
Plan-Guided Reinforcement Learning for Whole-Body Manipulation

Mengchao Zhang†1, Jose Barreiros†2, Aykut Özgün Önol†2

Abstract— Synthesizing complex whole-body manipulation
behaviors has fundamental challenges due to the rapidly
growing combinatorics inherent to contact interaction planning.
While model-based methods have shown promising results in
solving long-horizon manipulation tasks, they often work under
strict assumptions, such as known model parameters, oracular
observation of the environment state, and simplified dynamics,
resulting in plans that cannot easily transfer to hardware.
Learning-based approaches, such as imitation learning (IL) and
reinforcement learning (RL), have been shown to be robust
when operating over in-distribution states; however, they need
heavy human supervision. Specifically, model-free RL requires
a tedious reward-shaping process. IL methods, on the other
hand, rely on human demonstrations that involve advanced
teleoperation methods. In this work, we propose a plan-
guided reinforcement learning (PGRL) framework to combine
the advantages of model-based planning and reinforcement
learning. Our method requires minimal human supervision
because it relies on plans generated by model-based planners
to guide the exploration in RL. In exchange, RL derives a
more robust policy thanks to domain randomization. We test
this approach on a whole-body manipulation task on Punyo,
an upper-body humanoid robot with compliant, air-filled arm
coverings, to pivot and lift a large box. Our preliminary results
indicate that the proposed methodology is promising to address
challenges that remain difficult for either model- or learning-
based strategies alone.

I. INTRODUCTION

Humans employ a diverse array of strategies to effectively
manipulate various objects, including dexterous manipula-
tion, full-body engagement, and interactions with the en-
vironment [1, 2]. In the realm of robotics, there has been
a longstanding endeavor to replicate and integrate these
intricate human behaviors. For instance, consider the scenario
delineated in Fig. 1(a), wherein a robot is tasked to move
a large box to a desired pose. In this pursuit, the robot
might initiate the process by employing both arms to pull
the box toward its torso, subsequently utilizing a hand to
pivot the box by bracing it against its torso until it attains
the desired configuration. However, devising a framework to
systematically plan and control the execution of such contact-
rich behaviors presents a formidable challenge.

† Equal contribution.
1Department of Mechanical Science and Engineering, University

of Illinois at Urbana-Champaign, Urbana, IL, USA 61801.
mz17@illinois.edu

2Toyota Research Institute, Cambridge, MA, USA, 02139.
{jose.barreiros, aykut.onol}@tri.global

∗This work was done during Mengchao Zhang’s internship at Toyota
Research Institute.

This paper has supplementary downloadable material provided by the
authors. It includes an MP4 format movie clip [Link], which shows
demonstrations of our method.

(a) GQDP plan

(b) RL policy in simulation

(c) PGRL policy in simulation

(d) PGRL policy on hardware

Fig. 1: Snapshots of the GQDP plan (a) simulation (b, c) and hardware (d)
policy rollouts to show the style difference between the plan and the RL
and PGRL policies, as well as the effective sim-to-real transfer.

Model-based planners struggle with these hybrid-
dynamics problems because contacts lead to stiff, non-
smooth numerics with an excessive number of discrete con-
tact modes. Although recent advancements in planning with
contacts have exhibited promising outcomes in manipulation
planning [3–8], the robust execution of the planned trajectory
in hardware remains an unresolved issue. Often, these plan-
ners take a considerable amount of time to converge and run
offline when trying to discover complex contact sequences.
Open-loop execution manifests susceptibility to uncertainties
in model parameters and initial pose [4], so achieving robust
execution necessitates closing the loop.

Imitation learning (IL) emerges as a promising pathway to
tackle this challenge, a prospect bolstered by recent progress
in gradient-field learning methods [9–11]. Yet, applying
this strategy to whole-body manipulation tasks confronts
impediments originating from the limitations of teleopera-
tion methodologies. Predominantly tailored for end-effector
tracking, these techniques fall short when tasked with ef-
fectively showcasing intricate whole-body maneuvers. Even
when resorting to whole-body teleoperation techniques (such
as motion-capture-based kinematic retargeting) for gener-
ating demonstrations, our empirical observations indicate
limitations stem from the absence of comprehensive whole-
body haptic feedback [12, 13] available to the teleopera-

https://drive.google.com/file/d/1Vu4PwfqgXsMbPwdVNK1pppuQjMOUvIKl/view?usp=sharing

tor. Furthermore, the substantial volume of demonstrations
required to effectively train a proficient imitation learning
policy has emerged as another restrictive factor.

Recent advances in reinforcement learning (RL) have
yielded remarkable outcomes in dexterous manipulation [14–
17] that are difficult to replicate with model-based plan-
ning. Notably, these advancements frequently hinge upon
the availability of task-specific insights, either in the form
of well-defined reward functions or expert guidance. The
acquisition of such task-related information, however, can
pose difficulties, particularly in the domain of whole-body
manipulation.

As a means to streamline the process of reward design,
guided RL capitalizes on pre-existing knowledge inferred
from data to enhance the efficiency and efficacy of the
reinforcement learning process [18]. In particular, example
(or demonstration)-guided RL that aims to combine motion
imitation with task-based rewarding (aka. standard RL) has
been a popular concept in robotics (as well as in animation)
to aid exploration by instilling a desired motion style, accel-
erate learning, and ease reward shaping [19–29].

Peng et al. [30] recently proposed an example-guided RL
framework based on adversarial imitation learning, named
Adversarial Motion Priors (AMP). This approach does not
require designing imitation objectives or motion selection
mechanisms, and it can automatically synthesize a policy
that completes a desired high-level task given a set of
unstructured example motions. Due to its promise to im-
pose motion characteristics on the RL policy without the
burden of reward engineering, the AMP idea which was
originally proposed for animation, has caught the attention
of the robotics community and led to impressive results for
quadruped locomotion, e.g., [31–35]. These are compelling
examples showing that the AMP approach can generate
policies: (i) with a desired style even from infeasible, partial,
and scarce demonstrations; and (ii) that can directly transfer
to the real world.

However, producing demonstrations through teleoperation
for intricate whole-body manipulation tasks remains a chal-
lenging endeavor due to relying on human supervision, which
hinders the potential of this method to scale to the large
set of diverse skills needed for a robot to operate in the
real world. As a potential solution, state-of-the-art global-
planning-through-contact methods, such as the Global Quasi-
Dynamic Planner (GQDP) [3], can synthesize long-horizon
behaviors with complex intermittent contact interactions, yet
the resulting plans are fragile (even with a perfect model)
when executed in an open-loop fashion. Our hypothesis is
that AMP can help us convert a rough (and potentially
infeasible) plan into a feedback policy that can immediately
be deployed on hardware. It is noteworthy that while it is
possible to track plans with conventional control methods
that often entail estimations for hidden model parameters,
learning approaches let us work directly with output feed-
back.

Imitating plans is not a new idea and has been previously
studied, especially for quadruped locomotion, e.g., [36–39].

In the context of manipulation, Wang et al. [40] proposed
using a motion and grasp planner for two purposes: (i)
to generate demonstrations for off-policy learning and (ii)
to supervise an auxiliary-goal, grasp-pose-prediction task.
As a result, they obtain closed-loop grasping and human-
robot handover behaviors. Huang et al. [41] propose a
diffusion-based generative sampling framework that can pro-
vide physics-aware goal-oriented plans given a 3D scene.
They showcase this approach for dexterous grasp genera-
tion and collision-aware arm motion planning using offline-
generated plans. However, due to its pure imitation nature,
this method requires several high-fidelity plans.

Despite exciting advancements in leveraging planning to
guide RL for locomotion problems, this has not yet translated
to dexterous manipulation, probably due to the unavailability
of reliable planners until recently. In this work, we introduce
a simple but effective framework named Plan-Guided Rein-
forcement Learning (PGRL), which is illustrated in Fig. 2.
This framework, while planner agnostic, first uses the GQDP
to synthesize quasi-dynamic plans which are not necessarily
feasible, given the desired pose of the manipuland. Then, the
AMP is used to complete the gaps in the plan and derive a
closed-loop policy with similar motion characteristics to the
plan. We test this approach to address a complex whole-body
manipulation task employing Toyota Research Institute’s
Punyo robot [42]. Our preliminary findings show that this ap-
proach can enable generating policies efficiently even from a
single, infeasible example plan. Notably, our method obviates
the requirement for human demonstrations and operates in
conjunction with a simplified reward function. Facilitated by
domain randomization and the inherent robustness stemming
from Punyo’s passive compliance, the trained policies can be
seamlessly transferred to real hardware without necessitating
subsequent processing. While we present an instance of this
approach using GQDP, we emphasize that this approach is
not limited to a certain source for the demonstration and
could be used with other types of planners and teleoperation
data. Nevertheless, the impact of the demonstration type on
the performance is an open question.

II. METHOD

In this section, we briefly describe the methods we use for
the proposed framework. The implementation details can be
found in section V-A.

A. Planning Through Contact

We select GQDP [3] as the contact-implicit planner be-
cause of its capability for synthesizing long-horizon behav-
iors with multiple intermittent contacts. This approach as-
sumes quasi-dynamics to reduce the problem into the config-
uration space and uses a contact smoothing scheme that along
with the locally linear model is used to derive a reachability
metric. As a result, the planning through contact problem
given initial and desired configurations can be solved by a
sampling-based planner, in this case, the rapidly exploring
random tree (RRT) method [43]. The path generated by
RRT is then refined using trajectory optimization to output

Fig. 2: A flowchart of the proposed framework: the process commences
with the acquisition of a reference motion dataset, generated through the
utilization of a model-based planner; then the system undertakes the training
of a discriminator, designed to acquire proficiency in learning an imitation
reward, and a policy, which in turn empowers the robot to replicate the
demonstrated motion style while simultaneously accomplishing the intended
task.

a trajectory denoted as T ′ = {(qa
t ,q

u
t ,at)|t = 0, · · · , T}.

Here, qa
t and qu

t are the configurations of the actuated and
unactuated degrees of freedom of the system, and at denotes
the robot position commands (or actions) for a joint stiffness
controller at each discrete time step t.

It is pertinent to note that the resulting plan may exhibit
non-physical behavior because of: (i) the quasi-dynamic as-
sumption breaking when the system moves at non-negligible
speeds and (ii) a robot teleport issue when switching contact
modes. Due to (ii), the manipuland is not guaranteed to
remain stable when the robot transitions from one contact
configuration to another. This entails that while the robot fol-
lows the planned waypoints qa

t , the manipuland may not stay
at the corresponding qu

t for unstable tasks. Consequently,
in our approach, we retain only the robot’s configuration
sequence T = {qa

t |t = 0, · · · , T} as the demonstration.

B. Example-Guided Reinforcement Learning

Given a dataset of reference motions and a task objective
defined by a reward function, AMP synthesizes a control
policy that enables the agent to achieve the task objective,
while utilizing behaviors that resemble the motion style of
the dataset. It is important to emphasize that the agent’s
behaviors are not obligated to precisely replicate individual
motions from the dataset. Rather, the agent is encouraged
to embody the broader characteristics observed within the
collection of reference motions. This renders the GQDP a
promising candidate for serving as the demonstrator. The
emphasis here lies not on the successful task completion
through the plan, but rather on utilizing it as a stylistic
guide to steer the robot’s behavior and increase the training
efficiency and effectiveness.

Our policy is trained through an RL framework, wherein
an agent engages with an environment in accordance with a
policy denoted as π. At each time step t, the agent perceives
the state st ∈ S of the system. It then proceeds to sample an
action at ∈ A from the policy, adhering to the probabilistic
distribution at ∼ π(at|st). Subsequently, the agent runs this

chosen action, leading to a new state st+1, accompanied by
a scalar reward rt = r(st,at, st+1). In accordance with [30],
we formulate the reward function as comprising two distinct
components: (i) the task reward rG that quantifies the degree
of task accomplishment, and (ii) the style reward rS that
assesses the resemblance between the robot’s motion and
the reference motions:

r(st,at, st+1) = λrG(st+1,at) + (1− λ)rS(st, st+1),

where λ ∈ [0, 1] determines the task reward weight with
respect to the imitation reward weight.

To minimize reward shaping, we choose to employ a
straightforward task-reward function rG = dtrans+drot+p,
where dtrans and drot quantify the translation and rotation
distances to the goal manipuland pose, and p encompasses
conventional penalty components often integrated for RL,
such as a penalty for actions and velocities.

rS is decided by the output of a discriminator, which dis-
criminates whether a state transition belongs to the demon-
stration distribution or not, and the discriminator is trained
together with the policy from scratch. Prior to presenting a
state transition as input to the discriminator, an observation
map Φ(st) extracts the features from the system state st for
selecting the attributes associated with a particular skill. This
is an important aspect since it lets us get away with plans that
contain infeasible actions by only mimicking the equilibrium
joint poses qa for imitation, unlike typical behavior cloning
methods that imitate feasible actions.

III. EXPERIMENTS & RESULTS

We test our approach on a whole-body manipulation task
for pivoting and lifting a box, as depicted in Fig. 1(a).
This evaluation is conducted using the Punyo robot [42]: an
assemblage comprising of two Jaco robot arms, each with
soft visuotactile sensors as end-effectors [44] and an array
of 7 air-filled pressure-based sensors that cover each arm. To
estimate the manipuland pose, we use an OptiTrack motion-
capture system.

The code provided in [3] is used for planning. Then, the
refined plan obtained from this framework is post-processed
for two reasons: (i) to prevent undesired robot-manipuland
collisions and (ii) to stabilize the object using a task-specific
heuristic that makes the idle left arm to support the box when

Fig. 3: Performance of PGRL (λ = 0.9) and RL (λ = 1) where λ is the
task reward weight.

Fig. 4: Aggregated results of rolling out the RL and PGRL policies in 1000 different environments. The box plots show the mean and standard deviation
for the task reward and the minimum translational and rotational distances of the manipuland to the goal along each rollout.

moving between segments. For this purpose, the kinematic
trajectory optimization method in Drake [45] is used with
minimum distance constraints.

For policy learning, we employ the proximal policy op-
timization (PPO) algorithm [46]. Particularly, we utilize the
PPO implementation in [47] and the AMP implementation
in [48] to run in Isaac Gym [49]. Furthermore, we incorpo-
rate domain randomization [50] to facilitate the transfer of
learned behaviors from simulation to real. See the Appendix
section for further implementation details.

We run simulation experiments to compare PGRL to
GQDP and to standard model-free RL (denoted as RL),
which is also trained with PPO using only the task reward.
Additionally, we test the policy generated by our proposed
approach (PGRL) on hardware. When rolling out the GQDP
plan in simulation, the robot encounters difficulty in success-
fully lifting the box due to the teleportation issue described in
section II-A. The inability to achieve success in this scenario
in the absence of any model mismatch from planning to
simulation prompted the decision not to proceed with testing
under conditions of likely model-mismatch in real.

Figure 1 presents a juxtaposition between key points
extracted from the plan employed for training and analogous
key points identified during the execution of the RL policies.
See the accompanying video [Link] for the full motions.
The visual analysis shows the proficiency of our method in
emulating the motion style imposed by the plan, whereas
standard RL leads to unnatural behaviors with unsatisfactory
task performance. Specifically, the RL policy can only pivot
the box but fails to maintain it at the desired height. More-
over, the RL training in PGRL helps to bridge the gaps in the
GQDP plan (i.e., infeasible transitions during the teleports)
and enables task completion. It is also noteworthy that PGRL
alters the contact sequence in the plan to a more robust one
owing to domain randomization.

To compare PGRL and RL, we train policies by maintain-
ing uniformity across all parameters except for λ, which is
set to 1 (i.e., no imitation reward) for the RL case. Fig.
3 illustrates the mean task reward curve along with the
standard deviation resulting from three training instances
with different seeds. Notably, our approach (trained with
λ = 0.9) outperforms RL in terms of task reward even
though RL’s sole objective is to maximize this metric.

To evaluate the trained policies, we roll them out in 1000
distinct environment instantiations, encompassing variations

in the physical properties of the manipuland (such as mass,
friction, and size) as well as the initial position (extracted
from the identical distribution utilized during training). The
mean and standard deviation of the accumulated task reward,
and the minimum translational and rotational distances of the
manipuland to its goal pose along each rollout for both RL
and PGRL are shown in Fig. 4.

IV. CONCLUSION & FUTURE WORK

In this study, we introduced a plan-guided RL framework
to convert complex, long-horizon, contact-rich manipulation
trajectories to a closed-loop policy that is sufficiently robust
to be deployed in the real world. As a proof of concept, we
tested the proposed approach on a whole-body box reorien-
tation and lifting task using a single, infeasible plan. The
results imply that: (i) PGRL can fix infeasible transitions in
the plan while maintaining the desired motion characteristics,
(ii) the guidance can help to compose a strategy that is
better than one that standard RL can discover alone without
extensive reward engineering, and (iii) the RL training and
domain randomization can enable obtaining a similar but
more robust behavior compared to the plan by altering the
contact configurations as necessary.

The preliminary results are promising but there are many
open research questions that require further investigation. In
particular, our future studies would explore the following:

• incorporating tactile information into the imitation
and/or policy observation spaces with the hope that this
can mitigate the need for motion capture for tracking the
manipuland’s pose (which is already restrictive due to
heavy occlusions during whole-body interactions) and
enable extending the framework to tasks that are more
sensitive to force interactions;

• the impact of the quality and quantity of example
motions (either plans or teleoperation data with different
fidelity) on the performance;

• synthesizing more complex behaviors by using exam-
ples for diverse skills with the hope that AMP would
be able to automatically compose them;

• understanding the effect of the demonstrated contact
sequence on the exploration and how it is modified
during the RL training; and

• trying methods like curriculum learning to increase
learning efficiency and policy robustness.

https://drive.google.com/file/d/1Vu4PwfqgXsMbPwdVNK1pppuQjMOUvIKl/view?usp=sharing

REFERENCES

[1] M. T. Mason, “Toward robotic manipulation,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 1, pp. 1–28, 2018.

[2] N. Chavan-Dafle and A. Rodriguez, “Sampling-based planning of in-
hand manipulation with external pushes,” in Robotics Research: The
18th International Symposium ISRR. Springer, 2020, pp. 523–539.

[3] T. Pang, H. Suh, L. Yang, and R. Tedrake, “Global planning for
contact-rich manipulation via local smoothing of quasi-dynamic con-
tact models,” arXiv preprint arXiv:2206.10787, 2022.

[4] X. Cheng, E. Huang, Y. Hou, and M. T. Mason, “Contact mode guided
motion planning for quasidynamic dexterous manipulation in 3D,” in
2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 2730–2736.

[5] M. Zhang, D. K. Jha, A. U. Raghunathan, and K. Hauser, “Simul-
taneous trajectory optimization and contact selection for multi-modal
manipulation planning,” arXiv preprint arXiv:2306.06465, 2023.

[6] R. Natarajan, G. L. Johnston, N. Simaan, M. Likhachev, and H. Choset,
“Torque-limited manipulation planning through contact by interleaving
graph search and trajectory optimization,” in 2023 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2023, pp.
8148–8154.

[7] A. Ö. Önol, R. Corcodel, P. Long, and T. Padır, “Tuning-free contact-
implicit trajectory optimization,” in 2020 IEEE International Confer-
ence on Robotics and Automation (ICRA). IEEE, 2020, pp. 1183–
1189.

[8] M. Wang, A. Ö. Önol, P. Long, and T. Padır, “Contact-implicit
planning and control for non-prehensile manipulation using state-
triggered constraints,” in The International Symposium of Robotics
Research. Springer, 2022, pp. 189–204.

[9] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song,
“Diffusion policy: Visuomotor policy learning via action diffusion,”
arXiv preprint arXiv:2303.04137, 2023.

[10] S. Haldar, J. Pari, A. Rai, and L. Pinto, “Teach a robot to fish:
Versatile imitation from one minute of demonstrations,” arXiv preprint
arXiv:2303.01497, 2023.

[11] M. Du, S. Nair, D. Sadigh, and C. Finn, “Behavior retrieval: Few-
shot imitation learning by querying unlabeled datasets,” arXiv preprint
arXiv:2304.08742, 2023.

[12] J. Barreiros, L. Tianshu, M. Chiaramonte, K. Jost, Y. Menguc,
N. Colonnese, and P. Agarwal, “Hyfar: A textile soft actuator for haptic
clothing interfaces.” ACM, 2022.

[13] C. Rognon, S. Mintchev, F. Dell’Agnola, D. Atienza, and D. Floreano,
“Flyjacket: An upper body soft exoskeleton for immersive drone
control.” IEEE, 2018, pp. 2362–2369.

[14] T. Chen, J. Xu, and P. Agrawal, “A system for general in-hand object
re-orientation,” in Conference on Robot Learning. PMLR, 2022, pp.
297–307.

[15] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. Mc-
Grew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray et al.,
“Learning dexterous in-hand manipulation,” The International Journal
of Robotics Research, vol. 39, no. 1, pp. 3–20, 2020.

[16] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar, “Deep dynamics
models for learning dexterous manipulation,” in Conference on Robot
Learning. PMLR, 2020, pp. 1101–1112.

[17] T. Chen, M. Tippur, S. Wu, V. Kumar, E. Adelson, and P. Agrawal, “Vi-
sual dexterity: In-hand dexterous manipulation from depth,” in ICML
Workshop on New Frontiers in Learning, Control, and Dynamical
Systems, 2023.

[18] J. EEßerer, N. Bach, C. Jestel, O. Urbann, and S. Kerner, “Guided
reinforcement learning: A review and evaluation for efficient and
effective real-world robotics,” IEEE Robotics & Automation Magazine,
2022.

[19] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot,
N. Heess, T. Rothörl, T. Lampe, and M. Riedmiller, “Leveraging
demonstrations for deep reinforcement learning on robotics problems
with sparse rewards,” arXiv preprint arXiv:1707.08817, 2017.

[20] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman,
E. Todorov, and S. Levine, “Learning complex dexterous manipulation
with deep reinforcement learning and demonstrations,” arXiv preprint
arXiv:1709.10087, 2017.

[21] X. B. Peng, P. Abbeel, S. Levine, and M. Van de Panne, “Deepmimic:
Example-guided deep reinforcement learning of physics-based char-
acter skills,” ACM Transactions On Graphics (TOG), vol. 37, no. 4,
pp. 1–14, 2018.

[22] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel,
“Overcoming exploration in reinforcement learning with demonstra-
tions,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 6292–6299.

[23] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tunyasu-
vunakool, J. Kramár, R. Hadsell, N. de Freitas et al., “Reinforcement
and imitation learning for diverse visuomotor skills,” arXiv preprint
arXiv:1802.09564, 2018.

[24] H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar, “Dexter-
ous manipulation with deep reinforcement learning: Efficient, general,
and low-cost,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 3651–3657.

[25] V. G. Goecks, G. M. Gremillion, V. J. Lawhern, J. Valasek, and N. R.
Waytowich, “Integrating behavior cloning and reinforcement learning
for improved performance in dense and sparse reward environments,”
arXiv preprint arXiv:1910.04281, 2019.

[26] S. Christen, S. Stevšić, and O. Hilliges, “Demonstration-guided deep
reinforcement learning of control policies for dexterous human-robot
interaction,” in 2019 International Conference on Robotics and Au-
tomation (ICRA). IEEE, 2019, pp. 2161–2167.

[27] X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan, and S. Levine,
“Learning agile robotic locomotion skills by imitating animals,” arXiv
preprint arXiv:2004.00784, 2020.

[28] A. Nair, A. Gupta, M. Dalal, and S. Levine, “AWAC: Accelerating
online reinforcement learning with offline datasets,” arXiv preprint
arXiv:2006.09359, 2020.

[29] S. P. Arunachalam, S. Silwal, B. Evans, and L. Pinto, “Dexterous im-
itation made easy: A learning-based framework for efficient dexterous
manipulation,” in 2023 ieee international conference on robotics and
automation (icra). IEEE, 2023, pp. 5954–5961.

[30] X. B. Peng, Z. Ma, P. Abbeel, S. Levine, and A. Kanazawa, “Amp:
Adversarial motion priors for stylized physics-based character con-
trol,” ACM Transactions on Graphics (ToG), vol. 40, no. 4, pp. 1–20,
2021.

[31] E. Vollenweider, M. Bjelonic, V. Klemm, N. Rudin, J. Lee, and
M. Hutter, “Advanced skills through multiple adversarial motion priors
in reinforcement learning,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2023, pp. 5120–5126.

[32] A. Escontrela, X. B. Peng, W. Yu, T. Zhang, A. Iscen, K. Goldberg,
and P. Abbeel, “Adversarial motion priors make good substitutes for
complex reward functions,” in 2022 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). IEEE, 2022, pp.
25–32.

[33] C. Li, M. Vlastelica, S. Blaes, J. Frey, F. Grimminger, and G. Mar-
tius, “Learning agile skills via adversarial imitation of rough partial
demonstrations,” in Conference on Robot Learning. PMLR, 2023,
pp. 342–352.

[34] C. Li, S. Blaes, P. Kolev, M. Vlastelica, J. Frey, and G. Martius,
“Versatile skill control via self-supervised adversarial imitation of
unlabeled mixed motions,” in 2023 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2023, pp. 2944–2950.

[35] J. Wu, G. Xin, C. Qi, and Y. Xue, “Learning robust and agile
legged locomotion using adversarial motion priors,” IEEE Robotics
and Automation Letters, 2023.

[36] M. Bogdanovic, M. Khadiv, and L. Righetti, “Model-free reinforce-
ment learning for robust locomotion using demonstrations from tra-
jectory optimization,” Frontiers in Robotics and AI, vol. 9, p. 854212,
2022.

[37] Y. Fuchioka, Z. Xie, and M. Van de Panne, “Opt-mimic: Imitation
of optimized trajectories for dynamic quadruped behaviors,” in 2023
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2023, pp. 5092–5098.

[38] A. Miller, S. Fahmi, M. Chignoli, and S. Kim, “Reinforcement
learning for legged robots: Motion imitation from model-based optimal
control,” arXiv preprint arXiv:2305.10989, 2023.

[39] D. Kang, J. Cheng, M. Zamora, F. Zargarbashi, and S. Coros, “Rl+
model-based control: Using on-demand optimal control to learn ver-
satile legged locomotion,” arXiv preprint arXiv:2305.17842, 2023.

[40] L. Wang, Y. Xiang, W. Yang, A. Mousavian, and D. Fox, “Goal-
auxiliary actor-critic for 6d robotic grasping with point clouds,” in
Conference on Robot Learning. PMLR, 2022, pp. 70–80.

[41] S. Huang, Z. Wang, P. Li, B. Jia, T. Liu, Y. Zhu, W. Liang, and S.-C.
Zhu, “Diffusion-based generation, optimization, and planning in 3d
scenes,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023, pp. 16 750–16 761.

[42] A. Goncalves, N. Kuppuswamy, A. Beaulieu, A. Uttamchandani, K. M.
Tsui, and A. Alspach, “Punyo-1: Soft tactile-sensing upper-body robot
for large object manipulation and physical human interaction,” in
2022 IEEE 5th International Conference on Soft Robotics (RoboSoft).
IEEE, 2022, pp. 844–851.

[43] S. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Research Report 9811, 1998.

[44] N. Kuppuswamy, A. Alspach, A. Uttamchandani, S. Creasey, T. Ikeda,
and R. Tedrake, “Soft-bubble grippers for robust and perceptive ma-
nipulation,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2020, pp. 9917–9924.

[45] R. Tedrake and the Drake Development Team, “Drake: Model-based
design and verification for robotics,” 2019. [Online]. Available:
https://drake.mit.edu

[46] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[47] D. Makoviichuk and V. Makoviychuk. rl-games: A high-performance
framework for reinforcement learning. [Online]. Available: https:
//github.com/Denys88/rl games

[48] IsaacGymEnvs. [Online]. Available: https://github.com/
NVIDIA-Omniverse/IsaacGymEnvs

[49] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State,
“Isaac gym: High performance gpu-based physics simulation for robot
learning,” 2021.

[50] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ international con-
ference on intelligent robots and systems (IROS). IEEE, 2017, pp.
23–30.

V. APPENDIX

A. Implementation Details

1) Task Reward: The task reward is implemented as

rGt = wtrans(1/(∥dtrans(qu
t ,q

u
goal)∥+ 0.1))+

wrot(1/(∥drot(qu
t ,q

u
goal)∥+ 0.1))+

waction||at||2 + wvelocity||q̇u
t ||2 + wtermination1(q

u
t).

The initial two terms incentivize task completion. The fol-
lowing two terms impose penalties on both the robot’s
actions and the manipuland’s velocity. The final term en-
forces a penalty upon the activation of termination con-
ditions. These conditions manifest when the box deviates
significantly from the center of the table or experiences a
drop. The function 1(·) is an activation function based on
termination conditions. We use the weights wtrans = 0.07,
wrot = 0.03, waction = −0.002, wvelocity = −0.002,
and wtermination = −1 for all experiments. The task is
defined by qu

goal = (0.15, 0, 0.4, 0,−π/2, 0) concatenating
the positions in m and roll-pitch-yaw in rad.

2) Observations: The observation of the discriminator
is joint position transitions of the robot (qa

t , qa
t+1). The

observation of the policy is (qa
t ,q

u
t ,p

ee
t) where pee

t is the
Cartesian end-effector poses and qu

t is the manipuland pose.
3) Training Parameters: The learning networks and algo-

rithm were implemented in PyTorch 1.8.1 with CUDA 12.0.
The training procedure encompassed the collection of expe-
riences from 4096 uncorrelated instances of the simulator
performed in parallel. The entirety of the experimental work
was executed on a desktop equipped with NVIDIA 3090
GPUs. A single run comprising 1,500 iterations, adhering
to the aforementioned computational settings and device
specifications, was accomplished within approximately 4

hours. Detailed training parameters and network architectures
are outlined in Tables I and Table II, respectively.

Parameter Value
γ 0.99
τ 0.95
λ 0.9

parallel training environments 4096
sample per update iteration 4096

batch size 512
learning rate 5e−5

KL divergence target 8e−3

clip range 0.2
horizon length 64

discriminator weight decay 1e−4

discriminator gradient penalty 10

TABLE I: Training parameters.

Network Type Hidden Layers Activation
policy MLP [256, 128, 64] Rectified Linear Unit (ReLU)

value function MLP [256, 128, 64] Rectified Linear Unit (ReLU)
discriminator MLP [256, 128, 64] Rectified Linear Unit (ReLU)

TABLE II: Network architecture.

4) Domain Randomization: Domain randomization tech-
niques are judiciously employed during the training process
to enhance robustness and performance. This involves the
systematic application of disturbances to various parameters.
Specifically, we initialize the manipuland on the table uni-
formly within a 5 cm radius of its nominal initial position
[0.35. 0, 0.13] m. Additionally, a perturbation sampled from
the uniform distribution U(−0.05, 0.05) is added to its yaw
angle. A noise sampled from N (0, 0.02) rad is injected into
the robot’s actions (i.e., joint position commands to a stiff-
ness controller), and a disturbance drawn from U(0.0, 0.5)
m/s2 is added to the gravity. Furthermore, the distributions
U(0.9, 1.1), U(0.8, 1.2), and U(0.8, 1.0) are used to scale
the dimensions and mass of the manipuland and the friction
coefficient for all contacts. The nominal manipuland dimen-
sions and mass are [0.41. 0.315, 0.26] m and 0.45 kg, and
the nominal friction coefficient is 1.

B. Acknowledgments

The authors extend their sincere appreciation to Tao Chen,
Chenhao Li, and Binghao Huang for their valuable assistance
in the implementation process. Gratitude is also expressed
to Russ Tedrake, Hongkai Dai, Benjamin Burchfiel, and the
Dexterous Manipulation group at TRI for their insightful
discussions. Furthermore, the authors would like to thank
Alex Alspach, Sam Creasey, Aimee Goncalves, and the
entire Punyo team for their generous support, constructive
feedback, and the exceptional hardware provided.

https://drake.mit.edu
https://github.com/Denys88/rl_games
https://github.com/Denys88/rl_games
https://github.com/NVIDIA-Omniverse/IsaacGymEnvs
https://github.com/NVIDIA-Omniverse/IsaacGymEnvs

	Introduction
	Method
	Planning Through Contact
	Example-Guided Reinforcement Learning

	Experiments & Results
	Conclusion & Future Work
	References
	Appendix
	Implementation Details
	Task Reward
	Observations
	Training Parameters
	Domain Randomization

	Acknowledgments

