
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HOW VULNERABLE IS MY POLICY? ADVERSARIAL AT-
TACKS ON MODERN BEHAVIOR CLONING POLICIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning from Demonstration (LfD) algorithms have shown promising results in
robotic manipulation tasks, but their vulnerability to adversarial attacks remains
underexplored. This paper presents a comprehensive study of adversarial attacks
on both classic and recently proposed algorithms, including Behavior Cloning
(BC), LSTM-GMM, Implicit Behavior Cloning (IBC), Diffusion Policy (DP), and
VQ-Behavior Transformer (VQ-BET). We study the vulnerability of these meth-
ods to untargeted, targeted and universal adversarial perturbations. While explicit
policies, such as BC, LSTM-GMM and VQ-BET can be attacked in the same
manner as standard computer vision models, we find that attacks for implicit and
denoising policy models are nuanced and require developing novel attack meth-
ods. Our experiments on several simulated robotic manipulation tasks reveal that
most of the current methods are highly vulnerable to adversarial perturbations. We
also investigate the transferability of attacks across algorithms, architectures, and
tasks and provide insights into the generalizability of adversarial perturbations in
LfD. We find that the success rate of the transfer attacks is highly dependent on
the task, raising necessity for more fine-grained metrics that capture both the task
difficulties and baseline performance of the algorithms. In summary, our findings
highlight the vulnerabilities of modern BC algorithms, paving way for future work
in addressing such limitations.

1 INTRODUCTION

Learning from Demonstration (LfD) has emerged as a powerful paradigm in AI and robotics, en-
abling agents to acquire complex behaviors from expert demonstrations. These techniques are in-
creasingly deployed in real-world scenarios, such as to enable robots in industrial automation and
household robotics. However, these policies pose potential security risks since they can be easily
maliciously manipulated by adversaries, causing undesired behaviors or even catastrophic incidents.
Motivated by these risks, to the best of our knowledge, we are the first to present a systematic study
of the vulnerabilities of modern LfD algorithms.

Adversarial attacks are a widely studied area that aims to develop imperceptible perturba-
tions (Szegedy et al., 2013) to change the output of machine learning models. Early work by Szegedy
et al. (2013) and Goodfellow et al. (2014) revealed that adding small, imperceptible perturbations to
images could drastically alter the prediction of neural network classifiers. Since then, a significant
number of works have explored various attack methods and defense techniques against adversarial
attacks (Akhtar & Mian, 2018; Zhang et al., 2020; Chakraborty et al., 2021).

However, the robustness of LfD models to adversarial attacks has been largely overlooked in prior
research, particularly in the context of robotic manipulation tasks. While previous works have ex-
amined adversarial robustness in reinforcement learning (Mo et al., 2023; Sun et al., 2020; Pattanaik
et al., 2017; Lin et al., 2017; Gleave et al., 2019), including whitebox attacks (Huang et al., 2017;
Casper et al., 2022) and backdoor detection (Chen et al., 2023), the impact of such perturbations on
LfD remains underexplored. Attacks in the LfD domain present unique challenges, including tem-
poral dependencies in sequential decision-making and the multimodal nature of actions in complex
environments. This paper aims to investigate the vulnerabilities specific to LfD algorithms under
adversarial perturbations, shedding light on their susceptibility and resilience in robotic settings.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Additionally, the attacks developed in this study can be utilized for faster reliability estimation (Tit
& Furon, 2024).

Jia et al. (2022) showed that adversarial patches can mislead a robotic arm’s object detector, causing
it to behave in an undesirable manner. Unlike our work examining the vulnerabilities of modern
behavior cloning, they targeted traditional object detection models in industrial robots. To the best
of our knowledge, the only prior work closely related to this paper is by Chen et al. (2024) who ex-
plore adversarial attacks on diffusion policies (Chi et al., 2023). Their method involves attacking the
entire denoising process in the diffusion policy, which is computationally expensive. By contrast,
we demonstrate effective attacks by manipulating only a few steps of the denoising process, signifi-
cantly reducing the attack cost (interms of time and compute). In addition, while the Chen et al. only
focus on developing attacks for a single type of policy learning algorithm, our research examines
the vulnerabilities of several different LfD algorithms and also explores how adversarial perturba-
tions transfer across different algorithms, tasks, and architectures and visual backbones, offering a
broader and more comprehensive perspective on the vulnerability of modern behavior cloning and
the generalizability of such attacks.

Our work focuses specifically on post-deployment white-box attacks, where an adversary has ac-
cess to the trained model parameters but cannot modify the training process. This threat model is
particularly relevant for open-source robotics systems where model weights are publicly available,
a common practice in modern robotics research and deployment. Unlike training-time attacks that
aim to corrupt the learning process, our attacks target the inference phase, attempting to cause task
failures through carefully crafted perturbations to visual observations. While this may seem like
an overly strong adversarial capability, the increasing trend toward open-source release of robot
learning systems makes this a practical concern that needs to be addressed.

In this paper, we evaluate the adversarial robustness of several leading imitation learning frame-
works, including Vanilla Behavior Cloning (BC), LSTM-GMM (Mandlekar et al., 2021), Im-
plicit Behavior Cloning (IBC) (Florence et al., 2021), Diffusion Policy (Chi et al., 2023), and
VectorQuantizied-Behavior Transformer (VQ-BET) (Lee et al., 2024). Among these, IBC and Dif-
fusion Policy have unique design pipelines that cause naive adversarial attacks to largely fail. IBC
employs energy-based models to learn implicit policies, offering greater flexibility in learning com-
plex, multimodal behaviors compared to traditional methods. However, because the correct action is
selected based on energy distribution rather than a single output during inference, naive attacks strug-
gle to target the correct action. To address this, we introduce a sampling-based attack method that
approximates the local energy surface, increasing the likelihood of selecting the desired target ac-
tion. Diffusion Policy, on the other hand, uses a generative model approach with denoising diffusion
techniques to iteratively refine actions, allowing it to capture diverse and continuous action distribu-
tions. While existing attacks (Chen et al., 2024) can degrade performance, they require manipulating
the entire denoising process, leading to high attack costs. One of our insights is that attacks are most
effective at later stages of the denoising process. By applying attacks specifically only on later stages
we can significantly improve attack efficiency. Overall, we hope our results serve as an impetus for
enhancing awareness of the security and reliability concerns regarding policies learned via behavior
cloning and will inspire researchers to develop more robust LfD algorithms.

The primary contributions of our work are as follows: (1) We conduct the first comprehensive study
of white-box adversarial attacks on Learning from Demonstration (LfD) algorithms, encompass-
ing both online (PGD) and offline (Universal Adversarial Perturbation) attacks. We evaluate these
attacks in both targeted and untargeted settings and highlight the vulnerability of all the LfD algo-
rithms studied in this paper. (2) We propose novel attack formulations for implicit models such as
IBC and Diffusion Policy. Our work addresses the unique challenges posed by the iterative action
selection process, representing one of the first successful attacks on these implicit policy models. (3)
We provide insights into the non-transferability of attacks across LfD algorithms with similar visual
backbones, a unique finding that contrasts with trends in computer vision and highlights the distinct
nature of vulnerabilities in LfD systems. (4) We find that, out of all the policies we test, Diffusion
Policies are the most robust. While recent work (Carlini et al., 2023) has shown that combining a
pretrained denoising diffusion probabilistic model and a standard high-accuracy classifier can yield
robustness for image classifiers, we are the first to study and showcase the relative robustness of
diffusion policies. We provide evidence that this robustness stems from its multi-step prediction
process rather than inherent resilience. Our results show that reducing the prediction horizon signif-
icantly decreases the adversarial robustness of diffusion policies.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 BEHAVIOR CLONING ALGORITHMS

In this section, we provide background on the Behavior Cloning (BC) algorithms we study in this
paper. To provide clarity throughout the discussion, we first define some key notations used across
these algorithms. Let ξ ∈ Ξ represent a set of expert trajectory demonstrations, where ξ is a trajec-
tory consisting of a sequence of state-action pairs (s, a), sampled from an expert policy π∗(s). Our
objective in behavior cloning is to learn a policy πθ(s), parameterized by θ, that imitates the expert’s
behavior by minimizing a loss function L that measures the difference between the expert actions
and the actions predicted bu the learned policy.

Formally, for a given policy πθ, we aim to minimize: π∗
θ = argminπθ

∑
ξ∈Ξ

∑
s∈ξ L(πθ(s), π

∗(s))

where L is typically the cross-entropy loss for discrete actions or mean squared error for continuous
actions. However, some methods leverage specialized losses: LSTM-GMM uses a log-likelihood
objective to capture multimodal action distributions, while VQ-BET incorporates additional quanti-
zation losses. In Implicit Behavior Cloning (IBC), the loss is framed as a contrastive energy-based
model, and Diffusion Policy relies on a loss function based on noise estimation in a denoising pro-
cess. Despite these differences, the overarching goal remains the same: learning a policy that best
imitates the expert’s demonstrations.

2.1 VANILLA BEHAVIOR CLONING

Vanilla Behavior Cloning (Vanilla BC) learns a policy via supervised learning (Bain & Sammut,
1995; Torabi et al., 2018). Given a dataset of state-action pairs (s, a), it directly maps states to
actions using a neural network trained to minimize the cross-entropy loss for discrete actions or
mean squared error (MSE) for continuous actions. While effective for simple tasks, Vanilla BC
struggles with tasks requiring long-term dependencies owing to the problem of compounding error
and the tasks with multimodalilty in expert behavior, as it assumes a unimodal distribution over
actions (Ross et al., 2011; Florence et al., 2021).

2.2 LSTM-GMM

Long Short-Term Memory with Gaussian Mixture Model (LSTM-GMM) (Mandlekar et al., 2021)
enhances Vanilla BC by incorporating temporal dependencies through an LSTM network (Hochre-
iter & Schmidhuber, 1997). The LSTM processes a sequence of states s1, s2, . . . , sT recursively,
maintaining an internal hidden state ht at each time step. The policy πθ(at|st, ht−1) is parame-
terized by the LSTM to model the temporal structure, while a GMM captures multimodal action
distributions at each time step. At each time step t, the LSTM updates its hidden state and predicts
a multimodal distribution over actions : ht = LSTM(st, ht−1) and p(at|st, ht−1, θ) = GMM(ht).
The policy is trained by maximizing the likelihood of the observed actions given the state sequence:
πθ = argmaxθ

∑
ξ∈Ξ

∑T
t=1 log p(at|st, ht−1, θ), where p(at|st, ht−1, θ) is the probability of ac-

tion at under the GMM, conditioned on the current state st and the previous hidden state ht−1.

2.3 IMPLICIT BEHAVIOR CLONING

Implicit Behavior Cloning (IBC) (Florence et al., 2021) reformulates the problem of policy learning
as an energy-based model (EBM). Instead of explicitly predicting actions, IBC defines a compati-
bility score between states and actions using an energy function Eθ(s, a). The policy is implicitly
represented by selecting actions that minimize the energy:πθ(s) = argmina Eθ(s, a) The model is
trained using contrastive learning, where the energy of expert actions is minimized relative to neg-
ative (non-expert) samples. The training loss typically follows the InfoNCE objective, as discussed
in more detail in section 3.3.1.

2.4 DIFFUSION POLICY

Diffusion Policy (DP) (Chi et al., 2023) uses a novel generative approach to model action distribu-
tions by leveraging Denoising Diffusion Probabilistic Models (Ho et al., 2020). The policy is repre-
sented as a reverse diffusion process, which iteratively refines actions from Gaussian noise towards

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the true distribution. Given a noisy action aT sampled from a Gaussian distribution, the model itera-
tively denoises it using a learned denoising function conditioned on the state. The policy,with a0 be-
ing the final action obtained after denoising, is defined as: πθ(a0|s) = pθ(aT |s)

∏T
t=1 pθ(at−1|at, s)

2.5 VQ-BET

The Vector Quantized Behavior Transformer (VQ-BET) (Lee et al., 2024) combines a transformer-
based architecture with vector quantization to handle multi-modal continuous action spaces. The
policy discretizes actions into latent codes using a hierarchical quantization process, which allows
the model to capture both coarse- and fine-grained action details. The model’s policy is formulated as
a sequence prediction problem, where the transformer predicts discrete latent codes and continuous
offsets for actions.

3 ADVERSARIAL ATTACKS ON IMITATION LEARNING

We study two widely used adversarial attacks in our paper, namely, Projected Gradient Descent
(PGD) (Madry et al., 2017) and Universal Adversarial Perturbations (UAP) (Moosavi-Dezfooli et al.,
2016). PGD iteratively applies a projected Fast Gradient Sign Method (FGSM) attack (Goodfellow
et al., 2014). UAP generates adversarial perturbations by considering multiple samples. Detailed
explanations about these attacks are given in Appendix A.

3.1 THREAT MODEL

Before describing our attack methods, we first clearly specify our threat model:

Adversary’s Goal: The attacker aims to cause task failure by perturbing visual observations during
deployment, either through untargeted perturbations that disrupt normal policy execution or targeted
perturbations that force specific undesired actions.

Adversary’s Knowledge and Capabilities: The attacker has white-box access to the trained policy
parameters but cannot modify them. Perturbations are limited to the visual observation space (no di-
rect action manipulation). Perturbations must remain within an Lp norm ball of radius ϵ to maintain
imperceptibility. The attacker can compute gradients through the entire policy network.

This threat model is particularly relevant for deployed robotic systems using open-source policies,
where model weights are publicly available but the training process is complete. We study both
online attacks (PGD) that can adapt perturbations in real-time and offline attacks (UAP) that must
generate a single fixed perturbation designed to work across all states.

3.2 ATTACKS ON EXPLICIT BC ALGORITHMS

The objectives for running PGD, and UAP on explicit behavior cloning methods such as Vanilla BC,
LSTM-GMM, and VQ-BET are based directly on their respective loss functions. For Vanilla BC, the
adversarial attacks aim to maximize the mean squared error (MSE) loss between the predicted and
expert actions by introducing small perturbations to the input states. In LSTM-GMM, the attacks
target the temporal dependencies modeled by the LSTM and the multimodal action distributions
captured by the Gaussian Mixture Model (GMM), aiming to disrupt the likelihood maximization
over the GMM outputs. For VQ-BET, the attacks exploit the latent action space by targeting the pre-
diction loss of discrete latent codes, ultimately leading to suboptimal action predictions. Each attack
(PGD, UAP) thus aims to create adversarial perturbations that exploit the specific vulnerabilities of
these loss functions to degrade performance.

3.3 ATTACKS ON IMPLICIT BC ALGORITHMS

Implicit BC algorithms differ from explicit ones in modeling the learning process and action selec-
tion, causing naive adversarial attacks largely fail to generate feasible perturbations. In this section,
we propose new attack formulations for implicit BC models considering their unique designs.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.3.1 IMPLICIT BEHAVIOR CLONING

Implicit Behavior Cloning (IBC) leverages implicit modeling techniques and contrastive learning
to learn a policy directly from expert demonstrations. In IBC, the policy πθ(a | s) is learned by
optimizing an energy-based model (EBM) that assigns low energy values to actions demonstrated
by the expert and higher energy values to other actions. The energy function Eθ(s,a) parameterized
by θ is trained using the InfoNCE loss, for a batch of N actions:

LInfoNCE =

N∑
i=1

− log

(
e−Eθ(si,ai)

e−Eθ(si,ai) +
∑Nneg.

j=1 e−Eθ(si,ãj
i)

)
(1)

where ãji for j = 1, . . . Nneg. are the negative samples. The parameters θ are optimized by minimiz-
ing LInfoNCE, encouraging the model to assign lower energy to expert actions compared to negative
samples. This approach allows IBC to capture complex and multimodal action distributions, leading
to more robust imitation of expert behaviors (Florence et al., 2021). Since IBC uses an implicit
model with iterative sampling procedure for selecting actions, we need to develop specific formu-
lations for untargeted and targeted attacks for these kinds of implicit models, specifically for the
Derivative-Free Optimizer version of the inference. Algorithm 1 summarizes our attack for IBC.

For the targeted attack, unfortunately there is no clear end-to-end loss function that minimizes
the targeted action energy under the clean state-action distribution, as the negative action sam-
ples are sampled randomly and thus the probability of selecting the targeted action can be very
low. Hence, we formulate the problem as finding the perturbation δ for a target action a′ such that,
p̃θ(a

′
i|si + δ) > p̃θ(ai|si + δ). To achieve this, we introduce a sampling-based attack method to

approximate the local energy surface, making it easier to select the target action. Specifically, we
randomly sample a small number of negative actions, along with the target action, to estimate the
energy surface around the target region. We also consider the original action during the attack. we
then iteratively perform gradient ascent to decrease the energy of the target action compared to both
the original and negative actions. However, in-order to further increase the probability of the target
action being chosen during inference, we repeat this procedure Niter times to decrease the energy
of the target action with respect to more actions that could possibly be selected due to their vicinity
to the original actions. The details are presented in Algorithm 1.

For the untargeted attack, the objective is to perturb the state s by finding a perturbation δ that
increases the energy (reduces the probability) of the actions that would normally be taken by the
trained policy on clean state observations. In this case, we aim to push the model toward selecting
less optimal actions by maximizing the energy associated with the learned actions in the perturbed
state. To achieve this, we perform gradient ascent on the input pixels to maximize the energy of
the correct action (aclean in Algorithm 1). Thus, the selected actions are essentially random actions
with respect to the original state-action distribution.

3.3.2 DIFFUSION POLICY

Diffusion Policy (DP) (Chi et al., 2023) aims to overcome the necessity of approximating the nor-
malizing constant (the negative samples required in the above IBC method) in an energy based
model, by learning the score function of the action-distribution.

In particular, the score function is defined as the gradient of the log-conditional probability distribu-
tion of actions, which is usually learnt as a noise-prediction network (εθ) parameterized by θ.

∇a log p(a | s) = −∇aEθ(s,a) ≈ −εθ(s,a) (2)

Starting from ak sampled from Gaussian noise, DP iteratively denoises the sample k times to get a
desired noise-free sample a0.

ak−1 = α
(
ak − γεθ

(
s,ak, k

)
+N

(
0, σ2I

))
(3)

where α, γ, σ are the hyper-parameters that collectively define the noise schedule. The complete
inference is defined in the Appendix. C.

Algorithm 2 shows our online attack method for Diffusion Policy. Both targeted and untargeted
attacks use Mean Squared Error (MSE) loss for propogation of gradient. For the targeted attack, we

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

try to minimize the distance between our predicted action and the target action (line 10) by doing
gradient descent. Whereas, in the untargeted attack, we try to maximize the distance between the
predicted action and the clean action (line 12) by doing gradient ascent. Running this attack end-to-
end during the whole denoising process can be costly, as we need to backpropogate through the entire
network for each iteration for a single inference step. However, we can reduce this computation by
taking inspiration from prior work on image editing attacks (Salman et al., 2023) and only apply the
perturbations during last timesteps (line 7 of Algorithm 2) of the denoising process. This enables
us to avoid wasting attacks when the actions are very random (during the initial steps of denoising)
and only apply the attack when the data has started to converge towards the mode. This reduces the
attack effort while not affecting the quality of adversarial attack.

Algorithm 1 Implicit BC PGD Attack

Require: Trained energy model Eθ(s, a), state s, observation o, number of samples Nsamples, number of
iterations Niters, decay rate K, perturbation bound ϵ, step size α

1: Obtain clean action aclean by running IBC on s
2: for epoch = 1, 2, . . . , Nepochs do ▷ Optimize over multiple samples
3: Initialize sample set S = {ãi}Nsamples

i=1 ∼ U(amin, amax)
4: if Targeted then
5: Introduce aclean, atarget into S
6: end if
7: for iter = 1, 2, . . . , Niters do ▷ Inner PGD attack iterations
8: {Ei}|S|

i=1 ← {Eθ(s
′, ãi)}|S|

i=1 ▷ Compute energies with perturbation

9: {p̃i}|S|
i=1 ←

{
e−Ei∑|S|

j=1 e
−Ej

}|S|

i=1

▷ Compute softmax probabilities

10: if Targeted then
11: Compute cross-entropy loss with atarget as the true label:
12: Loss = − log(p̃target) ▷ p̃target is the probability of atarget

13: else
14: Compute untargeted loss:
15: Loss = −Eθ(s

′, aclean) ▷ Maximize energy of the correct action for untargeted attacks
16: end if
17: Update s′ using PGD step:
18: s′ = s′ + α · (∇otLoss)Bϵ ▷ Projected on the lp norm ball
19: end for
20: end for
21: return s′

Algorithm 2 Diffusion Policy PGD Attack
Require: Observation horizon T0, Action Horizon Ta, Prediction Horizon Tp, State sequence St =
{st−To+1, . . . , st}, number of denoising iterations K

Ensure: Action sequence At = {at, . . . ,at+Tp−1}
1: Aclean

t = Diffusion Policy Inference(St)
2: Atarget

t = Aclean
t + Desired Perturbations ▷ Only for Targeted Attack

3: Initialize Tattack, ϵ, α, γ, σ,Niters

4: Initialize A
(K)
t ∼ N (0, I)

5: for k = K,K − 1, . . . , 1 do
6: A

(k−1)
t = α(A

(k)
t − γϵθ(St,A

(k)
t , k)) + σN (0, I)

7: if k < Tattack then ▷ Attack during the last K − Tattack timesteps
8: for Niters do ▷ Inner PGD iterations
9: if Targeted then

10: Loss = −MSELoss(Ak−1
t ,A

target(k−1)
t)

11: else
12: Loss = MSELoss(Ak−1

t ,A
clean(k−1)
t)

13: end if
14: St = St + α · ∇Ot(Loss)Bϵ ▷ Grad. ascent w.r.t current observations and project on ϵ ball.
15: end for
16: end if
17: end for
18: return St

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) Lift Task (b) Can Task (c) Square Task (d) Push-T Task (e) Tool Hang Task

Figure 1: Environments used to study adversarial robustness of modern behavior cloning algorithms.
(a)-(c) and (e) are from RoboMimic (Mandlekar et al., 2021) and (d) is from Florence et al. (2021)

4 EXPERIMENTS & RESULTS

We design our experiments to the answer to following questions: (1) How vulnerable are modern
behavior cloning algorithms to adversarial attacks? (2) How easy is it to craft universal perturbations
for these algorithms? (3) How transferable are the attacks across different algorithms and different
tasks? (4) What is the impact of different feature extraction backbones on attack performance, as
in how transferable are the attacks between different vision architectures? (5) How does the action
prediction horizon of diffusion policy affect its vulnerability?

4.1 ENVIRONMENTS

To demonstrate the adversarial robustness of modern behavior cloning algorithms, we consider com-
mon benchmarks shown in Figure 1. The tasks of Lift, Can and Square are taken from Robomimic
(Mandlekar et al., 2021), where the state-of-the art frameworks such as Diffusion Policy and LSTM-
GMM have been shown to have a nearly 100% success rate in non-adversarial settings. To further
assess the ability of adversarial attacks to breach these frameworks on more sophisticated interaction
data, we consider the Push-T environment, first introduced by Florence et al. (2021) and then sub-
sequently used by Diffusion Policy (Chi et al., 2023) and VQ-BET (Lee et al., 2024). Descriptions
and details of these tasks are included in Appendix B.

4.2 PRETRAINED POLICIES

To provide consistent and reproducible restults, we attack the pre-trained checkpoints for LSTM-
GMM, IBC and Diffusion Policy released by the authors of Diffusion Policy (Chi et al., 2023) on
these suite of tasks, and train our policies for Vanilla-BC and VQ-BET, due to absence of publicly
available checkpoints. We evaluate all the environments on 50 randomly initialized environments
across 3 different seeds for reporting the mean and standard deviation of the success rate. All pre-
trained policies and source code for generating and evaluating attacks and reproducing our results
will be open-sourced at [url masked for anonymous submission].

4.3 HOW VULNERABLE ARE MODERN BEHAVIOR CLONING ALGORITHMS TO
ADVERSARIAL ATTACKS ?

To assess the vulnerability of modern behavior cloning algorithms to adversarial attacks, we con-
ducted a comprehensive evaluation using both online (PGD) and offline (UAP) attack methods. Our
findings, as illustrated in Figures 2 and 3, reveal significant vulnerabilities in the adversarial ro-
bustness of current algorithms when faced with perturbations in the observation space. Among the
algorithms tested, VQ-BET demonstrated the highest susceptibility to adversarial perturbations. We
hypothesize that this vulnerability stems from the discrete nature of its action space, which may lead
to discontinuous decision boundaries. In contrast, algorithms employing iterative methods for action
selection, such as IBC and Diffusion Policy, exhibited relatively higher robustness. This enhanced
resilience can be attributed to the inherent stochasticity in their action selection processes during
inference. It is important to note that the effectiveness of these attacks varies depending on the com-
plexity of the task environment. For instance, the Lift environment allows for a larger margin of
error, making it more forgiving to substantial perturbations in actions. However, as task complexity
increases, we observe a dramatic reduction in the robot task success rates (increase in attack success

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.94
0.98

0.77

1.00 1.00

0.23

0.00 0.03

0.25

0.00

0.32

0.00

0.12

0.86

0.00

Vanilla BC LSTM-GMM IBC Diffusion Policy-C VQ-BET
0

0.2

0.4

0.6

0.8

1

Algorithm

N
or

m
al

 S
uc

ce
ss

 R
at

e

(a) PGD

0.94
0.98

0.77

1.00 1.00

0.48

0.00

0.68

0.92

0.000.00 0.00

0.71

0.00 0.00

Vanilla BC LSTM-GMM IBC Diffusion Policy-C VQ-BET
0

0.2

0.4

0.6

0.8

1 Attack Type
No Attack
Targeted Attack
Untargeted Attack

Algorithm

N
or

m
al

 S
uc

ce
ss

 R
at

e

(b) UAP

Figure 2: Comparison of PGD and UAP attacks for the Lift task. The y axis denotes the normal
performance of the evaluated policies, which is the lower the better for attacks.

0.65
0.69

0.72

0.89

0.62

0.08 0.09
0.11

0.22

0.080.08 0.09

0.31

0.39

0.08

Vanilla BC LSTM-GMM IBC Diffusion Policy-C VQ-BET
0

0.2

0.4

0.6

0.8

1

Algorithm

M
ea

n
Io

U

(a) PGD

0.65
0.69

0.72

0.89

0.62

0.09 0.08

0.61

0.14

0.08
0.10 0.09

0.57

0.25

0.08

Vanilla BC LSTM-GMM IBC Diffusion Policy-C VQ-BET
0

0.2

0.4

0.6

0.8

1 Attack Type
No Attack
Targeted Attack
Untargeted Attack

Algorithm

M
ea

n
Io

U

(b) UAP

Figure 3: Comparison of PGD and UAP attacks for the Push-T task. The y axis denotes the normal
performance of the evaluated policies, which is the lower the better for attacks.

rates) across all algorithms. For example, Mandlekar et al. (2021) categorize the difficulty of the
tasks with Lift being the easiest, Can being harder than Lift, and Square being harder than Can.
As we increase the complexity of the task, we notice an increase in the efficacy of the adversarial
attacks as detailed in Appendix E. We also observe that even for small values of epsilon most of the
algorithms are not robust to the attacks (Fig. 12 in Appendix J).

4.4 CAN ADVERSARIAL EXAMPLES TRANSFER ACROSS DIFFERENT ALGORITHMS AND
TASKS?

The transferability of adversarial examples across different behavior cloning algorithms presents an
intriguing phenomenon, given the substantial differences in their loss functions and training method-
ologies (as detailed in Section 2). While these algorithms share a common image encoder (ResNet-
18), their end-to-end training approach results in distinct feature representations that are not easily
interpretable. The transferability of adversarial examples across different behavior cloning algo-
rithms presents an intriguing phenomenon, given the substantial differences in their loss functions
and training methodologies (as detailed in Section 2). While these algorithms share a common
image encoder (ResNet-18), their end-to-end training approach results in distinct feature represen-
tations that are not easily interpretable.

In simpler environments like the Lift task (see Table 1), where baseline success rates are high (>90%
for most algorithms), we observed limited transferability with relatively small proportional drops in
performance, aligning with our initial expectations. Intriguingly, as we progressed to more complex
environments (Square: see Table 5), where baseline success rates are lower and tasks are naturally
less robust to action perturbations, we noticed that transferred attacks often caused larger propor-
tional drops in performance relative to the baseline.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Inter-Algorithm Transferability of Untargeted UAP on the Lift task, where the rows corre-
spond to the attacker policy over which perturbations were developed (random refers to a Gaussian
noise with the mean of zero and std of epsilon) and the columns correspond to target policy over
which attacks were tested.

Attacker
Target Policy Vanilla BC LSTM-GMM IBC DiffusionPolicy-C VQ-BET

Random 0.96 0.84 0.80 1.00 0.98
Vanilla BC 0.00 0.00 0.80 1.00 0.94

LSTM-GMM 0.94 0.00 0.72 1.00 0.96
IBC 1.00 0.10 0.64 1.00 0.98

DiffusionPolicy-C 0.82 0.22 0.78 0.00 0.94
VQ-BET 0.94 0.50 0.84 1.00 0.00

Table 2: Inter-Algorithm Transferability of Untargeted UAP on the Push-T task.

Attacker
Target Policy Vanilla BC LSTM-GMM IBC DiffusionPolicy-C VQ-BET

Random 0.60 0.61 0.64 0.82 0.55
Vanilla BC 0.10 0.08 0.41 0.80 0.22

LSTM-GMM 0.15 0.09 0.33 0.78 0.31
IBC 0.14 0.08 0.14 0.71 0.17

DiffusionPolicy-C 0.27 0.10 0.24 0.14 0.22
VQ-BET 0.26 0.14 0.47 0.61 0.08

Table 3: Inter-Architecture Transferability. Transferring adversarial perturbations generated on
ResNet-18 to ResNet-50 as backbone on the Lift task. NA: No Attack

Algorithm NA Resnet-18 NA Resnet-50 Resnet-18 Resnet-50

Vanilla BC 1.00 1.00 0.21 0.75
LSTM-GMM 1.00 1.00 0.00 0.25
IBC 0.95 0.50 0.85 0.38
DiffusionPolicy-C 1.00 1.00 0.00 1.00
VQ-BET 1.00 1.00 0.00 0.98

This analysis highlights the importance of considering relative performance metrics when evaluat-
ing transferability across tasks of different complexity. Future work could benefit from developing
normalized metrics that better account for task difficulty and baseline performance. Additional ex-
periments and discussion for the inter-task transferability are in Appendix G.

4.5 WHAT IS THE IMPACT OF DIFFERENT FEATURE EXTRACTION BACKBONES TO
ATTACK PERFORMANCE?

Our investigation into the impact of different vision encoder backbones on adversarial attack trans-
ferability reveals intriguing insights. We developed perturbations using ResNet-18 as the backbone
and then deployed these attacks on policies than were trained using ResNet-50, without regenerat-
ing the attacks. This cross-architecture transfer scenario yielded surprising results. In the Lift task
(see Table 3), we observed high transferability for some algorithms (e.g., LSTM-GMM and IBC),
while others showed more resilience (e.g., Diffusion Policy-C and VQ-BET). The more complex
Push-T task (see Table 4) demonstrated a more consistent pattern of partial transferability across all
algorithms. Notably, in many cases, the ResNet-50 models showed vulnerability to attacks devel-
oped for ResNet-18, suggesting that simply increasing model capacity does not guarantee improved
robustness against cross-architecture attacks. It also highlights the existence of shared vulnerabil-
ities across different network architectures, which adversarial perturbations can exploit even when
transferred to a different backbone. These results underscore the importance of considering cross-
architecture vulnerabilities in the design of robust behavior cloning systems

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Inter-Architecture Transferability. Transferring adversarial perturbations generated on
ResNet-18 to ResNet-50 as backbone on the Push-T task.

Algorithm NA Resnet-18 NA Resnet-50 Resnet-18 Resnet-50

Vanilla BC 0.72 0.62 0.09 0.20
LSTM-GMM 0.72 0.56 0.08 0.21
IBC 0.74 0.57 0.63 0.27
DiffusionPolicy-C 0.88 0.78 0.14 0.54
VQ-BET 0.62 0.65 0.08 0.29

4.6 HOW DOES THE ACTION PREDICTION HORIZON OF DIFFUSION POLICY AFFECT ITS
VULNERABILITY?

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
Action Horizon

4
8
12
16

Epochs

M
ea

n
Te

st
 S

co
re

Figure 4: Test mean score vs epochs for action
prediction horizon of 16 for lift, and various action
horizons during Untargeted UAP.

In addition to the above experiments, we find
an interesting trade-off between the action hori-
zon of the Diffusion Policy and robustness. In
Fig. 4, we observe that as the action horizon in-
creases (the number of actions taken at a time),
while keeping the prediction horizon the same,
the policy shows increasing robustness to uni-
versal attack. We hypothesize that as the action
horizon increases the number of times the per-
turbed observation gets observed decreases thus
allowing for smaller compounding errors dur-
ing the inference. However, if the action hori-
zon is too long then the latency and recover-
ing from sub-optimal trajectories might lead to
worse overall performance.

5 CONCLUSION & FUTURE WORK

Our results show that all modern behavior cloning algorithms are vulnerable to adversarial attacks.
Interestingly, implicit policies such as Implicit Behavior Cloning and Diffusion Policy seem to be
more robust than the explicit policies. However, our results also demonstrate that the attack success
rate is dependent on the task. As tasks gets harder it becomes easier to attack these algorithms.
This also holds true based on the results from transferability of attacks between different algorithms.
Our results provide evidence that the different algorithms and the same algorithm trained with a
different architecture are learning some similar features that are not completely orthogonal but also
not completely similar. Thus posing a security challenge since even if we are using different vision
encoders, task, or policy these perturbations are still transferable.

We believe that our work lays foundation for future work in the direction of adversarial robustness
of robotic policies. We also believe that as this field progresses, there is a need for better metrics
to capture the nuanced effects of adversarial attacks on trajectories, rather than relying solely on
success rates. Such metrics could provide deeper insights into the uncertainty in the state-action
distributions learned by the policies. We also think that, while a lot of progress has been made in
computer vision interms of developing and patching adversarial attacks, the sequential nature of
robotic policies and the non-linearity from vision representations to actions can also be a source
of new vulnerabilities. While adversarial defenses such as Randomized Smoothing (Cohen et al.,
2019) (see results and discussion in Appendix F) can help in increasing the robustness, it comes at
the cost of large increase in the reaction time and may struggle when the action distribution exhibits
multi-modality. Additional defenses such as Adversarial Training (Goodfellow et al., 2014) are left
for future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Naveed Akhtar and Ajmal Mian. Threat of adversarial attacks on deep learning in computer vision:
A survey. Ieee Access, 6:14410–14430, 2018.

Michael Bain and Claude Sammut. A framework for behavioural cloning. In Machine Intelligence
15, pp. 103–129, 1995.

Nicholas Carlini, Florian Tramèr, Krishnamurthy Dj Dvijotham, Leslie Rice, Mingjie Sun, and
J Zico Kolter. (certified!!) adversarial robustness for free! In The Eleventh International Confer-
ence on Learning Representations. OpenReview, 2023.

Stephen Casper, Taylor Killian, Gabriel Kreiman, and Dylan Hadfield-Menell. White-box adversar-
ial policies in deep reinforcement learning. arXiv preprint arXiv:2209.02167, 2022.

Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and Debdeep Mukhopad-
hyay. A survey on adversarial attacks and defences. CAAI Transactions on Intelligence Technol-
ogy, 6(1):25–45, 2021.

Xuan Chen, Wenbo Guo, Guanhong Tao, Xiangyu Zhang, and Dawn Song. Bird: generalizable
backdoor detection and removal for deep reinforcement learning. Advances in Neural Information
Processing Systems, 36:40786–40798, 2023.

Yipu Chen, Haotian Xue, and Yongxin Chen. Diffusion policy attacker: Crafting adversarial
attacks for diffusion-based policies. ArXiv, abs/2405.19424, 2024. URL https://api.
semanticscholar.org/CorpusID:270123620.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran
Song. Diffusion policy: Visuomotor policy learning via action diffusion. In Proceedings of
Robotics: Science and Systems (RSS), 2023.

Jeremy M. Cohen, Elan Rosenfeld, and J. Zico Kolter. Certified adversarial robustness via random-
ized smoothing. ArXiv, abs/1902.02918, 2019. URL https://api.semanticscholar.
org/CorpusID:59842968.

Pete Florence, Corey Lynch, Andy Zeng, Oscar Ramirez, Ayzaan Wahid, Laura Downs, Adrian
Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning. Confer-
ence on Robot Learning (CoRL), 2021.

Adam Gleave, Michael Dennis, Neel Kant, Cody Wild, Sergey Levine, and Stuart J. Russell. Ad-
versarial policies: Attacking deep reinforcement learning. ArXiv, abs/1905.10615, 2019. URL
https://api.semanticscholar.org/CorpusID:166228022.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. CoRR, abs/1412.6572, 2014. URL https://api.semanticscholar.org/
CorpusID:6706414.

Jonathan Ho, Ajay Jain, and P. Abbeel. Denoising diffusion probabilistic models. ArXiv,
abs/2006.11239, 2020. URL https://api.semanticscholar.org/CorpusID:
219955663.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9:1735–
1780, 1997. URL https://api.semanticscholar.org/CorpusID:1915014.

Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial attacks
on neural network policies. arXiv preprint arXiv:1702.02284, 2017.

Yifan Jia, Christopher M. Poskitt, Jun Sun, and Sudipta Chattopadhyay. Physical adversarial attack
on a robotic arm. IEEE Robotics and Automation Letters, 7(4):9334–9341, 2022. doi: 10.1109/
LRA.2022.3189783.

Seungjae Lee, Yibin Wang, Haritheja Etukuru, H. Jin Kim, Nur Muhammad, Mahi Shafiullah, and
Lerrel Pinto. Behavior generation with latent actions. ArXiv, abs/2403.03181, 2024. URL
https://api.semanticscholar.org/CorpusID:268248763.

11

https://api.semanticscholar.org/CorpusID:270123620
https://api.semanticscholar.org/CorpusID:270123620
https://api.semanticscholar.org/CorpusID:59842968
https://api.semanticscholar.org/CorpusID:59842968
https://api.semanticscholar.org/CorpusID:166228022
https://api.semanticscholar.org/CorpusID:6706414
https://api.semanticscholar.org/CorpusID:6706414
https://api.semanticscholar.org/CorpusID:219955663
https://api.semanticscholar.org/CorpusID:219955663
https://api.semanticscholar.org/CorpusID:1915014
https://api.semanticscholar.org/CorpusID:268248763

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu, and Min Sun.
Tactics of adversarial attack on deep reinforcement learning agents. In International Joint Con-
ference on Artificial Intelligence, 2017. URL https://api.semanticscholar.org/
CorpusID:4476190.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. ArXiv, abs/1706.06083, 2017.
URL https://api.semanticscholar.org/CorpusID:3488815.

Ajay Mandlekar, Danfei Xu, J. Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-Fei,
Silvio Savarese, Yuke Zhu, and Roberto Mart’in-Mart’in. What matters in learning from offline
human demonstrations for robot manipulation. In Conference on Robot Learning, 2021. URL
https://api.semanticscholar.org/CorpusID:236956615.

Kanghua Mo, Weixuan Tang, Jin Li, and X.Q. Yuan. Attacking deep reinforcement learning with
decoupled adversarial policy. IEEE Transactions on Dependable and Secure Computing, 20:758–
768, 2023. URL https://api.semanticscholar.org/CorpusID:246055923.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 86–94, 2016. URL https://api.semanticscholar.org/CorpusID:
11558223.

Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish V. Chowdhary. Ro-
bust deep reinforcement learning with adversarial attacks. In Adaptive Agents and Multi-Agent
Systems, 2017. URL https://api.semanticscholar.org/CorpusID:34383906.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference
Proceedings, 2011.

Hadi Salman, Alaa Khaddaj, Guillaume Leclerc, Andrew Ilyas, and Aleksander Madry. Raising the
cost of malicious ai-powered image editing. In International Conference on Machine Learning,
2023. URL https://api.semanticscholar.org/CorpusID:256826808.

Jianwen Sun, Tianwei Zhang, Xiaofei Xie, L. Ma, Yan Zheng, Kangjie Chen, and Yang Liu. Stealthy
and efficient adversarial attacks against deep reinforcement learning. In AAAI Conference on
Artificial Intelligence, 2020. URL https://api.semanticscholar.org/CorpusID:
208523993.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, D. Erhan, Ian J. Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. CoRR, abs/1312.6199, 2013. URL
https://api.semanticscholar.org/CorpusID:604334.

Karim Tit and Teddy Furon. Fast reliability estimation for neural networks with adversar-
ial attack-driven importance sampling. In Uncertainty in AI, 2024. URL https://api.
semanticscholar.org/CorpusID:272695447.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. In Proceedings
of the 27th International Joint Conference on Artificial Intelligence, pp. 4950–4957, 2018.

Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi, and Chenliang Li. Adversarial attacks on
deep-learning models in natural language processing: A survey. ACM Transactions on Intelligent
Systems and Technology (TIST), 11(3):1–41, 2020.

12

https://api.semanticscholar.org/CorpusID:4476190
https://api.semanticscholar.org/CorpusID:4476190
https://api.semanticscholar.org/CorpusID:3488815
https://api.semanticscholar.org/CorpusID:236956615
https://api.semanticscholar.org/CorpusID:246055923
https://api.semanticscholar.org/CorpusID:11558223
https://api.semanticscholar.org/CorpusID:11558223
https://api.semanticscholar.org/CorpusID:34383906
https://api.semanticscholar.org/CorpusID:256826808
https://api.semanticscholar.org/CorpusID:208523993
https://api.semanticscholar.org/CorpusID:208523993
https://api.semanticscholar.org/CorpusID:604334
https://api.semanticscholar.org/CorpusID:272695447
https://api.semanticscholar.org/CorpusID:272695447

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A ADVERSARIAL ATTACKS

A.1 FAST GRADIENT SIGN METHOD (FGSM)

Fast Gradient Sign Method was proposed by Goodfellow et al. (2014). The basic idea behind FGSM
is to use the linearity of neural networks to craft adversarial examples. It is designed to be fast (on
the L∞ space) instead of a more close or robust adversarial example. Given an image x the method
sets the adversarial example as,

x′ = x+ ϵ · sign(∇lossF (x))

Intuitively, it tries to move each pixel by a small amount (ϵ) with the direction determined by the
sign of the gradient of the loss function wrt input.

A.2 PROJECTED GRADIENT DESCENT (PGD)

Projected Gradient Descent (PGD) is an iterative adversarial attack algorithm that generalizes the
Fast Gradient Sign Method (FGSM) by applying multiple steps of gradient ascent to maximize
the loss function with respect to the input, subject to a constraint on the perturbation magnitude.
Mathematically, starting from an initial input x0, the PGD algorithm iteratively updates the input
xk+1 using the following rule:

xk+1 = ΠBϵ(x0) (xk + α · sign(∇xJ(θ,xk, y))) ,

where J(θ,xk, y) is the loss function of the model with parameters θ, input xk, and true label y; α
is the step size; and ΠBϵ(x0) denotes the projection operator onto the lp-norm ball Bϵ(x0) of radius
ϵ centered at x0. The projection step ensures that the perturbed input remains within the allowable
perturbation bound. When the number of iterations is set to one and the step size α equals ϵ, PGD
reduces to FGSM, which can be seen as a special case of PGD. The iterative nature of PGD allows
it to find more effective adversarial perturbations compared to FGSM, making it a stronger attack
method used in adversarial training to enhance model robustness.

A.3 UNIVERSAL ADVERSARIAL PERTURBATIONS (UAP)

Similar to Moosavi-Dezfooli et al. (2016), we aim to find perturbations that are state-agnostic, such
that a single perturbation can be applied to all the images to cause failure of the agent. To this end, we
collect few samples of state-action pairs by rolling out our policy and optimizing the perturbations
as a parameter to minimize the loss similar to our PGD attacks.

Algorithm 3 Computation of Universal Perturbations for Behavior Cloning

Require: Data points D = {(si, atargeti)}Ni=1, behavior cloning model πθ, desired ℓp norm of the
perturbation ξ

Ensure: Universal perturbation vector v
1: Initialize v ← 0
2: for each datapoint (si, a

target
i) ∈ D do

ai = Algorithm(si + v)

v = v − α · ∇vLoss(ai, a
target
i)

3: end for
4: return v

B TASK DESCRIPTION

We evaluate the vulnerability of behavior cloning methods on several manipulation tasks of varying
complexity. Each task is implemented in both simulation using MuJoCo and the robosuite frame-
work, as well as on real Franka Emika Panda robots.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B.1 LIFT

A foundational manipulation task where a robot arm must lift a small cube (4cm x 4cm x 4cm)
from a table surface. The task tests basic pick-and-place capabilities and serves as an entry-level
benchmark. Success is determined by elevating the cube above a threshold height. Initial cube
poses are randomized with z-axis rotation within a small square region at the table center.

B.2 CAN

A manipulation task requiring the robot to transfer a soda can from a large source bin into a smaller
target bin. This task presents increased difficulty over Lift due to the more complex grasping re-
quirements of the cylindrical can and the constrained placement target. The can’s initial pose is
randomized with z-axis rotation anywhere within the source bin.

B.3 SQUARE

A high-precision manipulation task where the robot must pick up a square nut and insert it onto a
vertical rod. This task significantly increases complexity by requiring precise alignment and com-
plex insertion dynamics. The nut’s initial pose is randomized with z-axis rotation within a square
region on the table surface.

B.4 PUSH-T

A contact-rich manipulation task adapted from (Florence et al., 2021) where the robot must guide
a T-shaped block to a fixed target location using a circular end-effector. The task requires precise
control of contact dynamics, as the robot must strategically apply point contacts to maneuver the
block along the desired trajectory. Unlike pick-and-place tasks, success depends on understanding
and exploiting the complex dynamics of planar pushing. We evaluate using RGB image observations
augmented with end-effector proprioception. Initial positions of both the T-shaped block and the
end-effector are randomized to ensure learned policies must generalize across different pushing
strategies.

B.5 TOOL HANG

It’s the most difficult task in robomimic suite, as it requires a robotic arm to assemble the frame
consisting of a base piece and hook piece by inserting the hook into the base, and hang a wrench
on the hook. This task at multiple stages necessitates precise, and dexterous, rotation-heavy move-
ments. Initial position of the insertion hook as well as that of ratcheting wrench and z-rotation are
randomized in a small square at the beginning of the episode.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C BEHAVIOR CLONING POLICIES

C.1 IMPLICIT BEHAVIOR CLONING

Algorithm 4 Implicit BC Inference

Require: Trained energy model Eθ(s, a), observation s, number of samples Nsamples, number of
iterations Niters, initial sampling std. dev. σinit, decay rate K

1: Initialize {ãi}Nsamples

i=1 ∼ U(amin, amax), σ = σinit

2: for iter = 1, 2, . . . , Niters do
3: {Ei}

Nsamples

i=1 ← {Eθ(s, ã
i)}Nsamples

i=1 ▷ Compute energies

4: {p̃i}
Nsamples

i=1 ←
{

e−Ei∑Nsamples
j=1 e−Ej

}Nsamples

i=1

▷ Compute softmax probabilities

5: if iter < Niters then
6: {ãi}Nsamples

i=1 ← Multinomial(Nsamples, {p̃i}
Nsamples

i=1 , {ãi}Nsamples

i=1) ▷ Resample with
replacement

7: {ãi}Nsamples

i=1 ← {ãi +N (0, σ)}Nsamples

i=1 ▷ Add noise
8: {ãi}Nsamples

i=1 ← clip({ãi}Nsamples

i=1 , amin, amax) ▷ Clip to bounds
9: σ ← Kσ ▷ Shrink sampling scale

10: end if
11: end for
12: i = argmax

i
({p̃i}

Nsamples

i=1)

13: return ãi

C.2 DIFFUSION POLICY

For Diffusion policy we use absolute positional actions as the original work shows that CNN-based
diffusion policy performs poorly with robomimic’s offical dataset, that uses veloocity control, as in
the actions are represented as delta with respect to the current.

Algorithm 5 Diffusion Policy Inference

Require: Observation horizon T0, Action Horizon Ta, Prediction Horizon Tp, State sequence St =
{st−To+1, . . . , st}, number of denoising iterations K

Ensure: Action sequence At = {at, . . . ,at+Tp−1}
1: Initialize α, γ, σ
2: Initialize A

(K)
t ∼ N (0, I)

3: for k = K,K − 1, . . . , 1 do
4: A

(k−1)
t = α(A

(k)
t − γϵθ(St,A

(k)
t , k)) + σN (0, I)

5: end for
6: return St

D HYPERPARAMETERS

We adopt the following temporal horizons from Diffusion Policy:

• Action prediction horizon (Tp): 16 steps
• Action execution horizon (Ta): 8 steps
• Observation context window (To): 2 steps

For the adversarial attacks, we use the following settings:

1. Overall attack budget:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

• ε = 0.0625 (16/256) L∞ norm (normalized to input range [0, 1])
• Perturbations are clipped to [0, 1] range

2. Framework-specific perturbation bounds:
• For standard BC frameworks on Robomimic: [0.15, 0.15, 0] in (x, y, z) directions for

relative end-effector positions
• For Diffusion Policy on Robomimic: [0.45, 0.45, 0] in (x, y, z) directions for absolute

end-effector positions. The larger perturbation magnitude accounts for the absolute
position representation, compared to relative positions used in other frameworks

• For all the frameworks on Push-T: [100, 100] for the two action dimensions.
3. PGD attack parameters:

• Number of iterations: 40
• Per-iteration step size (εiteration): 0.005

For IBC inference, we use derivative-free optimization with Nsamples = 1024.

D.1 TARGET ACTION SELECTION

For targeted attacks across all algorithms, target actions are generated by perturbing the expected
clean actions:

atarget = aclean + δaction (4)
where aclean is the action predicted by the unperturbed policy and δaction is the desired action per-
turbation. For our experiments, we set δaction = [0.15, 0.15] for perturbations in x and y directions
for all frameworks except Diffusion Policy, where we use δaction = [0.45, 0.45]. These values were
chosen to ensure the target actions remain within physically feasible bounds while being sufficiently
different from the clean actions to potentially cause task failures. For PGD attacks, this target action
computation is performed at each inference step using the current clean action prediction, while for
UAP the target actions are computed once using the perturbed offline action trajectories.

E RESULTS ON ADDITIONAL ENVIRONMENTS

E.1 SQUARE ENVIRONMENT

0.20

0.82

0.03

0.99

0.59

0.00 0.00 0.00 0.00 0.000.00 0.00 0.00 0.07 0.00

Vanilla BC LSTM-GMM IBC Diffusion Policy-C VQ-BET
0

0.2

0.4

0.6

0.8

1

Algorithm

N
or

m
al

 S
uc

ce
ss

 R
at

e

(a) PGD attacks for square.

0.20

0.82

0.03

0.99

0.59

0.08 0.00 0.00 0.00 0.000.00 0.00 0.00 0.01

0.40

Vanilla BC LSTM-GMM IBC Diffusion Policy-C VQ-BET
0

0.2

0.4

0.6

0.8

1 Attack Type
No Attack
Targeted Attack
Untargeted Attack

Algorithm

N
or

m
al

 S
uc

ce
ss

 R
at

e

(b) Universal perturbation attacks for square.

Figure 5: Comparison of PGD and universal perturbation attacks for square task.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 5: Inter-Algorithm Transferability of Universal Untargeted Perturbations for Square

Square

Attacker
Target Policy Vanilla BC LSTM-GMM IBC DiffusionPolicy-C VQ-BET

Random 0.42 0.36 0.00 0.98 0.64
Vanilla BC 0.00 0.08 0.00 0.94 0.38

LSTM-GMM 0.18 0.00 0.00 0.96 0.62
IBC 0.42 0.1 0.00 0.98 0.62

DiffusionPolicy-C 0.00 0.00 0.00 0.00 0.32
VQ-BET 0.26 0.00 0.00 0.98 0.00

E.2 CAN ENVIRONMENT

0.80

1.00

0.07

1.00
0.96

0.00 0.00 0.00 0.00 0.050.00 0.00 0.00 0.00 0.00

Vanilla BC LSTM-GMM IBC Diffusion Policy-C VQ-BET
0

0.2

0.4

0.6

0.8

1

Algorithm

N
or

m
al

 S
uc

ce
ss

 R
at

e

(a) PGD attacks for Can.

0.80

1.00

0.07

1.00
0.96

0.00 0.00 0.00 0.00 0.000.00 0.00 0.00 0.00 0.00

Vanilla BC LSTM-GMM IBC Diffusion Policy-C VQ-BET
0

0.2

0.4

0.6

0.8

1 Attack Type
No Attack
Targeted Attack
Untargeted Attack

Algorithm

N
or

m
al

 S
uc

ce
ss

 R
at

e

(b) Universal perturbation attacks for Can.

Figure 6: Comparison of PGD and universal perturbation attacks for Can task.

Table 6: Inter-Algorithm Transferability of Universal Untargeted Perturbations for Can

Can

Attacker
Target Policy Vanilla BC LSTM-GMM IBC DiffusionPolicy-C VQ-BET

Random 0.62 0.94 0.00 1.00 0.96
Vanilla BC 0.00 0.66 0.00 0.42 0.88

LSTM-GMM 0.18 0.00 0.00 0.72 0.68
IBC 0.72 0.98 0.00 1.00 0.92

DiffusionPolicy-C 0.02 0.24 0.00 0.00 0.70
VQ-BET 0.34 0.64 0.00 0.42 0.04

Table 7: Inter-Architecture Transferability. Transferability of attacks trained with resnet-18 to
resnet-50 as backbone for Can.

Algorithm NA Resnet-18 NA Resnet-50 Resnet-18 Resnet-50
Vanilla BC 0.75 0.70 0.00 0.34
LSTM-GMM 1.00 0.25 0.00 0.00
IBC 0.09 0.00 0.00 0.00
DiffusionPolicy-C 1.00 0.875 0.00 0.30
VQ-BET 1.00 0.70 0.04 0.70

F RANDOMIZED SMOOTHING

Randomized smoothing is a technique used to enhance the robustness of deep neural networks
against adversarial perturbations. The core idea is to smooth the model’s predictions by averag-

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

ing over multiple randomly perturbed versions of the input. For a given input state s, the smoothed
policy π̃(s) is defined as:

π̃(s) = Eε[π(s+ ε)], where ε ∼ N (0, σ2I) (5)

During inference, we approximate this expectation by averaging predictions over N randomly sam-
pled perturbations:

π̃(s) ≈ 1

N

N∑
i=1

π(s+ εi), where εi ∼ N (0, σ2I) (6)

F.1 IMPLEMENTATION DETAILS

For our experiments, we used:

• Number of random samples (N): 100
• Noise standard deviation (σ):

– Lift task: σ = 0.1

– Push-T task: σ = 0.05

The σ values were carefully chosen through validation to maintain performance on clean (non-
attacked) inputs while providing meaningful defense against adversarial perturbations.

F.2 RESULTS AND ANALYSIS

As shown in Tables 8 and 9, randomized smoothing demonstrates varying degrees of effectiveness
across different algorithms and tasks:

Lift Task Results:

• Diffusion Policy shows the most impressive improvement, with task success rate improving
significantly (from 25% to 98% failure under PGD attacks)

• VQ-BET and Vanilla BC show moderate improvements (8% to 66% and 48% to 52% re-
spectively)

• IBC demonstrates a notable improvement from 21% to 50% task success rate
• LSTM-GMM shows limited benefit from smoothing

Push-T Task Results:

• The benefits of randomized smoothing are less pronounced in Push-T task
• IBC shows the most significant improvement (from 38% to 50% task success rate)
• Other algorithms show minimal improvements, this could partly be because of multi-modal

nature of the data distribution in the PushT environment (Lee et al., 2024), where averaging
individual predictions might lead to the mean between them.

The difference in effectiveness between tasks suggests that randomized smoothing’s utility may be
task-dependent, with simpler manipulation tasks with no multi-modality benefiting more from this
defense strategy than tasks that are inherently multi-modal.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 8: Comparison of the randomized smoothing on the algorithmic performance for the lift task.

Algorithm NA NA Randomized Smoothing PGD Attack Randomized Smoothing with PGD
Vanilla BC 1.00 1.00 0.48 0.52
LSTM-GMM 1.00 0.93 0.00 0.00
IBC 0.95 0.80 0.21 0.50
DiffusionPolicy-C 1.00 1.00 0.25 0.98
VQ-BET 1.00 1.00 0.08 0.66

Table 9: Comparison of the randomized smoothing on the algorithmic performance for the Pusht
task.

Algorithm NA NA Randomized Smoothing PGD Attack Randomized Smoothing with PGD
Vanilla BC 0.74 0.74 0.08 0.08
LSTM-GMM 0.66 0.54 0.00 0.00
IBC 0.68 0.67 0.38 0.50
DiffusionPolicy-C 0.88 0.84 0.23 0.24
VQ-BET 0.72 0.71 0.10 0.10

G INTER-TASK TRANSERABILITY

We investigate the transferability of untargeted Adversarial Perturbation attacks developed in one
environment to unseen new environments. We use the attacks developed for the Lift task across all
algorithms and measure their ability to impact performance of the respective algorithms in both the
Can and Square tasks. For every task, we report the percentage decrease in the robot task completion
rate compared to the non-attacked version.

Our results in Table 10 show that the attacks developed in Lift can transfer to both the other envi-
ronments, often decreasing the performance of the attacked policy. However in rare case of BC for
Square, we see an unexpeccted increase in performance when attacked using the attack developed
for Lift envionrment but this could be due to random initialization of environments and the time
constraint for testing only 3 seeds for each algorithm. It could also be due to the fact that adding a
small amount of action noise to policies can sometimes increase performance by helping the policy
get unstuck.

Table 10: Multi-Task Transferability of the Universal Pertubations

Algorithm \ Task LIFT CAN LIFT-TO-CAN SQUARE LIFT-TO-SQUARE
Vanilla BC 100% 100% 50% 100% -40%
LSTM-GMM 100% 100% 40% 100% 38.9%
IBC* 7.89% 100% 100% 100% 100%
DiffusionPolicy-C 100% 100% 45% 100% 6.6%
VQ-BET 100% 100% 0% 100% 11.4%

*IBC has very low (almost zero) performance on the Can and Square task, so the above metric may not
capture the full picture for (only) IBC.

H ILLUSTRATIONS

In this section, we show examples of the adversarial perturbations. Figure 7 shows an example of
untargeted attacks on the visual input for the Lift task. Figure 8 shows an example of targeted
attacks on the visual input for the Lift task. Figure 9 shows an example of untargeted attacks on
the visual input for the Push-T task. Figure 10 shows an example of targeted attacks on the visual
input for the Push-T task. We note that these perturbations are minor and in some cases almost
imperceptible.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Unattacked

Vanilla BC

LSTM-GMM

IBC

Diffusion Policy

VQ-BET

Figure 7: Untargeted Attacks on Lift task.

Unattacked

Vanilla BC

LSTM-GMM

IBC

Diffusion Policy

VQ-BET

Figure 8: Targeted Attacks on Lift task, where the target direction is towards top-left corner of the
object.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Unattacked

Vanilla BC

LSTM-GMM

IBC

Diffusion Policy

VQ-BET

Figure 9: Untargeted Attacks on PushT task.

Unattacked

Vanilla BC

LSTM-GMM

IBC

Diffusion Policy

VQ-BET

Figure 10: Targeted Attacks on PushT task, where the target is bottom right corner of the environ-
ment.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

I TOOL HANG

We investigate the vulnerability of modern behavior cloning algorithms on Tool Hang, specifically
we look at the targeted universal perturbation attack for Diffusion Policy, LSTM-GMM, IBC and
Vanilla BC. As before, we use pre-trained checkpoints for Diffussion Policy , LSTM-GMM and
IBC. We train our own policies for Vanilla-BC. Training VQ-BET on this task is extremely slow and
due to time constraints during the rebuttal phase we couldn’t finish training VQBET policies all 3
seeds but we promise to have these and their attacked versions by camera-ready deadline. We report
mean and standard deviation of success rate across 3 different seeds where we evaluate each seed
policy for 50 randomly initialized environments. Our results in Fig 11 show a similar trend as in
other tasks and environments, of decrease in performance of the attacked policy for all algorithms
except BC and IBC which fail to even learn a good behavior cloned policy owing to difficulty of
the task. As observed before, Diffusion Policy seems to be more robust than LSTM-GMM to the
universal pertubatioon attack.

Figure 11: UAP for Tool Hang task. The y axis denotes the normal performance of the evaluated
policies, which is the lower the better for attacks.0.65

J SENSITIVITY TO EPSILON VALUES

Our analysis reveals surprising vulnerabilities in behavior cloning algorithms even with minimal
perturbations (for Universal Untargeted Attacks). As shown in Figure 12, while decreasing epsilon
values generally reduces attack efficacy, algorithms like VQ-BET, LSTM-GMM, and Diffusion Pol-
icy still exhibit substantial performance degradation even at very small epsilon values (ϵ of 4/256).
This heightened sensitivity to small perturbations highlights a concerning vulnerability in current
behavior cloning approaches, suggesting that even well-constrained adversarial attacks can signifi-
cantly compromise policy performance.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) Lift (b) PushT

Figure 12: Performance of the algorithms to smaller epsilon values highlight the vulnerability and
lack of robustness of the Behavior Cloning Algorithms.

23

	Introduction
	Behavior Cloning Algorithms
	Vanilla Behavior Cloning
	LSTM-GMM
	Implicit Behavior Cloning
	Diffusion Policy
	VQ-BET

	Adversarial Attacks on Imitation Learning
	Threat Model
	Attacks on Explicit BC Algorithms
	Attacks on Implicit BC Algorithms
	Implicit Behavior Cloning
	Diffusion Policy

	Experiments & Results
	Environments
	Pretrained Policies
	How vulnerable are modern behavior cloning algorithms to adversarial attacks ?
	Can adversarial examples transfer across different algorithms and Tasks?
	What is the impact of different feature extraction backbones to attack performance?
	How does the action prediction horizon of diffusion policy affect its vulnerability?

	Conclusion & Future Work
	Adversarial Attacks
	Fast Gradient Sign Method (FGSM)
	Projected Gradient Descent (PGD)
	Universal Adversarial Perturbations (UAP)

	Task Description
	Lift
	Can
	Square
	Push-T
	Tool Hang

	Behavior Cloning Policies
	Implicit Behavior Cloning
	Diffusion Policy

	Hyperparameters
	TARGET ACTION SELECTION

	Results on Additional Environments
	Square Environment
	Can Environment

	Randomized Smoothing
	Implementation Details
	Results and Analysis

	Inter-Task Transerability
	ILLUSTRATIONS
	Tool Hang
	Sensitivity to Epsilon Values

