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Abstract

This paper emphasizes the Chinese spelling001
correction of self-supervised learning, which002
means there are no annotated errors within the003
training data. This setting is a pivotal issue that004
has received broad attention in the community.005
Our intuition is that humans are naturally good006
correctors with exposure to monolingual sen-007
tences, which contrasts with current unsuper-008
vised methods that strongly rely on the usage009
of confusion sets to produce parallel sentences.010
In this paper, we demonstrate that learning a011
spelling correction model is identical to learn-012
ing a language model from monolingual data013
alone, with decoding it in a greater search space.014
We propose Denoising Decoding Correction015
(D2C), which selectively imposes noise upon016
the source sentence to solve out the underly-017
ing correct characters. Our method largely in-018
spires the ability of language models to perform019
correction, including both BERT-based models020
and large language models (LLMs). We show021
that the self-supervised learning manner gener-022
ally outstrips the confusion set in specific do-023
mains because it bypasses the need to introduce024
error characters to the training data which can025
impair the patterns in the target domains. We026
evaluate our methods on multi-domain datasets027
Syn-LEMON and ECSpell.028

1 Introduction029

Chinese spelling correction (CSC) stands as a fun-030

damental task in natural language processing, sup-031

porting many downstream applications, e.g. web032

search (Martins and Silva, 2004; Gao et al., 2010),033

named entity recognition (Yang et al., 2023b), opti-034

cal character recognition (Afli et al., 2016; Gupta035

et al., 2021). Recent studies (Wu et al., 2023a; Liu036

et al., 2024) show that simply using the supervised037

signals within parallel sentences to fine-tune pre-038

trained language models (PLMs) achieves notable039

results across a series of benchmarks.040

However, the great cost of annotation is blamed041

for the low accessibility of parallel sentences.042
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Figure 1: Comparison of human learning, supervised
learning, and proposed self-supervised learning process
for spelling correction. [M] refers to the mask token.

Therefore, these models remain mediocre in han- 043

dling massive domains in real applications. This 044

paper thus emphasizes the value of self-supervised 045

learning, where only monolingual data is used to 046

adapt models to specific target domains, which still 047

achieved marginal progress in recent years. 048

Previous unsupervised methods (Zhao and Wang, 049

2020; Liu et al., 2021; Li, 2022) focus on synthesiz- 050

ing pseudo parallel sentences, while the supervised 051

signals do not derive from the real distribution but 052

from the confusion set (an empirically constructed 053

word set of common misspelled cases). By replac- 054

ing certain characters in the original sentences with 055

those in the confusion set, parallel sentences are 056

obtained for fine-tuning the models. However, the 057

gap between the confusion set and the real error 058

patterns in the target domain can induce a high false 059

positive rate (Wu et al., 2023a). This paper raises a 060

bold idea: Can machine spelling correction learn 061

from monolingual data alone? 062

Intriguingly, humans naturally learn to rectify 063

mistakes in a sentence with minimal exposure to 064

parallel data. We give an illustration in Figure 1, 065
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which shows that humans only learn to use the066

correct sentences (monolingual data) in daily life.067

When encountering a sentence with an error charac-068

ter “模” (mold), they can correct it to “膜” (cornea)069

with ease based on their knowledge. In contrast,070

the machine spelling correction models cannot do071

this if it isn’t exposed to annotated edit pairs like072

“模” → “膜” in the training process.073

In this paper, we demonstrate that a machine074

spelling corrector can also be learned from solely075

monolingual data as illustrated at the bottom of Fig-076

ure 1. The key is to have the model learn semantics077

rather than character-to-character editing. In light078

of this, we find that rephrasing models (Liu et al.,079

2024), where the source sentence will first be en-080

coded into the semantic space, and then rephrased081

to the correct sentence, demonstrate this ability. We082

call this manner self-supervised spelling correction.083

However, the resultant models still exhibit a low084

recall tendency.085

To this end, we propose a novel decoding al-086

gorithm Denoising Decoding Correction (D2C),087

which selectively imposes noise upon the source088

sentence to solve out the underlying correct char-089

acters. We apply D2C to two architectures:090

bidirectional models (represented by ReLM (Liu091

et al., 2024), the state-of-the-art model in Chinese092

spelling correction) and auto-regressive models093

(represented by a series of LLMs (OpenAI, 2023;094

Touvron et al., 2023; Yang et al., 2023a)). D2C095

achieves a significant performance boost over raw096

language models, trained with monolingual data.097

To evaluate our method’s performance across098

different domains, we propose a LEMON (Wu099

et al., 2023a) training set synthesized by GPT3.5,100

which only contains monolingual sentences. This101

dataset permits the fine-tuning and evaluation of102

self-supervised models in different domains.103

We summarize the contributions of this paper.104

• We demonstrate that spelling correction can be105

intrinsically transferred by language modeling on106

monolingual data.107

• With the proposed novel decoding algorithm,108

we build an effective self-supervised learning man-109

ner, allowing the spelling correction models to110

adapt to target domains at a minimal expense.111

• We build synthetic monolingual training data112

from LEMON to benchmark the unsupervised do-113

main adaption in the community.114

2 Related Work 115

Correcting spelling errors poses a challenging yet 116

crucial task in natural language processing. Early 117

endeavors primarily relied on unsupervised tech- 118

niques, assessing sentence perplexity as a key met- 119

ric (Yeh et al., 2013; Yu and Li, 2014; Xie et al., 120

2015). Recent methods model spelling correction 121

as a sequence tagging problem that maps each char- 122

acter in a given sentence to its accurate counterpart 123

(Wang et al., 2018, 2019). On top of pre-trained 124

language models (PLMs), some BERT-based mod- 125

els with the sequence tagging training objective are 126

proposed. Zhang et al. (2020) identify the potential 127

error characters by a detection network and then 128

leverage the soft masking strategy to enhance the 129

eventual correction decision. Zhu et al. (2022a) use 130

a multi-task network to minimize the misleading 131

impact of the misspelled characters (Cheng et al., 132

2020). There is also a line of work that incorpo- 133

rates phonological and morphological knowledge 134

through data augmentation and enhances the BERT- 135

based encoder to assist mapping the error to the 136

correct one (Guo et al., 2021; Li et al., 2021; Liu 137

et al., 2021; Cheng et al., 2020; Huang et al., 2021; 138

Zhang et al., 2021). Recent studies (Wu et al., 139

2023a; Liu et al., 2024) focus on the rephrasing 140

training objective, which achieves notable results. 141

While in the unsupervised spelling correction do- 142

main, previous works focus on generating pseudo 143

annotated data or detecting error characters with 144

confusion dataset (Zhao and Wang, 2020; Liu et al., 145

2021; Li, 2022). We are the first to raise a notable 146

self-supervised method with pure monolingual Chi- 147

nese spelling correction data in the community. Our 148

method inherits the ability of PLMs and presents a 149

transferability from language modeling to spelling 150

correction. 151

3 From Language Modeling to Spelling 152

Correction 153

This section serves as the preliminary of our work. 154

The basic effort is to learn spelling correction 155

from monolingual data. We call it self-supervised 156

spelling correction. We first discuss the transfer- 157

ability between language modeling and spelling 158

correction. Second, we point out that rephrasing is 159

the primary training objective for self-supervised 160

spelling correction. 161

We discuss the transferability from two angles: 162

(1) The coherence of training objectives between 163

rephrasing spelling correction and language mod- 164
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eling. (2) The knowledge in spelling correction is165

included in the pre-training process.166

3.1 Language Modeling167

First, we introduce the training objectives of lan-168

guage modeling.169

Given an input sentence Y = {y1, y2, · · · , yn}170

of n characters, (auto-regressive) language model-171

ing seeks to solve the character yi based on its left172

context, namely P (yi|y1, y2, · · · , yi−1). A spelling173

correction model can be learned by two dominant174

objectives, sequence tagging and rephrasing.175

3.2 Spelling Correction176

Second, we introduce the training objectives of177

spelling correction.178

Spelling correction aims to rectify the underlying179

misspelled characters in the source sentence. De-180

note the source sentence as X = {x1, x2, · · · , xn}181

and the target sentence as Y = {y1, y2, · · · , yn}182

and suppose xi is one of the typos in X , the model183

learns to correct xi to yi based on the entire source184

sentence, namely P (yi|x1, x2, · · · , xn).185

Tagging The above modeling process can also be186

viewed as sequence tagging from X to Y . While187

this has been widely adopted in previous work, a188

recent study (Liu et al., 2024) shows that tagging-189

based spelling correction models will lean towards190

point-to-point editing, thus ignoring the specific191

context. The final training objective degenerates192

into P (yi|xi).193

Rephrasing In comparison, rephrasing (Liu194

et al., 2024) is shown to be a more effective train-195

ing objective for spelling correction. It specif-196

ically seeks to rewrite the entire sentence after197

it, namely P (yi|x1, x2, · · · , xn, y1, y2, · · · , yi−1).198

To ensure that the rephrasing process is based199

on semantics instead of copying, a ratio of200

noise (e.g. masking with an unused token) is201

introduced to the source sentence, written as202

P (yi|x̃1, x̃2, · · · , x̃n, y1, y2, · · · , yi−1).203

3.3 Self-supervised Spelling Correction204

The unsupervised learning setting is naturally akin205

to language modeling, where the model is trained206

on monolingual data. Comparing the above two207

training objectives with language modeling, we208

find that rephrasing and language modeling are for-209

mally the same. In rephrasing, the input sentence210

is the concatenation of the source and target. This211

implies that the spelling correction model can bet- 212

ter utilize the knowledge in a pre-trained language 213

model and be transferred from it more easily. 214

3.4 Knowledge in Vanilla PLMs 215

The second tiny experiment is to probe the pre- 216

trained knowledge in pre-trained language mod- 217

els. We hypothesize that, after large-scale pre- 218

training, the language model already contains the 219

literal knowledge needed for spelling correction. 220

What we do is to mask the error characters in the 221

source sentence and have the vanilla model (non- 222

fine-tuned one) predict that. From Table 1, we 223

see that the vanilla model can already recall the 224

correct characters in its top-k candidates without 225

any fine-tuning on spelling correction. For exam- 226

ple, in about 90% of the cases, the model’s top 10 227

predictions have covered the correct answer.

LAW MED ODW

Top-20 93.8 88.8 93.8
Top-10 90.8 86.0 90.6
Top-5 86.9 82.0 88.7
Top-1 69.5 66.3 76.8

Table 1: Accuracy of the top-k predictions of MLM
from the vanilla BERT model.

228
It indicates that the pre-trained language models 229

have already possessed the needed knowledge for 230

spelling correction in the form of mask infilling. 231

3.5 Tagging Model vs. Rephrasing Model 232

In this section, we evaluate the tagging model and 233

rephrasing model on self-supervised spelling cor- 234

rection and present empirical results in Table 2, 235

which reveals that the rephrasing model hugely sur- 236

passes the performances of the tagging models in 237

self-supervised spelling correction. 238

Monolingual Data It shows that the tagging 239

model trained on monolingual data is powerless. 240

We conjecture that the model only learns point-to- 241

point copying since the source is always the same 242

as its target, thus losing the ability to make mod- 243

ifications to the source sentence. In contrast, the 244

rephrasing model can learn well even with monolin- 245

gual data. It paves the wave for us that pre-trained 246

language models can learn spelling correction from 247

solely monolingual data. 248

Shuffling of Characters We conduct a second 249

tiny experiment to compare that the rephrasing (Liu 250
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Method LAW MED ODW

M
on

o. Tagging 0.5 0.6 0.5
Tagging-MFT 10.1 5.3 10.5
Rephrasing 71.3 68.6 71.9

Sh
uf

. Tagging 29.5 15.3 16.7
Tagging-MFT 34.0 17.3 18.9
Rephrasing 27.6 12.3 13.3

Table 2: Comparison (F1) of tagging and rephrasing on
monolingual (self-supervised) / shuffled characters. The
details of the models and dataset are in Sec. 6. Mono.
means monolingual and Shuf. means shuffled.

et al., 2024) and tagging training objective for self-251

supervised spelling correction. Specifically, we252

shuffle the characters in the source and target sen-253

tences in correspondence to spoil their semantics.254

We use these highly noisy samples to fine-tune255

the rephrasing and tagging models. From Table 2256

(Shuf.), we find that the tagging model outperforms257

the rephrasing model on samples that do not con-258

vey semantic information. It inversely verifies that259

the tagging model learns more of point-to-point260

editing at the expense of semantics. As aforemen-261

tioned, it is the semantics that are the key to learn262

spelling correction from monolingual data. In this263

paper, therefore, we pick rephrasing as the primary264

training objective for self-supervised spelling cor-265

rection.266

4 Synthetic LEMON Train Set267

LEMON (Wu et al., 2023b) is a multi-domain268

benchmark that allows us to evaluate the multi-269

domain generalization of CSC models. However,270

for each domain, it only has a test set without a271

train set. We release a synthetic LEMON train272

set, which GPT3.5 generates. This synthetic train273

set allows us to evaluate self-supervised models’274

performance across multiple domains.275

The synthetic data is generated in two steps: (1)276

Extract the words in each domain. (2) Randomly277

select words and request GPT3.5 to generate mono-278

lingual sentences mimicking the style of specific279

domains. See our prompts in the appendix10.280

The train set’s information is in the table 3.

GAM ENC COT MEC CAR NOV NEW

2389 2489 1707 2222 2381 3669 4273

Table 3: Number of sentences in each training set.

281

5 Method 282

In this section, we propose an enhanced decoding 283

method to unleash the potential of pre-trained lan- 284

guage models further. We also propose a method 285

that uses a confusion dataset to upgrade the recall 286

score as another option. 287

5.1 Two Rephrasing Architectures 288

Our method focuses on rephrasing-based spelling 289

correction, which can be achieved in two archi- 290

tectures, non-auto-regressive rephrasing, and auto- 291

regressive rephrasing. 292

Auto-regressive models Auto-regressive model 293

is the primary choice to generate the rephrasing 294

following the input sentence, represented by GPT- 295

like models (Brown et al., 2020) and large language 296

models (LLMs). 297

To improve the quality of rephrasing, it is an 298

easy yet effective way to mask a ratio of characters 299

in the source sentence with an unused token. In 300

this paper, we denote the masked source sentence 301

as Ỹ = {ỹ1, ỹ2, · · · , ỹn}. 302

ReLM Rephrasing Language Model (ReLM) 303

(Liu et al., 2024) is the current state-of-the-art 304

spelling correction model based on BERT (Devlin 305

et al., 2019). It rephrases the source sentence by in- 306

filling the mask slots. Specifically, the model is fed 307

with the concatenation of the source sentence and a 308

sequence of mask tokens. Due to the bidirectional 309

nature of BERT, the rephrasing process can be 310

written as P (yi|ỹ1, ỹ2, · · · , ỹn,m1,m2, · · · ,mn), 311

where mi refers to the mask token. As opposed to 312

auto-regressive models, ReLM predicts all charac- 313

ters at once. 314

5.2 Denoising Decoding Correction 315

In self-supervised spelling correction, where the 316

source sentence equals the target sentence, the re- 317

sultant model trained with rephrasing still suffers 318

from a low recall when testing on real sentences 319

because there is no mask token. Therefore, we can 320

introduce mask tokens to test sentences. A more 321

severe situation happens when there are multiple 322

errors in one sentence. The cascade effect of errors 323

makes it even harder to correct the error charac- 324

ters. To this end, we propose a novel decoding 325

algorithm, where we actively introduce noise to 326

the source sentence and encourage the model to 327

recall more candidates. Since the mask operation 328

in the inference stage is consistent with that in the 329
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training stage of rephrasing, the model’s correction330

capability can be boosted. We call this method331

Denoising Decoding Correction (D2C).332

Concretely, we first mask the characters in the333

source sentence from the left side during each it-334

eration if the character’s confidence is lower than335

β (0.995). The character in such a position is re-336

garded as a potential error. To determine which337

character to update, we send this sentence to the338

model and figure out whether the original character339

appears in its top-k candidates. If it does, we re-340

main the original character, else we record the new341

character and its confidence if this confidence is342

bigger than a threshold ϵ. After each iteration, we343

choose the character with the biggest confidence344

recorded before and update the original sentence345

with it. We do iterations continually until there346

is nothing to update after an iteration. Note that347

once a character is updated, the confidence of the348

other characters will change correspondingly. As349

the error number decreases, the challenges associ-350

ated with multi-typo spelling correction will also351

diminish. So this iterative decoding is robust to352

multiple errors.353

We notice that picking a character with the354

biggest confidence in each iteration costs a large de-355

coding overhead. Given that there is always a small356

number of errors in a sentence, we rank the char-357

acters in the sentence by their confidence from the358

lowest to highest, mask the top α of them respec-359

tively, and send the sentence to the model. Figure360

out whether the original character appears in its361

top-k candidates. If it does, we remain the original362

character (same as original D2C strategy), else we363

update it with a new character that has the high-364

est confidence if this confidence is bigger than a365

threshold ϵ.366

Pseudo code The overall procedure of D2C is367

described in Algorithm 1.368

5.3 Fine-tune with Confusion Set369

Considering the low recall rate, we can also change370

some tokens with a confusion set instead of mask371

tokens during the fine-tuning process. The confu-372

sion set is built based on the pronunciations and373

fonts in Chinese. We can use a confusion set to pro-374

duce a parallel dataset as a train set. For a monolin-375

gual sentence, we randomly choose one character376

and replace it with a character in the confusion set.377

Concretely, our method to use the confusion set378

is as follows: we initially train our self-supervised379

Algorithm 1: D2C
Input: Source sentence Y ; threshold ϵ,

top-k.
Output: predict result Z

1 Sort the characters in Y on their confidences
ascendingly and record the indices I;

2 for i ∈ I do
3 Mask yi;
4 Get top-k predictions {y1i , y2i , · · · , yki };
5 Get confidences {p1i , p2i , · · · , pki } ;
6 if yi /∈ {y1i , · · · , yki } and p1i > ϵ then
7 Replace yi with y1i ;
8 Decode the new Y and update it;
9 else

10 Keep yi unchanged;
11 end
12 end
13 Z = Y ;

model using entirely monolingual data and then 380

use a rate of the monolingual data to continually 381

fine-tune the model with the confusion set. 382

6 Experiments 383

In this section, we report the empirical results of a 384

series of spelling correction benchmarks. 385

We concentrate on two benchmarks: 386

• ECSpell (Lv et al., 2023): a small-scale multi- 387

domain Chinese spelling correction dataset of Law 388

(LAW), medical treatment (MED), and official doc- 389

ument writing (ODW), which is particular in that 390

there are a large number of errors in the test set that 391

do not appear in the training set; 392

• Syn-LEMON (Lv et al., 2023): it is generated 393

from LEMON (Wu et al., 2023b) which spans 7 394

different domains with a total of 19,130 synthetic 395

train samples. 396

We consider the following methods: 397

• BERT (Devlin et al., 2019): the fine-tuned 398

tagging model based on BERT; 399

• MDCSpell (Zhu et al., 2022b): the strongest 400

tagging model with a multi-task network of error 401

detection and correction; 402

• Masked-FT (MFT) (Wu et al., 2023a): a sim- 403

ple yet effective fine-tuning technique on tagging 404

models to uniformly mask the non-error characters 405

in the source sentence; 406

• ReLM (Liu et al., 2024): the newly re- 407

leased state-of-the-art models on spelling correc- 408
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Method EC-LAW (%) EC-MED (%) EC-ODW (%)
F1 P R FPR F1 P R FPR F1 P R FPR

Su
pe

rv
is

ed BERT 38.6 42.1 35.7 12.2 24.2 27.1 21.9 10.5 24.9 29.9 21.3 13.9
BERT-MFT 74.6 73.2 76.1 14.3 61.7 62.4 60.9 10.5 60.8 59.7 62.0 18.9
MDCSpell-MFT 81.5 77.2 86.3 15.9 65.1 62.3 68.1 16.8 64.1 61.3 67.2 21.4
Baichuan2 86.0 85.1 87.1 4.5 73.2 72.6 79.3 5.5 82.6 86.1 79.3 4.0
ReLM 95.8 93.6 98.0 5.7 89.9 86.6 93.5 7.4 92.2 93.3 91.1 2.5

Se
lf

-s
up

er
vi

se
d

BERT 0.5 0.7 0.4 9.0 0.6 0.9 0.4 8.0 0.5 0.8 0.4 12.4
BERT-MFT 10.1 14.1 7.8 9.4 5.3 7.7 4.0 9.1 10.5 15.1 8.0 12.8
MDCSpell-MFT 36.2 45.3 30.2 9.4 20.9 28.7 16.4 8.8 25.9 33.7 21.7 13.7
Baichuan2 23.5 25.5 21.6 26.5 17.4 25.2 13.3 13.5 24.4 27.2 22.2 20.9
Baichuan2-UD 26.9 30.8 23.9 20.4 18.3 27.4 13.7 11.7 28.0 32.7 24.4 14.5
Baichuan2-D2C 27.6 30.6 25.1 22.4 20.2 26.2 16.4 12.4 30.5 33.8 27.8 17.5
ReLM 71.3 78.1 75.7 0.4 68.6 70.8 66.5 7.02 71.9 79.7 65.5 0.8
ReLM-UD 89.5 89.2 89.9 4.7 79.3 74.1 85.4 18.5 84.6 88.5 81.0 2.3
ReLM-Conf.(10%) 83.8 79.1 89.0 15.6 70.8 67.5 74.4 14.7 75.5 71.5 79.8 18.5
ReLM-Conf.(100%) 84.1 77.7 91.8 19.7 69.7 57.6 88.4 41.1 73.4 68.5 79.1 19.3
ReLM-D2C 90.2 87.7 92.9 8.6 75.7 66.8 87.4 25.5 85.9 85.7 86.1 7.3

Table 4: Results on ECSpell, where F1, P, R, FPR refers to the F1 score, precision, recall, and false positive rate.
Conf. (10%) means continually fine-tuning the self-supervised model with 10% confusion data. Conf. (100%)
means continually fine-tuning the self-supervised model with 100% confusion data.

tion, which rephrases the sentence in a non-auto-409

regressive manner;410

• Baichuan2-7b (Yang et al., 2023a): one of411

the strongest Chinese LLMs following the auto-412

regressive architecture;413

• User Dictionary (UD) (Lv et al., 2023): an414

enhanced decoding method that leverages an exper-415

tise dictionary (law, medical treatment, and official416

document writing) to bias the beam search.417

6.1 Training Settings418

For BERT-based models, we set the batch size to419

128 and the learning rate to 5e-5, swept from grid420

search. For Baichuan2, we set the batch size to 32421

and the learn rate to 3e-4, and use LoRA (Hu et al.,422

2022) to reduce the training budget. For supervised423

spelling correction, the masking ratio is chosen424

from {0.2, 0.3}, while for self-supervised spelling425

correction, it is set to 0.5.426

When fine-tuning with the confusion set, we set427

the batch size to 64 and the learning rate to 5e-5.428

6.2 Results on ECSpell429

Table 4 summarizes the performances of different430

training methods on ECSpell and we also report431

the supervised performances for reference. For432

self-supervised spelling correction, we first find433

that ReLM outperforms MDCSpell-MFT by 35.1,434

47.7, and 46.0 absolute points of F1 respectively435

on LAW, MED, and ODW, suggesting the great436

promise of rephrasing models.437

When empowered with D2C, it further signifi-438

cantly produces the increase of 18.9, 7.1, and 14.0 439

absolute points. The biggest increase is in the re- 440

call rate, which is consistent with the design of 441

D2C. Furthermore, we find that D2C is competi- 442

tive against using a user dictionary (UD), or even 443

more powerful. It suggests that some of the domain 444

knowledge in the user dictionary has already been 445

stored in the pre-trained language models, and D2C 446

plays a key role in unlocking the great power of 447

pre-training. 448

When empowered with the confusion set, the 449

increase is weaker. The confusion set method in- 450

creases the FPR score, which even meets 41.1 on 451

MED. A higher confusion rate is related to a higher 452

FPR score. 453

6.3 Results on Syn-LEMON 454

Table 5 summarizes the results of self-supervised 455

methods on Syn-LEMON. It indicates that except 456

GAM(game) and NOV(novel), using the confusion 457

set outperformed D2C’s F1 score. These variances 458

reveal that different domains always have distinct 459

data properties, and these properties play a role in 460

varying performance outcomes between employing 461

the confusion set and D2C. 462

7 Discussion 463

7.1 D2C v.s using Confusion Set 464

We compare D2C and the data augmentation 465

method using the confusion set, a widely used tech- 466

nique in previous work. In Table 4 we find that 467
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Method GAM ENC COT MEC CAR NOV NEW

Previous SotA (Wu et al., 2023a) 33.8 48.6 67.2 54.3 53.1 38.6 58.7

ReLM 63.7 51.5 69.3 57.6 55.3 43.9 58.6
ReLM-D2C 65.5 53.7 69.6 58.4 58.6 50.0 63
ReLM-Conf.(100%) 46.5 58.6 75.5 65.8 63.3 49.7 70.0
ReLM-Conf.(10%) 52.2 51.7 71.1 55.1 55.0 40.4 59.2

Table 5: Results on LEMON. Conf. (100%) means 100% data is trained as a confusion set and Conf. (10%) means
we use 90% data as self-supervised training data and 10% data as continued fine-tuning confusion data.

D2C outperforms using the confusion set on two468

of the chosen datasets. Table 5 indicates that D2C469

surpasses using confusion set on GAM and NOV.470

First, the results indicate that both D2C and us-471

ing the confusion set can increase the recall rate.472

The common phenomenon is caused by different473

reasons. The confusion set introduces the character-474

to-character correction during the training process475

that is similar to test examples. While D2C intro-476

duces mask tokens to the test examples, which is477

inherited from the fine-tuning process. However,478

using the confusion set has a disadvantage com-479

pared with D2C. The non-matching segments in480

the confusion set can cause gaps in the real error481

patterns in the testing time. Therefore, using the482

confusion set always has lower P scores and higher483

FPR scores. D2C is a more suitable choice when it484

comes to domains that contain professional knowl-485

edge.486

Second, compared to D2C, using the confusion487

set is relatively straightforward and efficient. Em-488

ploying the confusion set presents an alternative489

approach in various application scenarios, offering490

efficiency but potentially posing a risk to perfor-491

mance.

Models F1(%)
LAW MED ODW

Su
pe

rv
is

ed MDCSpell (I) 71.8 51.3 54.9
MDCSpell (E) 7.5 4.0 0.8
MDCSpell-MFT (I) 94.3 78.4 81.7
MDCSpell-MFT (E) 76.0 60.7 57.8

Se
lf

-s
up

er
vi

se
d MDCSpell-MFT (I) 52.6 32.9 32.1

MDCSpell-MFT (E) 48.0 26.0 33.7
ReLM (I) 93.2 73.5 82.2
ReLM (E) 92.5 74.7 73.1
ReLM-D2C (I) 98.2 79.2 88.3
ReLM-D2C (E) 97.0 81.5 82.7

Table 6: Performances on seen (I) and unseen (E) errors,
measured by F1 scores.

492

7.2 Seen and Unseen Errors 493

To take a closer look at the correction ability, we 494

divide the test set into two subsets, exclusive (E) 495

and inclusive (I) sets, which refer to the test errors 496

that occur or do not occur in the training set. 497

From table 6, it is discernible that supervised 498

models fit the internal error set well but the per- 499

formances drop sharply on the external error set. 500

While models trained with monolingual data have a 501

high degree of similarity between the performance 502

on the external error set and the internal error set. 503

Besides, D2C boosts the performance on the exter- 504

nal and internal sets simultaneously. 505

Surprisingly, MDCSpell-MFT performs even 506

better on self-supervised learning than supervised 507

on the exclusive set. It suggests that the tagging 508

objective degenerates the learned representation in 509

the pre-trained language model, incurring a drop in 510

generalizability. 511

7.3 Effect of Mask Rate 512

5 10 15 20
Top-k Characters on EC-LAW

84

86

F1
 (%

) 0.9
0.8
0.7

0.2 0.4 0.6 0.8
Mask Rate on EC-LAW

50

75

F1
 (%

) F1
P
R

Figure 2: Self-supervised performances with different
mask rates on Law of Ecspell.

We also investigate the impact of mask rate. 513

From Figure 2 it is apparent that the F1 scores 514

on ECSpell’s Law keep improving when the mask 515

rate grows from 0% to about 30%, and then drop 516

7



slightly. To dig further, an increase in the mask517

rate uplifts recall (R) scores more apparently than518

precision (P) scores while P scores either lean to un-519

changed or even decline. Because the monolingual520

fine-tuning process introduces noise solely through521

mask tokens, the models are more inclined to pre-522

serve the source sentences without modification,523

which means lower R scores. During the evalua-524

tion stage, error characters serve as noise for the525

model, therefore a higher mask rate boosts models’526

performances on R scores.527

7.4 Effect of Hyperparameters528

We access the effect of hyperparameters in D2C.529

As a representative, we depict the curves on ReLM530

in Figure 2.531

Threshold Figure 2 shows that different datasets532

are suitable with different thresholds (ϵ). For ex-533

ample, D2C with higher ϵ (0.9) gains better per-534

formances on LAW, MED, and ODW domains.535

It reveals that ϵ should be set based on different536

datasets.537

Top-k There is a common phenomenon in Figure538

2 that a higher top-k character uplifts the F1 score539

under different thresholds ϵ.540

7.5 Efficiency541

We compare the decoding efficiency of D2C and542

normal decoding in Table 7. We can observe that543

compared with decoding each sentence directly,544

D2C requires about twice the time on ReLM and545

three times the time on Baichuan.

Dataset Normal (s) D2C (s)

ReLM
EC-MED 0.024 0.048
EC-LAW 0.022 0.038
EC-ODW 0.022 0.044

Baichuan
EC-MED 1.0 3.2
EC-LAW 0.6 1.6
EC-ODW 0.7 2.2

Table 7: Comparison between D2C and normal decoding
on ReLM and Baichuan, by second per sample.

546

8 Case Study547

We further showcase some cases to illustrate how548

D2C improves the decoding process.549

Multi-typo In this case, (How does calcification550

(钙化) of the meniscus (半月板) occur), error551

characters are (钙→改) and (半→伴) , which552

SRC 伴月板改化的病因有哪些
TRG 半月板钙化的病因有哪些

ReLM 伴月板改化的病因有哪些
ReLM-D2C 半月板钙化的病因有哪些

Table 8: Multi-typo case can be better corrected by D2C.
Blue characters are right and red are wrong.

are very similar in pronunciation but meaningless 553

as words in the sentence. We noticed in the experi- 554

ment that ReLM without D2C failed to correct this 555

sentence with two error characters while successful 556

with a single error character if one of the two errors 557

has been corrected before. Therefore, with D2C we 558

introduce noise into the source sentence to correct 559

“伴” and “改” step by step. 560

Not recall Considering sentences in spelling cor- 561

rection sometimes have short lengths, models re- 562

ceive limited semantics information and tend to 563

under-correct error characters just like the case in 564

Table 9. This case (How to calculate children’s 565

weight (体重) ) has the error pattern of (体→休), 566

which are similar in terms of their visual appear- 567

ance. In the presence of semantics limitations, D2C 568

directs models to reword specified positions to in- 569

corporate more suitable characters and effectively 570

mitigate the issue of under-correction.

SRC 小孩休重怎么计算
TRG 小孩体重怎么计算

ReLM 小孩休重怎么计算
ReLM-D2C 小孩体重怎么计算

Table 9: D2C improves the recall rate.

571

9 Conclusion 572

This paper studies self-supervised spelling correc- 573

tion based on the rephrasing-based models. We 574

demonstrate that machine spelling correction does 575

not necessitate parallel data, and can be learned 576

from monolingual data alone. We propose a novel 577

decoding algorithm named D2C to effectively en- 578

hance the recall ability of the self-supervised model. 579

We also compare the D2C method with using the 580

confusion set method. Results on Chinese spelling 581

correction showcase the significant improvement 582

brought by our method. We hope this paper can 583

bring new insight and vigor to future research on 584

self-supervised spelling correction. 585
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Limitations586

Our work focuses on Chinese. Other languages587

such as Korean have not been studied in this work.588

D2C costs a decline in the speed of single sentence589

processing.590
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10 Prompts840

10.1 Extract Words841

Sentences are extracted from the original LEMON842

dataset.843

1. Please extract the words in the given844

sentences845

2. Your answer should be in Chinese and846

JSON format847

{sentences}848

Your answer format:849

"words":850

["word1", "word2",...],851

["word1", "word2",...]852

...853

]}854

10.2 Generate Data855

We propose the GAM domain’s prompt as an ex-856

ample.857

1. You are a professional game writer.858

Try to use your professional knowledge859

and think step by step.860

2. Please make your answers diverse in861

formats, words, and expressions.862

3. Generate 5 smooth sentences Using the863

given word sets 864

4. Your answer should be abundant and 865

include details, but not too long 866

5. Try to generate realistic and fluent 867

sentences like a human writer 868

6. Your answer should be in Chinese in 869

JSON format 870

7. Your generated sentence should follow 871

the style of my given example sentences 872

This is my given word sets: 873

"words": 874

["word1", "word2",...], 875

["word1", "word2",...] 876

... 877

]} 878

This is my given example sentences: 879

{sentences} 880

Your answer: 881

[sentence1,sentence2,...] 882

883
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