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Scientific importance of the task. Ozone (O3) is an internationally regulated air pollutant that1

harms human health1,2, damages vegetation3, and acts as a short-lived climate forcer in the upper2

atmosphere4. Beyond these impacts, predicting tropospheric ozone with high accuracy expresses3

the ultimate skill of climate and atmospheric forecasting models. Ozone is challenging to predict,4

both for physical and AI models, due to its coupling with nearly all processes in the atmosphere.5

It is photochemically produced in the presence of sunlight through reactions involving precursor6

gases emitted both from natural and anthropogenic sources5,6. Ozone can be transported on urban to7

intercontinental scales, and its lifetime can range from days to weeks, depending on environmental8

conditions7. Moreover, ozone frequently co-occurs with extreme events including wildfires and9

heatwaves8–11.10

Despite these challenges, ozone is in fact the most measured trace gas in our observational history,11

with reliable observations since the mid-20th century. In the satellite era, tropospheric ozone concen-12

trations have shown a global increase, yet climate models often disagree on the spatial distribution13

and magnitude of this increase12. This discrepancy remains one of the largest open mysteries in14

atmospheric science modeling and may be due to uncertainties in emissions (tropical, traffic, soils)13,15

nonlinear or missing chemistry14,15, stratosphere-troposphere exchange16, boundary-layer mixing17,16

and deposition18. As a result, ozone is often oversimplified or even excluded altogether from climate17

and AI-based atmosphere models. Improving ozone prediction and diagnosing why models struggle18

will reveal how well these models capture interconnected Earth system processes, making ozone a19

powerful diagnostic for exposing model limitations and identifying processes that must be improved20

to build better physical and AI models of the climate system. To address these challenges, we propose21

a foundational benchmark dataset for tropospheric ozone: AI4O3.22

What scientific question will the dataset enable? This training and benchmark dataset will enable23

the integration of tropospheric ozone prediction into the AI domain, which is currently dominated by24

weather forecasting and climate model emulation. Air quality research lacks well-defined benchmark25

datasets, limiting the application of AI in this realm19,20. Well-defined benchmarks, including datasets,26
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training objectives, and evaluation scores, have been instrumental in advancing AI-driven weather27

forecasting between 2022 and 2024 (e.g., WeatherBench and WeatherBench2)21,22. Our benchmark28

ozone dataset will enable robust comparison between methods and guide the development of more29

accurate AI and physical models. Currently, less attention has been given to atmospheric composition30

datasets, where observations are often sparser and noisier than weather data. Microsoft’s Aurora31

model is the only example of a foundational model fine-tuned for ozone prediction23. It uses data from32

CAMS reanalysis but lacks direct in-situ observations and provides predictions on 12 h time scales,33

which is too coarse for operational forecasts that impact human health and agriculture. Furthermore,34

most ozone reanalysis datasets (CAMS, MERRA-2) are coarse (∼0.5–1◦) and biased at the surface35

due to a lack of observational constraints.36

A major challenge in ozone forecasting, whether using AI or physical models, lies in predicting37

extreme events. Extreme ozone episodes are low-probability, high-impact events that challenge38

model performance and uncertainty quantification. These extremes play a key role in assessing39

model uncertainty, helping to distinguish between epistemic and aleatoric errors. Evaluating AI40

models under extreme conditions, such as heatwaves and wildfires that are often linked with high41

ozone levels, provides a more rigorous evaluation of model performance and accuracy. AI models42

generally perform less accurately when predicting ozone extremes23,24, emphasizing the need for a43

focused benchmark dataset. AI4O3 will enhance data quality for surrogate simulators of physical44

processes, enable fine-tuning of existing end-to-end LxMs, and advance the AI predictive capability45

for ozone-coupled extreme events.46

Dataset rationale and strategy. Training and evaluating AI models requires high-quality, diverse47

data sources that are currently decentralized and challenging for traditional AI applications. Despite48

their availability, these data present challenges due to differences in data types, resolutions, and49

formats. While datasets such as ozone surface observations and CAMS reanalysis offer vast amounts50

of information, they remain barriers to AI model development due to messy, heterogeneous data51

formats and insufficient documentation focused on AI use. (See Appendix for acronyms and detailed52

data information presented below).53

Our team includes experts in ozone observations, data assimilation, and AI; all required data and54

compute resources are available through public archives and collaborating institutions to create55

a comprehensive training and benchmark dataset. These sources (non-exhaustive) include the56

TOAR surface ozone database26, the GHOST surface composition dataset27, satellite observations57

(e.g., TROPOMI28, TEMPO29, GOME-230, TROPESS31-32), ozonesonde and LiDAR profiles33–35,58

field campaigns (e.g., ATom36, KORUS-AQ37), physical model outputs (e.g., GEOS-CF38, GEOS-59

Chem39), reanalysis data (e.g., CAMS40, MERRA-241,42), and commercial aircraft measurements60

(e.g., IAGOS43). The varying datasets capture different aspects of ozone, illustrating the need for61

a harmonized benchmark. For example, surface observations provide hourly point measurements62

but are limited to station locations. In contrast, satellite data have kilometer-scale footprints and63

add information on spatial patterns with global coverage but limited sensitivity to the surface.64

Complementing these are ozonesondes, which provide vertical profiles but are spatially sparse, as65

are field campaign and commercial aircraft data. Physical models and reanalysis provide full spatial66

coverage at medium resolution (∼0.5◦) but inherit the biases of the physical models used. By67

combining these datasets into AI-ready formats, we aim to create the most comprehensive dataset68

characterizing ozone throughout the troposphere, providing a foundation for training large-scale,69

state-of-the-art AI models.70

Metadata and covariates. We will include geolocation (latitude, longitude, altitude), time (times-71

tamps, windows), data source (satellite, ozonesonde, model, etc.), quality flags, uncertainty estimates,72

and atmospheric state (e.g., temperature, pressure, relative humidity), plus complementary variables73

relevant to ozone formation (precursor emissions, NOx, VOCs). These data are publicly available74

from multiple sources and do not require additional procurement by the team.75

Curation, integration, and deployment. We will (1) provide cloud-optimized, AI-ready formats76

(e.g., Zarr, Icechunk) and document observations at native resolutions, spanning the 1970s to today;77

and (2) apply data assimilation44,45 for AI to combine, regrid, and gap-fill on a global grid (4 km near78

the surface; 25 km in the free troposphere) with vertical levels every 25 hPa from the surface to the79

lower stratosphere, hourly from 2000 onward. We will host the data on Google Earth Engine46 and80

leverage the scalable Ristretto library, which enables low-rank reconstructions of global atmospheric81

chemistry data using ∼1% of the original storage47. To start, we will release AI4O3v1 for North82
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America and Europe, where observations are densest, generated by an automated pipeline that ingests83

the large volume of ozone observations (see Appendix), standardizes units and metrics (e.g., parts per84

billion; maximum daily 8-hour average), and co-locates all measurements on a common hourly grid.85

Data will also be mirrored to a secure HPC-hosted repository, colocated with a major compute system86

to test and optimize dataset structure and training performance. We will reuse machine-readable ozone87

databases (e.g., TOAR) to avoid unnecessary reprocessing of established datasets. This framework is88

extensible, enabling easy incorporation of new observations and cost-effective storage, and delivering89

a faster ozone reanalysis product with improved surface estimates.90

Acceleration and impact potential. AI4O3 will accelerate AI model development by providing a91

comprehensive, high-quality resource for training and validation. By enabling direct comparisons92

between AI and physical models, AI4O3 will guide more accurate ozone forecasting and benefit the93

next generation of weather and climate AI, given ozone’s coupling to underlying processes. The94

resulting models will enhance operational forecasting, particularly for ozone and related extreme95

events (e.g., wildfires, heatwaves), supporting public health, climate resilience, and crop protection.96
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Appendix: Data sources, scale & resolution213

A. Surface networks214

• TOAR (Tropospheric Ozone Assessment Report) surface database215

Type: In situ surface ozone216

Spatial resolution: Point (station)217

Time resolution: Hourly (station dependent)218

Period: ~1970s–present, 6000 sites globally219

• GHOST (Globally Harmonised Observations in Space and Time)220

Type: In situ surface ozone (and other chemical species)221

Spatial resolution: Point (station)222

Time resolution: Hourly to daily (network dependent)223

Period: ~1970s–present, over 7 billion measurements taken across 38 networks224

B. Satellites225

• TROPOMI (TROPOspheric Monitoring Instrument on Sentinel-5 Precursor)226

Type: Total and tropospheric column ozone; ozone profile product227

Spatial resolution: ~5.5×3.5 km at nadir (Level-2 column); profiles are coarser228

Time resolution: Daily global swath (polar orbiter)229

Period: 2018–present230

• TEMPO (Tropospheric Emissions: Monitoring of Pollution instrument on Intelsat-40e)231

Type: Column ozone (and other chemical species); ozone profile product232

Spatial resolution: ~2.0×4.75 km (Level-2 column); profiles at ~8×4.75 km233

Time resolution: Hourly (daylight) over North America (geostationary)234

Period: 2023–present235

• GOME-2 (Global Ozone Monitoring Experiment-2 on MetOp-A/B/C)236

Type: Total column ozone (UV-Vis)237

Spatial resolution: ~40×40 km (MetOp-A); ~80×40 km (MetOp-B/C)238

Time resolution: Near-daily global (polar orbiters)239

Period: 2006–present240

• MLS (Microwave Limb Sounder on Aura)241

Type: Ozone profiles (focused on upper troposphere)242

Spatial resolution: ~6×165 km (cross-track × along-track) at tangent point; vertical243

resolution ~3 km near the tropopause244
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Time resolution: ~240 limb scans per orbit; near-daily global coverage (polar orbiter)245

Period: 2004–present246

• OMI (Ozone Monitoring Instrument on Aura)247

Type: Total column ozone (UV-Vis); other trace gases248

Spatial resolution: 13×24 km at nadir (Level-2 pixels)249

Time resolution: Daily global swath (polar orbiter)250

Period: 2004–present251

• OMPS (Ozone Mapping and Profiler Suite on Suomi National Polar-orbiting Partnership252

(NPP), NOAA-20, NOAA-21)253

Type: Nadir Mapper (total column), Nadir Profiler (ozone profiles), Limb Profiler (ozone254

profiles; Suomi NPP only)255

Spatial resolution:256

Nadir Mapper: ~50×50 km at nadir on Suomi NPP; finer on newer platforms (~10×10257

km on NOAA-21)258

Nadir Profiler: ~250×250 km at nadir on Suomi NPP; ~50×50 km on NOAA-20259

Limb Profiler: ~36×48 km horizontal; ~1 km vertical sampling (Suomi NPP)260

Time resolution: Nadir Mapper daily global; Nadir Profiler ~12-day global cycle; Limb261

Profiler daily limb tracks262

Period: 2011–present across the OMPS constellation with Suomi NPP from 2011–present,263

NOAA-20 2017–present, and NOAA-21 2022–present264

• CrIS (Cross-track Infrared Sounder on Suomi NPP, NOAA-20, NOAA-21)265

Type: Ozone profiles from thermal IR retrievals266

Spatial resolution: ~14 km at nadir, coarser off-nadir267

Time resolution: Near-daily global swaths with ~2 passes per day (polar orbiters)268

Period: Suomi NPP 2011–present; NOAA-20 2017–present; NOAA-21 2022–present269

• TROPESS (TRopospheric Ozone and its Precursors from Earth System Sounding; JPL270

retrieval suite using AIRS/CrIS/OMI)271

Type: Ozone profiles (thermal IR + UV-Vis)272

Spatial resolution: AIRS (Atmospheric Infrared Sounder) ~13.5 km; CrIS (Cross-track273

Infrared Sounder) ~14 km at nadir; OMI (Ozone Monitoring Instrument) ~13×24 km for274

column and profiles275

Time resolution: Near-daily global swaths (polar orbiters)276

Period: AIRS 2002–present, CrIS 2011–present, OMI 2004–present277

C. Vertical profiles278

• Ozonesondes279

Type: In situ ozone profiles (surface to ~30–35 km)280

Spatial resolution: Point (station), vertical ~100–150 m281

Time resolution: Usually weekly at long-term sites282

Period: ~1960s–present283

• Ozone LiDAR: NDACC (Network for the Detection of Atmospheric Composition Change),284

TOLNet (Tropospheric Ozone LiDAR Network)285

Type: Remote-sensed ozone profiles (lower/mid troposphere)286

Spatial resolution: Point (station), vertical ~150–750 m287

Time resolution: ~10-minute retrievals288

Period: ~1990s–present289

D. Field campaigns and aircraft290

• ATom (Atmospheric Tomography Mission)291

Type: In situ ozone (and other chemical species) along global flight transects292

Spatial resolution: Along-track; 1–10 s sampling; vertical profiling ~0.2–12 km293

Time resolution: Per-flight, across four seasonal deployments294

Period: 2016–2018295

• KORUS-AQ (Korea–United States Air Quality Study)296

Type: In situ and remote ozone, aircraft and surface measurements297

Spatial resolution: Regional (Korean peninsula/Seoul metro); along-track aircraft and site298
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stations299

Time resolution: Intensive field campaign monitoring300

Period: May–June 2016301

• IAGOS (In-service Aircraft for a Global Observing System)302

Type: In situ ozone along commercial aircraft routes303

Spatial resolution: Along-track at cruise altitudes (~9–12 km)304

Time resolution: Continuous flights305

Period: 2011–present, with MOZAIC (Measurement of OZone by Airbus In-service air-306

Craft) predecessor data from 1994–2014307

E. Models, reanalysis, and archives308

• GEOS-CF (Goddard Earth Observing System–Composition Forecast)309

Type: Chemistry-coupled forecasts/analyses of ozone (and other chemical species)310

Spatial resolution: 0.25◦ global311

Time resolution: Hourly312

Period: 2018–present313

• GEOS-Chem (Goddard Earth Observing System–Chemistry)314

Type: Simulated ozone and other chemical species from offline chemical transport model315

Spatial resolution: Global 4◦×5◦ or 2◦×2.5◦; nested 0.25◦×0.3125◦ regions316

Time resolution: Typically hourly317

Period: User-defined simulations; usually 2000s to present318

• CAMS Global Reanalysis–EAC4 (Copernicus Atmosphere Monitoring Service – ECMWF319

Atmospheric Composition Reanalysis 4)320

Type: Atmospheric composition reanalysis321

Spatial resolution: 0.75◦×0.75◦ global322

Time resolution: 3-hourly323

Period: 2003–2024 with updates using a 12 h fixed reanalysis window324

• MERRA-2 (Modern-Era Retrospective analysis for Research and Applications, Version 2)325

Type: Atmospheric reanalysis including both ozone and meteorology fields326

Spatial resolution: 0.5◦×0.625◦ global327

Time resolution: Hourly to 3-hourly328

Period: 1980–present329

• NNJA (NOAA–NASA Joint Archive of Observations for Earth System Reanalysis)48330

Type: Atmospheric reanalysis and observation archive including ozone satellite observations331

from MLS, GOME-2, OMI, and OMPS332

Spatial resolution: Satellite resolutions above333

Time resolution: Hourly to daily334

Period: 1979–present335
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