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1 INTRODUCTION

Understanding the evolutionary relationships between protein sequences is crucial for phylogenetic
classification, mutation prediction, and functional annotation. The NCBI taxonomy database (Sayers
et al., 2022) contains over one million distinct taxa, but many classes have very few representative
sequences, creating extreme class imbalance. Traditional sequence similarity-based methods like
BLAST are widely used for taxonomic classification but are computationally expensive and ineffec-
tive for de novo sequences without close homologs.

Recent deep learning approaches, such as PhyloTransformer (Wu et al., 2021) and TEMPO (Zhou
et al., 2023), have leveraged transformer-based architectures for phylogenetic tasks. However, these
models do not impose explicit hierarchical constraints, limiting their ability to ensure phylogenetic
consistency. Inspired by phylogenetic tree-guided learning (Chandar et al., 2024; Yax et al., 2024),
we introduce a model that combines a frozen ESM feature extractor with attention pooling and
hierarchical softmax-based classification.

HATax-ESM improves computational efficiency while enforcing structured taxonomic predictions.
By conditioning classification probabilities at each level, our model ensures predictions follow valid
phylogenetic lineages, making it a robust alternative to traditional similarity-based methods. This
structured approach allows for better generalization, particularly for underrepresented taxa, enhanc-
ing protein classification and evolutionary inference.

2 METHODS

2.1 DATASET PREPARATION AND PHYLOGENETIC SAMPLING

We curated a data set of 180 million UniProt protein sequences, filtering for sequences less than or
equal to 500 amino acids. A total of 20% of the data was reserved for testing, ensuring a balanced
split across taxonomic levels. Inspired by phylogenetic tree-based sampling methods (Zhou et al.,
2023), we selected test samples by starting from the leaf nodes and moving up the tree, maintaining
a consistent 20% representation per parent node at each hierarchical level. This ensured that each
parent node had representation in the test set while preventing over-sampling.

For validation, we selected 940 representative sequences, ensuring that at least one child per parent
node was included for the first six levels of the phylogenetic tree. This hierarchical sampling ap-
proach was motivated by previous studies in phylogenetic-guided deep learning (Wu et al., 2021;
Chandar et al., 2024) and ensures an informative subset for evaluation.

2.2 MODEL ARCHITECTURE

The model consists of three primary components:

ESM Feature Extractor: We used the ESM2-t33-650M-UR50D model (Rives et al., 2021), a frozen
transformer-based model pretrained on large protein sequence datasets, to extract meaningful em-
beddings.

Attention Pooling Layer: Given that protein sequences vary in length, we applied scaled dot-product
attention (Vaswani et al., 2023) to produce a fixed-dimensional representation for downstream clas-
sification.
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Hierarchical Softmax Classifier: The final classification layer implements a hierarchical softmax,
where the probability distribution at each level is conditioned on the previous level. This approach
improves efficiency and enforces phylogenetic structure (Mohammed & Umaashankar, 2018).

Unlike PhyloTransformer (Wu et al., 2021), which employs a self-attention mechanism for mutation
prediction, our model explicitly encodes phylogenetic constraints into the classification process. Hi-
erarchical softmax has been successfully applied in language models (Mohammed & Umaashankar,
2018), and our work extends this paradigm to protein classification.

3 RESULTS

After training on 9 million sequences, our model achieved an average classification accuracy of
35% across the validation set. The accuracy was computed based on correctly predicted tree nodes
over the total number of nodes in the ground-truth tree. If the model predicted a child node not
belonging to a valid lineage, inference was terminated at that point. This evaluation strategy aligns
with methodologies used in phylogenetic-informed AI models (Wu et al., 2021; Yax et al., 2024).

An overview of the dataset structure, model architecture, and training performance is provided in
Appendix B. The dataset follows a hierarchical phylogenetic structure spanning 36 levels, with
Cellular Organisms and Viruses as the two primary top-level categories. The class distribution across
levels shows that Cellular Organisms exhibit a broader taxonomic diversity compared to Viruses.
Training performance trends indicate a steady improvement in classification accuracy as the model
processes more sequences.

To assess the difficulty of the classification task, we computed the expected accuracy under andom
guessing. The expected full-lineage accuracy—the probability of randomly predicting an entire lin-
eage correctly—was found to be 5.6 × 10−5. The expected fraction of correct nodes per lineage,
which represents the probability of correctly guessing an individual node at any level, was 2.98%.
The formulation for these calculations is provided in Appendix A, where we describe the proba-
bilistic approach used to estimate these values.

Our experiments were conducted on two AMD MI-250 GPUs, leveraging mixed-precision and dis-
tributed training with PyTorch Lightning. The model consisted of 2.5 billion parameters, with 1.8
billion trainable parameters coming from the hierarchical classifiers.

4 DISCUSSION AND FUTURE WORK

The results indicate that even with limited training data (˜10% of total sequences), the model can
learn meaningful phylogenetic relationships. This highlights the utility of hierarchical softmax for
structured classification problems in biology. Compared to PhyloTransformer (Wu et al., 2021) and
TEMPO (Zhou et al., 2023), which focus on mutation prediction, our approach excels in taxonomy-
aware classification, ensuring that predictions remain biologically interpretable.

Beyond classification, our model has significant applications in functional annotation. Many newly
discovered protein sequences lack well-defined taxonomic labels, making annotation difficult. By
providing a structured prediction framework, our model can infer evolutionary relationships and
assign meaningful classifications to previously uncharacterized proteins. Additionally, the model’s
hierarchical nature makes it compatible with generative models, offering a means of enforcing tax-
onomic constraints in protein design. For instance, a generative model could sample new protein
sequences while ensuring that their evolutionary placement remains consistent with known biologi-
cal taxonomies.

Future work will extend training to the entire dataset, exploring methods to further refine hierar-
chical modeling. Additional improvements include integrating contrastive learning techniques for
enhanced representation learning and adapting the model to predict functional annotations along-
side taxonomic labels. Moreover, we aim to explore the integration of the classifier with generative
protein sequence models, allowing evolutionary constraints to guide sequence generation in protein
design applications. This model serves as a crucial evaluation step for generative models, ensur-
ing that the generated protein sequences align with the intended taxonomy and maintain the correct
phylogenetic structure.
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MEANINGFULNESS STATEMENT

Language serves as a fundamental tool for mapping concepts to words in our daily lives. Similarly,
in the realm of biological sciences, proteins can be understood as a “language” of life, encoding
functional and structural information. This work explores how deep learning models can bridge
these two representations by leveraging protein sequences to generate meaningful taxonomic lin-
eage mappings. By doing so, we aim to enhance our understanding of the underlying biological
relationships and contribute to the broader effort of translating complex biological data into inter-
pretable and structured knowledge.
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A ACCURACY CALCULATIONS

A.1 EXPECTED ACCURACY UNDER RANDOM GUESSING

To evaluate the difficulty of the phylogenetic classification task, we computed the expected accuracy
assuming random selection of nodes at each level. Given that each taxonomic level contains a
varying number of possible children per parent node, the probability of correctly guessing a lineage
depends on the branching structure of the taxonomy.
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Let Cℓ represent the number of possible child classes at level ℓ. The probability of correctly selecting
the true lineage at each level is given by:

Pcorrect,ℓ =
1

Cℓ
(1)

Since classification involves making predictions across multiple levels of the hierarchy, the proba-
bility of randomly selecting the entire correct lineage is computed as the product of the independent
probabilities at each level:

Pfull-lineage =

L∏
ℓ=1

Pcorrect,ℓ =

L∏
ℓ=1

1

Cℓ
(2)

where L is the total depth of the lineage. Using this approach, we estimated:

• Expected full-lineage accuracy (random guessing): 5.677858× 10−5

• Expected fraction of correctly predicted nodes in a lineage: 2.98%

These values indicate that random guessing would result in an extremely low probability of correctly
classifying an entire lineage, reinforcing the difficulty of the task.

A.2 VALIDATION ACCURACY CALCULATION

In contrast to the expected accuracy under random guessing, the validation accuracy of our model is
computed by measuring the fraction of correctly predicted nodes in a lineage. Given a ground truth
taxonomy and a predicted taxonomy, we define accuracy as:

Validation Accuracy =
Number of correctly predicted nodes

Total number of nodes in ground truth lineage
(3)

For example, consider the following ground truth and predicted lineages:

• Ground truth: Cellular Organisms, Eukaryota, Opisthokonta, Fungi, Dikarya, Basidiomy-
cota, Agaricomycotina, Agaricomycetes, Agaricomycetes Incertae Sedis, Cantharellales,
Ceratobasidiaceae, Ceratobasidium, Unclassified Ceratobasidium, Ceratobasidium sp. AG-
Ba.

• Predicted: Cellular Organisms, Eukaryota, Opisthokonta, Fungi, Dikarya, Ascomycota.

Here, the model correctly predicts 5 out of 14 nodes (up to Dikarya), but incorrectly classifies the
next taxonomic level. Using the formula:

Accuracy =
5

14
= 0.3571 (4)

This demonstrates how validation accuracy is computed, ensuring that only the correctly predicted
hierarchical nodes contribute to the accuracy measure.

B MODEL ARCHITECTURE AND TRAINING PERFORMANCE
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Figure 1: Overview of the hierarchical phylogenetic classification model. (A) Model Architecture:
Protein sequences are first processed using a frozen ESM-2 model to generate embeddings, which
are then refined through attention pooling before being passed into hierarchical classifiers for tax-
onomic prediction. (B) Dataset Structure: The dataset follows a hierarchical phylogenetic tree
structure with a total of 36 levels, where Cellular Organisms and Viruses form the two major top-
level categories. Lower levels capture finer taxonomic classifications down to species. (C) Class
Distribution: The number of unique classes per level for Cellular Organisms and Viruses. Cellular
organisms exhibit a much broader class diversity at each level compared to viruses. (D) Model Per-
formance: Validation accuracy and training loss across the training steps. The validation accuracy
steadily improves with training, reaching 35% after processing 9 million records, while the training
loss consistently decreases, indicating effective learning.
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