂. The rest of the procedure is similar to the previous section.

We summarize the adaptation in Algorithm 5. The statement only differs from Algorithm 4 by the addition of the blue line.
We denote by s̊ and E̊ the scores and prediction ellipsoids obtained after the projection step, to distinguish them from the
ones obtained by Algorithm 4 without the projection step.

We may prove the following result, which shows that the objectives (♢) and (♢♢) are met. Its proof is straightforward. Put
differently, there would have been no challenge in providing a theory of efficient conformal prediction for hierarchical data
under a joint-coverage objective (♢). This was not the case at all for component-wise coverage objectives, as the tools of
forecast reconciliation (like the projections step by PA) are not component-wise tools. The proof of Theorem E.3 actually
emphasizes the complexity of results such as Theorems 3.10–3.7 and Corollary 3.11.

Theorem E.3. Fix α ∈ (0, 1). Algorithm 5, used with any regression algorithm A and any estimation procedure E ,
guarantees the same coverage results as in Theorem E.2 whenever Assumption E.1 (i.i.d. scores) holds.

In addition, the prediction ellipsoids E̊ output by Algorithm 5 are uniformly more efficient than the prediction ellipsoids Ě
output by Algorithm 4:

E̊(xT+1) ⊆ Ě(xT+1) a.s.

Proof. The proof of the coverage guarantees is similar to the one in Theorem E.2. For the uniform efficiency part, we first
note by a Pythagorean theorem, and since observations are coherent, s̊t ⩽ št for all t ∈ Dcalib. Thus, in particular

s̊(
⌈(Tcalib+1)(1−α)⌉

) ⩽ š(
⌈(Tcalib+1)(1−α)⌉

) ,
hence, the stated inclusion, by construction of the predictive regions.

F. Full details for the simulations: settings, methodology, results
In this appendix, we provide the full details on the specifications and of the results of the numerical experiments summarized
in the main body of the article.

F.1. Artificially generated data

The objective of the experiments on synthetic data is to replicate the behavior of real data while controlling the number of
observations available and the difficulty of the forecasting task.

F.1.1. DATA GENERATION

Data generation: initial draw of the parameters. The structural matrix H considered in this example is the right one in
Figure 1; we copy it in Figure 3 for the convenience of the reader. Therefore, there are m = 8 nodes in the hierarchy, with
n = 5 nodes at the most disaggregated levels. For each given run, we first pick at random a function f : R3 → R5 and a
covariance matrix A⊤A. We do so as explained later in this description.
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Total
A

AA AB AC

B

BA BB

H =


Id5

1 1 1 0 0
0 0 0 1 1
1 1 1 1 1


Figure 3. The structural matrix H considered in the numerical experiments with artificially generated data.

Data generation: draw of T–sample. Then, given H , f , and A, we draw a T–sample (xt,yt)1⩽t⩽T of data as follows.
First, the features xt ∈ R3 are drawn i.i.d. according to a Gaussian distribution:

xt =

 xt,1

xt,2

xt,3

 ∼ N

 1
0
−1

 ,

2 0 0
0 2 0
0 0 1

 .

Next, the observations yt,1:5 ∈ R5 at the most disaggregated level are generated i.i.d. according to the following additive
model:

yt,1:5 = f(xt) + εt , where εt ∼ N


 10

...
10

 , A⊤A

 . (18)

The complete vectors of observations are finally given by yt = Hyt,1:5.

Data generation: initial draw of the parameters, continued. The matrix A is drawn component-wise, in an i.i.d. manner:
the Ai,j , where i, j ∈ [5], follow a standard Gaussian distribution N (0, 1).

We draw f = (f1, . . . , f5) component-wise. To do so, we consider the following base functions R3 → R:

g1(xt) = x1,t , g5(xt) = x2,t , g9(xt) = x3,t ,

g2(xt) = x2
1,t , g6(xt) = x2

2,t , g10(xt) = x2
3,t ,

g3(xt) = sin(x1,t) , g7(xt) = cos(x2,t) , g11(xt) = exp(x3,t) ,

g4(xt) = log
(
|x1,t|+ 1

)
, g8(xt) =

√
x2,t .

We now explain how fi is drawn for each component i ∈ [5]. First, the number ki of effects to consider is drawn uniformly in
the set [11]. Then, we sample with replacement ki base functions in the set {g1, . . . , g11}; we denote them by hi,1, . . . , hi,ki .
Finally, we add signs: we draw ki i.i.d. symmetric Rademacher random variables ri,1, . . . , ri,ki

(i.e., variables that take
values −1 and 1 with respective probabilities 1/2). All in all, we let

fi =

ki∑
j=1

ri,j hi,j .

F.1.2. DATA SPLITTING

We take T = 100 000 (to contrast with the experiments on real data). These T observations are first randomly split in two
subsets, containing 80% and 20% of the data.

The smaller subset is referred to as the test set and is denoted by Dtest. Its data points will play the role of the (xT+1,yT+1),
as explained later in Appendix F.1.4.

The larger subset of 80% of the data is split again in three sub-subsets, containing 40% (train set Dtrain), 20% (estimation set
Destim), and 20% (calibration set Dcalib) of the total data. These data points are used to construct the prediction rectangles,
which are all (in Algorithms 1–2–3) of the form

x 7−→
8∏

i=1

C̃i(x) =

8∏
i=1

[
µ̃i(x) + q̃

(i)
α/2, µ̃i(x) + q̃

(i)
1−α/2

]
,

and only depend on the features x through the centers µ̃i(x). The algorithms that do not use an estimation set Destim, i.e.,
Algorithms 1–2, simply ignore data points in Destim.
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F.1.3. TRAIN SET: REGRESSION ALGORITHM A

The last piece to fully define the procedures implemented is to describe the regression algorithm A given as input to
Algorithms 1–2–3. This algorithm will be given by a base forecasting method run independently at each node.

Before we describe this base forecasting method, we mention a constraint that we impose. It turns out that in the practice
of hierarchical forecasting, explanatory variables are not necessarily all available at every level of granularity within the
hierarchical structure. (For instance, some meteorological data may only be available at specific locations equipped with the
necessary sensors and cannot be communicated in a timely, real-time, manner to other nodes.) This also actually makes the
hierarchy more interesting from a forecasting viewpoint since the observations at some nodes are harder to predict than
others.

To reproduce this specificity, for each of the nodes at the most disaggregated level, indexed by i ∈ [5], we draw independently
a Bernoulli variable ρi with parameter 0.7: if ρi = 1, then the forecasting strategy may use the entire vectors xt; otherwise,
the forecasting strategy only accesses to x′

t = (xt,1, xt,2)
⊤.

It only remains to describe the forecasting strategy used independently at each node i ∈ [8], based on features that lie in
R2 or R3. Given the additive nature (18) of the data, a natural choice is to resort to the theory of estimation of generalized
additive models, see a reminder at the end of this subsection.

For each i ∈ [8], depending on ρi, the regression estimate µ̂i produced for the i–th component of the y is of the form

µ̂i : x 7−→

{
µ̂i

(1)(x1) + µ̂i
(2)(x2) + µ̂i

(3)(x3), if ρi = 1

µ̂i
(1)(x1) + µ̂i

(2)(x2), otherwise.

Reminder on generalized additive models. Generalized additive models (GAMs, Wood, 2017) are a popular modeling
for electricity demand. They form a good compromise between forecast efficiency and interpretability. In that setting,
univariate response variables zt based on features xt ∈ Rd, where t ∈ [T ], are expressed as

zt = β0 +

d∑
j=1

mj(xt,j) + εt , (19)

where the mj : R → R do not depend on t and are called the non-linear effects, and where the εt are i.i.d. random noises.
The non-linear effects mj are each possibly decomposed on a given spline basis (Bj,k), chosen by the forecasting agent:

mj : x ∈ R 7−→
Kj∑
k=1

βj,k Bj,k(x) ,

where Kj depends on the dimension of the spline basis. Estimating the model (19) then amounts to estimating the
coefficients βj,k.

At a high level, we may write that the estimation of these coefficients βj,k is performed via by penalized least-squares,
where the penalty term therein involves the second derivatives of the functions mj , forcing the effects to be smooth. We
resorted to the R package mgcv of Wood (2023) in our simulations, with the basis by default: the thin plate spline basis,
with a maximum number of degrees of freedom of 10.

F.1.4. TEST SET: EVALUATION OF THE PREDICTION SETS

The objectives (⋆) and (⋆⋆) are both in terms of coverage probability and expected length with respect to all data (the
observations to be predicted as well as the data used to compute the prediction intervals). We consider, for the expected-length
criterion (⋆⋆), weights given by the constant vector w = (1, . . . , 1)⊤.

On the test set, we estimate the conditional coverage probabilities and expected lengths given the specifications of the
experiment (i.e., f , A, and the ρi) and given data in the sets Dtrain, Destim, and Dcalib: for each i ∈ [8],

ci
def
=

1

Ttest

∑
t∈Dtest

1{
yt,i∈C̃i(xt)

} and ℓi
def
= ℓ
(
C̃i( · )

)
,
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where we denoted by Ttest = 20 000 the cardinality of Dtest. That is, for the conditional coverage probability, we resort to
Monte-Carlo-type estimates. For the lengths of the intervals C̃i(x), we note that they do not depend on x, so are constant on
Dtest; we denote by ℓ

(
C̃i( · )

)
their common value.

We actually run the entire procedure a large number of times to get unconditional probabilities and expectations, as described
next.

F.1.5. MONTE-CARLO ESTIMATES BASED ON LARGE NUMBERS OF RUNS

We run 1 000 the entire procedure and get, for each run, estimates of the conditional coverage probabilities and expected
lengths, which we denote by:

c
(r)
i and ℓ

(r)
i , where i ∈ [8] and r ∈ [1 000] .

We in turn get the following estimates for the unconditional coverage probabilities and expected squared lengths: for each
i ∈ [8],

ci
def
=

1

1 000

1 000∑
r=1

c
(r)
i and ℓi

def
=

1

1 000

1 000∑
r=1

(
ℓ
(r)
i

)2
.

These empirical means estimate the underlying unconditional coverage probabilities and expected squared lengths up to
95%–confidence errors margins given by

γc,i
def
= 1.96

std
(
c
(1)
i , . . . , c

(1 000)
i

)
√
1 000

and γℓ,i
def
= 1.96

std
((

ℓ
(1)
i

)2
, . . . ,

(
ℓ
(1 000)
i

)2)
√
1 000

,

where std(x1, . . . , x1 000) denotes the standard deviation of the data series given as argument:

std(x1, . . . , x1 000) =

√√√√ 1

1 000

1 000∑
r=1

(
xr − x1 000

)2
, where x1 000 =

1

1 000

1 000∑
r=1

xr .

For scaling issues on the lengths, we rather report, in our experiments, when dealing with component-wise quantities, the
following point estimates and associated confidence intervals on the underlying unconditional probabilities and expectations:
for all i ∈ [8],

ci and
√
ℓi ,

[
ci ± γc,i

]
and

[√
ℓi − γℓ,i ,

√
ℓi + γℓ,i

]
. (20)

F.1.6. COMPONENT-WISE RESULTS: COVERAGE AND LENGTH

The top graph of Figure 4 reports the indicators defined in (20), with standard errors in x–axis corresponding to the estimation
of the component-wise coverage levels, and standard errors in y–axis, to the ones for the lengths. The comments on the
outcomes are to be found in Section 4.

F.1.7. GLOBAL RESULTS: TOTAL LENGTHS

We also report results on the total lengths, i.e., for the quantities appearing in the efficicency objective (⋆⋆), where we recall
that w = 1.

In the same spirit as in Section F.1.5, we consider

L
(r)
• =

8∑
i=1

(
ℓ
(r)
i

)2
, where r ∈ [1 000] , L•

def
=

1

1 000

1 000∑
r=1

L
(r)
• =

8∑
i=1

ℓi .

This empirical mean estimates the underlying expected sum of the squared lengths up to 95%–confidence errors margins
given by

γL,•
def
= 1.96

std
(
L
(1)
• , . . . , L

(1 000)
•

)
√
1 000

,
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For the same scaling issues as in section F.1.5, we rather report in our experiments the following point estimates and
associated confidence intervals: √

L• ,
[√

L• − γL,• ,

√
L• + γL,•

]
. (21)

The results are represented in the bottom graph of Figure 4, with comments to be found in Section 4.
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Figure 4. Artificially generated data: component-wise coverage levels and prediction-interval lengths (top figure) and total lengths (bottom
figure). This figure merely performs a zoom on the left graphs of Figure 2. The standard errors reported are based on the formulas (20)
and (21).
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F.2. Palo Alto daily charging Energy

The dataset we consider is presented in greater detail by Amara-Ouali et al. (2021), an article referencing several data sets
for charging sessions of electric vehicles. We refer to this data set as the Palo Alto dataset, as it is related to charging stations
located in the city of Palo Alto, CA. It contains a substantial number of charging sessions and an interesting hierarchical
structure, with 47 charging points that are divided into a dozen of stations. However, due to some real-world considerations,
data is not available for all these charging points in the 2015–2019 period considered. We only consider 2 charging stations
(called “Riconada Library” and “Hamilton”, featuring 3 and 2 charging points, respectively) for which data is available
on the entire period. The study stops in 2019 to avoid the temporary shift in demand caused by Covid19 in 2020 and the
subsequent years.

We are interested in daily energy demand at each charging point, each charging station, and at the global level of the
considered hierarchy. The total number of observations for each node is T = 1780.

F.2.1. METHODOLOGY

The methodology followed for this data set essentially mimics the one for artificial data, as presented in Section F.1. We
thus present only the main adaptations made.

Runs and data splitting. We will perform 360 runs of a given experimental procedure, described next. We split into train,
estimation, calibration, and test sets as in Section F.1.2, with same 40%–20%–20%–20% proportions.

Regression algorithm A. As in Section F.1.3 (and taking inspiration from Amara-Ouali et al., 2022), we resort to modeling
and forecasting through GAMs. More specifically, for each node i ∈ [8] and day t, we consider the following auto-regressive
specification of GAM for the energy demand yt,i:

yt,i = β(0) +

7∑
j=1

β
(1)
j 1DayTypet=j +

7∑
j=1

m1(yt−1)1DayTypet=j (22)

+m2(yt−1,i) +m3(yt−7,i) +m4(t) +m5(ToYt) + εt , (23)

where DayTypet ∈ {1, . . . , 7} is a categorical variable indicating the day of the week, ToYt is the “time of year”, i.e., the
position of the day in the year (whose value grows linearly from 0 on the 1st of January to 1 on the 31st of December). The
model (22) incorporates a trend term m4(t), which may be estimated because we pick a random subset of the entire data set
for the train set; this trend term is useful to take into account changes in the infrastructures and shifts in user behaviors.

We again resorted the R package mgcv of Wood (2023) to forecast this model and get µ̂. The parameters were the default
thin plate spline basis and a maximum number of degrees of freedom of 10 for the estimation of the coefficients for
m1, m2 m3, and 15 for m4. We fitted m5 with cyclic splines and a maximum number of degrees of freedom of 30.

Validity check of Assumption 3.6 on elliptic distribution. Based on the regression function µ̂ output, we computed
the signed non-conformity scores on the estimation and calibration sets. We then fitted a Student distribution (which is a
particular case of an elliptic distribution). Figures 5 and 6 illustrate the goodness of fit between the empirical distributions
of scores and the Student distributions with parameters estimated on these scores, through, respectively, densities and
Q-Q–plots. We were interested in two nodes i: the total node (the total demand for the 5 charging points) and the node of
the Riconada Library (the sum of the 3 charging points located there).

The fit to a Student distribution looks reasonable in both cases, with actually an excellent fit for the total node and a relatively
small mode of the distribution located in the right tail of the distribution scores being not captured well in the case of the
Riconada Library node.

Estimation set: details on the “Oracle MinT” strategy. For this data set, we also report the performance of the “Oracle
MinT” strategy, i.e., Algorithm 2 used with PΣ−1 . The question is how to determine Σ.

The “MinT” strategy, i.e., Algorithm 3 with PMinT, truly estimates Σ, on the estimation set:

Σ̂ =
1

Testim

∑
t∈Destim

(
ŝt − s

)(
ŝt − s

)⊤
, where s =

1

Testim

∑
t∈Destim

ŝt .
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Figure 5. Student density estimator compared to the empirical density of the scores for the total node (a) and the Rinconada Library
station (b).
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Figure 6. Q-Q–plots of the scores for the total node (a) and the Rinconada Library station (b).
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Figure 7. The estimates Σ̂ and Σ̂⋆ of the covariance matrix of the non-conformity scores for one given run of the experiment.
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In the case of the Palo Alto data set, the results obtained by this strategy are rather poor, which may be attributed to having
few data points only to perform the estimation: the ones of the estimation set Destim.

To determine Σ for the “Oracle MinT” strategy, we actually also estimate it, but by cheating: we produce an estimate thereof
using Dcalib and Dtest, the two subsets on which the non-conformity scores will be calculated. More precisely, we produce the
estimate

Σ̂⋆ =
1

Tcalib + Ttest

∑
t∈Dcalib∪Dtest

(
ŝt − s⋆

)(
ŝt − s⋆

)⊤
, where s⋆ =

1

Tcalib + Ttest

∑
t∈Dcalib∪Dtest

ŝt ,

and run Algorithm 2 with P(Σ̂⋆)−1 .

Figure 7 displays the two estimates Σ̂ and Σ̂⋆ just for one given run picked at random out of the 360 runs. The differences
between the two estimates look mild, yet, the differences in performance are substantial (see Figure 8). We repeated the
comparison several times and always obtained quite similar estimates.

F.2.2. OUTCOMES

We use the exact same metrics as in Sections F.1.5 and F.1.7, with the mere replacement of the number 1 000 of runs
considered therein by the number 360 of runs considered now, and report the corresponding results in Figure 8. This figure
merely performs a zoom on the right graphs of Figure 2. The comments on the outcomes are located in Section 4.
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Figure 8. Palo Alta data of daily energy demand for charging electric vehicles: component-wise coverage levels and prediction-interval
lengths (top figure) and total lengths (bottom figure). This figure merely performs a zoom on the right graphs of Figure 2. The standard
errors reported are based on the formulas (20) and (21), with 1 000 replaced by 360.
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