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Abstract

Federated Learning (FL) allows clients to train a model collaboratively without sharing their
private data. Shapley value (SV) provides a principled way to quantify client contributions
in FL. However, existing SV methods use uniform per-class weighting during validation,
treating all classes as equally important. This uniform weighting breaks down in the presence
of clients with underrepresented or rare classes, also referred to as Mavericks. Such clients are
often undervalued due to lower model performance on these challenging classes, despite their
critical role in improving generalization. To address this, we introduce a Maverick-aware
Shapley valuation framework that reweights validation scores based on per-class accuracy,
assigning greater importance to classes where models perform poorly. Building on this, we
design FedMS, a Maverick-Shapley client selection mechanism that leverages our refined
contribution scores to guide intelligent client selection. Experiments on benchmark datasets
demonstrate that FedMS improves model performance and better recognizes valuable client
contributions, even under scenarios involving adversaries, free-riders, and skewed or rare-
class distributions.

1 Introduction

Federated Learning (FL) enables collaborative model training across distributed clients without requiring
direct access to raw data (McMahan et all |2017)). Clients communicate only local model updates with a
central server, keeping their data on-device and thereby enhancing privacy. While this distributed setup
offers privacy advantages, it also introduces significant challenges in understanding and leveraging the role
of each client in the learning process.

A key challenge in FL is how to evaluate client contributions accurately. Shapley value (SV) has become a
widely adopted tool for evaluating client contributions based on their marginal impact on model performance.
In practice, validation accuracy is commonly used as the utility function for SV estimation, as it provides an
effective and interpretable measure of model quality across clients and rounds. However, SV estimation in
FL typically aggregates validation accuracy uniformly across all classes, implicitly assuming that each class
is equally important, equally frequent, and equally easy to learn. Such an assumption fails in settings where
data is imbalanced, particularly in the presence of clients holding rare or underrepresented classes.

These clients, referred to as Mavericks (Huang et all [2022), hold rare data in FL, typically consisting of
one or more classes that they exclusively own and that are absent from other clients. Mavericks play a vital
role in improving model generalization. Incorporating such clients helps mitigate algorithmic bias, leading
to more robust and trustworthy machine learning systems. For example, when training an FL model for a
disease classification task (Song et al.,|2024} |Chen et al.| 2023)), most hospitals (i.e., clients) can possess data
indicating common diseases such as flu or other frequent infections. However, few hospitals may possess
more rare disease datasets such as for leukemia or thyroid cancers, making them Mavericks for this learning
task. Another example of Mavericks is people with rare accents for training voice-activated Al systems like
Amazon’s Alexa and Google’s Home Assistant. While the majority of these devices contain native accent
data, a few of them contain data from users with non-native accents. Recent studies (Kamegne et al.,
2025; [Michel et al., [2025) report that these voice systems struggle to understand non-native accents. This
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performance disparity indicates a biased performance and demonstrates the importance of training with rare
(or less common) data from Mavericks, to create models that "speak" to everyone.

Despite their importance, Mavericks are systematically undervalued by existing SV-based methods. Rare
classes are often harder to learn and tend to yield lower validation accuracy, causing clients that contribute
such data to appear less useful when uniform class weighting is applied during evaluation. As a result, SV
assigns disproportionately low contribution scores to Mavericks. This misvaluation can lead to biased global
models, suboptimal training dynamics, and disincentivized participation from Mavericks whose data is both
rare and valuable.

In this paper, we propose a principled reweighting of the validation score used in SV estimation, incorporating
class difficulty to enable more accurate and equitable assessment of client contributions. Specifically, we
introduce a class-aware validation strategy that places greater emphasis on performance over rare and hard-
to-learn classes. This reweighting mitigates the bias introduced by uniform validation and more faithfully
captures the true utility of each client, particularly Mavericks, during training.

Building on this reweighted valuation, we introduce FedMS, a Maverick-aware client selection mechanism
that leverages the refined Shapley scores to guide participation in each round. In contrast to prior selection
strategies, FedMS adaptively prioritizes clients based on the difficulty and rarity of the classes they contribute,
enabling more effective utilization of Mavericks and most valuable participants. This leads to improved
performance and robustness, particularly in the presence of Mavericks in FL.

In this paper, we offer a principled approach for valuing and leveraging Mavericks who contribute rare or
hard-to-learn classes in FL. Our key contributions are as follows:

o We identify a key limitation in existing SV-based methods, showing that uniformly weighted vali-
dation scores systematically undervalue clients with rare or underrepresented classes, thus limiting
both contribution estimation and model generalization.

o We propose Maverick-Shapley, a Maverick-aware Shapley valuation mechanism that reweights per-
class validation scores based on empirical class difficulty, leading to more accurate and robust con-
tribution assessments.

e We develop FedMS, a contribution-guided client selection strategy that leverages Maverick-Shapley
to prioritize and effectively utilize valuable clients, including Mavericks, even in adversarial and
free-rider settings.

2 Related Work

Contribution Evaluation via Gradient Shapley Methods. SV, a classic tool from cooperative game
theory, has been widely adopted in FL to quantify client contributions based on their marginal impact on
model performance. However, exact SV computation is infeasible in FL. due to the need to retrain models
over all possible client permutations. To address this, a line of work has focused on gradient-based SV
approximations that avoid costly retraining by leveraging clients’ gradient updates. Reference (Song et al.)
2019) introduces two SV estimators: One-Round (OR), which computes SV post-training, and Multi-Round
(MR), which updates SV estimates throughout training. Truncated Multi-Rounds Construction (TMR) (Wei
et al., [2020]) improves efficiency by truncating unnecessary sub-model evaluations with a decay factor. Guided
Truncation Gradient Shapley (GTG) (Liu et al.,|2022)) further refines this process by combining guided Monte
Carlo sampling with gradient-based truncation. Despite these advances, existing SV approximations such as
OR, MR, TMR, and GTG commonly rely on uniformly weighted validation accuracy as the utility function,
making them ineffective in the presence of rare or underrepresented classes. Prior work (Huang et al., 2022;
Buyukates et al., [2023)) has shown that such methods systematically undervalue Mavericks, as their lower
accuracy on rare classes leads to reduced contribution scores under uniform weighting. In this work, we
address this fundamental limitation by proposing a Maverick-aware SV framework that reweights per-class
validation scores according to class difficulty, enabling more accurate valuation of Mavericks. Although both
CS-Shapley (Schoch et all [2022) and ShapFed (Tastan et al., [2024) incorporate class-wise SV, their goals
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differ from ours. CS-Shapley decomposes instance contributions into in-class and out-of-class accuracy for
attribution in centralized ML, while ShapFed uses class-wise SV to construct a weighted aggregation scheme
in FL. In contrast, our FedMS explicitly targets Mavericks with rare data distributions, recognizing their
rare class contributions to enhance client selection in FL, which CS-Shapley and ShapFed has not considered.

Client Selection in the Presence of Mavericks. In FL, Mavericks are typically underrepresented in
the broader client population. Although they are crucial for improving model generalization, these clients
are often overlooked or underutilized in standard FL training. The FedAvg algorithm (McMahan et al.
2017)), which randomly samples clients in each round, does not prioritize those contributing rare or criti-
cal information (Fu et all 2023]). Several client selection strategies have been developed to address data
heterogeneity. S-FedAvg (Nagalapatti & Narayanam), [2021) combines FedAvg with SV estimation to favor
clients with higher estimated contributions. GreedyFed (Singhal et al., [2024)) selects clients using a fast SV
approximation method known as GTG (Liu et al., [2022)). Power of Choice (PoC) (Cho et all, [2022) sched-
ules clients with the highest local loss in each round. However, none of these methods explicitly identifies
or prioritizes Mavericks, nor do they effectively capture the contribution of clients with rare data. FedEMD
(Huang et al.; 2022) is one of the few methods that explicitly increases the selection probability of Maver-
icks, using the Wasserstein distance between local and global class distributions. While this improves their
sampling frequency, it does not provide a principled mechanism to quantify their actual contributions during
training. On the other hand, we develop a Maverick-aware Shapley client valuation mechanism and leverage
it to guide client selection in each training round in the presence of clients with rare data. By prioritizing
clients based on the rarity and difficulty of the classes they contribute, our method enables more effective
utilization of Mavericks across diverse data settings.

Data Heterogeneity in FL. FL suffers from performance degradation under heterogeneous client data. To
address this, numerous works have studied different types of heterogeneity, including covariate shift (where
the feature distribution varies) and concept shift (where class distributions differ). For instance, FedBN
(Li et all |2020b)) employs local batch normalization to alleviate feature shift, while IFCA (Ghosh et al.
2020) and FedDrift (Jothimurugesan et al.l 2023|) partition clients into clusters to address concept shift.
Personalized FL approaches such as FedALA (Zhang et al., 2023 and meta-learning methods like (Fallah
et all 2020) aim to adapt models to diverse client objectives. Our setting, referred to as the Maverick
scenario, can be seen as an extreme case of concept shift, where certain clients exclusively hold one or more
classes that are entirely absent from the data of other clients. This creates sharp class-wise imbalances that
challenge the standard evaluation and aggregation strategies in FL.

3 Problem Setup and Background

In this section, we first formalize the FL framework (McMahan et al., 2017) and define Mavericks (Huang
et al.l 2022). We then give an overview of the SV-based methods for evaluating the contribution of clients.
Figure [I] illustrates the data distribution among clients across three Mavericks scenarios we consider in this
work.

Federated Learning (FL). We consider a standard FL setup consisting of a central server and a set of
clients £ = {1,2,...,1}. Each client ¢ € K holds a local dataset D; of size n; = |D;|. The total number
of samples across all clients is n = ), n;. Each data point is a pair (z,y), where & denotes the feature
vector and y € M = {1,2,...,C} is the corresponding class label.

Let w denote the parameters of the global model. The objective of FL is to minimize the weighted average
of local losses:

min £(w) = % Li(w), (1)
€K

where the local loss at client 7 is defined as:
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Figure 1: Data sample distribution across clients in three Mavericks scenarios for MNIST and CIFAR-10
datasets. Mavericks are shown as blue circles, and non-Mavericks as red. Circle size indicates sample count,
with heterogeneity controlled by v in Dir(y). Higher v means lower heterogeneity. (a) is the most IID
setting with identical distributions for all but Mavericks. (b) shows moderate heterogeneity, and (c) is the
most Non-IID. In all cases, the Mavericks exclusively hold certain class labels (e.g., class 5 and class 8), while
still containing samples from other classes.

and /(w; x,y) denotes the per-sample loss.

The FL training proceeds in communication rounds and involves the following steps: (i) Initialization: The
server initializes the global model parameters w® and broadcasts them to all clients. (ii) Client Selection:
In round ¢, the server selects a subset of clients K! C K, with |K!| = I, based on a client selection strategy
7.(iii) Local Update and Aggregation: Each selected client i € K! performs local training and returns
an updated model w! to the server. The server then aggregates these updates to form the new global model:

w = =W,

t
n;
t+1 _ % nt t (3)
iekt 2 jexct 5

Steps (ii) and (iii) are repeated until convergence of the global model.

Mavericks. The term Maverick was introduced by [Huang et al.| (2022)) to refer to clients that exclusively
hold data from one or more class labels; that is, no other client in the FL system possesses samples from
those classes. Let M.y € M denote the set of class labels exclusively owned by Mavericks. For a given
client ¢ and class label ¢ € M, we define D§ = {(z,y) € D; | y = ¢} as the subset of data with label c.

A client 7 is a Maverick if D; includes samples from one or more classes in My, i.e.,
D= |J piu (J Dy (4)
CcEMmav C¢Mmav
A non-Maverick client only contains data from the remaining classes:
D= |J D5 (5)
C¢Mmav
In practice, multiple clients may jointly own rare classes; we refer to these as shared Mavericks.

Shapley Value (SV) for Client Valuation in FL. SV (Shapley} |1971}; |Ghorbani & Zou, 2019) of client
i is given by

qsi(zc,w:ﬁ 3 V(QU{i}) - V(Q)

K1 ’
QCK\{i} ("lar)

(6)

where ¢; denotes the SV for client 4, and Q represents a subset of the client set K. The utility function V()
can take any form that quantifies the value of a given subset; in this work, as in much of the FL literature,
we use validation accuracy to measure utility.
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In cooperative game theory, the SV framework is utilized to calculate the contribution of each player in a
coalition. Computing the exact SV in Equation @ requires retraining the FL model for all possible subsets
of clients, which is computationally prohibitive. To overcome this limitation, we adopt SV approximation
methods commonly used in the literature. Crucially, our proposed Maverick-Shapley mechanism augments
existing SV approximations, including MR (Song et al.,|2019)), TMR (Wei et al., 2020), and GTG (Liu et al.,
2022)), to enable Maverick-aware estimation of client contributions, which we discuss in the next section.

4 Proposed Method: FedMS

In this section, we first introduce the Maverick-Shapley contribution score, a class-wise SV mechanism for
accurately estimating client contributions. The detailed steps of Maverick-Shapley are presented in Algorithm
We then integrate this valuation into a client selection mechanism, termed FedMS, which prioritizes the
most valuable clients in each round based on their Maverick-Shapley contribution scores (see Algorithm .
Table 3] in Appendix presents the main parameters and notations of our proposed method.

4.1 Maverick-Shapley

This section describes the proposed Maverick-Shapley client contribution score. When training a model for
multi-class tasks, the difficulty of learning each class is different. Particularly in the presence of Mavericks,
rare classes are harder to learn than the others. In order to differentiate between classes and accurately com-
pute the contribution of each client (Mavericks and non-Mavericks alike), we propose a class-wise SV-based
contribution score. In particular, we use the class-wise accuracy as the utility function in SV computations
and aggregate class-wise contributions into a single number using the difficulty level of each class. Class-wise
accuracy is calculated as

NCC
> N

JEM

o (w;Dval) =

class

Ve e M, (7)

where w is a given model, D, is validation dataset at the server, N represents the number of validation
data points of class ¢ predicted as class j, M is set of class labels. Our main distinction in SV computation
is the fact that we compute it in a class-wise manner to better capture the diverse resources of Mavericks.

In each FL round, after receiving model updates from the participating clients, the server computes the SV
of a client 4 for class ¢, ¢¢, by utilizing a gradient-based SV approximation method of its choice using .
It then computes the accumulated class-wise SVs S§ using a decay factor « as

Se=axSi+(1—a)*¢f, VieK'Vee M. (8)

Finally, the server computes the Maverick-Shapley contribution score of each client ¢ as a weighted sum of
S¢s in each training roun(ﬂ

Si= > p°-S¢, Viek, (9)
ceM

where ¢ denotes the class difficulty of class ¢ in the current training round, adaptively adjusting the impact
of each class in the contribution scores such that

1-V¢ ;Dya
exp ( vclassT(w) 1))

1=V8 e (wiDva) \
> exp s
ceM

B = Ve e M, (10)

11n the first round, the server queries model updates from all clients and initializes contribution scores based on the class-wise
accuracy of these updates.
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Algorithm 1: Maverick-Shapley GTG (MS-GTG)

Input: Updated client models {w}};cxt; current server model w'; validation dataset at server D.,q;; class-wise
accuracy function V..ss(-); M: set of class labels; C': set of clients in round ¢;.
Hyperparameters: Error threshold €, €;, temperature T.
Initialize: ¢; =0,Vi € K',r =0
Compute w'™! = ModelAverage(n;, {w!}icit)
Vo = Vclass(wt§ Dval), UN = Velass (wt+1; Dval),
// between round truncation
if [uy —vo| > € then
while Convergence criteria not met do
for client i € K' do
r=r+1
7"l « Random permutation of Kt \ {i} with 7#([0] =i
1}([;] = Vo
// within-round truncation
for j =1,. n do
if |oy — v >e
H = xl");
wp = ModelAverage({w!}icr, w")
’U;T] = Vclass(ﬁ;H; Dval)
else

[T] [r]

i1
for class c e Mdo

=V

. 1 e (U[AT] [7'] )
i Ul = P y1 T —
// Find coreset K' and its class-wise accuracy ©
Kt 0« argmaxy > Vs (Wrr; Dyal)
ceM
// Obtain class difficulty B

ezp(;vc
¢ = 7(: VYee M
B Z caop( I c

ceEM

return ¢, 3, K*

where the temperature T controls the distribution. Since the difficulty of learning each class is dynamically
changing, the server updates the class difficulty 8 and the contribution score S in each round.

Our proposed Maverick-Shapley approach is universally applicable to the existing gradient-based SV approx-
imations, as we simply change the utility function and utilize class difficulties 8. In this paper, we integrate
Maverick-Shapley approach with three gradient-based SV approximations including MR (Song et al., 2019)),
TMR (Wei et al.l 2020) and GTG (Liu et all [2022). In the ensuing, we describe Maverick-Shapley GTG.
Details on Maverick-Shapley MR and Maverick-Shapley TMR, are given in the Appendix.

Maverick-Shapley GTG (MS-GTG). MS-GTG is built on top of the Guided Truncation Gradient Shap-
ley (GTG) approach (Liu et al.l 2022) by modifying the utility function and incorporating class difficulties
as shown in Algorithm . The GTG approach designs the guided sampling (Line 11 in Algorithm [If) to
improve the efficiency of subset model reconstructions and removes unnecessary reconstructions using trun-

cation techniques (Line 7 and 15 in Algorithm [I)). We utilize the following convergence criterion (Liu et al.
2022) for MS-GTG

m |K']

Jo! — o7
IlCt\ — ;; |¢>[T < 0.05, (11)
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Algorithm 2: FedMS: a Maverick-Shapley Client Selection Mechanism for FL

Input: 7: number of training rounds; E: number of local epochs; K': set of clients in round ¢; D;: dataset of
client 4; B: minibatch size; n!: dataset size of the ith client in round ¢; M: set of class labels; D,q;: validation
dataset; Veiass(+): class-wise accuracy function; 7;: learning rate at client 4.
Server executes:
Initialize w°, B8, S
for each round t = 0, ... T —1 do
// Sample clients from Py ;.
exp(S; .
Ps. = it :ip(gi>,VZ ex
i€
K' + sample clients ~ Pg
for each client i € KC* in parallel do
w! + UserUpdate (w',1)

// Calculate class-wise SV ¢;, class difficulty B and coreset K.

¢, B,K! « Maverick-Shapley ({w!};cxct,w!, Dyat, Velass(+), M)

// Compute the accumulated class-wise SV S;.

S =a-S+(1—a)-¢§,Vic K, Yee M

// Compute contribution score S;.

S =3 pe-Seviek

ceEM

t
t+1 n; t,
wt— > S wy;
ekt 4 i
iekt

function UserUpdate (w',4):
for each local epoch e = 1...F do
DZB < select a minibatch of size B C D;
w! — w! —n;VL(DE, w)
return 'wf to server

where 7 is the number of iterations inside MS-GTG (Line 10 in Algorithm , ¢£T] is a weighted sum of its

class-wise SV, ¢£T] = Y [°- ¢S, and m represents the number of preceding terms considered in the sum.
ceEM

After guided sampling, the server computes the class-wise SV (line 22 in Algorithm , identifies the coreset

Kt and updates the class difficulty 8 (lines 24 and 26 in Algorithm . The coreset is defined as the subset

of sampled clients K whose aggregation maximizes total class-wise validation accuracy. The algorithm thus

outputs the per-client SV ¢, the class difficulty £, and the coreset Kt.

4.2 Maverick-Shapley Client Selection

The Maverick-Shapley contribution score we propose is a principled way for assessing the value of clients
with rare data in FL. In this section, we describe how these contribution scores can be utilized by the server
to make client selection in each round. In a nutshell, based on these contribution scores, the server selects
the most contributing clients in each FL training round. This process is described in Algorithm [2} In each
round the server calculates the selection probability of clients according to their contribution scores S as

O ICR (12)
’ E;Ceffp(sz')
1€

and samples clients based on Pg in each round. Since Mavericks exclusively owns certain classes, they are the
primary contributors for these rare classes and are more likely to be selected when the model underperforms
on them.

Although clients are sampled from Py ,, including all sampled clients K" in aggregation is not always optimal.
The collective contribution of a group depends on how their updates interact: some sampled clients may
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contribute redundant gradients or even destabilize the aggregation, while others (e.g., Mavericks with rare
classes) provide complementary information that significantly improves generalization. To ensure aggregation
emphasizes the most beneficial interactions, the server identifies the coreset K! through Maverick-Shapley
and aggregates only their updates.

Shapley Rewards (SR). In each round, the server computes the class-wise SV of a selected client i for
each class ¢, ¢§. It then calculates the SR of each client ¢ for round ¢ as a weighted sum of its class-wise SVs
using the current class difficulty 3

Rl = p°-¢;, Viek' (13)

ceEM

5 Evaluation

We comprehensively evaluate the effectiveness of our algorithm, FedMS, on two datasets against six baselines,
in terms of (I) model performance, (II) contribution allocation across Mavericks and non-Mavericks, and (III)
robustness against adversaries and free-riders.

5.1 Evaluation Setup

Datasets and Models. Following the SV literature, we use two common benchmark datasets, (i) MNIST
(Deng}, 2012) consisting of handwritten digits, with 60,000 samples for training and 10,000 for testing, and
(ii) CIFAR-10 (Krizhevsky et al.; [2009) consisting of colored images of 10 classes, with 50,000 samples for
training and 10,000 for testing. For both MNIST and CIFAR-10, we randomly split 20% of testing samples
as validation dataset. We utilize a lightweight MLP neural network (Popescu et al., |2009) for MNIST and
a commonly employed CNN (Albawi et al., [2017)) for the CIFAR-10 dataset.

Maverick Scenarios. Both MNIST and CIFAR-10 datasets are uniformly distributed across all 10 class
labels. In order to simulate heterogeneous settings, we adopt the widely used practical heterogeneous setting
(Zhang et all 2023)), which is controlled by the Dirichlet distribution, denoted as Dir(y). Increasing ~y
decreases the degree of heterogeneity. We vary v to control the level of heterogeneity and create three
Maverick scenarios as follows: (i) Mavericks + Dir(10): Most IID setting (the data distribution among
non-Maverick clients is identical.) (ii) Mavericks + Dir(1): Moderately heterogeneous setting, and (iii)
Mavericks + Dir(0.1): Most Non-IID setting, where data distribution among clients is highly diverse. In all
three settings, we have 50 clients (48 non-Mavericks, 2 Mavericks) with 10% selection rate of all clients in
each FL round and each Maverick exclusively owns one class. Figure |1] also illustrates the three Maverick
scenarios, with 7 set to 10, 1, and 0.1, respectively. We also simulate a 5 clients setting (4 non-Mavericks
and 1 Maverick) without client selection (i.e., all 5 clients participate in each round). In 5 clients setting,
the data distribution of non-Mavericks is IID and the Maverick exclusively owns one class.

Adversarial and Free-riding Scenarios. In this setting, we have 58 clients (48 non-Mavericks, 2 Mav-
ericks, 6 adversarial clients and 2 free-riders). We consider the existence of adversarial clients during the
federated training process. They can mislead the model by injecting poisonous data or model updates. In
our experiments, we include three types of malicious behaviors. (i) Label-flipping clients who flip the label
of their dataset (Shen et al., |2023)). (ii) Data-poisoned clients who participanting training with random
generated data (Sandeepa et al., [2024)). (iii) Update-poisoned clients who send random generated model
updates to the server during the FL training (Xie et al.| [2024]). We also examine the existence of free riders
(Chen et all 2024). Free-riders do not update the model, but instead send the same model back to the
server. Free-riders can enjoy the trained global model without any effort, whereas the benefits of benign
users are greatly compromised.

Baselines. We consider six client selection baselines: FedAvg (McMahan et al.| [2017)), S-FedAvg (Nagala-
patti & Narayanam), [2021), FedEMD (Huang et al., [2022), FedProx (Li et al., [2020a)), GreedyFed (Singhal
et al., [2024)), and PoC (Cho et al.l |2022). FedAvg applies random sampling in each round. S-FedAvg and
GreedyFed combine SV-based methods with client selection. S-FedAvg adopts MR (Song et all |2019) and
GreedyFed uses GTG (Liu et all |2022) in their client selection. FedProx and PoC propose mechanisms
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Table 1: Test accuracy (%) of different algorithms across three Mavericks scenarios on MNIST and CIFAR-10
dataset, with 50 clients under client selection.

Settings ‘ Mavericks + Dir(10) ‘ Mavericks + Dir(1) ‘ Mavericks + Dir(0.1)
Methods |  MNIST Cifarl0 | MNIST Cifarl0 | MNIST Cifar10
FedAvg 79.13£0.29 63.36+0.29 79.00+0.14  61.524+0.91 74.55£2.48 48.68+0.83
FedProx 78.53+1.17 59.8440.93 77.54+0.30  57.07+2.04 75.084+0.32 41.06+£6.58
PoC 91.27+0.71  67.07+0.98 | 78.76+£0.23  60.18+4.26 54.63+2.62 54.771+6.38

FedEMD 85.5140.23 55.84+0.40 | 78.05£0.96  55.66+0.58 65.39+2.93 47.18+0.90
S-FedAvg 80.66+2.30 62.98+0.29 | 82.56+1.38  61.42+0.44 77.24£0.82 45.94+3.94
GreedyFed | 80.97+3.55 60.60+0.44 | 82.47+3.16  58.10+0.79 | 89.73+1.40 51.974+3.92

FedMS | 92.96+0.32  65.92+0.68 | 92.67+0.10 65.92+0.75 | 89.624+0.57 59.75+2.10

regarding data heterogeneity in FL. FedEMD combines EMD distance with client selection in the presence
of Mavericks.

FL Setup. We train 100 rounds for MNIST and 200 for CIFAR-10, both with a batch size of 64; the learning
rate is 0.05 for all baselines in both datasets. We employ 5 local training rounds for MNIST and a single
local training round for CIFAR-10. Our algorithm is implemented in Pytorch and we perform experiments
on two NVIDIA RTX A5000 and two Xeon Silver 4316.

Evaluation Metrics. To assess the effectiveness of evaluated mechanisms, we consider the test accuracy
as the utility metric, as shown in Table[I] In addition, we evaluate different schemes based on their Shapley
Rewards (SR) to the Mavericks. A larger SR is associated with higher contributions. We also utilize the
participation rate (%) of Mavericks, adversaries and free-riders as the robustness metric, as shown in Table

2

Hyperparameter Settings. We tune the hyperparameters of all baselines using grid search. In FedProx,
we set the weight of proximal term u as 1 (selecting from [0.1, 1]). For PoC, we adopt the adaptive variant
Tadapow—d and set the decay factor as 1.0 for the Mavericks + Dir(10) setting and 0.9 for Mavericks + Dir(1)
and Dir(0.1) settings (selecting from [0.9, 1.0]). In FedEMD, we set the distance coefficient (denoted by 3
in that scheme [Huang et al|(2022)) as 0.001 for the Mavericks + Dir(10) setting and 0.01 for Mavericks
+ Dir(1) and Dir(0.1) settings (selecting from [0.001, 0.01, 0.1]). We choose o = 0.7 for S-FedAvg and
GreedyFed (selecting from [0.6, 0.7, 0.8]). In S-FedAvg, we utilize MR to calculate SV of all permutations
(without using the Monte-Carlo sampling). For our proposed FedMS, we choose temperature 7' = 0.01
(selecting from [0.001, 0.005, 0.01, 0.05]), and error threshold €, = ¢; = 0.001. In FedMS, we apply o = 0.8
for the Mavericks + Dir(10) setting and 0.6 for Mavericks + Dir(1) and Dir(0.1) settings (selecting from
[0.6, 0.7, 0.8]). In each round, we calculate the class-wise accuracy difference, dt, between the coreset K and
the previous set Kf=1. If the model performance of coreset K! diverges significantly from the global model
(i.e., d' < 0 and |df| > €g), the server discards the coreset for this round and returns an empty set, Kt = 0.
We initially set €4 to 3.0, and it exponentially decays to 0.1 by the end for all settings. The only exception
is the Mavericks + Dir(0.1) setting in MNIST, where ¢, decays to 0.2.

5.2 Evaluation Results

Main Result I: FedMS Improves Model Performance. Figure [2|illustrates how the test accuracy and
SR change during training in the 5 client setting (without client selection). We evaluate the test accuracy
under two settings: Accuracy With All Clients and Accuracy Without Mavericks. In Figure [2] there is a gap
between the Accuracy With All Clients setting and the Accuracy Without Mavericks setting, and this gap
reveals the importance of Mavericks. That is, without leveraging the Mavericks, the full potential of the
model cannot be achieved, motivating our FedMS client selection mechanism.

Comparing the accuracy of the proposed FedMS vs. the baselines for the MNIST and CIFAR-10 datasets
under all three Maverick scenarios are given in Table[1] In all three scenarios from IID to Non-IID settings,
our proposed FedMS maintains high accuracy and achieves better model performance than baselines in most
settings. Among the baseline methods, only S-FedAvg and GreedyFed adopt SV in their client selection pro-
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Figure 2: Comparison of test accuracy and Shapley rewards with 5 clients (without client selection) for the
MNIST dataset using GTG and MS-GTG under FedAvg.
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Figure 3: Comparison of test accuracy and Shapley rewards with 50 clients (with client selection) for the
CIFAR-10 dataset under the Mavericks + Dir(10) (most IID) setting using MS-GTG for FedMS, MR for
S-FedAvg and GTG for GreedyFed.

cess but none of them considers the Mavericks settings. In those SV-based methods, the low SR of Mavericks
decreases their selection probability during FL training, resulting in under-utilization of the Mavericks and
poor performance of global model. Especially in Maverick scenarios with Dir(10) and Dir(1), Mavericks are
often misclassified as outliers and consequently receive less frequent selection from the server. Since FedMS
can effectively select the most contributing clients, it successfully selects the Mavericks and increases the
model accuracy when the model most needs their updates.

FedEMD applies a decreasing selection probability for the Mavericks as training rounds progress. As indicated
in Figure [2| the accuracy gap between the Accuracy With All Clients setting and the Accuracy Without
Mavericks setting increases as the training progresses to later rounds, demonstrating the need for selecting
the Mavericks in later training rounds as well. Our approach differs from FedEMD by not relying on the
distance of local and global data distributions in making client selection decisions. Instead, we prioritize the
class-wise contribution of each client during the selection process, thus, our method achieves robust SR and
improved accuracy compared to FedEMD. Additionally, querying local data distributions in FedEMD may
lead to privacy leakage for clients, whereas our method does not require extra information from clients.

Main Result IT: FedMS Aligns Shapley Rewards (SR) with Actual Client Contributions. FedMS
computes SR that better reflect client contributions by leveraging class-wise SV and class difficulties 8. If
rare classes owned by the Mavericks perform poorly on the validation dataset, our mechanism increases the
class difficulty associated with these rare classes. Hence, our system provides SR that accurately capture
the contributions of Mavericks.

In Figure 2| we see that global model accuracy increases with the participation of the Mavericks. Despite
their critical importance for improved accuracy, in Figure [4] when considering the scenario with 50 clients
(with client selection), we observe that the average SR of the Mavericks is considerably lower than those

10



Under review as submission to TMLR

08l T Accuracy 05 08l T Accuracy 0.5 08l T Accuracy 0.5
—— Avg Shapley of Non-Mavericks —— Avg Shapley of Non-Mavericks —— Avg Shapley of Non-Mavericks
>°’7 —— Avg Shapley of Mavericks [om 04 3 07— Avg Shapley of Mavericks 04 3 >°'7 —— Avg Shapley of Mavericks 04 3
o <4 2 <4
S06 03 © 03 © 06 03 ©
e 2 2 e 2
g 05 02 & 02 & § 0.5 02 &
0.4 > > 0.4 >
,<_, 01 @ 01 @ f, o1 @
003 [=% [=% 0 03 =%
(] © © ] ©
= 00 0.0 = Y 0.0
0.2 0 0 02 /V v ! | v [ n
01 -0.1 -0.1 01 -0.1
0.0 -02 0.0 -0.2 0.0 -0.2
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Training Rounds Training Rounds Training Rounds
(a) FedMS (Our method) (b) S-FedAvg (¢) GreedyFed

Figure 4: Comparison of test accuracy and Shapley rewards with 50 clients (with client selection) for the
CIFAR-10 dataset under the Mavericks+Dir(1) setting using MS-GTG for FedMS, MR for S-FedAvg and
GTG for GreedyFed.
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Figure 5: Comparison of test accuracy and Shapley rewards with 50 clients (with client selection) for the
CIFAR-10 dataset under the Mavericks + Dir(0.1) (most Non-1ID) setting using MS-GTG for FedMS, MR
for S-FedAvg and GTG for GreedyFed.

of the non-Mavericks in S-FedAvg and GreedyFed when the SR are obtained directly from MR and GTG,
respectivelyﬂ In contrast, Figure [4a| exhibits a robust SR for Mavericks, reflecting their importance in later
rounds for improved accuracy. In Figure [fa] the elevated SR for Mavericks show the superiority of MS-GTG
over the standard GTG when Mavericks are involved in training. Even when there is no client selection,
the main benefit of Maverick-Shapley is assigning SR that better reflect the contributions of Mavericks, as

demonstrated in Figure b).

When examining the SR, we observe from Figure[3|that FedMS allocates more rewards to Mavericks compared
to non-Mavericks in the IID setting, in line with the observed accuracy benefit of training with the Mavericks.
In contrast, S-FedAvg and GreedyFed provide lower rewards to Mavericks compared to non-Mavericks, as
Mavericks are easily identified as outliers by Maverick-unaware Shapley methods like MR and GTG in the
Mavericks + Dir(10) (most IID) setting.

In the Mavericks + Dir(0.1) (most Non-IID) setting, Figure [Lc| presents that the clients’ data distributions
are heterogeneous, with some non-Mavericks also possessing a large number of samples from specific classes.
As shown in Figure [f] S-FedAvg and GreedyFed allocate lower rewards to non-Mavericks compared to
Mavericks, even though the classes held by non-Mavericks are also important. In contrast, FedMS ensures a
more contribution-aligned distribution of SR among Mavericks and non-Mavericks, as illustrated in Figure
Our proposed FedMS assigns equal importance to all classes and distribute the SR proportionally
based on each client’s class contribution. Regarding the utility metric, we notice that FedMS better utilizes
Mayvericks, resulting in an overall improvement in model accuracy compared to S-FedAvg and GreedyFed on
both Mavericks + Dir(10) setting and Mavericks + Dir(0.1) settings, as also demonstrated in Table

2In our evaluation, we stick to original implementations of the baselines and use GTG (Liu et al} [2022) to calculate SR for

GreedyFed, and MR, (Song et al.| [2019) for S-FedAvg.
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Table 2: The participation rate (%) of Mavericks, adversaries and free-riders in 7 FL methods under the
MNIST dataset with Mavericks + Dir(0.1) setting.

Settings ‘ Label-flipping ‘ Data-poisoned ‘ Update-poisoned ‘ Free-riding ‘ Mavericks

FedAvg 9.5% 6.0% 7.0% 12.0% 9.0%
FedProx 9.0% 10.5% 8.5% 9.5% 6.5%
PoC 8.0% 9.5% 8.0% 9.0% 8.0%
FedEMD 0.0% 1.0% 0.0% 0.5% 1.5%
S-FedAvg 7.0% 10.0% 8.5% 8.5% 10.0%
GreedyFed 1.0% 60.0% 1.0% 42.5% 47.0%
FedMS | 0.5% \ 0.0% \ 1.0% | 25% | 54.0%

Main Result III: FedMS Shows Robustness to Adversaries and Free-riders. Table 2] shows the
participation rate (%) of Mavericks, adversaries and free-riders in FL baseline methods. A low participation
rate of adversaries and free-riders is critical, since adversaries can inject harmful updates and free-riders
contribute no useful updates, both of which undermine global training. Conversely, a high participation rate
of Mavericks is desirable, as their data captures rare or underrepresented classes and directly improves gener-
alization on these classes. As shown in Table [2] FedMS achieves this dual objective: it effectively suppresses
adversaries and free-riders while maintaining strong inclusion of Mavericks. In contrast, baseline methods
show a trade-off: some reduce adversarial and free-riders participation but fail to select Mavericks, while
others increase Mavericks participation but allow adversaries and free-riders into training. This demonstrates
that FedMS balances robustness to adversaries and free-riders with the inclusion of Mavericks.

6 Discussion

Rewards as Incentives for Participation. Throughout this paper, we utilized Mavericks in FL, so as
to improve both the model performance and the rewards given to clients. Model performance is important
from the server’s perspective, which can be, e.g., companies, hospitals, or institutions. Properly assessing
the contribution and rewarding participants to participate in the FL training process, is equally important.
Clients, like the Mavericks who own rare data, are valuable to the server and should receive rewards that
reflect their contributions. Without proper incentives or rewards, Mavericks may refuse to join the FL
training if their contributions are severely undervalued or, even worse, if they are deemed as outliers.

In this work, we aim to assign Shapley rewards and use class difficulty 3 to represent the importance of
each class in each training round. Our approach encourages clients with valuable data to participate in
the FL training. By recognizing the contributions of the Mavericks, we establish a contribution-guided
rewarding mechanism for all participants in the FL system, as each potential client knows that their unique
contributions would be properly acknowledged.

7 Conclusion

Client selection plays a pivotal role in FL, especially in the presence of Mavericks, as it allows for the
optimization of the utility derived from diverse model updates. In this paper, we propose FedMS, a Maverick-
aware Shapley valuation mechanism for client selection in FL that not only provides accurate evaluation of
Mavericks contributions but also effectively selects the most contributing clients in each FL round. We
show that our FedMS achieves better model performance and delivers a contribution-aligned distribution
of Shapley rewards compared to state-of-the-art approaches, while providing robustness against adversaries
and free-riders.
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A Appendix

This appendix extends the main body of our paper, providing supplementary materials to enhance the
understanding of our proposed method. This appendix first introduces additional Maverick-aware Shapley
approximations, namely MS-MR and MS-TMR. Then, we provide the hyperparameter settings studied in the
paper. Table [3] presents the main parameters and notations of our proposed method and Figure [f] illustrates
the FL framework in the presence of Mavericks.
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Figure 6: FL framework in the presence of Mavericks. In this example, client 2 is a Maverick, as only that
client possesses samples from the green label.

A.1 Maverick-Aware SV Approximations

Algorithm 3: Maverick-Shapley MR (MS-MR)

Input: Updated client models {w}};cxt; current server model w’; validation dataset at server Dya; class-wise
accuracy function V...s(-); M: set of class labels; C': set of clients in round ¢;.
Hyperparameter: Temperature T
Initialize: ¢; = 0,Vi € K'
for each subset @ C K' do
wg = ModelAverage({w!}icq,w")
for client i € K' do
for class c € M do

¢ = VE 1es (WU i} Pval) =V ass (W0 Dyal)
g [t ) IKf—1
QCK\{i} ¥y

// Find the coreset K! and its class-wise accuracy v
Kt o+ argmaxocxe Y Velass(WqQ, Dyal)

ceM
// Obtain class dz’ﬁiculty B
c exp(15
B Z 6zp(1 © cE
ceEM

return ¢, 3, K*

Maverick-Shapley MR (MS-MR). MS-MR is built on top of the Multi-Round (MR) approach (Song
et al.;[2019)). In MR, the SV is calculated in every FL round and the subsets of client models are reconstructed
by using the corresponding gradient updates. In our MS-MR, the server first calculates the class-wise SV
(Line 8 in Algorithm [3|) for each client, and then computes the contribution score S; of each client i with
updated class difficulty 3 (Llne 12 in in Algorithm ' ) and the class-wise SVs ¢°. In each round, the server
selects the subset of clients K that achieve the highest accuracy increase and aggregates only their updates
as the updated global model of the next round.

Maverick-Shapley TMR (MS-TMR). MS-TMR is built on top of the Truncated Multi-Rounds Con-
struction (TMR) approach (Wei et al.l [2020). The TMR extends the MR by introducing a decay parameter
A to eliminate unnecessary subset model reconstructions. In our MS-TMR, we introduce an error threshold
€ to eliminate the unnecessary reconstructions (Line 2 in Algorithm [4)).
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Algorithm 4: Maverick-Shapley TMR (MS-TMR)

Input: Updated client models {w}};cxt; current server model w'; validation dataset at server Dy,y; class-wise

accuracy function V..ss(-); M: set of class labels; K': set of clients in round ¢;.
Hyperparameter: Error threshold ¢,, Temperature T
Initialize: ¢; = 0,Vi € K*
Vo = Vclass(wt§ Dva1)7 UN = Velass (wt+1§ Dval),
// between round truncation
if [uy —vo| > € then
for each subset @ C K' do
wq = ModelAverage({w!}ico,w")
for client i € K do
for class c € M do

of = 1 Verass @Wou{i}iDval) ~ V4 ss (WQiDval)
i = R , K1
QCKT\ (i} (i)

// Find the coreset Kt and its class-wise accuracy o

Kt o« argmaxgcit 9 Viass (WQ, Dyal)
ceM

// Obtain class difficulty B
1—0¢
3¢ = L%,Vc cM

Z exp(=—p—

ceM

return ¢, 3, Kt

Table 3: Notation and key parameters used in the paper.

Notation Description

(z,v) Data sample with feature vector  and label y
K Set of clients, K = {1,2,...,I}
M Set of class labels, M = {1,2,...,C}
;i Learning rate of client ¢
D; Local dataset of client
Dyal Validation dataset at the server
w Global model weights
w; Local model weights of client ¢
Velass () Class-wise accuracy function
[0} Class-wise Shapley value vector for all clients
i Class-wise Shapley value of client 4
B Class difficulty vector across all classes
B¢ Class difficulty for class ¢
S¢ Accumulated Shapley value of client ¢ for class ¢
«a Decay factor for accumulated Shapley value S¢
S¢ Contribution score of client 4 for class ¢
Py Client selection probability vector over all clients
Py, Client selection probability of client ¢
T Number of FL training rounds
t Index of FL round, t =0,1,..., 7 —1
E Number of local epochs
B Mini-batch size
wt Global model weights in round ¢
w! Local model weights of client ¢ in round ¢
Kt Set of selected clients in round ¢ with selection strategy m
Kt coreset with the highest class-accuracy in round ¢
nt Dataset size of client ¢ in round ¢

16



	Introduction
	Related Work
	Problem Setup and Background
	Proposed Method: FedMS
	Maverick-Shapley
	Maverick-Shapley Client Selection

	Evaluation
	Evaluation Setup
	Evaluation Results

	Discussion
	Conclusion
	Appendix
	Maverick-Aware SV Approximations


