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Abstract

Document classification is a common problem when organizing free-text data, but supervised
classification algorithms often require many labeled examples and tedious manual annota-
tion by humans labelers. This work propose an innovative methodology called Document
Classification using Reference Information (DCRI), which classifies documents with little
human intervention by leveraging the existence of reference information, documents from
external sources related to the label classes of interest. For example, when classifying news
articles into topics, Wikipedia articles can serve as such an external source. DCRI uses
reference information to generate weak initial labels for an unlabeled corpus, then iteratively
augments them into stronger labels using both supervised machine learning algorithms and
limited human labeling capacity, if available. DCRI is evaluated on one dataset from a major
pharmaceutical manufacturing company and two public datasets for news topic classification.
When no human labeling capacity is available, DCRI achieves an accuracy between 84% to
96% on these three datasets. When some manual labeling capacity is available, DCRI helps
prioritizing labeling documents with high uncertainty. To shed light on the value of reference
information, this paper also develops a generative mathematical model in which reference
information provides a noisy estimate of the latent distribution that generates documents.
An extensive numerical study is performed using synthetic data to analyze when and why
reference information is most valuable. Finally, for a special case of the model with two
classes, a theoretical result is established to show the value of the iterative nature of the
DCRI approach.

1 Introduction

Over the past few decades, digitization has led to an abundance of data in almost every industry. Even as
the amount of available structured data increases rapidly, unstructured free-text documents are often an
untapped important source of information, especially in environments where text is generated manually by
human experts. Unlike numerical and categorical features in tabular form, a corpus of documents is difficult
to analyze because it requires extracting meaningful insights and patterns from free-text data. The ability
to classify documents into a more structured schema is essential for faster information retrieval and trend
analysis. A common approach to impose structure on such free-text documents is to apply unsupervised
clustering algorithms, which detect underlying similarities without any labeled target. Although such an
approach involves minimal manual intervention, the resulting clusters are often difficult to interpret and
are often unstable. However, in many real-world applications, subject matter experts (SME) often have
a schema of meaningful labels in mind that would be most useful to them. An unsupervised algorithm is
unlikely to produce clusters that exactly match the desired label schema. To match the desired schema, it is
often required to apply a supervised text classification algorithm trained on examples of documents from the
desired label schema. Unfortunately, supervised algorithms rely heavily on labeling training examples, which
typically require substantial manual effort by SMEs.

Motivated by this challenge, this paper aims to develop an algorithmic methodology to classify a large corpus
of documents into the desired taxonomy of classes efficiently and accurately in the absence of existing training
data. In particular, this paper proposes a novel methodology called Document Classification using Reference
Information (DCRI), which can produce high-quality labels with minimal human intervention. A key aspect
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Unlabeled Corpus
Documents

Desired
Classes

Example Classes Reference Information
Documents

Deviation reports in the
pharmaceutical

manufacturing line

Process steps Filter integrity
testing,

sampling

Standard operating
procedure documents

News articles Topic Politics, business,
sports

Wikipedia articles

Legal documents Type Affidavit, contract,
patent

Writing guidelines (e.g., manuals
and templates)

Research papers Subject Algorithms, data
science, optimization

Textbooks

Table 1: Examples of Corpus Documents and Reference Information

of DCRI is leveraging external documents called reference information documents to quickly produce weak
labels for the unlabeled corpus of documents through a nearest neighbors based classifier. Broadly speaking,
reference information refers to documents outside the unlabeled corpus that are typically related to the labels
of interest. For example, to classify news articles into topics such as business, politics, science...etc, Wikipedia
articles titled business, politics, science...etc. They are sufficiently similar to their news article counterparts
and can provide a weak initial label for each news article by using a simple nearest neighbors classifier. That
is, each document in the corpus is assigned a label according to which Wikipedia article it is “closest" to
(i.e., most similar under some metric). Other examples of document and reference information pairs are
shown in Table 1, for example classifying legal documents by type (e.g., contract, affidavit, patent) using law
school writing manuals, or research papers by topic using academic textbooks. One major advantage of using
reference information is that minimal manual work is needed as reference information tend to be much longer
in length than each unlabeled document, and thus only a relatively small number of sources of reference
information per class is sufficient to generate weak labels that are much better than random guessing.

Since reference information documents could be very different from the unlabeled corpus documents, the
labels generated by a nearest neighbors classifier will typically be far from perfect, although much better than
random guessing. The DCRI methodology continues to improve the initial labels using iterations of supervised
classification, starting with the initial label as the dependent variable. In each iteration, a supervised model is
trained with the labels from the previous iteration as the dependent variables, and used to predict new labels.
This process is repeated for a specified number of iteration or until the label do not change anymore. Such
an iterative approach can fine-tune the decision boundary between classes and is shown to greatly improve
the accuracy of the predicted labels. Finally, if some labeling capacity from SME’s is available, DCRI can
strategically incorporate these labels to further improve the accuracy of the labels.

This work is motivated by a collaboration with a major pharmaceutical manufacturing company. We describe
the setting, need for labeled documents and the availability of reference information for this particular
application.

1.1 Motivating Use Case: Pharmaceutical Manufacturing Line

The manufacturing of pharmaceutical drugs, especially biologics (i.e., drugs grown from living cell cultures),
involves intricate processes that take place using many complex process steps and equipment. Figure 1
shows a schematic depiction of the process steps and equipment (numbered 1 through 7) used in a typical
manufacturing of biologic drugs, including inoculation of cells, growth in bioreactors, filtration and final
product assembly. To ensure quality and safety of the drug, the manufacturing process is highly regulated
by the US Food and Drug Administration (FDA). One requirement imposed by the FDA is to thoroughly
document any deviation from these protocols and perform the appropriate investigations to identify the
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Figure 1: Equipment 1− 7 and the Process Steps for Equipment 4

root cause and mitigate future deviations (U.S. Department of Health and Human Services (b;a)). As a
result, a pharmaceutical manufacturing company typically holds thousands of deviation reports for each
manufacturing line, with most of these being minor deviations that do not likely affect the product’s quality.

Besides satisfying regulatory requirements, this corpus of deviation reports is potentially useful in two ways,
(1) to expedite investigation of future deviations and (2) to detect trends and repeated patterns. To facilitate
these two goals, the deviation reports have a very coarse classification that associates each deviation report a
respective piece of equipment (numbered 1 through 7) that the deviation occurred on. For example, the top
of Figure 1 shows some sample deviations associated with equipment number 4, the main bioreactor. This
organization allows for faster information retrieval as an investigator can quickly pull up all deviations that
occurred on a particular bioreactor. Furthermore, an analyst can easily see that deviations in a particular
bioreactor are trending higher, implying a potential degradation in the equipment’s quality.

Experts developed a more fined-grained taxonomy that associates each deviation report with the respective
process step it occurred during. The bottom of Figure 1 shows the 5 process steps (labeled A through E)
associated with the main bioreactor (equipment 4). These process steps include setup (A), testing of crucial
components (B), addition of cells (C), monitoring their health (D) and sampling cells to test for desired cell
density (E). Classifying deviation reports to their respective process step is more useful because deviations
associated with the same process step are significantly more likely to be related. In addition, there are
common process steps across similar equipment, for example all bioreactors having a process monitoring
phase.

Unfortunately, since this was a new taxonomy, there were no labeled examples under this taxonomy to use
to train a model to automate the labeling process. Instead, the approach was to leverage the fact that
the regulatory requirements impose very detail documentation of the nature of each process step in the
form of Standard Operating Procedures (SOP)’s documents. An SOP is a detailed, step-by-step guide that
describes how a human operator should perform or monitor a particular process step, including expected
outcomes and common troubleshooting directions. SOP’s are extremely common in the pharmaceutical
manufacturing industry to ensure consistency and quality. Thus, such documents were a natural choice as
reference information documents.

1.2 Contributions

Next, the main contributions of this paper are outlined.
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Novel Algorithmic Framework (Section 3). The paper describes DCRI as a new conceptual algorithmic
framework to classify unlabeled corpus of documents, leveraging side information in the form of reference
documents. If some expert labeling capacity is available, the DCRI framework can incorporate those expert
labels in an efficient manner. The framework is robust in that it is modular and can incorporate a range
of algorithmic implementations. To the best of our knowledge, this work is the first to propose the use of
reference information to generate weak labels for an entire dataset. The iterative procedure of improving the
labels is inspired by work in Semi-Supervised Naive Bayes (Sristy & Somayajulu (2012); Zhao et al. (2016)),
while the manner by which expert labels are incorporated is inspired by the literature on active learning
Monarch (2021). However, this paper differs in that it uses weak labels generated from an external source
while existing work uses strong labels generated by SMEs.

Results on Real-World Data (Section 4). We study a particular algorithmic implementation of DCRI
that leverages a bag of words embedding and the Multinomial Naive Bayes classifier. We apply algorithm,
called DCRI with MNB, to 3 real-world datasets, one in pharmaceutical manufacturing and two in news
topic classification and compare it with unsupervised, supervised and semi-supervised approaches. With no
labeled training examples, DCRI with MNB achieves an final accuracy of 83%, 89% and 96% for each of
the three datasets, while an unsupervised approach that does not utilize reference information is only able
to achieve an accuracy 52%, 55% and 78% respectively. Furthermore, DCRI with MNB’s final accuracy is
within 8% of what a supervised Multinomial Naive Bayes classifier can achieve if training data were available,
implying that DCRI’s accuracy is already quite close to the best accuracy any automated algorithm can hope
to obtain. DCRI with MNB without any labeled training examples is able to match the performance of a
semi-supervised approach with between 75 and 330 labeled examples. When some expert labeling capacity is
available, DCRI with MNB can prioritize which documents require a manual review and outperforms existing
semi-supervised approaches that randomly select which documents to label. By manually reviewing 10% of
each corpus, prioritized by DCRI with MNB’s confidence, the accuracies improve to 88.5%, 92.5% and 98.3%,
respectively. This is significantly higher than choosing 10% of the corpus uniformly at random, which results
in accuracies of only 84.8%, 90.1% and 95.9%, respectively.

Generative Model and Numerical Study (Sections 5). To further explain why DCRI performs well, we
develop a generative mathematical model called the Noisy Vocabulary Model. This model is inspired by data
from real-world settings. In particular, documents from each class are drawn from some latent distributions,
while the reference documents information provides a noisy, distorted estimate of those distributions. Corpus
documents and reference information documents are likely written in potentially very different contexts (e.g.,
news articles vs. Wikipedia). Therefore, the distributions they induce over the vocabulary space are different
but with some overlap. This overlap is large enough such that initial weak labels are much better than
random guessing, but the iterative label updating process is crucial to improve their quality.

Using synthetic data generated from our mathematical model, we perform an extensive numerical study on
the value of reference information in comparison to unsupervised and supervised benchmark approaches.
We study the performance of DCRI while varying the quality of the reference information (i.e., amount of
noise inserted), number of documents and the class balance of the labels. Our findings confer and extend the
insights from the real-world dataset.

Theorem: Iteration Improves Accuracy (Section 6). For a special case of our generative model with
K = 2 classes, we prove that treating the initial labels as ground truth and training a supervised classifier
results in an improvement in label accuracy (Theorem 6.1). Broadly speaking, the iterated labels improves
upon the initial labels by correcting mistakes (i.e., the noise) from the reference information. We prove
that the decision boundary between label class 1 and 2 is updated in a way that corrects mistakes and thus
improves accuracy.

Managerial Insight. Our work implies that regardless of the application or the amount of human labeling
capacity available, it is always worth considering whether reference information can be easily curated. There
is significant value in being able to quickly produce a weak label for all documents, which can then be
augmented using a combination of the iterative procedure as well as strategically using expert labels.

The rest of our paper is organized as follows. Section 2 presents related work regarding supervised, unsupervised
and semi-supervised classification approaches. Section 3 describes the DCRI methodology while section 4
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provides the results from that methodology on real-world datasets. Motivated by these results, Sections 5
presents a data generating model and the results of DCRI on synthetic data. Finally, Section 6 presents a
theoretical result for a special case of the data generating model.

2 Related Work

Document classification is a subject with a long history of literature. Broadly speaking, document classification
can be broken down into three settings: supervised, unsupervised and semi-supervised.

Supervised. Algorithms for supervised text classification are trained on a corpus of labeled documents
typically produced by human experts. While supervised algorithms can be very accurate at document
classification tasks such as sentiment analysis, spam detection and news topic classification, a major downside
of such approaches is that they typically require a large amount of training data, which may not be accessible
in all applications.

The most common algorithms for text classification are Naive Bayes (Lewis (1998)), Support Vector Machines
(Vapnik & Chervonenkis (2015)) and K-Nearest Neighbors (Fix & Hodges Jr (1951)). Naive Bayes makes the
assumptions that features (i.e. words in the text) are are drawn independently from each other and uses this
assumption to estimate generative distributions for data from each class. Naive Bayes is commonly used in
text classification due to its tractability in high dimensions (see e.g. Kibriya et al. (2005); Abbas et al. (2019);
Wang et al. (2015); Frank & Bouckaert (2006)). Support Vector Machines (SVM) is a classification algorithm
that separates data in the training set using a hyperplane that maximizes the margin, i.e. distance between
the hyperplane and nearest data point from each class. SVM’s have been successful at text classification as
they handle high-dimensional and sparse data well, see e.g. Fatima et al. (2017); Mohammad et al. (2016);
Hao et al. (2009); Rennie & Rifkin (2001). Finally, K-Nearest Neighbors is a simple classification algorithm
which assigns labels to unseen data by taking the majority vote out of the K closest data points in the training
set using some pre-specified distance metric. KNN is often used in text classification due to its simplicity
and interpretability, see e.g. Khamar (2013); Han et al. (2001); Jiang et al. (2012); Kurada & Pavan (2013);
Bijalwan et al. (2014); Kwon & Lee (2003). See also Kadhim (2019) for a survey on supervised approaches
for text classification.

Unsupervised. Unsupervised approaches to document classification discover patterns in documents without
any external guidance from subject matter experts. While unsupervised approaches obviate the need for
large numbers of training examples, the clusters that are produced by such algorithms do require human
interpretation. Such clusters may not always be interpretable to a human as there is little control over what
exact similarities between documents are identified.

Some examples of algorithms for unsupervised learning include Latent Dirichlet Allocation (Blei et al. (2003)),
Latent Semantic Analysis (Landauer et al. (1998)) and K-Means (Lloyd (1982)). Latent Dirichlet Allocation
(LDA) discovers topics in a collection of documents by imposing a Bayesian generative model for each
document, controlled by a set of latent topics. Similarly, Latent Semantic Analysis (LSA) discovers patterns
in the documents by performing a matrix-factorization like procedure on the document-word matrix and
uncovering a low-dimensional latent space of topics. Both LDA and LSA have been widely successful in
discovering topics from unlabeled data (see e.g. Griffiths & Steyvers (2004); Foong & Ismail (2020); Yau et al.
(2014); Sun (2014); Xie & Xing (2013); Dumais (2004); Wei et al. (2008); Song & Park (2007)). Finally, the
widely popular K-Means algorithm for general clustering can be applied to text classification as well and has
been shown to be successful (see e.g. Singh et al. (2011); Ferdous et al. (2009); Chouhan & Purohit (2018)).

Semi-Supervised. While supervised and unsupervised learning are two extreme ends in terms of the
amount of human labor needed, semi-supervised learning represents a middle-ground where some manual
work by humans is needed, but not to label a large corpus of documents. See van Engelen & Hoos (2020) or
Zhu (2005) for a survey of semi-supervised learning. A common methodology in semi-supervised settings
is to manually label a small subset of the data, build a supervised classifier using that subset, predicting
labels for the unlabeled data and finally training another classifier on the all the labels, including the newly
produced labels. In this setting, it has been shown that the unlabeled documents can provide substantial
value over training a classifier on the originally labeled examples alone because the unlabeled examples can
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carry information that is not present in the labeled data. One such semi-supervised approach that bears
some resemblance to our DCRI methodology is semi-supervised Naive Bayes Nigam et al. (2006); Sristy &
Somayajulu (2012); Zhao et al. (2016). Using a small number of labeled documents, semi-supervised Naive
Bayes first trains a supervised classifier on these labeled documents and uses it to generate a weak label for
the unlabeled documents. Then, treating these unlabeled documents as true labels, we iteratively train a
supervised Naive Bayes classifier and re-predict the labels of the originally unlabeled documents. The DCRI
methodology can be thought of as an extension of semi-supervised Naive Bayes in which instead of obtaining
weak labels from a small set of labeled examples, we obtain weak labels from an external source, the reference
information. Crucially, DCRI does not require an expert to label any documents at all. Section 4.3 compares
the DCRI methodology to semi-supervised Naive Bayes and shows that reference information can substitute
for hundreds of labeled documents.

Besides manually labeling documents, subject matter experts can be involved in other ways. One line of
work tries to guide an unsupervised learning algorithm to a desired set of classes by having subject matter
experts manually identify constraints on pairs of documents that must be in the same cluster and pairs
that must not. See e.g. Ji & Xu (2006); Vilhagra et al. (2020); Huang et al. (2007). Another line of work
involves having subject matter experts label features (i.e. words) instead of documents themselves (see e.g.
Haj-Yahia et al. (2019); Kadar & Iria (2011); Nourashrafeddin et al. (2013)). Finally, a major area of research
in semi-supervised learning is the field of active learning. Active learning is a machine learning paradigm
that aims to reduce the number of examples needed to train a supervised algorithm by selectively annotating
examples by querying a subject matter expert in an interactive fashion. It is well known that by querying
the label of samples which one is least confident amount (i.e. on the margin), fewer examples are needed to
reach the same out-of-sample performance. Some examples of work on active learning for text classification
are Tong & Koller (2001); Goudjil et al. (2018); Li et al. (2012); Figueroa et al. (2012). See also Monarch
(2021) for an entire textbook on active learning. When some expert labeling capacity is available, DCRI
applies a similar principal as active learning, choosing to label documents are the least confident. However,
this confidence score is determined from reference information rather than from a small set of expert labeled
documents. DCRI does not require any expert labeled documents at all to obtain such a confidence score. To
the best of our knowledge, literature in active learning has not studied the case when the confidence scores is
given from a noisy external source.

3 The DCRI Framework

The DCRI methodology broadly refers to a modular algorithmic framework for generating labels for a large
corpus of documents using a minimal amount of manual work from SMEs. A high-level overview of this
framework is provided below in Section 3.1, while Section 3.2 describes the specific implementation that is
used to generate the experimental results shown in the rest of the paper.

3.1 General Framework

Input and Output. The input to DCRI consists of: (1) a set of unlabeled corpus documents and (2) a
labeling scheme. The output of DCRI is a predicted label for each corpus document under the desired labeling
scheme. DCRI seeks to produce accurate labels, ones that match what an SME would assign if all corpus
documents were manually labeled.

Expert Involvement. While DCRI is mostly an automated algorithm, human SME’s are involved in two
ways. First, SMEs are asked to curate the reference information document for each label class. Recall that
reference information refers to documents related to the desired label classes, but are not corpus documents
themselves. This typically involves a modest amount of laborious work as the number of label classes is small
and SME’s are familiar potential sources of reference information. Second, DCRI can naturally incorporate
any amount of available labeling capacity in which SMEs directly label corpus documents. As shown later
in the empirical results, even a small amount of optimally allocated labeling capacity can greatly improve
the output label accuracy. We now dive into an overview of the DCRI framework. Note that these phases
are intentionally described very broadly here, while Section 3.2 describes a specific implementation for each
phase.
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Figure 2: Phases of the DCRI framework

Phases of the Algorithm. DCRI can be broken down into a preprocessing phase followed by three
algorithmic phases. Figure 2 provides a graphical overview of these four phases, which are described below.

• Phase 1: Gather Reference Information and Vectorization. For each label class, ask an
SME to find relevant reference information documents. Without loss of generality, assume that each
label class has a single reference information document, which can be the concatenation of multiple
relevant documents. Then, embed all corpus documents and reference information documents as
numerical vectors, a crucial phase in any natural language processing task.

• Phase 2: Weak Initial Label. Leverage the embeddings of the reference information documents to
generate a weak initial label for each corpus document through nearest neighbors in the embedding
space. This is done by assigning each document a label based on which reference information
document is the “closest" to that document under some measure of similarity.

• Phase 3: Improve Label Iteratively Train a supervised classifier on the corpus documents’
embeddings using the initial labels as the dependent variable. Then, take this classifier and predict
new labels on each of the corpus documents. Repeat this process for a fixed number of iterations.

• Phase 4: Incorporate Expert Feedback Ask an SME to label a subset of the corpus documents,
correcting some of the improved labels from Phase 3, then iteratively the labels again in a similar
fashion as Phase 3.

Phase 2 generates weak labels by leveraging similarities between reference information documents and corpus
documents, despite being from different sources (e.g., Wikipedia articles and news articles). While the weak
labels from Phase 2 only depend on the reference information documents, Phase 3 leverages the structure of
the unlabeled corpus documents itself to improve labels. Finally in Phase 4, by strategically choosing which
labels from Phase 3 require manual inspection, DCRI can strategically utilize limited SME labor to achieve
significant gains in accuracy from the Phase 3 labels.

3.2 DCRI with Multinomial Naive Bayes

This section describes the specific implementation of the DCRI framework studied in this paper, which
leverages a bag of words (BoW) embedding for vectorization and a Naive Bayes Classifier (MNB). We refer
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Symbol Meaning
N ∈ N Number of unlabeled corpus documents
K ∈ N Number of classes
V ∈ N Size of vocabulary space
Xnv Count of word v in corpus document n

Ln Length of corpus document n, i.e.
∑

v∈[V ] Xnv

a ∈ [N ] Smoothing factor
rkv Proportion of word v in reference information document

k (smoothed to always be non-zero)
y

(0)
n ∈ [K] Initial label of corpus document n from reference infor-

mation only.
T ∈ N Number of iterations before querying an expert.
y

(t)
n ∈ [K] Iterated label of corpus document n after t iterations.

θ
(t)
k ∈ ∆V Estimated distribution of class k corpus documents at

iteration t

y
(T )
n ∈ [K] Iterated label before querying expert.

p
(T )
n ∈ [0, 1] Estimated probability associated with y

(T )
n

Q ∈ N Number of expert labels we are allowed to query
T ′ ∈ N Total number of iterations (T ′ > T )
yn ∈ [K] True label (unobserved), but provided by an SME if

queried.
y

(T ′)
n ∈ [K] Final label output of DCRI.

Figure 3: Notation Overview

to this implementation as DCRI with MNB for short. Specifically, DCRI with MNB uses the following
implementation for each of the 4 phases.

• Phase 1 (Section 3.2.1): Bag of words vectorization.

• Phase 2 (Section 3.2.2): Use KL Divergence between empirical vocabulary distributions as the
measure of closeness.

• Phase 3 (Section 3.2.3): Iteratively apply a Multinomial Naive Bayes classifier.

• Phase 4 (Section 3.2.4): Prioritize expert labels based on predicted probability (confidence)
from MNB.

All notation defined in the rest of this subsection is summarized in Figure 3. Pseudocode for Phase 2, 3 and
4 of the DCRI with MNB methodology is provided in Algorithm 1 and all line numbers mentioned in this
section refer to this code block.

3.2.1 Phase 1: Vectorization with Bag of Words.

After SME’s gather reference information documents, DCRI with MNB vectorizes both corpus and reference
information documents using a bag of words embedding, a simple yet commonly used vectorization approach
that represents a document as a count over tokens. This process involves basic text cleaning of the corpus,
defining a large set of tokens (i.e., words or part of words), filtering the set of tokens down to a manageable
size, then constructing the token counts of each document. Appendix B.1 provides more details of this process.
We colloquially refer to tokens as words and the set of filtered tokens to be the vocabulary space.
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Algorithm 1 DCRI with Multinomial Naive Bayes (MNB)
1: Input: N, K, V, Q, Xnv, Xnv, Rkv, rkv

2: Output:
{

ŷ
(T ′)
n

}
n∈[N ]

3: Parameters: T, T ′

4: y
(0)
n ← arg maxk∈[K]

∑
v∈[V ] Xnv log(rkv)

5: for t = 1, 2, . . . , T do

6: θ
(t)
kv =

∑N

n=1
I{y(t−1)

n =k}·Xnv∑N

n=1
I{y

(t−1)
n =k}·Ln

7: y
(t)
n ← arg maxk∈[K]

∑
v∈[V ] Xnv · log(θ(t)

kv )
8: end for
9: p

(T )
n ←

∏V

v=1
(θk∗

nv)Xnv∑K

k=1

∏V

v=1
(θkv)Xnv

, k∗
n = y

(T )
n

10: Q ⊂ [N ]← indices of the Q smallest values of
{

p
(T )
n

}N

n=1
.

11: Query expert for labels in Q.
12: for n ∈ Q do
13: y

(T )
n ← yn

14: end for
15: for t = T + 1, T + 2, . . . , T ′ do

16: θ
(t)
kv =

∑N

n=1
I{y(t−1)

n =k}·Xnv∑N

n=1
I{y

(t−1)
n =k}·Ln

17: y
(t)
n ← arg maxk∈[K]

∑
v∈[V ] Xnv · log(θ(t)

kv )
18: end for
19: Output y

(T ′)
n

Let N be the number of unlabeled corpus documents and K be the number of reference information documents.
Recall that each label class has a single reference information document which may be a concatenation of many
relevant documents. Let V be the size of the vocabulary space, indexed [V ] = 1, 2, . . . , V . Throughout the
paper, we will use ∆V to denote the set of probability distributions over [V ] (i.e, a simplex in V dimensions).
Denote Xnv ∈ N as the count of word v ∈ [V ] in corpus document n ∈ [N ] and let Ln :=

∑
v∈[V ] Xnv

be the length of the nth corpus document. Similarly, denote Rkv for the count of word v in reference
information document k ∈ [K]. In many parts of the implementation, it will be convenient to consider
reference information as a distribution over the vocabulary space with non-zero entries. To do this, define the
rkv as follows:

rkv := Rkv + a∑
v∈[V ](Rkv + a) (1)

This process is called smoothing and is commonly to convert counts into distributions with non-zero entries
(Liu & Cheryl (2011)). For the real-world datasets, a = 5 is chosen, although any reasonable value of a
gave similar results. Throughout this paper, Xn is used to denote the vector {Xnv}v∈[V ] and rk denotes the
probability distribution {rkv}v∈[V ].

3.2.2 Phase 2: Initial Label (Line 4).

Phase 2 generates an initial label y
(0)
n for each corpus document n ∈ [N ] by finding the distribution rk which

is most likely to generate the observed word counts Xn from a Multinomial distribution with Ln draws and
probability vector rk.
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y(0)
n = arg max

k∈[K]

(
Ln

Xn1, . . . , Xnv

) V∏
v=1

(rkv)Xnv (2)

= argmaxk∈[K]

V∑
v=1

Xnv · log(rkv) (3)

Since corpus documents and reference information documents are written in different contexts, often by
different individuals, the initial label be far from perfect. Nevertheless, the empirical result show that the the
initial label provides a reasonable estimate of the correct label.

An equivalent definition for y
(0)
n is the class which minimizes the KL divergence (a measure of distance

between distributions) between xn and rk, where xn is a normalized and smoothed version of Xn with any
choice of a (defined similarly to equation equation 1).

y(0)
n := argmink∈[K]KL(xn||rk) (4)

This equivalence is proven in Lemma E.1 in Appendix C

3.2.3 Phase 3: Iterated Label (Lines 5 to 8).

In Phase 3, the initial labels y
(0)
n from from Phase 2 are iteratively updated by a supervised classification

algorithm, in particular Multinomial Naive Bayes (MNB), a popular choice for text classification problems
algorithms Kibriya et al. (2005); Frank & Bouckaert (2006); Abbas et al. (2019); Wang et al. (2015). Phase 3
runs for T iterations, where T is a user-defined parameter. For t ∈ [T ], train a MNB classifier while treating
the labels y

(t−1)
n as ground truth, then make predictions on the same data, updating some of the labels

in the process. We state below the training and prediction process mathematically–see Appendix C.1 for
background on the Multinomial Naive Bayes classifier.

• Estimation. Fitting a Multinomial Naive Bayes classifier for a K−class classification problem
amounts to estimating K probability distributions θ

(t)
k ∈ ∆V such that each distribution is the

empirical average of all documents for which y
(t−1)
n (label in the previous iteration) is k.

θ
(t)
kv =

∑N
n=1 Iy

(t−1)
n =k

·Xnv∑N
n=1 Iy

(t−1)
n =k

· Ln

k ∈ [K], v ∈ [V ] (5)

At iteration t, the distribution θ
(t)
k serves as MNB’s estimate for how documents with label k are

generated, according to the labels y
(t−1)
n from the previous iteration.

• Prediction. For each corpus document n, predict a new label y
(t)
n in the following equation

equation 6:

y(t)
n = arg max

k∈[K]

∑
v∈[V ]

Xnv · log(θ(t)
kv ) n ∈ [N ] (6)

Equation equation 5 is similar to equation 3 as MNB predicts the label k which maximizes the
likelihood of generating Xn from θk.

This iterative estimation and prediction process is Lines 5 to 8 of Algorithm 1. This process is repeated for
each t ∈ [T ].. The output of Phase 3 is the label y

(T )
n , the iterated label before querying an expert in Phase 4.

10
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Documents N K V Ln (Average) Reference Info Length

Pharma 563 5 4334 102 Standard Operating
Procedures

4731

BBC 1490 5 2094 119 Wikipedia Articles 3724

NewsGroup 5859 10 4971 96 Wikipedia Articles 5553

Table 2: Basic information regarding the three datasets

3.2.4 Phase 4: Expert Labels (Lines 9 to 18).

Let Q be the available number of queries to an expert. If Q = 0, then we return y
(T )
n as the final predicted

labels from DCRI. IF Q > 0, then DCRI asks an SME to label Q corpus documents chosen based on the
probabilities generated by MNB.As with most classifiers, MNB not only provides a predicted label y

(T )
n but

also an associated probability vector pn over the K classes. This probability is calculated by applying Bayes
Rule to calculate the posterior probability of each label class given the observed word count, assuming a
uniform prior. The formula is provided in equation equation 24 in Appendix C.1. We interpret pn as the
confidence of MNB on the label y(T ), where larger values of pn represent more confident predictions. Let
Q ⊂ [N ] be the set containing the Q documents with the smallest pn’s. SMEs are asked to review these
Q corpus documents, updating y

(T )
n (the predicted label) to the correct label if the label was not correct

already. Finally, given that some labels have been corrected, DCRI performs a few more iterative phases from
t = T + 1 to t = T ′, where T ′ is a user-defined parameter. This iterative process is shown in Lines 15 to 18
and is similar to that of Phase 3. In practice, it is rare that labels changes during this second iterative phase.

3.2.5 Modularity.

While this work studies only the DCRI with MNB algorithm, the DCRI framework is modular to support
many other approaches to each of the 4 phases. For example, the Phase 1 vectorization phase could be
replaced with deep learning based language embeddings (e.g., BERT Devlin et al. (2019), GloVe Pennington
et al. (2014), Word2Vec Mikolov et al. (2013)), which have become increasingly popular in recent years. Other
supervised classification algorithms can be used for Phase 3, while other methods of prioritization can be
used in Phase 4. Nevertheless, the following section shows that DCRI with MNB exhibits strong performance
on real-world dataset, despite its simplicity. The strong interpretability of the BoW embedding and MNB
classifier allows us to explain why DCRI with MNB performs well, which inspired the modeling presented in
Section 5.

4 Evaluating DCRI with MNB on Real-World Datasets

This section presents the results of DCRI with MNB on 3 real-world datasets: one with deviations reports
from a major pharmaceutical company and two public datasets related to news topic classification.

4.1 Datasets Overview

Table 2 contains basic information about the three real-world datasets we use in this paper.

4.1.1 Pharmaceutical Dataset.

The pharmaceutical dataset consists of 563 non-conformance records that occurred within the production
bioreactor at one specific manufacturing site between 2011 and 2016. As mentioned in Section 1.1, the goal
is to label each document with one of 5 process steps within the production bioreactor. We use Standard
Operating Procedures (SOP)’s as reference information. Each process step’s reference information consists
of 1 or more lengthy reference information documents that describe how an technician should operate or
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troubleshoot that particular process step. Our industry partners generously hand-labeled all the corpus
documents with one of the 5 labels so that we can evaluate DCRI’s performance.

Public Datasets. The other two datasets used to validate our methodology are public datasets with related
to topic classification of news discussion and articles. The 20 Newsgroup dataset (hereby called Newsgroup)
is a famous dataset consisting of news discussion posts from a pre-2000 website. For testing, we take a subset
of 10 of the 20 topics, with each topic containing on average 585 corpus documents. The British Broadcasting
Corporation (BBC) dataset is a public data set of over 1500 news snippets from BBC news articles with
topics in one of five categories: technology, entertainment, politics, sports and technology.

A common theme to all three datasets is that the corpus documents are much shorter in length than the
reference information and that the reference information are from a completely different source than the
corpus documents themselves. While the two news datasets are balanced (over 5 or 10 classes), we note
that the pharmaceutical deviations dataset is highly imbalanced. Since the bioreactor spends a non-uniform
amount of time in each stage of the process, the number of deviations that occur in each stage is not uniformly
distributed.

Computing Environment. All experiments in this paper were run locally on a 2019 Macbook Pro computer.
The entire DCRI with MNB pipeline takes less than 10 seconds to complete.

The rest of this section presents empirical results for these three datasets in the case of Q = 0 (no expert
labeling capacity) and Q > 0 (some expert labels available). For Q = 0, Section 4.2 shows that that
DCRI with MNB is an effective way of quickly obtaining high-quality labels that significantly outperform
unsupervised methods and closely approaches performance of supervised approaches. For Q > 0, Section 4.3
show that DCRI with MNB can better prioritize which Q documents an expert should label compared to
semi-supervised approaches that choose these documents at randomly.

4.2 Performance with No Expert Labels (Q = 0)

When Q = 0, DCRI relies entirely on the reference information to generate initial labels y
(0)
n (Phase 2) and

iteratively updates them to y
(T )
n (Phase 3). Figure 4(a) shows the multi-class accuracy of various approaches

described below.

• “DCRI Phase 2" and “DCRI Phase 3" show the accuracy of the labels y
(0)
n and labels y

(T )
n , respectively.

• “Unsupervised LDA" shows the accuracy of an unsupervised Latent Dirichlet Allocation (LDA),
where the accuracy is computed by taking the matching of clusters to labels that produces the best
accuracy.

• “Supervised MNB" shows the out-of-sample accuracy of a supervised MNB classifier is trained on a
random 80% of the training data with the true labels, and evaluated on the remaining 30%. This
out-of-sample accuracy represents the accuracy that could achieve if a large number of labeled
training examples were available.

• “Labels Saved vs. Semi-Supervised" compares DCRI with MNB with a semi-supervised benchmark
where Q > 0 documents are chosen at random to be labeled, after which a classifier is used to generate
labels for the remaining N −Q documents. Then, an iterative supervised classifier similar to Phase
3 of DCRI is used to update these N −Q labels iteratively for a fixed number of iterations. Such
an approach, when using Naive Bayes as the supervised classifier, is referred to as Semi-supervised
Naive Bayes Sristy & Somayajulu (2012); Zhao et al. (2016).

We highlight some of the insights from Figure 4(a).

DCRI Phase 2 labels are relatively strong despite the fact that reference information come from
an entirely different source than the corpus documents themselves (first column of Figure 4(a).
This can be attributed to the presence of words whose frequency in the reference information is consistent
with that of the documents. For example, the word game appears more frequently in both BBC articles with
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Dataset DCRI Phase 2
(Initial)

DCRI Phase 3
(Iterated)

Unsupervised
LDA

Supervised
MNB

Labels Saved vs.
Semi-Supervised

Pharma 0.813 0.889 0.526 0.897 220 (39%)

Newsgroup 0.652 0.832 0.551 0.879 330 (5.6%)

BBC 0.799 0.956 0.775 0.968 75 (5.0%)

(a) Accuracy for DCRI and Benchmarks. DCRI with MNB’s final labels (after Phase 3) outperform that of
unsupervised approaches, comes very close to a supervised MNB classifier (with sufficient training data) and matches
the performance of the semi-supervised approach for up to a few hundred documents.
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(b) The Value of Iteration in Phase 3. Iteratively training supervised classifiers on weak labels results in
significant improvements in accuracy.

Label Class

1 2 3 4 5

Proportion of Dataset 0.18 0.04 0.18 0.50 0.10

DCRI Phase 2 (Initial Label)
Precision 0.80 0.92 0.74 0.87 0.64

Recall 0.91 0.96 0.75 0.77 0.90

100 Examples Uniformly at Random
Precision 0.78 1.00 0.87 0.84 0.64

Recall 0.93 0.17 0.65 0.97 0.55

(c) Pharma Dataset: Precision and Recall Per Class. DCRI produces labels that have better recall in the
minority classes 2 and 5 (highlighted in red) than labels generated from the semi-supervised approach with 100 random
examples.

Figure 4: DCRI with Q = 0 versus Benchmark Approaches

13



Under review as submission to TMLR

label sports and the Wikipedia articles on sports. On the other hand, there are also words for which the
reference information provides a corrupted signal, such as the word model which occurs frequently in BBC
entertainment articles (i.e., fashion model), but frequently in the Wikipedia article for technology (i.e.,
machine learning model). Finally, there are many words that are missing from the reference information
altogether. For example, the word Microsoft appears often in BBC news articles on technology, but is not
mentioned in the Wikipedia article for technology. Appendix D.1 provides more details on the breakdown of
consistent, corrupt and missing words in the BBC dataset. This breakdown of vocabulary words is the basis
of the Noisy Vocabulary Model in Section 5.

The iterative process greatly improves performance between Phase 2 and Phase 3 labels (second
column of Figure 4(a)). Comparing the first and second columns of Figure 4(a), it is evident the iterative
process in Phase 3 is valuable. In fact, Figure 4(b) shows how this accuracy changes in each iteration.
This iterative process is useful because the supervised classifier can learn additional information about
words not present in the reference information. For example, even though the word Microsoft was not
useful in generating the initial label (since it does not appear in any of the Wikipedia reference information
documents), the supervised algorithm can learn that Microsoft appears more often in documents whose
initial label is assigned as technology over other classes. Thus, the supervised classifier learns that Microsoft
is correlated with the technology class and can make better predictions on documents where Microsoft
appears. Similarly, for words like model that were corrupt, the iterative process is able to correct that mistake.
Appendix D.2 provides a deeper analysis of why this iterative process is useful.

DCRI significantly outperforms unsupervised approaches (third column of Figure 4(a)) While
unsupervised methods are great at detecting patterns within data, such methods fail to produce clusters that
match a user’s intentions and requires further expert labeling to split or combine clusters. This highlights the
need for reference information, which when combined with a clustering-like approach results in clusters that
are anchored to the desired classes. Appendix D.3 provides some examples of the clusters produced by LDA
and how they fail to match up with the desired labeling scheme.

DCRI’s Phase 3 labels attain accuracy that is at least 94% of the supervised MNB’s accuracy
(last column of Figure 4(a)) Without any training examples at all, DCRI can achieve nearly the same
performance if a large number of training examples were available, highlighting the significant value of
reference information.

DCRI with Q = 0 saves many labels over a semi-supervised approach. Even with Q = 0, DCRI
matches the performance of the semi-supervised approach with up to hundreds of labeled examples. In
particular, DCRI saves more labels when classes are imbalanced. While the BBC and Newsgroup datasets
are balanced across their 5 or 10 classes, the Pharma dataset is highly imbalanced as the bioreactor spends
a non-uniform amount of time in each process step. A semi-supervised approach that randomly labels a
subset of the data will disproportionally label examples from majority classes over minority classes. On the
other hand, DCRI’s initial label provides labels that are robust against class imbalance as the initial labels
only depend on the reference information documents. Figure 4(c) highlights this phenomena in the Pharma
dataset, which is highly imbalanced. While DCRI’s initial labels from Phase 2 provide a consistent precision
and recall across all 5 classes, a semi-supervised approach which randomly labels 100 documents and uses
those labels to predict for the remaining documents achieves a poor precision recall on the minority classes
(Class 2 and 5).

4.3 Performance with Some Expert Labels (Q > 0)

Figure 5(a) shows the accuracy of various approaches as a function of Q.

• “DCRI with Confidence" is DCRI with MNB where an expert reviews the Q documents with the
lowest confidence.

• “DCRI Random“ is DCRI with MNB where an expert reviews a random subset of Q documents.
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(a) Accuracy while Varying Q. DCRI with MNB (solid green line) outperforms the semi-supervised approach
(solid blue line) when given the same Q labeled examples.

Dataset DCRI by
Confidence

DCRI Random Semi-Supervised DCRI with Q = 0

Pharma 0.925 0.901 0.692 0.889

NewsGroup 0.885 0.848 0.861 0.832

BBC 0.983 0.959 0.958 0.956

(b) The Value of Reference Information. At Q = 0.10 · N , DCRI prioritized by confidence outperforms both
DCRI with random labels and semi-supervised with random labels.

Figure 5: Q > 0: Results and Benchmarks
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• Semi-Supervised. The semi-supervised Naive Bayes benchmark explained earlier in which Q
documents are randomly labeled, used to predict labels for the N −Q remaining document,s then
MNB is iteratively trained similar to Phase 3 of DCRI.

• “DCRI with Q = 0" shows the performance of DCRI with Q = 0 as a comparison, which clearly does
not change as Q increases.

Prioritizing expert labels by confidence outperforms doing so randomly. DCRI by Confidence
always attains a higher accuracy than DCRI Random for any Q. For example, at Q = 0.10 · N (i.e., the
labeling capacity is 10% of the corpus), Figure 5(b) shows that DCRI by Confidence effectively allocates its
Q labels to fix many more errors than DCRI Random, which randomly allocates such labels. For example,
the error rate in the Pharma dataset decrease from 1− 0.889 = 0.111 to 1− 0.925 = 0.075, a 32% decrease,
while reviewing randomly would only result in a 10% decrease in the error rate.

Reference information is always useful regardless of Q. For any Q, DCRI with Confidence outperforms
the semi-supervised approach, highlighting the value of the DCRI approach regardless of the available labeling
capacity. Having reference information allows DCRI to generate iterated labels whose confidences accurate
capture which examples are most likely to be correct or incorrect. As a result, reference information indirectly
leads to better prioritization of labeling capacity.

5 Data Generating Model: The Noisy Vocabulary Model

This section presents a generative model called the Noisy Vocabulary Model that is inspired by patterns in
the real-world data discussed in Section 4, and aims to characterize how corpus documents and reference
information documents are generated. Our modeling choices are inspired by empirical evidence from the
real-world datasets. Section 5.1 presents an overview of the model, while Section 5.2 evaluates DCRI
on synthetic data generated according to this model and presents new insights on the value of reference
information.

5.1 Noisy Vocabulary Model

The DCRI framework relies on the observed word counts of the corpus documents {Xnv}n∈[N ],v∈[V ] as well as
the empirical distributions of the reference information documents {rk}K

k=1. Figure 6(a) provides a schematic
overview of the Noisy Vocabulary Model, which assumes that {Xnv}n∈[N ],v∈[V ] (item 3) and {rk}K

k=1 (item
5) are generated based on some unobserved latent parameters represented by items 1, 2 and 4.

Generating Word Counts {Xnv}n∈[N ],v∈[V ] (Item 3). We start by describing items 1, 2 and 3 at the
top of Figure 6(a). It is assumed that the word counts {Xnv}n∈[N ],v∈[V ] (item 3) are drawn from a mixture
model. Each of N corpus documents are drawn independently according to the following steps.

1. Draw its label yn from a categorical distribution with probability given by γ, i.e. P (yn = k) = γk.

2. Draw the length of the corpus document Ln ∼ Pois(L0).

3. Draw the count of each word Xnv with a multinomial distribution with Ln trials and probability
given by θyn

, i.e.,

(Xn1, . . . , Xnv) | yn, Ln ∼ Multinomial(Ln, θyn)

Items 1 and 2 define a partition of the vocabulary space {Dk} that induces the set of distributions {θk}K
k=1

above. The set Dk contains vocabulary words which are specific to class k in the corpus documents. A word
is specific to a particular class if it occurs much more frequently in corpus documents belonging to that class
than documents belonging to other classes. For example, in news topic classification, the words baseball,
fan and stadium would be specific to the sports class while the words television, and movie would be
specific to the entertainment class.
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(a) Data Generating Schematic The noisy vocabulary model assumes that the the document word counts
{Xnv}n∈[N ],v∈[V ] (item 3) are generated from distributions {θk}K

k=1 (item 2), which are based on a partitioning of the
vocabulary space into {Dk}K

k=1 (item 1). A noisy estimate of {θk}K
k=1 is provided through {rk}K

k=1 (item 5) which is
based on a different partitioning {Rk}K

k=0 (item 4).

(b) Example Heatmap of θ1, θ2, θ3 and r1, r2, r3. Darker colors represent larger
numerical values. Noise causes some vocabulary words to be corrupt or missing, while
other words stay consistent.

(c) Legend. The par-
titions Dk and Rk are
depicted by the colored
columns.

Figure 6: Noisy Vocabulary Model
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This partitioning of vocabulary words {Dk}K
k=1 induces Document Generating Distributions {θk}K

k=1 (item 2)
where θk is a distribution over the [V ]. A large value of θkv indicates that word v appears more frequently in
documents belonging to class k. The distributions {θk}K

k=1 are constructed based on Dk in a way such that:

If v ∈ Dk, then: θkv ≫ θk′v∀k′ ̸= k (7)

A word specific to class k (i.e., v ∈ Dk) has a higher probability of being generated in documents with yn = k
than documents with yn ̸= k. A precise formula for {θk}K

k=1 given {D}K
k=1 is given in Appendix E.

Figure 6(b) provides an example for K = 3 where the distributions (θ1, θ2, θ3) are visualized as heat maps
over the vocabulary space with darker entries representing higher numerical values. As shown in the legend
in Figure 6(c), the first one-third of the vocabulary space corresponds to D1, while the second one-third
corresponds to D2, and last one-third corresponds to D3. Based on the colors, it is evident that equation
equation 7 is satisfied.

Generating {rk}K
k=1 (Item 5) We now discuss items 4 and 5 in the bottom of Figure 6(a). Noise is added

to the partitioning {Dk}K
k=1 (item 1) to generate a new partition {Rk}K

k=0 (item 4). Intuitively, Rk for
k ∈ [K] contain vocabulary words which are specific to class k in the reference information (i.e., appear more
frequently in that reference information document), while the additional set R0 contains words that do not
appear in the reference information at all. That is, the reference information distributions rk are constructed
such that

If v ∈ Rk for k ̸= 0, then: rkv ≫ rk′v ∀k′ ̸= k (8)
If v ∈ R0, then: rkv = 0 ∀k ∈ [K] (9)

Comparing the partition {Dk}K
k=1 and {Rk}K

k=0 gives us consistent, corrupt and missing words, as defined in
Section 4.2 when we discussed why reference information provide a reasonable initial label. These three types
of words are defined mathematically in our model as follows.

• Consistent. v ∈ Dk and v ∈ Rk

• Corrupt. v ∈ Dk, but v ∈ Rk′ with k ̸= k′ and k′ ̸= 0

• Missing. v ∈ Dk, but v ∈ R0

Figure 6(b) shows an example of consistent, corrupted and missing words. For k ∈ [3], each vector rk is
shaded strongly in the columns that correspond to the vocabulary words in Rk, shaded lightly for the words
in Rk′ with k′ ̸= k and k′ ̸= 0, and labeled with 0 for the words in R0. The set of consistent/good words are
columns where the shading stays the same between (θ1, θ2, θ3) and (r1, r2, r3); the set of corrupted words
are ones where the shading changes color, while the set of missing words are columns where there is 0 in
(r1, r2, r3).

Overall, the Noisy Vocabulary Model states that word counts are generated from a set of latent distributions
{θk}K

k=1 which are based on a partitioning of the vocabulary space {Dk}K
k=1. However, DCRI is provided with

a noisy estimate of {θk}K
k=1 given by {rk}K

k=1, which is derived from a different partitioning of the vocabulary
space into {Rk}K

k=0. Mathematical details of this process can be found in Appendix E.

5.2 Simulation Study

This section presents a numerical study using synthetic data generated from the Noisy Vocabulary Model
described in Section 5.1.

Setup. Our simulation study chooses K = 5 classes with L0 = 150 and γk = 1/5 for all k ∈ [5]. The
vocabulary space consists of V = 2000 words evenly distributed across D1, . . . ,D5 (i.e., |Dk| = 400). For each
class k, out of these 400 words, a pG (good) fraction of them are consistent, a pC (corrupted) fraction of
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(a) Low Corruption (b) High Corruption

Figure 7: Varying the Quality of Reference Information

them are corrupted to another class in a uniform way, and a pM (missing) fraction of them are missing from
the reference info. That is:

|Dk ∩Rk| = pG · 400 |Dk ∩Rk′ | = pC · 400
K − 1 ∀k′ ̸= k |Dk ∩R0| = pM · 400 (10)

For example, if (pG, pC , pM ) = (1, 0, 0), then {θk}K
k=1 = {rk}K

k=1 (i.e., perfect quality reference information)
as all words are consistent. As pM or pC increases the quality of the reference information decreases. Our
experiments will mainly vary the number of documents N and the quality of the reference information
through (pG, pC , pM ). All experiments were run for a sufficiently large number of trials so that error bars are
negligible. The experiments are organized to answer the following research questions.

• Section 5.2.1. How does the quality of reference information (measured by the amount of noise
inserted into the document distributions) affect the performance of DCRI?

• Section 5.2.2. How does the size of the corpus and quality of reference information impact DCRI’s
edge over unsupervised approaches?

• Section 5.2.3. When does DCRI have the strongest advantage over semi-supervised approaches?

5.2.1 Impact of Reference Information Quality.

In this first study, we evaluate how the quality of reference information impacts the accuracy of the initial
label from Phase 2 and iterated label from Phase 3 of DCRI. Assume that Q = 0 and fix N = 500. The
quality of reference information is measured by two quantities: (1) pM , the proportion of words missing and
(2) the fraction of the remaining non-missing words that are corrupted, i.e. pC

pC +pG
, the corruption proportion.

1 Figure 7 shows the accuracy of the initial Phase 2 label, label after 1 iteration, and final iterated Phase
3 label, where the corruption proportion is fixed in each graph and the proportion of missing words pM is
plotted on the x-axis. The left graph represents a setting where the corruption proportion is relatively low,
while the right is the opposite. Decreasing the proportion of missing words (i.e., increasing the quality of
the reference information) leads to a non-linear improvement in the accuracy of the iterated Phase 3 label
for both low corruption and high corruption. Furthermore, the benefit is larger for high corruption. Such
observations suggests that a little bit of reference information quality can go a long way. As
a practitioner, spending a little more time to gather reference information that is closer in context to the
unlabeled documents can have great benefits.

1For example, pC
pC +pG

= 0.33 means that for every 3 words that are consistent, 1 is corrupted to appear specific in a different
class.
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(a) Comparison with Unsupervised. For each N ,
the solid lines show the accuracies of DCRI with low
and high quality as well as the unsupervised approach.
The dashed lines show DCRI’s initial label accuracy,
which does not change with N .

DCRI vs. Unsupervsied
N

Low Quality High Quality

250 1.40 1.88

500 1.49 2.50

1000 2.03 3.41

1500 2.47 2.57

2000 1.28 1.29

2500 1.06 1.06

(b) DCRI’s Advantage For each N , DCRI with low
quality and high quality reference information achieves
an accuracy that is between 1.06 and 3.41 times that of
the unsupervised approach.

Figure 8: DCRI vs. Unsupervised while varying N

5.2.2 Impact of Corpus Size N against Unsupervised Approaches

This experiment evaluates DCRI against unsupervised approaches while varying the number of corpus
documents N . Similar to our empirical results, the accuracy of unsupervised algorithms is computed by
taking the best accuracy across all permutations of the underlying classes to the clusters. Figure 8 shows the
results of this experiment. Fix pM = 0.75 and test two scenarios: pC

pC +pG
= 0.66 for low quality reference

information and pC

pC +pG
= 0.33 for high quality. Figure 8(b) plots the ratio between DCRI’s accuracy and

that of the unsupervised approach. The insights are as follows.

Reference information reduces the number of documents needed to achieve high accuracy
compared to unsupervised approaches. Consider the number of documents needed to achieve an accuracy
of say 90%. The unsupervised approach (green line) takes roughly 2500 documents, whereas DCRI with low
quality reference information (blue) takes about 1500 and DCRI with high quality reference information
(orange) takes about 1250. This highlights that having a warm start (from the Phase 2 initial labels) from
reference information significantly reduces the number of documents needed to achieve the same accuracy.
Since documents from the Noisy Vocabulary Model are truly generated from a mixture of 5 distributions,
as the number of documents increases, it becomes easier for an unsupervised algorithm to discover this
underlying pattern. However, a large number of documents is needed before the unsupervised approach
achieves a high accuracy. On the other hand, by having weak initial labels from reference information,
DCRI is able to achieve strong accuracy with much fewer documents. However, This benefit of reference
information is most prominent when the number of documents is moderate. Figure 8(b) shows
that when N is large, unsupervised approaches perform well already and reference information result in
little improvement. On the other hand, when N is small, reference information is helpful because it provides
an initial label better than random guessing, but accuracy does not improve through iteration. Reference
information is most useful over unsupervised approaches when N is moderate: there are enough documents
that the iterative process leads to an an improvement, but the not so many documents that the underlying
clusters are easy to detect with the semi-supervised approach.
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(a) Balanced, Low Quality (b) Balanced, High Quality (c) Imbalanced, High Quality

Figure 9: Comparison against Semi-Supervised Approaches.

5.2.3 Impact of Number of Labeled Examples Q vs. Semi-Supervised Approach.

This section studies the case where some expert labeling capacity is available and compares DCRI with
semi-supervised approaches. Fix N = 500 and vary Q, the number of labeled examples available from 25 to
475. We also examine combinations of the following two parameters.

• Reference Information Quality: High and Low, corresponding to pM ∈ {0.40, 0.70} and fix
pC/(pC + pG) at 0.50.

• Data Imbalance: γ = [0.2, 0.2, 0.2, 0.2, 0.2] for balanced and γ = [0.35, 0.35, 0.1, 0.1, 0.1] for
imbalanced.

Figure 9 compares the same 4 approaches as in Section 4.3 for combinations of {balanced, imbalanced} and
{high quality, low quality}. In all 3 graphs, DCRI with Confidence outperforms DCRI Random, highlighting
again the value of reviewing labels based on confidence over randomly. Figures 9(a) and 9(b) reinforce
the observation that DCRI with Confidence always outperforms the semi-supervised approach, even when
the quality of the reference information is low. Finally, comparing Figure 9(b) and 9 highlights the same
observation as in Section 4.2, that semi-supervised approaches suffer in imbalanced datasets, while DCRI is
unaffected.

6 Theoretical Property: Iteration improves Accuracy

A key element of the DCRI MNB methodology is the iterative process that improves the quality of the initial
labels. This section provides a theoretical result for a special case of the generative model from Section 5.1 in
which we prove that iterating the initial label results in an improvement in accuracy.

Setup. We consider a case with K = 2 classes, denoted A and B (this is to avoid confusion in notation later)
Figure 10(a) depicts the distributions θA, θB , rA and rB . The vocabulary space consists of V = 2 · (G+C +M)
of which |DA| = |DB | = G + C + M . The corruption happens so that G out of the G + C + M words in DA

are consistent, C are corrupt and M are missing (likewise for DB). Denote the following sets of words:

VAA = DA ∩RA VBB = DB ∩RB |VAA| = |VBB | = G

VAB = DA ∩RB VBA = DB ∩RA |VAB | = |VBA| = C

VA0 = DA ∩R0 VB0 = DB ∩R0 |VA0| = |VB0| = M

Here, VAA contain consistent words specific to class A, VAB contains corrupt words specific to class A in
the documents but specific to class B in the reference information...etc. The specific values of θA, θB , rA, rB
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(a) Setup. θA, θB , rA, rB are depicted above. There are 2 · (G+C +M) vocabulary words which are partitioned
so that |DA| = DB = G + C + M . Out of the words in DA, DB , a total of G, C and M words are consistent,
corrupt or missing respectively. The values of θ1, θ2, r1, r2 are shown above as well.

(b) Proof Sketch: Decision Boundary Coefficients. Using the distributions (rA, rB), (θ(1)
A , θ

(1)
B ) or

(θA, θB), construct a decision boundary between class A and B. The coefficients of that decision boundary is
shown above, where the numbers in each column are the coefficients of the variables XAA, . . . , XB0.

Figure 10: Special Case with Two Label Classes Denoted A and B
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(derived from the full model description in Appendix E) are shown in Figure 10(a) and the equations below.

θA,v :=
{

λ
G+C+M v ∈ DA

1−λ
G+C+M v ∈ DB

θB,v :=
{

λ
G+C+M v ∈ DA

1−λ
G+C+M v ∈ DB

rA,v :=


1−λ
G+C v ∈ RA

λ
G+C v ∈ RB

0 v ∈ R0

rB,v :=


1−λ
G+C v ∈ RA

λ
G+C v ∈ RB

0 v ∈ R0

Here, λ > 1
2 is a parameter of the model; Theorem 6.1 holds for any choice of λ > 1

2 .

We define the following types of labels:

• True Label. Yn ∈ {A, B} is a random variable for the true label of document n. Recall from Noisy
Vocabulary Model that in order to draw the word counts Xnv, we first its label Yn.

• Initial Label. Y
(0)

n ∈ {A, B} is a random variable for the Phase 2 initial label of document n. Y
(0)

n

is computed using the reference information distributions rA, rB .

• Single Iteration Label. Y
(1)

n ∈ {A, B} is a random variable for the Phase 3 label of document
n after a single iteration. Y

(1)
n is computed using θ

(1)
A and θ

(1)
B , which are estimated from Y

(0)
n in

equation equation 5.

• Optimal Label. Y ∗
n ∈ {A, B} is the label assigned to document n if θA, θB were known. Y ∗

n = A
if the word counts Xnv are more likely to be drawn from θA than θB. 2 This label will be used to
develop intuition for the theorem.

We present our main theorem regarding the accuracy of the initial labels Y
(0)

n and label Y
(1)

n after a single
iteration of DCRI.
Theorem 6.1 (The Value of Iteration). In the limiting case when N →∞, the accuracy of the iterated labels
{Y (1)

n }N
n=1 is at least as high as the accuracy of the initial labels {Y (0)

n }N
n=1

lim
N→∞

1
N

N∑
n=1

1{Yn = Y (0)
n } ≤ lim

N→∞

1
N

N∑
n=1

1{Yn = Y (1)
n } (11)

By the law of large numbers (since each corpus document n ∈ [N ] is drawn independently), the above is
equivalent to:

P (Y = Y (0)) ≤ P (Y = Y (1)) (12)
where Y, Y (0) and Y (1) are labels for an arbitrary corpus document drawn according to the generative model.

A proof sketch of Theorem 6.1 is provided below. The formal lemmas are stated and proven in Appendix F.
This proof has 4 major steps:

1. Lemma F.1: Characterize the decision boundary for labels Y (0) in terms of (rA, rB)

2. Lemma F.2: Characterize the decision boundary for Y (1) by defining θ
(1)
A , θ

(1)
B , which are computed

based on Y (0) (a random variable). Note that θ
(1)
A , θ

(1)
B are random variables, but converge as N →∞.

3. Lemma F.3, F.4 and F.5: Describe how the decision boundary changes between Y (0) and Y (1), in
particular that α ≥ −1 and β > 0 (defined in equation equation 14 below).

4. Lemma F.6: Argue that such changes result in labels Y (1) that are at least as accurate as Y (0).
2Note that Y ∗

n may not equal Yn as a document can be drawn from θA, but by chance Xnv could be drawn so that it is
“closer" to θB .
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We provide some brief intuition for the Lemmas above. For notational convenience, we omit the subscript n
when discussing an arbitrary document n ∈ [N ]. Define XAA =

∑
v∈VAA

Xv and equivalently for each of the
sets VAA, . . . ,VB0. Let Y ∗ be the best guess of label Y ∗

n if the latent (θA, θB) were known exactly. Figure
10(b) depicts the decision boundaries for Y (0), Y (1) and Y ∗ shown below:

XAA −XBB +−1 · (XAB −XBA) + 0 + 0 · (XA0 −XB0) > 0 ⇔ Y (0) = A (13)
XAA −XBB + α · (XAB −XBA) + β · (XA0 −XB0) > 0 ⇔ Y (1) = A (14)
XAA −XBB + 1 · (XAB −XBA) + 1 · (XA0 −XB0) > 0 ⇔ Y ∗ = A (15)

To see why Y (1) is more accurate than Y (0), notice how Y (0) is different from Y ∗. While Y ∗ places weight
of +1 on XAB − XBA and XA0 − XB0, Y (0) places a weight of −1 on XAB − XBA and a weight of 0 on
XA0 −XB0. The −1 is due to the corruption (e.g., words in XAB appear to be specific to class B in the
reference information) while the 0 is due to missing words. The core idea of our proof is to show that Y (1)

is an improvement over Y (0) in that it puts a weight of α > −1 on XAB −XBA and a weight of β > 0 on
XA0 −XB0, effectively moving the decision boundary closer to Y ∗.

7 Conclusion

This paper proposed a novel problem of classifying documents into a desired labeling scheme in a semi-
automated way, without the need for excessive manual labeling. We developed the Document Classification
with Reference Information (DCRI) paradigm and a specific implementation DCRI with MNB. DCRI
leverages subject matter expertise to gather reference information, which are used to generate weak labels for
each document quickly. When no manual labeling capacity is available, DCRI outperforms unsupervised
approaches, while when some manual labeling capacity is available, DCRI outperforms semi-supervised
approaches. To explain DCRI’s strong performance, we developed a theoretical model in which reference
information is modeled as a corrupted version of the documents. Through comprehensive numerical studies
and a theoretical analysis, we showed insights on the value of reference information that paralleled those on
the real-world dataset.
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A Appendix

B Appendix to Section 3

B.1 Bag of Words Vectorization

The bag of words vectorization process can be broken down into two main steps:

Step 1. Text Cleaning and Tokenization. Given a corpus of documents, we first perform the following
text cleaning tasks on each of the documents.
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1. Convert all text to lower case.

2. Remove punctuation and special characters.

3. Remove stop words such as “and", “the" or “is"

4. Stemming / Lemmatization: convert words to their base or root form, for example “running" to
“run".

Then, the remaining cleaned text is tokenized by splitting on white spaces. For example, the sentence “The
cat sat on the Mat" would be cleaned to “cat sat mat“ and tokenized into [‘cat’, ‘sat’, ‘mat’]. Using this
tokenization, we can convert each document into a vector of counts of each token.

Step 2. Filtering the Vocabulary. Take all the tokens created from tokenizing each document and look
at how many documents they appear in. Filter only for tokens that appear in at least 1% of documents, but
no more than 50% of documents. Tokens that appear in less than 1% of the documents are too rare to have
any meaningful impact in classification (e.g., a serial number or a person’s name that only occurs in very few
documents). On the other hand, tokens that occur in more than 50% of all documents may be stop words
specific to this dataset. For example, the word “reporting" in news topic classification or “bioreactor" in
process step classification.

After filtering for tokens that satisfy the above criteria, we obtain a final vocabulary space of V tokens. Each
document is represented by a count of tokens over this vocabulary space.

C Equivalence of KL Divergence and MNB

Using the definition of KL Divergence, we can get:

argmink∈[K]DKL(xn||rk) = argmink∈[K]
∑

v∈[V ]

xnv · log
(

Xnv

rkv

)
(16)

= argmaxk∈[K]

V∑
v=1

Xnv · log(rkv) (17)

The first equality is by definition of KL divergence. The second equality is true by noticing that Xnv · log(Xnv)
does not depend on k and by negating the entire expression (turning argmin into argmax). Replacing xnv

with Xnv is valid since Xnv = Xnv · Ln.

We choose the KL divergence as a measure of similarity due to its nice properties described in Lemma E.1
below.
Lemma C.1 (KL Divergence Interpretation). Given a set of K probability distributions {rk}K

k=1 and any
vector of positive integers Xn (normalized as xn = Xnv∑

v∈[V ]
Xnv

) the following are equivalent:

1. The class k which minimizes the KL divergence between xn and rk.

2. The class k for which a multinomial distribution with Ln =
∑N

n=1 Xnv trials and probability vector rk

has the highest probability of generating the counts Xn. This is equivalent to the class that a MNB
predicts assuming θk = rk.

Proof. Proof of Lemma E.1 For 1., by the definition of KL divergence:

argmink∈[K]KL(xn||rk) = argmink∈[K]
∑

v∈[V ]

xnv · log
(

Xnv

rkv

)

= argmaxk∈[K]

V∑
v=1

Xnv · log(rkv)
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For 2., write out the probability mass function of the Multinomial distribution as follows:

arg max
k∈[K]

(
Ln

Xn1, . . . , Xnv

) V∏
v=1

(rkv)Xnv = arg max
k∈[K]

log
V∏

v=1
(rkv)Xnv (18)

= argmaxk∈[K]

V∑
v=1

Xnv · log(rkv) (19)

This completes the proof □

C.1 Multinomial Naive Bayes Background

Multinomial Naive Bayes is a popular classification algorithm commonly for supervised text classification
(see e.g. Kibriya et al. (2005); Abbas et al. (2019); Wang et al. (2015); Frank & Bouckaert (2006)). MNB
assumes that the word counts Xnv for a document with a true label of y ∈ [K] is drawn from a Multinomial
distribution over Ln :=

∑
v∈[V ] Xnv trials, with each trial drawn using the probability vector θy over the

vocabulary space [V ].

Training a MNB model on data (Xn, yn)N
n=1 amounts to estimating K probability distributions θk, one for

each label class. The θk are chosen to maximize the likelihood of seeing the data (Xn, yn)N
n=1, where the

document counts Xn are assumed to be drawn from θyn
. θk is taken as the maximum likelihood estimator as

follows:

(θ1, . . . , θK) = argmaxp1,...,pK

N∏
n=1

(
Ln

Xn1, . . . , Xnv

) V∏
v=1

(pyn,v)Xnv

= argmaxp1,...,pK

N∑
n=1

V∑
v=1

Xnv · log(pyn,v) (20)

Here, we also constrain p1, . . . , pK to be valid probability vectors (e.g. non-negative and sum to 1).

A closed form for θk can be obtained by decomposing across each value of k ∈ [K].

θk = arg max
pk∈∆V

N∑
n=1

I{yn = k} ·Xnv · log (pkv) k ∈ [K]

This can be readily verified from first order conditions that θkv must be proportional to
∑N

n=1 I{y
(t−1)
n =

k} ·Xnv (i.e. the number of times word v appears in documents with y
(t−1)
n = k), which gives the following

expression for θk

θkv =
∑N

n=1 Iyn=k ·Xnv∑N
n=1 Iyn=k · Ln

k ∈ [K] (21)

Once {θk}K
k=1 has been estimated from (Xn, yn)N

n=1, a prediction can be made for any word count vector Xn

by computing the θk most likely to generate Xnv:

yn = arg max
k∈[K]

(
Ln

Xn1, . . . , Xnv

) V∏
v=1

(θkv)Xnv = arg max
k∈[K]

∑
v∈[V ]

Xnv · log(θkv) (22)

Likewise, a probability for yn can be computed by using Bayes Rule with a uniform prior over the K classes.
The probabiilty pn is computed as:
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(a) Corruption of Strong Words from Documents to Reference
Information

Word Document Class Reference Info Class
play Sport Entertainment

camera Entertainment Technology
model Business Technology
left Politics Sports

street Entertainment Politics
system Entertainment Technology
accused Politics (missing)
common Politics (missing)

Microsoft Technology (missing)
decline Business (missing)
fight Sport (missing)
praise Entertainment (missing)

(b) Examples of corrupt and Missing Words

Figure 11: Comparison between documents and reference information. Words that should indicate strength
in particular class may be corrupt to indicate strength in a different class, or be entirely missing from the
reference information altogether. Intensities may also differ between documents and reference information
(not shown).

pn :=
(

Ln

Xn1,...,Xnv

) ∏V
v=1(θkv)Xnv∑

k∈[K]
(

Ln

Xn1,...,Xnv

) ∏V
v=1(θkv)Xnv

(23)

=
∏V

v=1(θkv)Xnv∑
k∈[K]

∏V
v=1(θkv)Xnv

(24)

D Appendix to Section 4: Empirical Results

D.1 Initial Labels

Figure 5(b) shows that the DCRI initial label’s accuracy is 0.813 and 0.799 for the 5-way classification
problems (Pharma and BBC) and 0.652 for the 10-way classification (Newsgroup). This is an impressive
classification accuracy (compared to the random guessing baselines of 0.20 and 0.10). In this subsection, we
will seek to explain this accuracy by examining how the documents and reference information differ.

True Distribution vs. Reference Information Distribution. Using the true labels yn (which our DCRI
methodology does not have access to), we can construct the “true" conditional distributions of each class
defined as (θdoc

k )K
k=1 by training a MNB on these true labels, resulting in the conditional distributions.

θdoc
k =

∑N
n=1 Iyn=k ·Xn∑N
n=1 Iyn=k · Ln

k ∈ [K]

How does θdoc
k compare to rk? In other words, how does the true conditional distribution of the documents

under the correct labels compare to the distributions we estimated from the reference information? We first
define some key terminology used in our analysis.
Definition 1. Given K conditional probability distributions (θ1, . . . , θK) where θk ∈ ∆V −1 is the generative
probability of each class (with θkv > 0 for all v ∈ [V ]), we define the following for each word v ∈ [V ]:
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• The class that v is specific with respect to θ is defined as the class that maximizes the probability of
generating v, i.e.

cat(v, θ) = arg max
k∈[K]

log θkv (25)

• The separation of v with respect to θ is defined as the difference between the top log proportion of v
and the second highest log proportion of v:

sep(v, θ) = max
k∈[K]

log θkv − max
k ̸=cat(v,θ)

log θkv (26)

• We will informally say that a word v is strong in class k to mean that cat(v, θ) = k and sep(v, θ)
is large.

Words v with a high sep(v, θdoc) are ones that truly distinguish between classes in the documents as this
implies that one class (i.e. documents from class cat(v, θdoc) have a much higher proportion of this word
than documents from other classes). Recall that a document is classified by Multinomial Naive Bayes with
distributions θ using the formula:

arg max
k∈[K]

V∑
v=1

Xnv · log θkv

A word v with high sep(v, θ) will contribute highly to the sum for class k = cat(v, θ) in the above arg max
and not contribute highly to the classes k ̸= cat(v, θ).

Figure 11(a) shows how these words are represented in the reference information. For each row, we consider
all words v for which sep(v, θdoc) ≥ 0.4, i.e. words that appear at least e0.4 ≈ 1.5 times more frequently in one
class than the rest. This threshold is chosen somewhat arbitrarily for the sake of explaining our methodology.
Such specific words are placed into one of 6 columns (5 for the classes and the last for “Weak/Missing"). For
all such specific words, we say that the word is in specific in class cat(v, r) in the reference information if
sep(v, r) ≥ 0.4. Otherwise, if sep(v, r) < 0.4, then we say that word is weak or missing.

We make the following observations from Figure 11.

• Missing Words. A majority of words that have high separation in the documents are not present
in the reference information or have very weak separation. This makes sense as words there are many
words which may be used disporportately often in BBC articles of a certain class, but not be general
words that appear in Wikipedia. For example, BBC articles belonging to the class Politics often use
the word common as in the House of Commons (equivalent to the House of Representatives in the
US), but this word does not appear in the Wikipedia article for politics as such an article discusses
more broad topics than any one country’s political system. Figure 11(b) shows some examples of
such missing words.

• Corrupt Words. Out of the remaining words v for which sep(v, θdoc) ≥ 0.4 and sep(v, r) ≥ 0.4
in both the documents and reference information, a majority of them belong to the correct class,
i.e. cat(v, r) = cat(v, θdoc). For example, common words like There are certainly some corrupt
words as well where cat(v, r) ̸= cat(v, θdoc). For example, the word plays occurs often in BBC
articles involving sports to refer to plays of a sports game, but it appears often in the Entertainment
Wikipedia article. Another example is the word model which is used in BBC articles in the context
of business model, whereas in Wikipedia this word often refers to computer models. Figure 11(b)
shows some additional examples of such corrupt words.

The two insights above provide intuition as to why the initial labels provide a good estimate of the true
label, but are still quite far from being perfect. For a document with true label k, it will most likely contain
more words that belong to k than words that belong to other categories. For a majority of these words, the
reference information will give us no indication that such a word belongs to class k. For the minority of
words that strong separability in the reference information, a majority of them will correct tell us that this
word is indicative of class k. As a result, we will label this document as class k with probability much better
than random guessing, but not anywhere close to perfect.
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(a) Initial Label (b) Iterated Label

Figure 12: Confusion matrices for y
(0)
n (initial label) and y

(T )
n (iterated label) with respect to yn, the true

labels.

D.2 Iterated Labels

While the initial labels provided a reasonable estimate of the true labels, we saw in all three datasets that the
iterative process resulted in a significant improvement in accuracy. Figure 12 shows the confusion matrix
for (y(0)

n )N
n=1 (initial labels) and final iterated labels (y(T )

n )N
n=1. It is evident that many labels were corrected

from the initial label to the final iterated label. But how and why does this happen? Consider a single
iteration where the labels are updated from (y(0)

n ))N
n=1 to (y(1)

n )N
n=1. Recall that the initial labels (y(0)

n )N
n=1 is

generated using distributions (rk)K
k=1 gathered from the reference information, while (y(1)

n )N
n=1 are generated

from θ(1), which is generated based on (y(0)
n )N

n=1. We split our explanation into two steps: First, we explain
why (θ(1)

k )K
k=1 is able to correct corrupt words and activate missing words from (rk)K

k=1. Then, we explain
why such an improved (θ(1))K

k=1 can result in labels being corrected from (y(0)
n )N

n=1 to (y(1)
n )N

n=1.

Correcting Words from r to θ(1). Recall from Section 4.2 that conditional distributions (rk)K
k=1 induced

from the reference information has many mistakes, namely words that are corrupt and words that are missing.
Consider a particular missing word such as Microsoft, which has a high separation under the technology
class in the documents, but does not appear at all in the reference information (i.e. none of the Wikipedia
articles mention Microsoft as a company explicitly). The fact that Microsoft has high separation means that
Microsoft appears disproportionately often in documents of class technology relative to all other classes.
Consider all the documents containing the word Microsoft. Since Microsoft is a specific word in the class
technology, a strong majority of these documents have true class technology. Given that our initial labels
(y(0)

n )N
n=1 are reasonably accurate, a large number of these documents with Microsoft are assigned to the

class technology. Therefore, when we estimate θ(1), which is computed from (y(0)
n )N

n=1, we will estimate
θ

(1)
tech,Microsoft to be higher than the other classes. The bottom line is that documents whose initial label

is technology are more likely to have a true label of technology (compared to documents with a different
initial label). Since Microsoft appears more often in documents with true class of technology than other
documents, this also results in Microsoft appearing more often in documents with initial label technology.
In this way, even though Microsoft had no signal in the reference information, the fact that our initial labels
are reasonably strong induced an iterated distribution (θ(1)

k )K
k=1 in which Microsoft is now specific in the

technology class as desired. A similar reasoning can be applied to words that are corrupt.
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(a) Initial Label Scores (b) Iterated Label Scores

Figure 13: Example of a document which was corrected after iteration.

Correcting Labels Given A Better θ(1). We saw above that the iterative process can correct corrupt
words and activate missing words. Here, we present a concrete example of how this correction can lead to a
correction in the labels (y(1)

n )N
n=1 from (y(0)

n )N
n=1.

Example 1. In this example, we demonstrate a document which had an initial label of sports but a label
of technology after a single iteration. The example document we choose is one that talks about a popular
multiplayer online game, which BBC classifies under the technology class (sports is reserved for traditional
sports).

For this document Xn, we focus our attention on the 10 vocabulary words shown above and suppose that there
are only two classes: sports and technology (tech). This document would be assigned an initial label of as
sports if and only if:

10∑
v=1

Xnv · log rtech,v >

10∑
v=1

Xnv · log rsports,v

On the left, we are showing Xnv · (log rtech,v − log rsports,v) for each of these 10 vocabulary words v. This can
be interpreted as the contribution of each word towards the class of technology (away from sports). The initial
label of sports was assigned because the words game and players overpowered the words world, million and
online. The remaining 5 words were not present in the reference information and thus provided no signal. On
the other hand, after the iterated algorithm, the words copies, Microsoft, market, popular and sunday have
been activated. In addition, the words million and online are now even specific in the technology class. This
results in an iterated label of technology, thus correcting the initial label.

D.3 Comparison to Unsupervised Methods

As we saw from Figure 4, DCRI significantly outperforms purely unsupervised algorithms that do not leverage
reference information at all. Unsupervised algorithms fail to produce high accuracy because it is difficult when
clustering in high-dimensional space to guarantee that the clusters will exactly match a user’s expectations,
i.e. the exact K classes we want. Figure 14 shows the result of the K-Means clustering algorithm on the BBC
dataset. The table shows the number of documents with a particular true class (row) assigned to each of the
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Figure 14: Unsupervised Algorithm Results. An unsupervised algorithm produces 5 clusters for the BBC
dataset that do not match the underlying clusters well

5 clusters from K-Means (column). Here, we have already matched the clusters to the 5 classes to generate
the highest accuracy (i.e. the sum of the entries on the diagonal is maximized over all permutations). On the
right, the top 5 keywords for each of the clusters are shown. The words in black are words that belong to
the class matched with this cluster, while the colored words are words that belong to a different class. We
observe the following:

• Good Clusters. Clusters 1 and 5 contain documents which are very homogeneously from the
technology and technology classes respectively. Although cluster 1 contains mostly technology
documents, it sadly does not contain all technology documents as a substantial number of them are
assigned to cluster 3.

• Ambiguous Clusters. Clusters 2, 3, and 4 do not correspond well with only a single class of
documents. The top words from cluster 2 not only belong to the entertainment class, but also the
sports class, namely words involving the Olympic games. Cluster 3 contains a large number of
words related to economics, which belong to the technology class. Cluster 4 contain both documents
involving politics and sports as there are large number of geographical words describing locations in
Great Britain.

While unsupervised methods are great at detecting patterns within data, such methods fail to produce
clusters that match a user’s intentions and requires further expert labeling to split or combine clusters. This
highlights the need for reference information, which when combined with a clustering-like approach results in
clusters that are anchored to the desired classes, resulting in high accuracy.

E Appendix to Section 5: Generative Model

This section presents the mathematical details of the noisy vocabulary model described in Section 5.1. Inputs
to the model include all the variables in the top portion of Table 3. Given these variables, the modeling
process constructs θk and θ

(0)
k deterministically and (Xn, yn, Ln)N

n=1 in a stochastic fashion.

Corpus Documents. Each of N corpus documents are drawn independently according to the following
steps.

1. Draw its true label yn from a categorical distribution with probability given by γ, i.e. P (yn = k) = γk.

2. Draw the length of the corpus document Ln ∼ Pois(L0).

34



Under review as submission to TMLR

Symbol Meaning
N ∈ N Number of corpus documents, indexed 1, 2, . . . , N

K ∈ N Number of classes, indexed 1, 2, . . . , K

V ∈ N Number of vocabulary words, indexed by 1, 2, . . . , V

L0 ∈ N Mean length of each corpus document
γ ∈ ∆K−1 Distribution of true labels for the corpus documents
Pk ∈ ∆K−1 Set generative probability for documents or reference information from

class k.
Dk ⊆ [V ] Set of words specific in class k in the corpus documents.
Rk ⊆ [V ] Set of words specific in class k in the reference information documents
R0 ⊂ [V ] Set of words that do not appear in the reference information at all.
θk ∈ ∆V −1 Word generative probability for corpus documents from class k (unob-

served).
rk ∈ ∆V −1 Word generative probability for class k’s reference information document

(observed).
Ln ∈ N Length of the nth corpus document (random variable).
yn ∈ [K] True label for corpus document n (random variable).
Xnv ∈ N Count of word v ∈ V in corpus document n ∈ [N ] (random variable)

Table 3: Overview of Notation

3. Draw the count of each word Xnv with a multinomial distribution with Ln trials and probability
given by θyn

, i.e.

(Xn1, . . . , Xnv) | yn, Ln ∼ Multinomial(Ln, θyn)

Alternatively, by the Poisson Thinning property, the distributions of Xn1, . . . , Xnv are independent and drawn
according to the following distribution

Xnv | yn = k ∼ Pois(L0 · θk) ∀ v ∈ [V ]

The most crucial aspect of this model is the construction of {θk}K
k=1 and (θ(0)

k )K
k=1. We first present the

construction, then explain the intuition behind it.

Constructing {θk}K
k=1. The probability distributions {θk}K

k=1 is computed in a hierarchical fashion from
two underlying quantities: (1) a set generating matrix P ∈ RK×K where Pk ∈ ∆K−1, and (2) a partitioning
of [V ] into sets {Dk}K

k=1. For a word v that belong to the set Dk, θkv is given by equation equation 27 below.

θkv = 1
|Dk′ |

· Pk,k′ ∀k ∈ [K], v ∈ [V ], v ∈ Dk′ (27)

Equation equation 27 states that the probability of drawing word v ∈ Dk′ from a corpus document with label
y = k can be decomposed into two probabilities: First, the set Dk′ is chosen with probability Pkk′ , then the
word v has a 1

|Dk′ | chance of being drawn from Dk′ , i.e. a word is uniformly drawn at random from Dk′ . In
this sense, θk is constructed in a hierarchical fashion, where the first-level probabilities are given by P and
the second-level are given by the D’s.

Constructing (rk)K
k=1. The construction of rk is similar to that of θk. The probability distributions

(rk)K
k=1 are computed from two underlying quantities: (1) the same set generating matrix P ∈ RX×X where
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Pk ∈ ∆K−1, and (2) a different partitioning of [V ] into the sets {Rk}K
k=0. For a word v that belongs to the

set Rk′ , rkv is given by equation equation 28 below.

θ
(0)
kv =

{
1

|Rk′ | · Pk,k′ k′ ̸= 0
0 k′ = 0

∀k ∈ [K], v ∈ [V ], v ∈ Rk′ (28)

A similar interpretation can be applied to equation equation 28: the reference information documents
constructs rkv by first choosing a set Rk′ that v belongs to according to P , then uniformly chooses a word
from Rk′ , thus having a 1

|Rk′ | chance of choosing v. For words v ∈ R0, the reference information documents
has rkv = 0 meaning the reference information document will never generate this word.

A nice property of the Noisy Vocabulary Model is that the construction of {θk}K
k=1 and {rk}K

k=1 have the
nice property below:
Lemma E.1. The estimates (rk)K

k=1 of {θk}K
k=1 preserves the KL divergence between classes, i.e.

KL(θk, θk′) = KL (rk, rk′) for any k, k′ ∈ [K] (29)

Proof. Proof of Lemma E.1 The key property of our model that gives the desired property is that

θkv

θk′,v
=

Pk,D(v)

Pk′,D(v)
.

for all v. The same is true for r, namely for any v such that R(v) ̸= 0, we have

rkv

rk′,v
=

Pk,D(v)

Pk′,D(v)
.

This gives the following result:

KL(θk, θk′) =
∑

v∈[V ]

θkv · log
(

θkv

θk′v

)
=

∑
ℓ∈[K]

Pkℓ · log
(

Pkℓ

Pk′ℓ

)
Likewise, we have the same reasoning for rk and rk′

KL (rk, rk) =
∑

v∈[V ] : rkv ̸=0

rkv · log
(

rkv

rk′v

)
=

∑
ℓ∈[K]

Pkℓ · log
(

Pkℓ

Pk′,ℓ

)
We note that rk can potentially include 0 entries, but the KL divergence is well defined because whenever
rkv = 0, then rk′,v = 0 for all k′ ̸= k because rkv = 0 implies that v ∈ R0. □

F Appendix to Section 6

By the well-known thinning property of Poisson random variables, we can characterize the distributions of
the variables XAA, . . . , XBM conditioned on Y = A or Y = B. Define the following proportions of good,
corrupt and missing words:

pG = G

G + C + M
pC = B

G + C + M
pM = M

G + C + M

Then, Table 4 gives the distributions of XAA, . . . , XB0 conditioned on Y = A or Y = B. For example,
XAA|(Y = A) ∼ Pois(L0 · λ · pG). Conditioned on Y = A, the random variable XAA is the sum of the rate
parameters of G possible words, each of which has a λ

G+C+M chance of being drawn (recall Figure 10(a)),
giving an overall rate parameter of L0 · λ · pG.
Lemma F.1 (Initial Decision Boundary). The initial decision boundary for a document with word counts
given by X is:
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XAA XAB XA0

Y = A L0 · λ · pG L0 · λ · pC L0 · λ · pM

Y = B L0 · (1− λ) · pG L0 · (1− λ) · pC L0 · (1− λ) · pM

XBB XBA XB0

Y = A L0 · (1− λ) · pG L0 · (1− λ) · pC L0 · (1− λ) · pM

Y = B L0 · λ · pG L0 · λ · pC L0 · λ · pM

Table 4: Rate Parameters of XAA, . . . , XB0 conditioned on Y

XAA −XBB − (XAB −XBA) > 0 ⇔ Y (0) = A (30)
XAA −XBB − (XAB −XBA) < 0 ⇔ Y (0) = B (31)

We ignore the case when the above is equal to 0. Those documents can just be randomly assigned to A or B.

Proof. Proof Equation equation 3 in the DCRI with MNB Methodology gives the following decision boundary
for the initial label being A:

∑
v∈[V ]

Xv · [log rAv − log rBv] > 0 ⇔ Y (0) = A (32)

By the definitions of rA and rB from Figure 10(a), log rAv − log rBv can be divided into cases:

log rAv − log rBv =



log
(

λ
1−λ

)
v ∈ VAA

− log
(

λ
1−λ

)
v ∈ VBB

− log
(

λ
1−λ

)
v ∈ VAB

log
(

λ
1−λ

)
v ∈ VBA

We ignore the words v ∈ VA,M ∪ VB,M since rAv = rBv = 0 for such words. Dividing through by log
(

λ
1−λ

)
gives equation equation 30. A similar derivation applies to equation equation 31.

Lemma F.2 (Iterated Decision Boundary). Given Y (0), the updated decision boundary for Y (1) is given by:

g · (XAA −XBB) + b · (XAB −XBA) + m · (XA0 −XB0) > 0 ⇔ Y (1) = A (33)

where g := log E[XAA|Y (0)=A]
E[XAA|Y (0)=B] , b := log E[XAB |Y (0)=A]

E[XAB |Y (0)=B] and m := log E[XA0|Y (0)=A]
E[XA0|Y (0)=B] .

Proof. Proof Let Θ(1)
A and Θ(1)

B be random vectors for the distributions estimated from the documents
with initial label Y (0) = A and Y (0) = B respectively. From Equation equation 5 of the DCRI with MNB
methodology, we have that:
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Θ(1)
kv =

∑N
n=1 IY

(0)
n =k

·Xnv∑N
n=1 IY

(0)
n =k

· Ln

k ∈ {A, B} (34)

As we take the limit of N →∞, the random vectors Θ(1)
A and Θ(1)

B will converge to constant vectors θ
(1)
A , θ

(1)
B .

This gives us the following result.

θ
(1)
Av = lim

N→∞
Θ(1)

Av = lim
N→∞

∑N
n=1 I{Y

(0)
n = A} ·Xnv∑N

n=1 I{Y
(0)

n = A} · Ln

= lim
N→∞

1
N ·

∑N
n=1 I{Y

(0)
n = A} ·Xnv

1
N ·

∑N
n=1 I{Y

(0)
n = A} · Ln

= E[Xv · I{Y (0) = A]}
E[Ln · I{Y (0) = A] = E[Xv|Y (0) = A] · P (Y (0) = A)

L0 · P (Y (0) = A)

= E[Xv|Y (0) = A]
L0

θ
(1)
Bv = lim

N→∞
Θ(1)

Bv = E[Xv|Y (0) = B]
L0

log θ
(1)
Av − log θ

(1)
Bv = log E[Xv|Y (0) = A]

E[Xv|Y (0) = B]

The derivation for θ
(1)
Av above used the law of large numbers to convert empirical means into expectations.

The decision boundary can be constructed as follows:∑
v∈[V ]

Xv · log E[Xv|Y (0) = A]
E[Xv|Y (0) = B] > 0 ⇔ Y (1) = A (35)

To get this to equation equation 33, we apply the following two observations:

Observation 1. All words v ∈ VAA have the same value of log E[Xv|Y (0)=A]
E[Xv|Y (0)=B] . The same is true for the sets

VAB , . . . ,VB,M . For example:

E[Xv|Y (0) = A] = E
[
E[Xv|Y (0) = A, XAA] | Y (0) = A

]
= 1

G
· E[XAA | Y (0) = A] (36)

E[Xv|Y (0) = B] = E
[
E[Xv|Y (0) = B, XAA] | Y (0) = A

]
= 1

G
· E[XAA | Y (0) = B] (37)

This implies the fact that the coefficients of Xv for v ∈ VAA in equation equation 35 are all the same.

log E[Xv|Y (0) = A]
E[Xv|Y (0) = B] = log E[XAA|Y (0) = A]

E[XAA|Y (0) = B] ∀v ∈ VAA

A similar argument can be applied to VAB , . . . ,VB,M . This results in the following decision boundary:

XAA · log E[XAA|Y (0) = A]
E[XAA|Y (0) = B] + . . . + XB0 · log E[XB0|Y (0) = A]

E[XB0|Y (0) = B] > 0 ⇔ Y (1) = A (38)

Observation 2. Symmetry between VAA and BB implies that g := log E[XAA|Y (0)=A]
E[XAA|Y (0)=B] = − log E[XBB |Y (0)=A]

E[XBB |Y (0)=B] .
A word v ∈ VAA is equivalent to a word in VBB if the labels A and B are flipped. This gives:

log E[XAA|Y (0) = A]
E[XAA|Y (0) = B] = log E[XBB |Y (0) = B]

E[XBB |Y (0) = A] = − log E[XBB |Y (0) = A]
E[XBB |Y (0) = B]
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The same is true for the pairs (VAB ,VBA) and (VA,M ,VB,M ). Therefore, out of the 6 terms in equation
equation 38, we can pair them up as g,−g, b,−b, m,−m, which provides the desired equation equation 33.
Dividing through by g gives the format of the decision boundary shown in Figure 10(b), with α = b

g and
β = m

g . □

Our main claim regarding this decision boundary is that b
g ≥ −1(i.e., α ≥ −1 and m

g ≥ 0 (i.e., β ≥ 0), claimed
in Lemmas F.4 and F.5 respectively. The following Lemma F.3 proves a short claim regarding just g.
Lemma F.3 (g is Positive). g > 0

Proof. Proof We must show that E[XAA|Y (0) = A] > E[XAA|Y (0) = B]. We break this inequality into two
pieces:

E[XAA|Y (0) = A] = E[XAA|Y (0) = A, Y = A] · ρ + E[XAA|Y (0) = A, Y = B] · (1− ρ)
> E[XAA|Y = A] · ρ + E[XAA|Y = B] · (1− ρ)
= L0 · pG · [λ · ρ + (1− λ)(1− ρ)]

E[XAA|Y (0) = B] = E[XAA|Y (0) = B, Y = A] · (1− ρ) + E[XAA|Y (0) = B, Y = B] · ρ
< E[XAA|Y = A] · (1− ρ) + E[XAA|Y = B] · ρ
= L0 · pG · [λ · (1− ρ) + (1− λ)ρ]

In inequalities above stem from the fact that for k ∈ {A, B}

E[XAA|Y (0) = A, Y = k] = E[XAA|XAA−XBB −XAB + XBB︸ ︷︷ ︸
−Z

> 0, Y = k]

= E[XAA|XAA > Z, Y = k]
> E[XAA|Y = k] = L0 · pG · λ

The conditional expectation of XAA given the event XAA > Z is higher than the marginal expectation of
XAA. To see this, consider any value z that Z takes on. Regardless of whether z is positive or negative,
E[XAA | XAA > z, Y (0) = A] ≥ E[XAA | Y (0) = A]. The ≥ holds with strict > for any z ≥ 0 and thus a strict
inequality holds overall. By a similar reasoning, we get that E[XAA | Y (0) = B, Y = k] < E[XAA | Y = k]
for k ∈ {A, B}. □

Lemma F.4 (Bad Words Reduced). b
g ≥ −1 (i.e., α ≥ −1)

Proof. Proof
b
g ≥ −1 equivalent to b ≥ −g since g > 0. This claim is equivalent to:

E[XAB |Y (0) = A]
E[XAB |Y (0) = B] ≥

E[XAA|Y (0) = B]
E[XAA|Y (0) = A]

Using symmetry of class A and B and the fact that all terms above are positive, we can show the following
equivalent inequality:

E[XAB |Y (0) = A]
E[XBB |Y (0) = A] ≥

E[XBA|Y (0) = A]
E[XAA|Y (0) = A] (39)
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Expand out the terms by conditioning on Y = A or Y = B and define the terms x, x′, y, y′, z, z′, w and w′ for
notational convenience as follows:

E[XAB |Y (0) = A]
E[XBB |Y (0) = A] = ρ ·

x︷ ︸︸ ︷
E[XAB |Y = A, Y (0) = A] +(1− ρ) ·

y︷ ︸︸ ︷
E[XAB |Y = B, Y (0) = A]

ρ · E[XBB |Y = A, Y (0) = A]︸ ︷︷ ︸
x′

+(1− ρ) · E[XBB |Y = B, Y (0) = A︸ ︷︷ ︸
y′

]
(40)

E[XBA|Y (0) = A]
E[XAA|Y (0) = A] = ρ ·

z︷ ︸︸ ︷
E[XBA|Y = A, Y (0) = A] +(1− ρ) ·

w︷ ︸︸ ︷
E[XBA|Y = B, Y (0) = A]

ρ · E[XAA|Y = A, Y (0) = A]︸ ︷︷ ︸
z′

+(1− ρ) · E[XAA|Y = B, Y (0) = A]︸ ︷︷ ︸
w′

(41)

We make the following two claims

Claim 1. Relationship between (x, x′), (y, y′), (z, z′) and (w, w′)

x

x′ = E[XAB |Y = A, Y (0) = A]
E[XBB |Y = A, Y (0) = A]

= E[E[XAB |Y = A, Y (0) = A, XAB + XBB ] | Y = A, Y (0) = A]
E[E[XBB |Y = A, Y (0) = A, XAB + XBB ] | Y = A, Y (0) = A]

Conditioning on XAB + XBB makes XAB is now independent of Y (0) = A. To see this, recall that Y (0) = A
is equivalent to XAA + XBA > XAB + XBB. Taking the right-hand-side as a constant, the condition
XAA + XBA > z is independent of XBB and XAB .

= E[E[XAB |Y = A, XAB + XBB ] | Y = A, Y (0) = A]
E[E[XBB |Y = A, XAB + XBB ] | Y = A, Y (0) = A]

=
E

[
λ·pC

λ·pC+(1−λ)·pG
· (XAB + XBB) | Y = A, Y (0) = A

]
E

[
(1−λ)·pG

λ·pC+(1−λ)·pG
· (XAB + XBB) | Y = A, Y (0) = A

] = λ · pC

(1− λ) · pG

In the last equality, we used the fact that XAB and XBB are independent Poisson random variables. By the
Poisson thinning property, conditioned on the sum XAB + XBB, we know that XAB is a binomial random
variable over XAB + XBB trials and probability of success E[XAB |Y =A]

E[XAB |Y =A]+E[XBB |Y =A] = λ·pC

λ·pC +(1−λ)·pG
. A

similar calculation is done for E[XBB | Y = A].

By an analogous calculation, we obtain the following 4 equalities:

x

x′ = λ · pC

(1− λ) · pG

y

y′ = (1− λ) · pC

λ · pG

z

z′ = (1− λ) · pC

λ · pG

w

w′ = λ · pC

(1− λ) · pG

Claim 2. Relationship between (x + x′, y + y′) and (z + z′, w + w′). We claim the following

ρ · (x + x′) ≥ (1− ρ) · (y + y′)
ρ · (z + z′) ≥ (1− ρ) · (w + w′)

Consider the first inequality involving x, x′, y, y′. We can write it out as follows:

ρ · (x + x′)
(1− ρ) · (y + y′) = E[(XAB + XBB) · I{XAB + XBB < XAA + XBA} | Y = A]

E[(XAB + XBB) · I{XAB + XBB < XAA + XBA} | Y = B] ≥ 1
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For notational convenience, let Z = XAB + XBB and W = XAA + XBA. Consider any (z, w) ∈ N such that
z < w. We claim the following:

P (Z = z, W = w | Y = A)
P (Z = z, W = w | Y = B) = [L0 · (pC · λ + pG · (1− λ))]z · [L0 · (pG · λ + pC · (1− λ))]w

[L0 · (pG · λ + pC · (1− λ))]z · [L0 · (pC · λ + pG · (1− λ))]w

=
(

pC · λ + pG · (1− λ)
pG · λ + pC · (1− λ)

)z−w

≥ 1

The first equality is true by recalling that Z and W are just independent Poisson random variables conditioned
on Y . Their rate parameters can be found in Table 4. The second equality uses the PMF of the Poisson
Distribution, while the third inequality uses the fact that we assumed z−w < 0 and that pG ·λ+pG · (1−λ) <
pG · λ + pC · (1− λ) given that λ > 1

2 and pG > pC (more good words than corrupted words).

A similar argument can be used to show that ρ(z+z′)
(1−ρ)·(w+w′) ≥ 1. Note that x and z condition on the same

Y = A, Y (0) = A and only differ in what the expectation is taken on, which is not used in our argument above.
We only used the fact that (XAB + XBB) is the same in the numerator and denominator of ρ·(x+x′)

(1−ρ)·(y+y′) .

Putting it Together. Finally, we put together Claim 1 and 2 to obtain the desired expression through the
following inequalities:

E[XAB |Y (0) = A]
E[XBB |Y (0) = A] = ρ · x + (1− ρ) · y

ρ · x′ + (1− ρ) · y′ ≥
1
2 ·

pG

pC

(
λ

1− λ
+ 1− λ

λ

)
E[XBA|Y (0) = A]
E[XAA|Y (0) = A] = ρ · z + (1− ρ) · w

ρ · z′ + (1− ρ) · w′ ≤
1
2 ·

pG

pC

(
1− λ

λ
+ λ

1− λ

)

Consider the expression:

ρ · x + (1− ρ) · y
ρ · x′ + (1− ρ) · y′

It is clear that a lower bound on this expression is obtained when ρ · (x + x′) = (1−ρ)(y + y′). This expression
is a weighted ratio of x

x′ and y
y′ where recall from Claim 1 that x

x′ ≥ y
y′ . The weighting is based on the

relative sizes of ρ · x and (1− ρ) · y. Therefore, given the constraint ρ(x + x′) ≥ (1− ρ)(y + y′), a lower bound
is obtained at equality. A similar argument can be made for the term ρ·z+(1−ρ)·w

ρ·z′+(1−ρ)·w′ .

This leads to:

ρ · x + (1− ρ) · y
ρ · x′ + (1− ρ) · y′ =

ρ·x+(1−ρ)·y
ρ·(x+x′)+(1−ρ)·(y+y′)

1− ρ·x+(1−ρ)·y
ρ·(x+x′)+(1−ρ)·(y+y′)

≥
ρ·x

ρ(x+x′) + (1−ρ)·y
(1−ρ)·(y+y′)

1− ρ·x
ρ(x+x′) −

(1−ρ)·y
(1−ρ)·(y+y′)

=
1

1+ x′
x

+ 1
1+ y′

y

1− 1
1+ x′

x

− 1
1+ y′

y
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ρ · z + (1− ρ) · w
ρ · z′ + (1− ρ) · w′ =

ρ·z+(1−ρ)·w
ρ·(z+z′)+(1−ρ)·(w+w′)

1− ρ·z+(1−ρ)·w
ρ·(z+z′)+(1−ρ)·(w+w′)

≤
ρ·z

ρ(z+z′) + (1−ρ)·w
(1−ρ)·(w+w′)

1− ρ·z
ρ(z+z′) −

(1−ρ)·w
(1−ρ)·(w+w′)

=
1

1+ z′
z

+ 1
1+ w′

w

1− 1
1+ z′

z

− 1
1+ w′

w

Since z′

z = y′

y and x′

x = w′

w , this gives the desired result. This concludes the proof. □

Lemma F.5 (Missing Words Amplified). m
g ≥ 0 (i.e., β ≥ 0)

Proof. Proof of Lemma F.5 Lemma F.4 already showed that g > 0, so it is sufficient to show that m ≥ 0.
This is equivalent to showing:

E[XA0 | Y (0) = A]
E[XA0 | Y (0) = B] ≥ 1

Conditioning on Y = A and Y = B gives:

E[XA0 | Y (0) = A] = ρ · E[XA0 | Y (0) = A, Y = A] + (1− ρ) · E[XA0 | Y (0) = A, Y = B]
= ρ · L0 · λ · pM + (1− ρ) · L0 · (1− λ) · pM

E[XA0 | Y (0) = B] = (1− ρ) · E[XA0 | Y (0) = B, Y = A] + ρcdotE[XA0 | Y (0) = B, Y = B]
= (1− ρ) · L0 · λ · pM + ρ · L0 · (1− λ) · pM

The events Y (0) = A or Y (0) = B are independent of XA0. This gives the desired inequality:

λ · ρ + (1− λ) · (1− ρ) ≥ (1− ρ) · λ + ρ · (1− λ)

which is true given ρ, λ > 1
2 . This concludes the proof □

Lemma F.6 (Accuracy Increases). Without loss of generality, assume that Y = A. The probability that
Y (1) = A is at least as large as the probability that Y (0) = A, i.e.

P (Y (1) = A | Y = A) ≥ P (Y (0) = A | Y = A)

Recall from Lemma F.1 and Lemma F.2 that the decision boundaries for Y (1) = A and Y (0) = A are as
follows:

(XAA −XBB) + α · ·(XAB −XBA) + β · (XA0 −XB0) > 0 ⇔ Y (1) = A

(XAA −XBB)− 1 · (XAB −XBA) + 0 · (XA0 −XB0) > 0 ⇔ Y (0) = A

where b
g ≥ −1 (Lemma F.4) and m

g ≥ 0 (Lemma F.5)

Proof. Proof of Lemma F.6

Consider an intermediate decision boundary:

(XAA −XBB) + b

g
· (XAB −XBA) ⇔ Y (0.5) = A
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We will show that

P (Y (1) = A | Y = A) ≥ P (Y (0.5) = A | Y = A) ≥ P (Y (0) = A | Y = A)

Step 1. First, P (Y (0.5) = A | Y = A) ≥ P (Y (0) = A | Y = A). An equivalent inequality is:

P ((XAA, XBB , XAB , ABA) ∈ G) ≥ P ((XAA, XBB , XAB , ABA) ∈ B) (42)

where the sets G and B (representing good and bad) are defined below.

G =
{

(x, y, z, w) ∈ N4 | x− y + b

g
· (z − w) > 0 and x− y − 1 · (z − w) < 0

}
B =

{
(x, y, z, w) ∈ N4 | x− y + b

g
· (z − w) < 0 and x− y − 1 · (z − w) > 0

}

To show this, note that there is a 1 : 1 mapping between G and B by swapping the values of (x, y) and (z, w).
We claim the following:

For any (x, y, z, w) ∈ G,

P ((XAA, XBB , XAB , XBA) = (x, y, z, w)) ≥ P ((XAA, XBB , XAB , XBA) = (y, x, w, z))

This is true because:

P ((XAA, XBB , XAB , XBA) = (x, y, z, w))
P ((XAA, XBB , XAB , XBA) = (y, x, w, z)) = (L0 · pG · λ)x · (L0 · pG · (1− λ))y · (L0 · pC · λ)z · (L0 · pC · (1− λ))w

(L0 · pG · λ)y · (L0 · pG · (1− λ))x · (L0 · pC · λ)w · (L0 · pC · (1− λ))z

=
(

λ

1− λ

)x−y+z−w

From the definition of G and the fact that b
g ≥ −1, we see that the only way for x− y + b

g · (z − w) > 0, but
x− y − (z −w) < 0 is for z −w > 0. Thus, x + y + z −w > x + y + b

g · (z −w) > 0 and since
(

λ
1−λ

)
> 1, we

get the desired result.

Step 2. Next, P (Y (1) = A | Y = A) ≥ P (Y (0.5) = A | Y = A). Similar to before, define the following sets
G and B, which have a 1 : 1 correspondence:

G =
{

(x, y, z, w, u, v) ∈ N6 | x− y + b

g
· (z − w) < 0 and x− y + b

g
· (z − w) + m

g
· (u− v) > 0

}
B =

{
(x, y, z, w, u, v) ∈ N6 | x− y + b

g
· (z − w) > 0 and x− y + b

g
· (z − w) + m

g
· (u− v) < 0

}

Similar to before, we have:

P ((XAA, XBB , XAB , XBA, XA0, XB0) = (x, y, z, w, u, v))
P ((XAA, XBB , XAB , XBA, XA0, XB0) = (y, x, w, z, v, u)) =

(
λ

1− λ

)x−y+z−w+u−v

By a similar argument as before, we have that (u− v) > 0 and (z − w) > 0 must be true for elements in G.
This gives the desired result: x− y + z −w + u− v > x− y + b

g · (z −w) + m
g · (u− v) > 0 and thus the ratio

above is at least 1. □
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