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ABSTRACT

Learning from Demonstration (LfD) algorithms have shown promising results in
robotic manipulation tasks, but their vulnerability to adversarial attacks remains
underexplored. This paper presents a comprehensive study of adversarial attacks
on both classic and recently proposed algorithms, including Behavior Cloning
(BC), LSTM-GMM, Implicit Behavior Cloning (IBC), Diffusion Policy (DP), and
VQ-Behavior Transformer (VQ-BET). We study the vulnerability of these meth-
ods to untargeted, targeted and universal adversarial perturbations. While explicit
policies, such as BC, LSTM-GMM and VQ-BET can be attacked in the same
manner as standard computer vision models, we find that attacks for implicit and
denoising policy models are nuanced and require developing novel attack meth-
ods. Our experiments on several simulated robotic manipulation tasks reveal that
most of the current methods are highly vulnerable to adversarial perturbations. We
also investigate the transferability of attacks across algorithms, architectures, and
tasks and provide insights into the generalizability of adversarial perturbations in
LfD. We find that the success rate of the transfer attacks is highly dependent on
the task, raising necessity for more fine-grained metrics that capture both the task
difficulties and baseline performance of the algorithms. In summary, our findings
highlight the vulnerabilities of modern BC algorithms, paving way for future work
in addressing such limitations.

1 INTRODUCTION

Learning from Demonstration (LfD) has emerged as a powerful paradigm in Al and robotics, en-
abling agents to acquire complex behaviors from expert demonstrations. These techniques are in-
creasingly deployed in real-world scenarios, such as to enable robots in industrial automation and
household robotics. However, these policies pose potential security risks since they can be easily
maliciously manipulated by adversaries, causing undesired behaviors or even catastrophic incidents.
Motivated by these risks, to the best of our knowledge, we are the first to present a systematic study
of the vulnerabilities of modern LfD algorithms.

Adversarial attacks are a widely studied area that aims to develop imperceptible perturba-
tions (Szegedy et al.| 2013)) to change the output of machine learning models. Early work by|Szegedy
et al.| (2013) and \Goodfellow et al.|(2014) revealed that adding small, imperceptible perturbations to
images could drastically alter the prediction of neural network classifiers. Since then, a significant
number of works have explored various attack methods and defense techniques against adversarial
attacks (Akhtar & Mian 2018; Zhang et al., 2020; |(Chakraborty et al., 2021).

However, the robustness of LfD models to adversarial attacks has been largely overlooked in prior
research, particularly in the context of robotic manipulation tasks. While previous works have ex-
amined adversarial robustness in reinforcement learning (Mo et al., [2023}Sun et al., [2020j Pattanaik
et al., 2017; [Lin et al [2017; |Gleave et al.l [2019), including whitebox attacks (Huang et al., 2017}
Casper et al.||2022) and backdoor detection (Chen et al.} 2023]), the impact of such perturbations on
LfD remains underexplored. Attacks in the LfD domain present unique challenges, including tem-
poral dependencies in sequential decision-making and the multimodal nature of actions in complex
environments. This paper aims to investigate the vulnerabilities specific to LfD algorithms under
adversarial perturbations, shedding light on their susceptibility and resilience in robotic settings.
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Additionally, the attacks developed in this study can be utilized for faster reliability estimation (Tit
& Furonl, [2024).

Jia et al.| (2022) showed that adversarial patches can mislead a robotic arm’s object detector, causing
it to behave in an undesirable manner. Unlike our work examining the vulnerabilities of modern
behavior cloning, they targeted traditional object detection models in industrial robots. To the best
of our knowledge, the only prior work closely related to this paper is by |Chen et al.| (2024) who ex-
plore adversarial attacks on diffusion policies (Chi et al.|[2023)). Their method involves attacking the
entire denoising process in the diffusion policy, which is computationally expensive. By contrast,
we demonstrate effective attacks by manipulating only a few steps of the denoising process, signifi-
cantly reducing the attack cost (interms of time and compute). In addition, while the Chen et al. only
focus on developing attacks for a single type of policy learning algorithm, our research examines
the vulnerabilities of several different LfD algorithms and also explores how adversarial perturba-
tions transfer across different algorithms, tasks, and architectures and visual backbones, offering a
broader and more comprehensive perspective on the vulnerability of modern behavior cloning and
the generalizability of such attacks.

Our work focuses specifically on post-deployment white-box attacks, where an adversary has ac-
cess to the trained model parameters but cannot modify the training process. This threat model is
particularly relevant for open-source robotics systems where model weights are publicly available,
a common practice in modern robotics research and deployment. Unlike training-time attacks that
aim to corrupt the learning process, our attacks target the inference phase, attempting to cause task
failures through carefully crafted perturbations to visual observations. While this may seem like
an overly strong adversarial capability, the increasing trend toward open-source release of robot
learning systems makes this a practical concern that needs to be addressed.

In this paper, we evaluate the adversarial robustness of several leading imitation learning frame-
works, including Vanilla Behavior Cloning (BC), LSTM-GMM (Mandlekar et al., 2021), Im-
plicit Behavior Cloning (IBC) (Florence et al., |2021), Diffusion Policy (Chi et al., [2023), and
VectorQuantizied-Behavior Transformer (VQ-BET) (Lee et al.l 2024). Among these, IBC and Dif-
fusion Policy have unique design pipelines that cause naive adversarial attacks to largely fail. IBC
employs energy-based models to learn implicit policies, offering greater flexibility in learning com-
plex, multimodal behaviors compared to traditional methods. However, because the correct action is
selected based on energy distribution rather than a single output during inference, naive attacks strug-
gle to target the correct action. To address this, we introduce a sampling-based attack method that
approximates the local energy surface, increasing the likelihood of selecting the desired target ac-
tion. Diffusion Policy, on the other hand, uses a generative model approach with denoising diffusion
techniques to iteratively refine actions, allowing it to capture diverse and continuous action distribu-
tions. While existing attacks (Chen et al.|2024) can degrade performance, they require manipulating
the entire denoising process, leading to high attack costs. One of our insights is that attacks are most
effective at later stages of the denoising process. By applying attacks specifically only on later stages
we can significantly improve attack efficiency. Overall, we hope our results serve as an impetus for
enhancing awareness of the security and reliability concerns regarding policies learned via behavior
cloning and will inspire researchers to develop more robust LfD algorithms.

The primary contributions of our work are as follows: (1) We conduct the first comprehensive study
of white-box adversarial attacks on Learning from Demonstration (LfD) algorithms, encompass-
ing both online (PGD) and offline (Universal Adversarial Perturbation) attacks. We evaluate these
attacks in both targeted and untargeted settings and highlight the vulnerability of all the LfD algo-
rithms studied in this paper. (2) We propose novel attack formulations for implicit models such as
IBC and Diffusion Policy. Our work addresses the unique challenges posed by the iterative action
selection process, representing one of the first successful attacks on these implicit policy models. (3)
We provide insights into the non-transferability of attacks across LfD algorithms with similar visual
backbones, a unique finding that contrasts with trends in computer vision and highlights the distinct
nature of vulnerabilities in LfD systems. (4) We find that, out of all the policies we test, Diffusion
Policies are the most robust. While recent work (Carlini et al.l [2023)) has shown that combining a
pretrained denoising diffusion probabilistic model and a standard high-accuracy classifier can yield
robustness for image classifiers, we are the first to study and showcase the relative robustness of
diffusion policies. We provide evidence that this robustness stems from its multi-step prediction
process rather than inherent resilience. Our results show that reducing the prediction horizon signif-
icantly decreases the adversarial robustness of diffusion policies.
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2 BEHAVIOR CLONING ALGORITHMS

In this section, we provide background on the Behavior Cloning (BC) algorithms we study in this
paper. To provide clarity throughout the discussion, we first define some key notations used across
these algorithms. Let £ € = represent a set of expert trajectory demonstrations, where £ is a trajec-
tory consisting of a sequence of state-action pairs (s, a), sampled from an expert policy 7*(s). Our
objective in behavior cloning is to learn a policy 7y (s), parameterized by 0, that imitates the expert’s
behavior by minimizing a loss function L that measures the difference between the expert actions
and the actions predicted bu the learned policy.

Formally, for a given policy g, we aim to minimize: 7 = argming, > ez > e L(mo(s), 7(s5))

where L is typically the cross-entropy loss for discrete actions or mean squared error for continuous
actions. However, some methods leverage specialized losses: LSTM-GMM uses a log-likelihood
objective to capture multimodal action distributions, while VQ-BET incorporates additional quanti-
zation losses. In Implicit Behavior Cloning (IBC), the loss is framed as a contrastive energy-based
model, and Diffusion Policy relies on a loss function based on noise estimation in a denoising pro-
cess. Despite these differences, the overarching goal remains the same: learning a policy that best
imitates the expert’s demonstrations.

2.1 VANILLA BEHAVIOR CLONING

Vanilla Behavior Cloning (Vanilla BC) learns a policy via supervised learning (Bain & Sammut,
1995; [Torabi et al.l 2018). Given a dataset of state-action pairs (s,a), it directly maps states to
actions using a neural network trained to minimize the cross-entropy loss for discrete actions or
mean squared error (MSE) for continuous actions. While effective for simple tasks, Vanilla BC
struggles with tasks requiring long-term dependencies owing to the problem of compounding error
and the tasks with multimodalilty in expert behavior, as it assumes a unimodal distribution over
actions (Ross et al., 2011} [Florence et al.| [2021).

2.2 LSTM-GMM

Long Short-Term Memory with Gaussian Mixture Model (LSTM-GMM) (Mandlekar et al., [2021])
enhances Vanilla BC by incorporating temporal dependencies through an LSTM network (Hochre-
iter & Schmidhuber; [1997). The LSTM processes a sequence of states si, sa, .. ., sp recursively,
maintaining an internal hidden state h; at each time step. The policy my(at|st, ht—1) is parame-
terized by the LSTM to model the temporal structure, while a GMM captures multimodal action
distributions at each time step. At each time step ¢, the LSTM updates its hidden state and predicts
a multimodal distribution over actions : hy = LSTM(s¢, ht—1) and p(a¢|st, he—1,0) = GMM(h;).
The policy is trained by maximizing the likelihood of the observed actions given the state sequence:
Ty = argmaxy dea Zthl log p(a¢|st, hi—1,0), where p(a¢|st, hi—1,0) is the probability of ac-
tion a; under the GMM, conditioned on the current state s; and the previous hidden state h;_.

2.3 IMPLICIT BEHAVIOR CLONING

Implicit Behavior Cloning (IBC) (Florence et al.,|2021) reformulates the problem of policy learning
as an energy-based model (EBM). Instead of explicitly predicting actions, IBC defines a compati-
bility score between states and actions using an energy function Ey(s, a). The policy is implicitly
represented by selecting actions that minimize the energy:my(s) = arg min, Fy(s, a) The model is
trained using contrastive learning, where the energy of expert actions is minimized relative to neg-
ative (non-expert) samples. The training loss typically follows the InfoNCE objective, as discussed
in more detail in section[3.3.1]

2.4 DIFFUSION PoLICY

Diffusion Policy (DP) (Chi et al.| |2023) uses a novel generative approach to model action distribu-
tions by leveraging Denoising Diffusion Probabilistic Models (Ho et al., | 2020). The policy is repre-
sented as a reverse diffusion process, which iteratively refines actions from Gaussian noise towards
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the true distribution. Given a noisy action ar sampled from a Gaussian distribution, the model itera-
tively denoises it using a learned denoising function conditioned on the state. The policy,with aq be-

ing the final action obtained after denoising, is defined as: 7y (ag|s) = pg(ar|s) Hthl po(ai—1|at, s)

2.5 VQ-BET

The Vector Quantized Behavior Transformer (VQ-BET) (Lee et al., 2024) combines a transformer-
based architecture with vector quantization to handle multi-modal continuous action spaces. The
policy discretizes actions into latent codes using a hierarchical quantization process, which allows
the model to capture both coarse- and fine-grained action details. The model’s policy is formulated as
a sequence prediction problem, where the transformer predicts discrete latent codes and continuous
offsets for actions.

3 ADVERSARIAL ATTACKS ON IMITATION LEARNING

We study two widely used adversarial attacks in our paper, namely, Projected Gradient Descent
(PGD) (Madry et al.,[2017) and Universal Adversarial Perturbations (UAP) (Moosavi-Dezfooli et al.,
2016). PGD iteratively applies a projected Fast Gradient Sign Method (FGSM) attack (Goodfellow
et al., |2014). UAP generates adversarial perturbations by considering multiple samples. Detailed
explanations about these attacks are given in Appendix [A]

3.1 THREAT MODEL

Before describing our attack methods, we first clearly specify our threat model:

Adversary’s Goal: The attacker aims to cause task failure by perturbing visual observations during
deployment, either through untargeted perturbations that disrupt normal policy execution or targeted
perturbations that force specific undesired actions.

Adversary’s Knowledge and Capabilities: The attacker has white-box access to the trained policy
parameters but cannot modify them. Perturbations are limited to the visual observation space (no di-
rect action manipulation). Perturbations must remain within an L,, norm ball of radius € to maintain
imperceptibility. The attacker can compute gradients through the entire policy network.

This threat model is particularly relevant for deployed robotic systems using open-source policies,
where model weights are publicly available but the training process is complete. We study both
online attacks (PGD) that can adapt perturbations in real-time and offline attacks (UAP) that must
generate a single fixed perturbation designed to work across all states.

3.2 ATTACKS ON EXPLICIT BC ALGORITHMS

The objectives for running PGD, and UAP on explicit behavior cloning methods such as Vanilla BC,
LSTM-GMM, and VQ-BET are based directly on their respective loss functions. For Vanilla BC, the
adversarial attacks aim to maximize the mean squared error (MSE) loss between the predicted and
expert actions by introducing small perturbations to the input states. In LSTM-GMM, the attacks
target the temporal dependencies modeled by the LSTM and the multimodal action distributions
captured by the Gaussian Mixture Model (GMM), aiming to disrupt the likelihood maximization
over the GMM outputs. For VQ-BET, the attacks exploit the latent action space by targeting the pre-
diction loss of discrete latent codes, ultimately leading to suboptimal action predictions. Each attack
(PGD, UAP) thus aims to create adversarial perturbations that exploit the specific vulnerabilities of
these loss functions to degrade performance.

3.3 ATTACKS ON IMPLICIT BC ALGORITHMS

Implicit BC algorithms differ from explicit ones in modeling the learning process and action selec-
tion, causing naive adversarial attacks largely fail to generate feasible perturbations. In this section,
we propose new attack formulations for implicit BC models considering their unique designs.
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3.3.1 IMPLICIT BEHAVIOR CLONING

Implicit Behavior Cloning (IBC) leverages implicit modeling techniques and contrastive learning
to learn a policy directly from expert demonstrations. In IBC, the policy mg(a | s) is learned by
optimizing an energy-based model (EBM) that assigns low energy values to actions demonstrated
by the expert and higher energy values to other actions. The energy function Fy(s, a) parameterized
by 6 is trained using the InfoNCE loss, for a batch of NV actions:

N e~ Bo(si,ai)
LinfoNCE = Z —log ol (D
e 0

i=1 sian) 4y o= Fa(s])

where a’ for j = 1,... Ny, are the negative samples. The parameters ¢ are optimized by minimiz-
ing LimfoncE, encouraging the model to assign lower energy to expert actions compared to negative
samples. This approach allows IBC to capture complex and multimodal action distributions, leading
to more robust imitation of expert behaviors (Florence et al.l 2021). Since IBC uses an implicit
model with iterative sampling procedure for selecting actions, we need to develop specific formu-
lations for untargeted and targeted attacks for these kinds of implicit models, specifically for the
Derivative-Free Optimizer version of the inference. Algorithm [I|summarizes our attack for IBC.

For the targeted attack, unfortunately there is no clear end-to-end loss function that minimizes
the targeted action energy under the clean state-action distribution, as the negative action sam-
ples are sampled randomly and thus the probability of selecting the targeted action can be very
low. Hence, we formulate the problem as finding the perturbation ¢ for a target action a’ such that,
po(al|si +0) > pe(ailsi + 0). To achieve this, we introduce a sampling-based attack method to
approximate the local energy surface, making it easier to select the target action. Specifically, we
randomly sample a small number of negative actions, along with the target action, to estimate the
energy surface around the target region. We also consider the original action during the attack. we
then iteratively perform gradient ascent to decrease the energy of the target action compared to both
the original and negative actions. However, in-order to further increase the probability of the target
action being chosen during inference, we repeat this procedure N, times to decrease the energy
of the target action with respect to more actions that could possibly be selected due to their vicinity
to the original actions. The details are presented in Algorithm|[I}

For the untargeted attack, the objective is to perturb the state s by finding a perturbation ¢ that
increases the energy (reduces the probability) of the actions that would normally be taken by the
trained policy on clean state observations. In this case, we aim to push the model toward selecting
less optimal actions by maximizing the energy associated with the learned actions in the perturbed
state. To achieve this, we perform gradient ascent on the input pixels to maximize the energy of
the correct action (@cjeqrn in Algorithm . Thus, the selected actions are essentially random actions
with respect to the original state-action distribution.

3.3.2 DIFFUSION PoLICY

Diffusion Policy (DP) (Chi et al., [2023) aims to overcome the necessity of approximating the nor-
malizing constant (the negative samples required in the above IBC method) in an energy based
model, by learning the score function of the action-distribution.

In particular, the score function is defined as the gradient of the log-conditional probability distribu-
tion of actions, which is usually learnt as a noise-prediction network () parameterized by 6.

Valogp(a|s) = —VaFy(s,a) ~ —cg(s,a) ()

Starting from a” sampled from Gaussian noise, DP iteratively denoises the sample k times to get a
desired noise-free sample a’.

ak_l =« (ak — Y€op (Sv ak7 k) +N (0’ 021)) )

where «,y, o are the hyper-parameters that collectively define the noise schedule. The complete
inference is defined in the Appendix. [C]

k

Algorithm [2] shows our online attack method for Diffusion Policy. Both targeted and untargeted
attacks use Mean Squared Error (MSE) loss for propogation of gradient. For the targeted attack, we
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try to minimize the distance between our predicted action and the target action (line 10) by doing
gradient descent. Whereas, in the untargeted attack, we try to maximize the distance between the
predicted action and the clean action (line 12) by doing gradient ascent. Running this attack end-to-
end during the whole denoising process can be costly, as we need to backpropogate through the entire
network for each iteration for a single inference step. However, we can reduce this computation by
taking inspiration from prior work on image editing attacks (Salman et al.,2023) and only apply the
perturbations during last timesteps (line 7 of Algorithm [2) of the denoising process. This enables
us to avoid wasting attacks when the actions are very random (during the initial steps of denoising)
and only apply the attack when the data has started to converge towards the mode. This reduces the
attack effort while not affecting the quality of adversarial attack.

Algorithm 1 Implicit BC PGD Attack

Require: Trained energy model Fy(s,a), state s, observation o, number of samples Nsgmpies, number of
iterations Nj.ers, decay rate K, perturbation bound e, step size «
1: Obtain clean action a,jeqr by running IBC on s

2: for epoch =1,2,..., Nepochs do > Optimize over multiple samples
3: Initialize sample set S = {&i}fv:sfmpl“ ~ U(Amin, Gmaz)
4 if Targeted then
5: Introduce acican, Gtarget iNt0 S
6: end if
7: for iter = 1,2,..., Niters do > Inner PGD attack iterations
8 {El}li‘1 +— {Eq(s, di)}gl > Compute energies with perturbation
15|
9: {(p:i e « {2‘377&457} > Compute softmax probabilities
i=1¢ i=
10: if Targeted then '
11: Compute cross-entropy loss with a¢qrget as the true label:
12: Loss = — log(Prarget) > Prarget 18 the probability of atarget
13: else
14: Compute untargeted loss:
15: Loss = —FEy(s', actean) > Maximize energy of the correct action for untargeted attacks
16: end if
17: Update s’ using PGD step:
18: s =8+ a-(Vo,Loss)a. > Projected on the I, norm ball
19: end for
20: end for

21: return s’

Algorithm 2 Diffusion Policy PGD Attack

Require: Observation horizon 7Ty, Action Horizon T,, Prediction Horizon T),, State sequence S; =

{st—7,+1, .., St}, number of denoising iterations K
Ensure: Action sequence A; = {ay,...,aty7, 1}
1: Agee™ = Diffusion Policy Inference(S:)

2: A9t = Afea™ 4 Desired Perturbations > Only for Targeted Attack
3: Initialize Taack, €, @, Y, 0, Niters
4: Initialize A" ~ N7(0,1)

S5:fork=K,K—1,...,1do
6 AFTY = a(AP — (S, AN k) + oN(0,1)
7
8
9

if & < Tiack then > Attack during the last K — T} ¢1qck timesteps
for Njters do > Inner PGD iterations
if Targeted then
10: Loss = —MSELoss(AF~1, Al#roet(:=1))
11: else
12: Loss = MSELoss(AF~1, Agtean(:=1))
13: end if
14: S: =S¢+ a-Vo,(Loss)s, > Grad. ascent w.r.t current observations and project on € ball.
15: end for
16: end if
17: end for

18: return S;
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(a) Lift Task (b) Can Task (c) Square Task  (d) Push-T Task (e) Tool Hang Task

Figure 1: Environments used to study adversarial robustness of modern behavior cloning algorithms.

(a)-(c) and (e) are from RoboMimic (Mandlekar et a1.|, 2021)) and (d) is from [Florence et al. (2021)

4 EXPERIMENTS & RESULTS

We design our experiments to the answer to following questions: (1) How vulnerable are modern
behavior cloning algorithms to adversarial attacks? (2) How easy is it to craft universal perturbations
for these algorithms? (3) How transferable are the attacks across different algorithms and different
tasks? (4) What is the impact of different feature extraction backbones on attack performance, as
in how transferable are the attacks between different vision architectures? (5) How does the action
prediction horizon of diffusion policy affect its vulnerability?

4.1 ENVIRONMENTS

To demonstrate the adversarial robustness of modern behavior cloning algorithms, we consider com-
mon benchmarks shown in Figure[I] The tasks of Lift, Can and Square are taken from Robomimic
(Mandlekar et al.,[2021)), where the state-of-the art frameworks such as Diffusion Policy and LSTM-
GMM have been shown to have a nearly 100% success rate in non-adversarial settings. To further
assess the ability of adversarial attacks to breach these frameworks on more sophisticated interaction
data, we consider the Push-T environment, first introduced by [Florence et al.| and then sub-
sequently used by Diffusion Policy 2023) and VQ-BET (Lee et al., 2024). Descriptions

and details of these tasks are included in Appendix [B]

4.2 PRETRAINED POLICIES

To provide consistent and reproducible restults, we attack the pre-trained checkpoints for LSTM-
GMM, IBC and Diffusion Policy released by the authors of Diffusion Policy on
these suite of tasks, and train our policies for Vanilla-BC and VQ-BET, due to absence of publicly
available checkpoints. We evaluate all the environments on 50 randomly initialized environments
across 3 different seeds for reporting the mean and standard deviation of the success rate. All pre-
trained policies and source code for generating and evaluating attacks and reproducing our results
will be open-sourced at [url masked for anonymous submission].

4.3 HOW VULNERABLE ARE MODERN BEHAVIOR CLONING ALGORITHMS TO
ADVERSARIAL ATTACKS ?

To assess the vulnerability of modern behavior cloning algorithms to adversarial attacks, we con-
ducted a comprehensive evaluation using both online (PGD) and offline (UAP) attack methods. Our
findings, as illustrated in Figures 2] and [3] reveal significant vulnerabilities in the adversarial ro-
bustness of current algorithms when faced with perturbations in the observation space. Among the
algorithms tested, VQ-BET demonstrated the highest susceptibility to adversarial perturbations. We
hypothesize that this vulnerability stems from the discrete nature of its action space, which may lead
to discontinuous decision boundaries. In contrast, algorithms employing iterative methods for action
selection, such as IBC and Diffusion Policy, exhibited relatively higher robustness. This enhanced
resilience can be attributed to the inherent stochasticity in their action selection processes during
inference. It is important to note that the effectiveness of these attacks varies depending on the com-
plexity of the task environment. For instance, the Lift environment allows for a larger margin of
error, making it more forgiving to substantial perturbations in actions. However, as task complexity
increases, we observe a dramatic reduction in the robot task success rates (increase in attack success
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Figure 2: Comparison of PGD and UAP attacks for the Lift task. The y axis denotes the normal
performance of the evaluated policies, which is the lower the better for attacks.
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Figure 3: Comparison of PGD and UAP attacks for the Push-T task. The y axis denotes the normal
performance of the evaluated policies, which is the lower the better for attacks.

rates) across all algorithms. For example, Mandlekar et al| (2021)) categorize the difficulty of the
tasks with Lift being the easiest, Can being harder than Lift, and Square being harder than Can.
As we increase the complexity of the task, we notice an increase in the efficacy of the adversarial
attacks as detailed in Appendix [E] We also observe that even for small values of epsilon most of the
algorithms are not robust to the attacks (Fig. [I2]in Appendix[J).

4.4 CAN ADVERSARIAL EXAMPLES TRANSFER ACROSS DIFFERENT ALGORITHMS AND
TASKS?

The transferability of adversarial examples across different behavior cloning algorithms presents an
intriguing phenomenon, given the substantial differences in their loss functions and training method-
ologies (as detailed in Section [2). While these algorithms share a common image encoder (ResNet-
18), their end-to-end training approach results in distinct feature representations that are not easily
interpretable. The transferability of adversarial examples across different behavior cloning algo-
rithms presents an intriguing phenomenon, given the substantial differences in their loss functions
and training methodologies (as detailed in Section [2). While these algorithms share a common
image encoder (ResNet-18), their end-to-end training approach results in distinct feature represen-
tations that are not easily interpretable.

In simpler environments like the Lift task (see Table[I), where baseline success rates are high (>90%
for most algorithms), we observed limited transferability with relatively small proportional drops in
performance, aligning with our initial expectations. Intriguingly, as we progressed to more complex
environments (Square: see Table[5), where baseline success rates are lower and tasks are naturally
less robust to action perturbations, we noticed that transferred attacks often caused larger propor-
tional drops in performance relative to the baseline.
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Table 1: Inter-Algorithm Transferability of Untargeted UAP on the Lift task, where the rows corre-
spond to the attacker policy over which perturbations were developed (random refers to a Gaussian
noise with the mean of zero and std of epsilon) and the columns correspond to target policy over
which attacks were tested.

W VanillaBC LSTM-GMM IBC DiffusionPolicy-C ~ VQ-BET
ttacker

Random 0.96 0.84 0.80 1.00 0.98
Vanilla BC 0.00 0.00 0.80 1.00 0.94
LSTM-GMM 0.94 0.00 0.72 1.00 0.96
IBC 1.00 0.10 0.64 1.00 0.98
DiffusionPolicy-C 0.82 0.22 0.78 0.00 0.94
VQ-BET 0.94 0.50 0.84 1.00 0.00

Table 2: Inter-Algorithm Transferability of Untargeted UAP on the Push-T task.

W VanillaBC LSTM-GMM IBC DiffusionPolicy-C ~ VQ-BET
ttacker

Random 0.60 0.61 0.64 0.82 0.5
Vanilla BC 0.10 0.08 0.41 0.80 0.22
LSTM-GMM 0.15 0.09 0.33 0.78 0.31
IBC 0.14 0.08 0.14 0.71 0.17
DiffusionPolicy-C 0.27 0.10 0.24 0.14 0.22
VQ-BET 0.26 0.14 0.47 0.61 0.08

Table 3: Inter-Architecture Transferability. Transferring adversarial perturbations generated on
ResNet-18 to ResNet-50 as backbone on the Lift task. NA: No Attack

Algorithm | NA Resnet-18 | NA Resnet-50 | Resnet-18 | Resnet-50
Vanilla BC 1.00 1.00 0.21 0.75
LSTM-GMM 1.00 1.00 0.00 0.25
IBC 0.95 0.50 0.85 0.38
DiffusionPolicy-C 1.00 1.00 0.00 1.00
VQ-BET 1.00 1.00 0.00 0.98

This analysis highlights the importance of considering relative performance metrics when evaluat-
ing transferability across tasks of different complexity. Future work could benefit from developing
normalized metrics that better account for task difficulty and baseline performance. Additional ex-
periments and discussion for the inter-task transferability are in Appendix [G]

4.5 WHAT IS THE IMPACT OF DIFFERENT FEATURE EXTRACTION BACKBONES TO
ATTACK PERFORMANCE?

Our investigation into the impact of different vision encoder backbones on adversarial attack trans-
ferability reveals intriguing insights. We developed perturbations using ResNet-18 as the backbone
and then deployed these attacks on policies than were trained using ResNet-50, without regenerat-
ing the attacks. This cross-architecture transfer scenario yielded surprising results. In the Lift task
(see Table 3], we observed high transferability for some algorithms (e.g., LSTM-GMM and IBC),
while others showed more resilience (e.g., Diffusion Policy-C and VQ-BET). The more complex
Push-T task (see Table 4 demonstrated a more consistent pattern of partial transferability across all
algorithms. Notably, in many cases, the ResNet-50 models showed vulnerability to attacks devel-
oped for ResNet-18, suggesting that simply increasing model capacity does not guarantee improved
robustness against cross-architecture attacks. It also highlights the existence of shared vulnerabil-
ities across different network architectures, which adversarial perturbations can exploit even when
transferred to a different backbone. These results underscore the importance of considering cross-
architecture vulnerabilities in the design of robust behavior cloning systems
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Table 4: Inter-Architecture Transferability. Transferring adversarial perturbations generated on
ResNet-18 to ResNet-50 as backbone on the Push-T task.

Algorithm | NA Resnet-18 | NA Resnet-50 | Resnet-18 | Resnet-50
Vanilla BC 0.72 0.62 0.09 0.20
LSTM-GMM 0.72 0.56 0.08 0.21
IBC 0.74 0.57 0.63 0.27
DiffusionPolicy-C 0.88 0.78 0.14 0.54
VQ-BET 0.62 0.65 0.08 0.29

4.6 HOW DOES THE ACTION PREDICTION HORIZON OF DIFFUSION POLICY AFFECT ITS
VULNERABILITY?

In addition to the above experiments, we find 1
an interesting trade-off between the action hori-
zon of the Diffusion Policy and robustness. In
Fig. d we observe that as the action horizon in-
creases (the number of actions taken at a time),
while keeping the prediction horizon the same,
the policy shows increasing robustness to uni-
versal attack. We hypothesize that as the action
horizon increases the number of times the per-
turbed observation gets observed decreases thus 0 = o p s

allowing for smaller compounding errors dur- Epochs

ing the inference. However, if the action hori-

zon is too long then the latency and recover- Figure 4: Test mean score vs epochs for action
ing from sub-optimal trajectories might lead to  prediction horizon of 16 for lift, and various action
worse overall performance. horizons during Untargeted UAP.
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—~4
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—12
—~16
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5 CONCLUSION & FUTURE WORK

Our results show that all modern behavior cloning algorithms are vulnerable to adversarial attacks.
Interestingly, implicit policies such as Implicit Behavior Cloning and Diffusion Policy seem to be
more robust than the explicit policies. However, our results also demonstrate that the attack success
rate is dependent on the task. As tasks gets harder it becomes easier to attack these algorithms.
This also holds true based on the results from transferability of attacks between different algorithms.
Our results provide evidence that the different algorithms and the same algorithm trained with a
different architecture are learning some similar features that are not completely orthogonal but also
not completely similar. Thus posing a security challenge since even if we are using different vision
encoders, task, or policy these perturbations are still transferable.

We believe that our work lays foundation for future work in the direction of adversarial robustness
of robotic policies. We also believe that as this field progresses, there is a need for better metrics
to capture the nuanced effects of adversarial attacks on trajectories, rather than relying solely on
success rates. Such metrics could provide deeper insights into the uncertainty in the state-action
distributions learned by the policies. We also think that, while a lot of progress has been made in
computer vision interms of developing and patching adversarial attacks, the sequential nature of
robotic policies and the non-linearity from vision representations to actions can also be a source
of new vulnerabilities. While adversarial defenses such as Randomized Smoothing (Cohen et al.,
2019) (see results and discussion in Appendix [F)) can help in increasing the robustness, it comes at
the cost of large increase in the reaction time and may struggle when the action distribution exhibits
multi-modality. Additional defenses such as Adversarial Training (Goodfellow et al.,[2014])) are left
for future work.
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A ADVERSARIAL ATTACKS

A.1 FAST GRADIENT SIGN METHOD (FGSM)

Fast Gradient Sign Method was proposed by |Goodfellow et al.|(2014)). The basic idea behind FGSM
is to use the linearity of neural networks to craft adversarial examples. It is designed to be fast (on
the L, space) instead of a more close or robust adversarial example. Given an image = the method
sets the adversarial example as,

' =z + e sign(Vlossp(x))

Intuitively, it tries to move each pixel by a small amount (¢) with the direction determined by the
sign of the gradient of the loss function wrt input.

A.2 PROJECTED GRADIENT DESCENT (PGD)

Projected Gradient Descent (PGD) is an iterative adversarial attack algorithm that generalizes the
Fast Gradient Sign Method (FGSM) by applying multiple steps of gradient ascent to maximize
the loss function with respect to the input, subject to a constraint on the perturbation magnitude.
Mathematically, starting from an initial input xo, the PGD algorithm iteratively updates the input
X1 using the following rule:

X1 = g, (xy) (X + a - sign(ViJ (0, %k, ))) ,

where J(0,xy,y) is the loss function of the model with parameters 6, input xj, and true label y; «
is the step size; and Il () denotes the projection operator onto the I,,-norm ball B.(xo) of radius
€ centered at xg. The projection step ensures that the perturbed input remains within the allowable
perturbation bound. When the number of iterations is set to one and the step size « equals €, PGD
reduces to FGSM, which can be seen as a special case of PGD. The iterative nature of PGD allows
it to find more effective adversarial perturbations compared to FGSM, making it a stronger attack
method used in adversarial training to enhance model robustness.

A.3 UNIVERSAL ADVERSARIAL PERTURBATIONS (UAP)

Similar to Moosavi-Dezfooli et al.|(2016), we aim to find perturbations that are state-agnostic, such
that a single perturbation can be applied to all the images to cause failure of the agent. To this end, we
collect few samples of state-action pairs by rolling out our policy and optimizing the perturbations
as a parameter to minimize the loss similar to our PGD attacks.

Algorithm 3 Computation of Universal Perturbations for Behavior Cloning

Require: Data points D = {(s;, af-‘"g ) N |, behavior cloning model 7y, desired ¢, norm of the
perturbation &
Ensure: Universal perturbation vector v
1: Initialize v < 0
2: for each datapoint (s;,a.”"?") € D do
a; = Algorithm(s; + v)
v=v—a-V,Loss(a;,a
3: end for
4: return v

t t
7:arge )

B TASK DESCRIPTION

We evaluate the vulnerability of behavior cloning methods on several manipulation tasks of varying
complexity. Each task is implemented in both simulation using MuJoCo and the robosuite frame-
work, as well as on real Franka Emika Panda robots.
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B.1 LIFT

A foundational manipulation task where a robot arm must lift a small cube (4cm x 4cm x 4cm)
from a table surface. The task tests basic pick-and-place capabilities and serves as an entry-level
benchmark. Success is determined by elevating the cube above a threshold height. Initial cube
poses are randomized with z-axis rotation within a small square region at the table center.

B.2 CAN

A manipulation task requiring the robot to transfer a soda can from a large source bin into a smaller
target bin. This task presents increased difficulty over Lift due to the more complex grasping re-
quirements of the cylindrical can and the constrained placement target. The can’s initial pose is
randomized with z-axis rotation anywhere within the source bin.

B.3 SQUARE

A high-precision manipulation task where the robot must pick up a square nut and insert it onto a
vertical rod. This task significantly increases complexity by requiring precise alignment and com-
plex insertion dynamics. The nut’s initial pose is randomized with z-axis rotation within a square
region on the table surface.

B.4 PUSH-T

A contact-rich manipulation task adapted from (Florence et al 2021)) where the robot must guide
a T-shaped block to a fixed target location using a circular end-effector. The task requires precise
control of contact dynamics, as the robot must strategically apply point contacts to maneuver the
block along the desired trajectory. Unlike pick-and-place tasks, success depends on understanding
and exploiting the complex dynamics of planar pushing. We evaluate using RGB image observations
augmented with end-effector proprioception. Initial positions of both the T-shaped block and the
end-effector are randomized to ensure learned policies must generalize across different pushing
strategies.

B.5 TooL HANG

It’s the most difficult task in robomimic suite, as it requires a robotic arm to assemble the frame
consisting of a base piece and hook piece by inserting the hook into the base, and hang a wrench
on the hook. This task at multiple stages necessitates precise, and dexterous, rotation-heavy move-
ments. Initial position of the insertion hook as well as that of ratcheting wrench and z-rotation are
randomized in a small square at the beginning of the episode.

14
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C

C.1

BEHAVIOR CLONING POLICIES

IMPLICIT BEHAVIOR CLONING

Algorithm 4 Implicit BC Inference

Require: Trained energy model Ey (s, a), observation s, number of samples Ngqmpies, number of

1:

iterations ;e s, initial sampling std. dev. ;,,;¢, decay rate K

oo i1 Nomples
Initialize {a'}; 1™ ~ U(@min, Gmaz)s © = Tinit

2: foriter =1,2,..., Nijers do

10:
11:
12:

13:

Nsamples ~i\1Nsamples :
(B, 27« {Ey(s,a")}, 21" > Compute energies
N B Nsa”mples
{pi}; =yt {ZNsafnpzeE} > Compute softmax probabilities
j=1 e i=1

if iter < Njiers then
~i1Nsamples . . ~ \ Nsamples ~i1Nsamples .
{@'}, =y <= Multinomial( Nyqmpies, {Pi };—1 " <", {a* };21 """ ) > Resample with
replacement

{&i},fisla.mples “ {di +N(O7U)}£\;311mples > Add noise
{’di}fi@fmplas — Chp({dz}’f\iizmplee  Qmins amax) > Cllp to bounds
o+ Ko > Shrink sampling scale
end if
end for

Nsamples

i = argmax({p;}; 27"

return &’

C.2 DIFFUSION PoLICY

For Diffusion policy we use absolute positional actions as the original work shows that CNN-based
diffusion policy performs poorly with robomimic’s offical dataset, that uses veloocity control, as in
the actions are represented as delta with respect to the current.

Algorithm 5 Diffusion Policy Inference

Require: Observation horizon Tj, Action Horizon T, Prediction Horizon T}, State sequence S; =

{st—1,+1,--.,s¢}, number of denoising iterations K

Ensure: Action sequence A; = {ay,...,a;47,-1}

A A R

Initialize o, v, o
Initialize A\ ~ A7(0,1)
fork=K K-—1,...,1do
AP = a(AP — yep(81, A k) + 0N (0,T)
end for
return S;

D

HYPERPARAMETERS

We adopt the following temporal horizons from Diffusion Policy:

* Action prediction horizon (7},): 16 steps
* Action execution horizon (7}): 8 steps

* Observation context window (7,): 2 steps

For the adversarial attacks, we use the following settings:

1. Overall attack budget:
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* ¢ =0.0625 (16/256) Lo, norm (normalized to input range [0, 1])
* Perturbations are clipped to [0, 1] range
2. Framework-specific perturbation bounds:
* For standard BC frameworks on Robomimic: [0.15,0.15,0] in (z,y, z) directions for
relative end-effector positions

* For Diffusion Policy on Robomimic: [0.45,0.45, 0] in (z, y, ) directions for absolute
end-effector positions. The larger perturbation magnitude accounts for the absolute
position representation, compared to relative positions used in other frameworks

* For all the frameworks on Push-T: [100, 100] for the two action dimensions.
3. PGD attack parameters:

e Number of iterations: 40
e Per-iteration step size (Ejteration): 0.005

For IBC inference, we use derivative-free optimization with Ngympies = 1024.

D.1 TARGET ACTION SELECTION

For targeted attacks across all algorithms, target actions are generated by perturbing the expected
clean actions:

Qtarget = Gelean + 5action €]

where a.jeqy, is the action predicted by the unperturbed policy and d4c4i0r, 1S the desired action per-
turbation. For our experiments, we set d,cti0n = [0.15,0.15] for perturbations in x and y directions
for all frameworks except Diffusion Policy, where we use 0qction = [0.45,0.45]. These values were
chosen to ensure the target actions remain within physically feasible bounds while being sufficiently
different from the clean actions to potentially cause task failures. For PGD attacks, this target action
computation is performed at each inference step using the current clean action prediction, while for
UAP the target actions are computed once using the perturbed offline action trajectories.

E RESULTS ON ADDITIONAL ENVIRONMENTS

E.1 SQUARE ENVIRONMENT

Attack Type

= No Attack

® Targeted Attack

® Untargeted Attack

000 000

o

©
o
3
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o Ml 2 S i 2 - - o = e e
Vanilla BC LSTM-GMM IBC Diffusion Policy-C ~ VQ-BET VanillaBC LSTM-GMM IBC Diffusion Policy-C VQ-BET
Algorithm Algorithm
(a) PGD attacks for square. (b) Universal perturbation attacks for square.

Figure 5: Comparison of PGD and universal perturbation attacks for square task.
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Table 5: Inter-Algorithm Transferability of Universal Untargeted Perturbations for Square

Square
Attacker Target Policy |\ nilla BC  LSTM-GMM  IBC  DiffusionPolicy-C  VQ-BET
Random 0.42 0.36 0.00 0.98 0.64
Vanilla BC 0.00 0.08 0.00 0.94 0.38
LSTM-GMM 0.18 0.00 0.00 0.96 0.62
IBC 0.42 0.1 0.00 0.98 0.62
DiffusionPolicy-C 0.00 0.00 0.00 0.00 0.32
VQ-BET 0.26 0.00 0.00 0.98 0.00
E.2 CAN ENVIRONMENT
1 1 Attack Type
= No Attack
° ° ® Targeted Attack
g 0.8 é 0.8 = Untargeted Attack
é 0.6 é 0.6
E 0.4 E 0.4
- 0.2 - 0.2
Vanilla BC LSTM-GMM IBC Diffusion Policy-C ~ VQ-BET Vaml\a BC LSTM GMM IBC lefuslon F’ol\cy CVQ BET
Algorithm Algorithm
(a) PGD attacks for Can. (b) Universal perturbation attacks for Can.

Figure 6: Comparison of PGD and universal perturbation attacks for Can task.

Table 6: Inter-Algorithm Transferability of Universal Untargeted Perturbations for Can

Can
A Target Policy | vanilla BC  LSTM-GMM  IBC  DiffusionPolicy-C  VQ-BET
ttacker
Random 0.62 0.94 0.00 1.00 0.96
Vanilla BC 0.00 0.66 0.00 0.42 0.88
LSTM-GMM 0.18 0.00 0.00 0.72 0.68
IBC 0.72 0.98 0.00 1.00 0.92
DiffusionPolicy-C 0.02 0.24 0.00 0.00 0.70
VQ-BET 0.34 0.64 0.00 0.42 0.04

Table 7: Inter-Architecture Transferability. Transferability of attacks trained with resnet-18 to
resnet-50 as backbone for Can.

Algorithm | NA Resnet-18 | NA Resnet-50 | Resnet-18 | Resnet-50
Vanilla BC 0.75 0.70 0.00 0.34
LSTM-GMM 1.00 0.25 0.00 0.00
IBC 0.09 0.00 0.00 0.00
DiffusionPolicy-C 1.00 0.875 0.00 0.30
VQ-BET 1.00 0.70 0.04 0.70

F RANDOMIZED SMOOTHING

Randomized smoothing is a technique used to enhance the robustness of deep neural networks
against adversarial perturbations. The core idea is to smooth the model’s predictions by averag-
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ing over multiple randomly perturbed versions of the input. For a given input state s, the smoothed
policy 7(s) is defined as:

7(s) = E[r(s +¢)], where &~ N(0,0%]) (3)

During inference, we approximate this expectation by averaging predictions over N randomly sam-
pled perturbations:

N
7(s) ~ %ZW(S +¢i), where &; ~N(0,071) (6)
i=1

F.1 IMPLEMENTATION DETAILS
For our experiments, we used:

* Number of random samples (/N): 100
* Noise standard deviation (o0):

— Lift task: 0 = 0.1
— Push-T task: o = 0.05

The o values were carefully chosen through validation to maintain performance on clean (non-
attacked) inputs while providing meaningful defense against adversarial perturbations.

F.2 RESULTS AND ANALYSIS

As shown in Tables [8]and [0} randomized smoothing demonstrates varying degrees of effectiveness
across different algorithms and tasks:

Lift Task Results:

* Diffusion Policy shows the most impressive improvement, with task success rate improving
significantly (from 25% to 98% failure under PGD attacks)

* VQ-BET and Vanilla BC show moderate improvements (8% to 66% and 48% to 52% re-
spectively)

* IBC demonstrates a notable improvement from 21% to 50% task success rate
* LSTM-GMM shows limited benefit from smoothing

Push-T Task Results:

* The benefits of randomized smoothing are less pronounced in Push-T task
* IBC shows the most significant improvement (from 38% to 50% task success rate)

* Other algorithms show minimal improvements, this could partly be because of multi-modal
nature of the data distribution in the PushT environment (Lee et al.|2024), where averaging
individual predictions might lead to the mean between them.

The difference in effectiveness between tasks suggests that randomized smoothing’s utility may be

task-dependent, with simpler manipulation tasks with no multi-modality benefiting more from this
defense strategy than tasks that are inherently multi-modal.
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Table 8: Comparison of the randomized smoothing on the algorithmic performance for the lift task.

Algorithm | NA | NA Randomized Smoothing | PGD Attack | Randomized Smoothing with PGD
Vanilla BC 1.00 1.00 0.48 0.52
LSTM-GMM 1.00 0.93 0.00 0.00
IBC 0.95 0.80 0.21 0.50
DiffusionPolicy-C | 1.00 1.00 0.25 0.98
VQ-BET 1.00 1.00 0.08 0.66

Table 9: Comparison of the randomized smoothing on the algorithmic performance for the Pusht
task.

Algorithm | NA | NA Randomized Smoothing | PGD Attack | Randomized Smoothing with PGD
Vanilla BC 0.74 0.74 0.08 0.08
LSTM-GMM 0.66 0.54 0.00 0.00
IBC 0.68 0.67 0.38 0.50
DiffusionPolicy-C | 0.88 0.84 0.23 0.24
VQ-BET 0.72 0.71 0.10 0.10

G INTER-TASK TRANSERABILITY

We investigate the transferability of untargeted Adversarial Perturbation attacks developed in one
environment to unseen new environments. We use the attacks developed for the Lift task across all
algorithms and measure their ability to impact performance of the respective algorithms in both the
Can and Square tasks. For every task, we report the percentage decrease in the robot task completion
rate compared to the non-attacked version.

Our results in Table [T0] show that the attacks developed in Lift can transfer to both the other envi-
ronments, often decreasing the performance of the attacked policy. However in rare case of BC for
Square, we see an unexpeccted increase in performance when attacked using the attack developed
for Lift envionrment but this could be due to random initialization of environments and the time
constraint for testing only 3 seeds for each algorithm. It could also be due to the fact that adding a
small amount of action noise to policies can sometimes increase performance by helping the policy
get unstuck.

Table 10: Multi-Task Transferability of the Universal Pertubations

Algorithm \ Task | LIFT | CAN | LIFT-TO-CAN | SQUARE | LIFT-TO-SQUARE

Vanilla BC 100% | 100% 50% 100% -40%
LSTM-GMM 100% | 100% 40% 100% 38.9%
IBC” 7.89% | 100% 100% 100% 100%
DiffusionPolicy-C 100% | 100% 45% 100% 6.6%
VQ-BET 100% | 100% 0% 100% 11.4%

“IBC has very low (almost zero) performance on the Can and Square task, so the above metric may not
capture the full picture for (only) IBC.

H ILLUSTRATIONS

In this section, we show examples of the adversarial perturbations. Figure[7] shows an example of
untargeted attacks on the visual input for the Lift task. Figure [§] shows an example of targeted
attacks on the visual input for the Lift task. Figure 0] shows an example of untargeted attacks on
the visual input for the Push-T task. Figure[T0|shows an example of targeted attacks on the visual
input for the Push-T task. We note that these perturbations are minor and in some cases almost
imperceptible.
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Figure 7: Untargeted Atacks on Lift task.
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Figure 8: Targeted Attacks on Lift task, where the target direction is towards top-left corner of the
object.
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Figure 9: Untargeted Attacks on PushT task.
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Figure 10: Targeted Attacks on PushT task, where the target is bottom right corner of the environ-

ment.
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I TooL HANG

We investigate the vulnerability of modern behavior cloning algorithms on Tool Hang, specifically
we look at the targeted universal perturbation attack for Diffusion Policy, LSTM-GMM, IBC and
Vanilla BC. As before, we use pre-trained checkpoints for Diffussion Policy , LSTM-GMM and
IBC. We train our own policies for Vanilla-BC. Training VQ-BET on this task is extremely slow and
due to time constraints during the rebuttal phase we couldn’t finish training VQBET policies all 3
seeds but we promise to have these and their attacked versions by camera-ready deadline. We report
mean and standard deviation of success rate across 3 different seeds where we evaluate each seed
policy for 50 randomly initialized environments. Our results in Fig [TT] show a similar trend as in
other tasks and environments, of decrease in performance of the attacked policy for all algorithms
except BC and IBC which fail to even learn a good behavior cloned policy owing to difficulty of
the task. As observed before, Diffusion Policy seems to be more robust than LSTM-GMM to the
universal pertubatioon attack.

1.0 -
Attack Type
N No Attack
EEE Targeted Attack

0.8 -

0.6 -

0.4 -

Normal Success Rate

0.2 -

0.00 0.00 0.00 0.00
0.0 - —_—
Vanilla BC LSTM-GMM IBC Diffusicn Policy-C

Algorithm

Figure 11: UAP for Tool Hang task. The y axis denotes the normal performance of the evaluated
policies, which is the lower the better for attacks.0.65

J  SENSITIVITY TO EPSILON VALUES

Our analysis reveals surprising vulnerabilities in behavior cloning algorithms even with minimal
perturbations (for Universal Untargeted Attacks). As shown in Figure[I2} while decreasing epsilon
values generally reduces attack efficacy, algorithms like VQ-BET, LSTM-GMM, and Diffusion Pol-
icy still exhibit substantial performance degradation even at very small epsilon values (e of 4/256).
This heightened sensitivity to small perturbations highlights a concerning vulnerability in current
behavior cloning approaches, suggesting that even well-constrained adversarial attacks can signifi-
cantly compromise policy performance.
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Figure 12: Performance of the algorithms to smaller epsilon values highlight the vulnerability and
lack of robustness of the Behavior Cloning Algorithms.
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