

---

# AI4O3: A Foundational Data Collection for Artificial Intelligence in Tropospheric Ozone Research

---

**Makoto Kelp**  
University of Utah

**Sebastian Hickman**  
European Centre for Medium-Range Weather Forecasts (ECMWF)

**Kazuyuki Miyazaki**  
Jet Propulsion Laboratory (JPL)  
California Institute of Technology

**Kai-Lan Chang**  
Cooperative Institute for Research in Environmental Sciences (CIRES),  
University of Colorado Boulder

**Paul Griffiths**  
Bristol University

**Qindan Zhu**  
Harvard-Smithsonian Center for Astrophysics

**Gerbrand Koren**  
Utrecht University

**Fernando Iglesias-Suárez**  
Predictia Intelligent Data Solutions S.L., Spain

**Elyse Pennington**  
Jet Propulsion Laboratory (JPL)  
California Institute of Technology

**Martin Schultz**  
Forschungszentrum Jülich,  
Jülich Supercomputing Centre,  
University of Cologne

**1** **Scientific importance of the task.** Ozone ( $O_3$ ) is an internationally regulated air pollutant that  
**2** harms human health<sup>1,2</sup>, damages vegetation<sup>3</sup>, and acts as a short-lived climate forcer in the upper  
**3** atmosphere<sup>4</sup>. Beyond these impacts, **predicting tropospheric ozone with high accuracy expresses**  
**4** **the ultimate skill of climate and atmospheric forecasting models.** Ozone is challenging to predict,  
**5** both for physical and AI models, due to its coupling with nearly all processes in the atmosphere.  
**6** It is photochemically produced in the presence of sunlight through reactions involving precursor  
**7** gases emitted both from natural and anthropogenic sources<sup>5,6</sup>. Ozone can be transported on urban to  
**8** intercontinental scales, and its lifetime can range from days to weeks, depending on environmental  
**9** conditions<sup>7</sup>. Moreover, ozone frequently co-occurs with extreme events including wildfires and  
**10** heatwaves<sup>8-11</sup>.

**11** Despite these challenges, ozone is in fact the most measured trace gas in our observational history,  
**12** with reliable observations since the mid-20<sup>th</sup> century. In the satellite era, tropospheric ozone concentrations  
**13** have shown a global increase, yet climate models often disagree on the spatial distribution and magnitude of this increase<sup>12</sup>. This discrepancy remains one of the largest open mysteries in  
**14** atmospheric science modeling and may be due to uncertainties in emissions (tropical, traffic, soils)<sup>13</sup>,  
**15** nonlinear or missing chemistry<sup>14,15</sup>, stratosphere-troposphere exchange<sup>16</sup>, boundary-layer mixing<sup>17</sup>,  
**16** and deposition<sup>18</sup>. As a result, ozone is often oversimplified or even excluded altogether from climate  
**17** and AI-based atmosphere models. Improving ozone prediction and diagnosing why models struggle  
**18** will reveal how well these models capture interconnected Earth system processes, making ozone a  
**19** powerful diagnostic for exposing model limitations and identifying processes that must be improved  
**20** to build better physical and AI models of the climate system. To address these challenges, we propose  
**21** a foundational benchmark dataset for tropospheric ozone: **AI4O3**.

**23** **What scientific question will the dataset enable?** This training and benchmark dataset will enable  
**24** the integration of tropospheric ozone prediction into the AI domain, which is currently dominated by  
**25** weather forecasting and climate model emulation. Air quality research lacks well-defined benchmark  
**26** datasets, limiting the application of AI in this realm<sup>19,20</sup>. Well-defined benchmarks, including datasets,

27 training objectives, and evaluation scores, have been instrumental in advancing AI-driven weather  
28 forecasting between 2022 and 2024 (e.g., WeatherBench and WeatherBench2)<sup>21,22</sup>. Our benchmark  
29 ozone dataset will enable robust comparison between methods and guide the development of more  
30 accurate AI and physical models. Currently, less attention has been given to atmospheric composition  
31 datasets, where observations are often sparser and noisier than weather data. Microsoft’s Aurora  
32 model is the only example of a foundational model fine-tuned for ozone prediction<sup>23</sup>. It uses data from  
33 CAMS reanalysis but lacks direct in-situ observations and provides predictions on 12 h time scales,  
34 which is too coarse for operational forecasts that impact human health and agriculture. Furthermore,  
35 most ozone reanalysis datasets (CAMS, MERRA-2) are coarse ( $\sim 0.5\text{--}1^\circ$ ) and biased at the surface  
36 due to a lack of observational constraints.

37 A major challenge in ozone forecasting, whether using AI or physical models, lies in predicting  
38 extreme events. Extreme ozone episodes are low-probability, high-impact events that challenge  
39 model performance and uncertainty quantification. These extremes play a key role in assessing  
40 model uncertainty, helping to distinguish between epistemic and aleatoric errors. Evaluating AI  
41 models under extreme conditions, such as heatwaves and wildfires that are often linked with high  
42 ozone levels, provides a more rigorous evaluation of model performance and accuracy. AI models  
43 generally perform less accurately when predicting ozone extremes<sup>23,24</sup>, emphasizing the need for a  
44 focused benchmark dataset. AI4O3 will enhance data quality for surrogate simulators of physical  
45 processes, enable fine-tuning of existing end-to-end LxMs, and advance the AI predictive capability  
46 for ozone-coupled extreme events.

47 **Dataset rationale and strategy.** Training and evaluating AI models requires high-quality, diverse  
48 data sources that are currently decentralized and challenging for traditional AI applications. Despite  
49 their availability, these data present challenges due to differences in data types, resolutions, and  
50 formats. While datasets such as ozone surface observations and CAMS reanalysis offer vast amounts  
51 of information, they remain barriers to AI model development due to messy, heterogeneous data  
52 formats and insufficient documentation focused on AI use. (See Appendix for acronyms and detailed  
53 data information presented below).

54 Our team includes experts in ozone observations, data assimilation, and AI; all required data and  
55 compute resources are available through public archives and collaborating institutions to create  
56 a comprehensive training and benchmark dataset. These sources (non-exhaustive) include the  
57 TOAR surface ozone database<sup>26</sup>, the GHOST surface composition dataset<sup>27</sup>, satellite observations  
58 (e.g., TROPOMI<sup>28</sup>, TEMPO<sup>29</sup>, GOME-2<sup>30</sup>, TROPESS<sup>31-32</sup>), ozonesonde and LiDAR profiles<sup>33-35</sup>,  
59 field campaigns (e.g., ATom<sup>36</sup>, KORUS-AQ<sup>37</sup>), physical model outputs (e.g., GEOS-CF<sup>38</sup>, GEOS-  
60 Chem<sup>39</sup>), reanalysis data (e.g., CAMS<sup>40</sup>, MERRA-2<sup>41,42</sup>), and commercial aircraft measurements  
61 (e.g., IAGOS<sup>43</sup>). The varying datasets capture different aspects of ozone, illustrating the need for  
62 a harmonized benchmark. For example, surface observations provide hourly point measurements  
63 but are limited to station locations. In contrast, satellite data have kilometer-scale footprints and  
64 add information on spatial patterns with global coverage but limited sensitivity to the surface.  
65 Complementing these are ozonesondes, which provide vertical profiles but are spatially sparse, as  
66 are field campaign and commercial aircraft data. Physical models and reanalysis provide full spatial  
67 coverage at medium resolution ( $\sim 0.5^\circ$ ) but inherit the biases of the physical models used. By  
68 combining these datasets into AI-ready formats, we aim to create the most comprehensive dataset  
69 characterizing ozone throughout the troposphere, providing a foundation for training large-scale,  
70 state-of-the-art AI models.

71 **Metadata and covariates.** We will include geolocation (latitude, longitude, altitude), time (times-  
72 tamps, windows), data source (satellite, ozonesonde, model, etc.), quality flags, uncertainty estimates,  
73 and atmospheric state (e.g., temperature, pressure, relative humidity), plus complementary variables  
74 relevant to ozone formation (precursor emissions,  $\text{NO}_x$ , VOCs). These data are publicly available  
75 from multiple sources and do not require additional procurement by the team.

76 **Curation, integration, and deployment.** We will (1) provide cloud-optimized, AI-ready formats  
77 (e.g., Zarr, Icechunk) and document observations at native resolutions, spanning the 1970s to today;  
78 and (2) apply data assimilation<sup>44,45</sup> for AI to combine, regrid, and gap-fill on a global grid (4 km near  
79 the surface; 25 km in the free troposphere) with vertical levels every 25 hPa from the surface to the  
80 lower stratosphere, hourly from 2000 onward. We will host the data on Google Earth Engine<sup>46</sup> and  
81 leverage the scalable Ristretto library, which enables low-rank reconstructions of global atmospheric  
82 chemistry data using  $\sim 1\%$  of the original storage<sup>47</sup>. To start, we will release AI4O3v1 for North

83 America and Europe, where observations are densest, generated by an automated pipeline that ingests  
84 the large volume of ozone observations (see Appendix), standardizes units and metrics (e.g., parts per  
85 billion; maximum daily 8-hour average), and co-locates all measurements on a common hourly grid.  
86 Data will also be mirrored to a secure HPC-hosted repository, colocated with a major compute system  
87 to test and optimize dataset structure and training performance. We will reuse machine-readable ozone  
88 databases (e.g., TOAR) to avoid unnecessary reprocessing of established datasets. This framework is  
89 extensible, enabling easy incorporation of new observations and cost-effective storage, and delivering  
90 a faster ozone reanalysis product with improved surface estimates.

91 **Acceleration and impact potential.** AI4O3 will accelerate AI model development by providing a  
92 comprehensive, high-quality resource for training and validation. By enabling direct comparisons  
93 between AI and physical models, AI4O3 will guide more accurate ozone forecasting and benefit the  
94 next generation of weather and climate AI, given ozone's coupling to underlying processes. The  
95 resulting models will enhance operational forecasting, particularly for ozone and related extreme  
96 events (e.g., wildfires, heatwaves), supporting public health, climate resilience, and crop protection.

## 97 **References**

- 98 1. Anenberg, S. C. et al. Estimates of the Global Burden of Ambient PM<sub>2.5</sub>, Ozone, and NO<sub>2</sub> on Asthma  
99 Incidence and Emergency Room Visits. *Environmental Health Perspectives* **126**, 107004 (2018).
- 100 2. Fleming, Z. L. et al. Tropospheric Ozone Assessment Report: Present-day ozone distribution and  
101 trends relevant to human health. *Elem Sci Anth* **6**, 12 (2018).
- 102 3. Lefohn, A. S. et al. Tropospheric ozone assessment report: Global ozone metrics for climate change,  
103 human health, and crop/ecosystem research. *Elem Sci Anth* **6**, 27 (2018).
- 104 4. Monks, P. S. et al. Tropospheric ozone and its precursors from the urban to the global scale from air  
105 quality to short-lived climate forcer. *Atmospheric Chemistry and Physics* **15**, 8889–8973 (2015).
- 106 5. Archibald, A. T. et al. Tropospheric Ozone Assessment Report: Critical review of changes in the  
107 tropospheric ozone burden and budget from 1960–2100. *Elementa: Science of the Anthropocene* **8**,  
108 034 (2020).
- 109 6. Lelieveld, J. & Dentener, F. J. What controls tropospheric ozone? *Journal of Geophysical Research: Atmospheres* **105**, 3531–3551 (2000).
- 110 7. Fiore, A. M. et al. Multimodel estimates of intercontinental source-receptor relationships for ozone  
111 pollution. *Journal of Geophysical Research* **114**, D04301 (2009).
- 112 8. Jaffe, D. A. & Wigder, N. L. Ozone production from wildfires: A critical review. *Atmospheric Environment* **51**, 1–10 (2012).
- 113 9. Schnell, J. L. & Prather, M. J. Co-occurrence of extremes in surface ozone, particulate matter, and  
114 temperature over eastern North America. *Proceedings of the National Academy of Sciences* **114**,  
115 2854–2859 (2017).
- 116 10. Chang, K.-L., McDonald, B. C., Harkins, C. & Cooper, O. R. Surface ozone trend variability across  
117 the United States and the impact of heat waves (1990–2023). *Atmospheric Chemistry and Physics* **25**,  
118 5101–5132 (2025).
- 119 11. Cooper, O. R. et al. Early Season 2023 Wildfires Generated Record-Breaking Surface Ozone Anomalies  
120 Across the U.S. Upper Midwest. *Geophysical Research Letters* **51**, e2024GL111481 (2024).
- 121 12. Christiansen, A., Mickley, L. J., Liu, J., Oman, L. D. & Hu, L. Multidecadal increases in global  
122 tropospheric ozone derived from ozonesonde and surface site observations: can models reproduce  
123 ozone trends? *Atmospheric Chemistry and Physics* **22**, 14751–14782 (2022).
- 124 13. Zhang, Y. et al. Contributions of World Regions to the Global Tropospheric Ozone Burden Change  
125 From 1980 to 2010. *Geophysical Research Letters* **48**, e2020GL089184 (2021).
- 126 14. Shah, V. et al. Nitrogen oxides in the free troposphere: implications for tropospheric oxidants and the  
127 interpretation of satellite NO<sub>2</sub> measurements. *Atmospheric Chemistry and Physics* **23**, 1227–1257  
128 (2023).
- 129 15. Wang, S. et al. Active and widespread halogen chemistry in the tropical and subtropical free tropo-  
130 sphere. *Proceedings of the National Academy of Sciences* **112**, 9281–9286 (2015).
- 131 16. Neu, J. L. et al. Tropospheric ozone variations governed by changes in stratospheric circulation.  
132 *Nature Geoscience* **7**, 340–344 (2014).
- 133 17. Lu, X. et al. Surface and tropospheric ozone trends in the Southern Hemisphere since 1990: possible  
134 linkages to poleward expansion of the Hadley circulation. *Science Bulletin* **64**, 400–409 (2019).

137 18. Clifton, O. E. et al. Dry Deposition of Ozone Over Land: Processes, Measurement, and Modeling.  
138 *Reviews of Geophysics* **58**, e2019RG000670 (2020).

139 19. Betancourt, C., Stomberg, T., Roscher, R., Schultz, M. G. & Stadtler, S. AQ-Bench: a benchmark  
140 dataset for machine learning on global air quality metrics. *Earth System Science Data* **13**, 3013–3033  
141 (2021).

142 20. Dueben, P. D. et al. Challenges and benchmark datasets for machine learning in the atmospheric  
143 sciences: Definition, status, and outlook. *Artificial Intelligence for the Earth Systems* **1**, e210002  
144 (2022).

145 21. Rasp, S. et al. WeatherBench: a benchmark data set for data-driven weather forecasting. *Journal of*  
146 *Advances in Modeling Earth Systems* **12**, e2020MS002203 (2020).

147 22. Rasp, S. et al. WeatherBench 2: A benchmark for the next generation of data-driven global weather  
148 models. *Journal of Advances in Modeling Earth Systems* **16**, e2023MS004019 (2024).

149 23. Bodnar, C. et al. A foundation model for the Earth system. *Nature* **641**, 1180–1187 (2025).

150 24. Hickman, S. H., Griffiths, P. T., Nowack, P. J. & Archibald, A. T. Short-term forecasting of ozone air  
151 pollution across Europe with transformers. *Environmental Data Science* **2**, e43 (2023).

152 25. Leufen, L. H., Kleinert, F. & Schultz, M. G. O3ResNet: A Deep Learning-Based Forecast System  
153 to Predict Local Ground-Level Daily Maximum 8-Hour Average Ozone in Rural and Suburban  
154 Environments. *Artificial Intelligence for the Earth Systems* **2** (2023).

155 26. Van Malderen, R. et al. Global ground-based tropospheric ozone measurements: reference data and  
156 individual site trends (2000–2022) from the TOAR-II/HEGIFTOM project. *Atmospheric Chemistry*  
157 and Physics **25**, 7187–7225 (2025).

158 27. Bowdalo, D. et al. GHOST: a globally harmonised dataset of surface atmospheric composition  
159 measurements. *Earth System Science Data* **16**, 4417–4495 (2024).

160 28. Garane, K. et al. TROPOMI/S5P total ozone column data: global ground-based validation and  
161 consistency with other satellite missions. *Atmospheric Measurement Techniques* **12**, 5263–5287  
162 (2019).

163 29. Jin, X., Yang, Y., Gonzalez Abad, G., Nowlan, C. & Liu, X. Observing the Diurnal Variations of  
164 Ozone–NO<sub>x</sub>–VOC Chemistry Over the U.S. From the Geostationary TEMPO Instrument. *Geophysical*  
165 *Research Letters* **52**, e2025GL116394 (2025).

166 30. Miles, G. M., Siddans, R., Kerridge, B. J., Latter, B. G. & Richards, N. A. D. Tropospheric ozone and  
167 ozone profiles retrieved from GOME-2 and their validation. *Atmospheric Measurement Techniques* **8**,  
168 385–398 (2015).

169 31. Pennington, E. A. et al. Quantifying biases in TROPOMI AIRS, CrIS, and joint AIRS+OMI tro-  
170 pospheric ozone products using ozonesondes. *Atmospheric Chemistry and Physics* **25**, 8533–8552  
171 (2025).

172 32. Keppens, A. et al. Harmonisation of sixteen tropospheric ozone satellite data records. *EGUphere*  
173 1–38 (2025). doi:10.5194/egusphere-2024-3746.

174 33. Jiang, Y. B. et al. Validation of Aura Microwave Limb Sounder Ozone by ozonesonde and lidar  
175 measurements. *Journal of Geophysical Research: Atmospheres* **112** (2007).

176 34. Kuang, S. et al. Stratosphere-to-troposphere transport revealed by ground-based lidar and ozonesonde  
177 at a midlatitude site. *Journal of Geophysical Research: Atmospheres* **117** (2012).

178 35. Clain, G. et al. Tropospheric ozone climatology at two Southern Hemisphere tropical/subtropical sites  
179 (Reunion Island and Irene, South Africa) from ozonesondes, LIDAR, and in situ aircraft measurements.  
180 *Atmospheric Chemistry and Physics* **9**, 1723–1734 (2009).

181 36. Thompson, C. R. et al. The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry  
182 of the Global Atmosphere. (2022). doi:10.1175/BAMS-D-20-0315.1.

183 37. Schroeder, J. R. et al. Observation-based modeling of ozone chemistry in the Seoul metropolitan  
184 area during the Korea–United States Air Quality Study (KORUS-AQ). *Elementa: Science of the*  
185 *Anthropocene* **8**, 3 (2020).

186 38. Keller, C. A. et al. Description of the NASA GEOS Composition Forecast Modeling System GEOS-CF  
187 v1.0. *Journal of Advances in Modeling Earth Systems* **13**, e2020MS002413 (2021).

188 39. Eastham, S. D. et al. GEOS-Chem High Performance (GCHP v11-02c): a next-generation implemen-  
189 tation of the GEOS-Chem chemical transport model for massively parallel applications. *Geoscientific*  
190 *Model Development* **11**, 2941–2953 (2018).

191 40. Flemming, J. et al. The CAMS interim Reanalysis of Carbon Monoxide, Ozone and Aerosol for  
192 2003–2015. *Atmospheric Chemistry and Physics* **17**, 1945–1983 (2017).

193 41. Wargan, K. et al. Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis. *Journal of Climate*  
194 **30**, 2961–2988 (2017).

195 42. Wargan, K. et al. M2-SCREAM: A Stratospheric Composition Reanalysis of Aura MLS Data With  
196 MERRA-2 Transport. *Earth and Space Science* **10**, e2022EA002632 (2023).

197 43. Wang, H. et al. Global tropospheric ozone trends, attributions, and radiative impacts in 1995–2017:  
198 an integrated analysis using aircraft (IAGOS) observations, ozonesonde, and multi-decadal chemical  
199 model simulations. *Atmospheric Chemistry and Physics Discussions* 1–55 (2022). doi:10.5194/acp-  
200 2022-381.

201 44. Arroyo, A., Herrero, A., Tricio, V., Corchado, E. & Wozniak, M. Neural models for imputation of  
202 missing ozone data in air-quality datasets. *Complexity* 7238015 (2018). doi:10.1155/2018/7238015.

203 45. Betancourt, C. et al. Global, high-resolution mapping of tropospheric ozone – explainable machine  
204 learning and impact of uncertainties. *Geoscientific Model Development Discussions* 1–36 (2022).  
205 doi:10.5194/gmd-2022-2.

206 46. Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. *Remote  
207 Sensing of Environment* **202**, 18–27 (2017).

208 47. Velegar, M., Erichson, N. B., Keller, C. A. & Kutz, J. N. Scalable diagnostics for global atmospheric  
209 chemistry using Ristretto library (version 1.0). *Geoscientific Model Development* **12**, 1525–1539  
210 (2019).

211 48. NNJA Observations for Earth System Reanalysis: NOAA Physical Sciences Laboratory. [https://ps1.noaa.gov/data/nnja\\_obs/](https://ps1.noaa.gov/data/nnja_obs/).

212

213 **Appendix: Data sources, scale & resolution**

214 **A. Surface networks**

215 • TOAR (Tropospheric Ozone Assessment Report) surface database  
216 **Type:** In situ surface ozone  
217 **Spatial resolution:** Point (station)  
218 **Time resolution:** Hourly (station dependent)  
219 **Period:** ~1970s–present, 6000 sites globally

220 • GHOST (Globally Harmonised Observations in Space and Time)  
221 **Type:** In situ surface ozone (and other chemical species)  
222 **Spatial resolution:** Point (station)  
223 **Time resolution:** Hourly to daily (network dependent)  
224 **Period:** ~1970s–present, over 7 billion measurements taken across 38 networks

225 **B. Satellites**

226 • TROPOMI (TROPOspheric Monitoring Instrument on Sentinel-5 Precursor)  
227 **Type:** Total and tropospheric column ozone; ozone profile product  
228 **Spatial resolution:**  $\sim 5.5 \times 3.5$  km at nadir (Level-2 column); profiles are coarser  
229 **Time resolution:** Daily global swath (polar orbiter)  
230 **Period:** 2018–present

231 • TEMPO (Tropospheric Emissions: Monitoring of Pollution instrument on Intelsat-40e)  
232 **Type:** Column ozone (and other chemical species); ozone profile product  
233 **Spatial resolution:**  $\sim 2.0 \times 4.75$  km (Level-2 column); profiles at  $\sim 8 \times 4.75$  km  
234 **Time resolution:** Hourly (daylight) over North America (geostationary)  
235 **Period:** 2023–present

236 • GOME-2 (Global Ozone Monitoring Experiment-2 on MetOp-A/B/C)  
237 **Type:** Total column ozone (UV-Vis)  
238 **Spatial resolution:**  $\sim 40 \times 40$  km (MetOp-A);  $\sim 80 \times 40$  km (MetOp-B/C)  
239 **Time resolution:** Near-daily global (polar orbiters)  
240 **Period:** 2006–present

241 • MLS (Microwave Limb Sounder on Aura)  
242 **Type:** Ozone profiles (focused on upper troposphere)  
243 **Spatial resolution:**  $\sim 6 \times 165$  km (cross-track  $\times$  along-track) at tangent point; vertical  
244 resolution  $\sim 3$  km near the tropopause

245      **Time resolution:** ~240 limb scans per orbit; near-daily global coverage (polar orbiter)  
 246      **Period:** 2004–present

- 247      • OMI (Ozone Monitoring Instrument on Aura)  
 248      **Type:** Total column ozone (UV-Vis); other trace gases  
 249      **Spatial resolution:**  $13 \times 24$  km at nadir (Level-2 pixels)  
 250      **Time resolution:** Daily global swath (polar orbiter)  
 251      **Period:** 2004–present
- 252      • OMPS (Ozone Mapping and Profiler Suite on Suomi National Polar-orbiting Partnership  
 253      (NPP), NOAA-20, NOAA-21)  
 254      **Type:** Nadir Mapper (total column), Nadir Profiler (ozone profiles), Limb Profiler (ozone  
 255      profiles; Suomi NPP only)  
 256      **Spatial resolution:**  
 257      **Nadir Mapper:**  $\sim 50 \times 50$  km at nadir on Suomi NPP; finer on newer platforms ( $\sim 10 \times 10$   
 258      km on NOAA-21)  
 259      **Nadir Profiler:**  $\sim 250 \times 250$  km at nadir on Suomi NPP;  $\sim 50 \times 50$  km on NOAA-20  
 260      **Limb Profiler:**  $\sim 36 \times 48$  km horizontal;  $\sim 1$  km vertical sampling (Suomi NPP)  
 261      **Time resolution:** Nadir Mapper daily global; Nadir Profiler  $\sim 12$ -day global cycle; Limb  
 262      Profiler daily limb tracks  
 263      **Period:** 2011–present across the OMPS constellation with Suomi NPP from 2011–present,  
 264      NOAA-20 2017–present, and NOAA-21 2022–present
- 265      • CrIS (Cross-track Infrared Sounder on Suomi NPP, NOAA-20, NOAA-21)  
 266      **Type:** Ozone profiles from thermal IR retrievals  
 267      **Spatial resolution:**  $\sim 14$  km at nadir, coarser off-nadir  
 268      **Time resolution:** Near-daily global swaths with  $\sim 2$  passes per day (polar orbiters)  
 269      **Period:** Suomi NPP 2011–present; NOAA-20 2017–present; NOAA-21 2022–present
- 270      • TROPESST (TRoposheric Ozone and its Precursors from Earth System Sounding; JPL  
 271      retrieval suite using AIRS/CrIS/OMI)  
 272      **Type:** Ozone profiles (thermal IR + UV-Vis)  
 273      **Spatial resolution:** AIRS (Atmospheric Infrared Sounder)  $\sim 13.5$  km; CrIS (Cross-track  
 274      Infrared Sounder)  $\sim 14$  km at nadir; OMI (Ozone Monitoring Instrument)  $\sim 13 \times 24$  km for  
 275      column and profiles  
 276      **Time resolution:** Near-daily global swaths (polar orbiters)  
 277      **Period:** AIRS 2002–present, CrIS 2011–present, OMI 2004–present

278      **C. Vertical profiles**

- 279      • Ozonesondes  
 280      **Type:** In situ ozone profiles (surface to  $\sim 30$ – $35$  km)  
 281      **Spatial resolution:** Point (station), vertical  $\sim 100$ – $150$  m  
 282      **Time resolution:** Usually weekly at long-term sites  
 283      **Period:**  $\sim 1960$ s–present
- 284      • Ozone LiDAR: NDACC (Network for the Detection of Atmospheric Composition Change),  
 285      TOLNet (Tropospheric Ozone LiDAR Network)  
 286      **Type:** Remote-sensed ozone profiles (lower/mid troposphere)  
 287      **Spatial resolution:** Point (station), vertical  $\sim 150$ – $750$  m  
 288      **Time resolution:**  $\sim 10$ -minute retrievals  
 289      **Period:**  $\sim 1990$ s–present

290      **D. Field campaigns and aircraft**

- 291      • ATom (Atmospheric Tomography Mission)  
 292      **Type:** In situ ozone (and other chemical species) along global flight transects  
 293      **Spatial resolution:** Along-track; 1– $10$  s sampling; vertical profiling  $\sim 0.2$ – $12$  km  
 294      **Time resolution:** Per-flight, across four seasonal deployments  
 295      **Period:** 2016–2018
- 296      • KORUS-AQ (Korea–United States Air Quality Study)  
 297      **Type:** In situ and remote ozone, aircraft and surface measurements  
 298      **Spatial resolution:** Regional (Korean peninsula/Seoul metro); along-track aircraft and site

299 stations  
300 **Time resolution:** Intensive field campaign monitoring  
301 **Period:** May–June 2016  
302 • IAGOS (In-service Aircraft for a Global Observing System)  
303 **Type:** In situ ozone along commercial aircraft routes  
304 **Spatial resolution:** Along-track at cruise altitudes (~9–12 km)  
305 **Time resolution:** Continuous flights  
306 **Period:** 2011–present, with MOZAIC (Measurement of OZone by Airbus In-service air-  
307 Craft) predecessor data from 1994–2014

308 **E. Models, reanalysis, and archives**

- 309 • GEOS-CF (Goddard Earth Observing System–Composition Forecast)  
310 **Type:** Chemistry-coupled forecasts/analyses of ozone (and other chemical species)  
311 **Spatial resolution:** 0.25° global  
312 **Time resolution:** Hourly  
313 **Period:** 2018–present
- 314 • GEOS-Chem (Goddard Earth Observing System–Chemistry)  
315 **Type:** Simulated ozone and other chemical species from offline chemical transport model  
316 **Spatial resolution:** Global 4°×5° or 2°×2.5°; nested 0.25°×0.3125° regions  
317 **Time resolution:** Typically hourly  
318 **Period:** User-defined simulations; usually 2000s to present
- 319 • CAMS Global Reanalysis–EAC4 (Copernicus Atmosphere Monitoring Service – ECMWF  
320 Atmospheric Composition Reanalysis 4)  
321 **Type:** Atmospheric composition reanalysis  
322 **Spatial resolution:** 0.75°×0.75° global  
323 **Time resolution:** 3-hourly  
324 **Period:** 2003–2024 with updates using a 12 h fixed reanalysis window
- 325 • MERRA-2 (Modern-Era Retrospective analysis for Research and Applications, Version 2)  
326 **Type:** Atmospheric reanalysis including both ozone and meteorology fields  
327 **Spatial resolution:** 0.5°×0.625° global  
328 **Time resolution:** Hourly to 3-hourly  
329 **Period:** 1980–present
- 330 • NNJA (NOAA–NASA Joint Archive of Observations for Earth System Reanalysis)<sup>48</sup>  
331 **Type:** Atmospheric reanalysis and observation archive including ozone satellite observations  
332 from MLS, GOME-2, OMI, and OMPS  
333 **Spatial resolution:** Satellite resolutions above  
334 **Time resolution:** Hourly to daily  
335 **Period:** 1979–present