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1 Scientific importance of the task. Ozone (O3) is an internationally regulated air pollutant that
2 harms human health!?, damages vegetation®, and acts as a short-lived climate forcer in the upper
3 atmosphere’. Beyond these impacts, predicting tropospheric ozone with high accuracy expresses
4 the ultimate skill of climate and atmospheric forecasting models. Ozone is challenging to predict,
5 both for physical and Al models, due to its coupling with nearly all processes in the atmosphere.
6 It is photochemically produced in the presence of sunlight through reactions involving precursor
7 gases emitted both from natural and anthropogenic sources®S. Ozone can be transported on urban to
8 intercontinental scales, and its lifetime can range from days to weeks, depending on environmental
9 conditions’. Moreover, ozone frequently co-occurs with extreme events including wildfires and

heatwaves®'!.

o

11 Despite these challenges, ozone is in fact the most measured trace gas in our observational history,
with reliable observations since the mid-20" century. In the satellite era, tropospheric ozone concen-
3 trations have shown a global increase, yet climate models often disagree on the spatial distribution
4 and magnitude of this increase'?. This discrepancy remains one of the largest open mysteries in
5 atmospheric science modeling and may be due to uncertainties in emissions (tropical, traffic, soils)",
6 nonlinear or missing chemistry'*!, stratosphere-troposphere exchange'é, boundary-layer mixing'’,
7 and deposition'®. As a result, ozone is often oversimplified or even excluded altogether from climate
8 and Al-based atmosphere models. Improving ozone prediction and diagnosing why models struggle
9 will reveal how well these models capture interconnected Earth system processes, making ozone a
20 powerful diagnostic for exposing model limitations and identifying processes that must be improved
21 to build better physical and Al models of the climate system. To address these challenges, we propose
22 afoundational benchmark dataset for tropospheric ozone: AI403.

N

23 What scientific question will the dataset enable? This training and benchmark dataset will enable
4 the integration of tropospheric ozone prediction into the AI domain, which is currently dominated by
25 weather forecasting and climate model emulation. Air quality research lacks well-defined benchmark
26 datasets, limiting the application of Al in this realm'®*, Well-defined benchmarks, including datasets,

n
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training objectives, and evaluation scores, have been instrumental in advancing Al-driven weather
forecasting between 2022 and 2024 (e.g., WeatherBench and WeatherBench2)*'*2, Our benchmark
ozone dataset will enable robust comparison between methods and guide the development of more
accurate Al and physical models. Currently, less attention has been given to atmospheric composition
datasets, where observations are often sparser and noisier than weather data. Microsoft’s Aurora
model is the only example of a foundational model fine-tuned for ozone prediction®. It uses data from
CAMS reanalysis but lacks direct in-situ observations and provides predictions on 12 h time scales,
which is too coarse for operational forecasts that impact human health and agriculture. Furthermore,
most ozone reanalysis datasets (CAMS, MERRA-2) are coarse (~0.5—1°) and biased at the surface
due to a lack of observational constraints.

A major challenge in ozone forecasting, whether using Al or physical models, lies in predicting
extreme events. Extreme ozone episodes are low-probability, high-impact events that challenge
model performance and uncertainty quantification. These extremes play a key role in assessing
model uncertainty, helping to distinguish between epistemic and aleatoric errors. Evaluating Al
models under extreme conditions, such as heatwaves and wildfires that are often linked with high
ozone levels, provides a more rigorous evaluation of model performance and accuracy. AI models
generally perform less accurately when predicting ozone extremes®?*, emphasizing the need for a
focused benchmark dataset. AI40O3 will enhance data quality for surrogate simulators of physical
processes, enable fine-tuning of existing end-to-end LxMs, and advance the Al predictive capability
for ozone-coupled extreme events.

Dataset rationale and strategy. Training and evaluating AI models requires high-quality, diverse
data sources that are currently decentralized and challenging for traditional Al applications. Despite
their availability, these data present challenges due to differences in data types, resolutions, and
formats. While datasets such as ozone surface observations and CAMS reanalysis offer vast amounts
of information, they remain barriers to Al model development due to messy, heterogeneous data
formats and insufficient documentation focused on Al use. (See Appendix for acronyms and detailed
data information presented below).

Our team includes experts in ozone observations, data assimilation, and Al; all required data and
compute resources are available through public archives and collaborating institutions to create
a comprehensive training and benchmark dataset. These sources (non-exhaustive) include the
TOAR surface ozone database®®, the GHOST surface composition dataset”’, satellite observations
(e.g., TROPOMI®, TEMPO”, GOME-2*, TROPESS*?), ozonesonde and LiDAR profiles®*,
field campaigns (e.g., ATom*, KORUS-AQ*), physical model outputs (e.g., GEOS-CF®, GEOS-
Chem®), reanalysis data (e.g., CAMS*, MERRA-2"?), and commercial aircraft measurements
(e.g., IAGOS*®). The varying datasets capture different aspects of ozone, illustrating the need for
a harmonized benchmark. For example, surface observations provide hourly point measurements
but are limited to station locations. In contrast, satellite data have kilometer-scale footprints and
add information on spatial patterns with global coverage but limited sensitivity to the surface.
Complementing these are ozonesondes, which provide vertical profiles but are spatially sparse, as
are field campaign and commercial aircraft data. Physical models and reanalysis provide full spatial
coverage at medium resolution (~0.5°) but inherit the biases of the physical models used. By
combining these datasets into Al-ready formats, we aim to create the most comprehensive dataset
characterizing ozone throughout the troposphere, providing a foundation for training large-scale,
state-of-the-art AI models.

Metadata and covariates. We will include geolocation (latitude, longitude, altitude), time (times-
tamps, windows), data source (satellite, ozonesonde, model, etc.), quality flags, uncertainty estimates,
and atmospheric state (e.g., temperature, pressure, relative humidity), plus complementary variables
relevant to ozone formation (precursor emissions, NO,,, VOCs). These data are publicly available
from multiple sources and do not require additional procurement by the team.

Curation, integration, and deployment. We will (1) provide cloud-optimized, Al-ready formats
(e.g., Zarr, Icechunk) and document observations at native resolutions, spanning the 1970s to today;
and (2) apply data assimilation*** for Al to combine, regrid, and gap-fill on a global grid (4 km near
the surface; 25 km in the free troposphere) with vertical levels every 25 hPa from the surface to the
lower stratosphere, hourly from 2000 onward. We will host the data on Google Earth Engine*® and
leverage the scalable Ristretto library, which enables low-rank reconstructions of global atmospheric
chemistry data using ~1% of the original storage*’. To start, we will release AI403v1 for North
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America and Europe, where observations are densest, generated by an automated pipeline that ingests
the large volume of ozone observations (see Appendix), standardizes units and metrics (e.g., parts per
billion; maximum daily 8-hour average), and co-locates all measurements on a common hourly grid.
Data will also be mirrored to a secure HPC-hosted repository, colocated with a major compute system
to test and optimize dataset structure and training performance. We will reuse machine-readable ozone
databases (e.g., TOAR) to avoid unnecessary reprocessing of established datasets. This framework is
extensible, enabling easy incorporation of new observations and cost-effective storage, and delivering
a faster ozone reanalysis product with improved surface estimates.

Acceleration and impact potential. AI403 will accelerate AI model development by providing a
comprehensive, high-quality resource for training and validation. By enabling direct comparisons
between Al and physical models, AI403 will guide more accurate ozone forecasting and benefit the
next generation of weather and climate Al, given ozone’s coupling to underlying processes. The
resulting models will enhance operational forecasting, particularly for ozone and related extreme
events (e.g., wildfires, heatwaves), supporting public health, climate resilience, and crop protection.
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Appendix: Data sources, scale & resolution

A. Surface networks

* TOAR (Tropospheric Ozone Assessment Report) surface database

Type: In situ surface ozone

Spatial resolution: Point (station)

Time resolution: Hourly (station dependent)
Period: ~1970s—present, 6000 sites globally

* GHOST (Globally Harmonised Observations in Space and Time)

Type: In situ surface ozone (and other chemical species)

Spatial resolution: Point (station)

Time resolution: Hourly to daily (network dependent)

Period: ~1970s—present, over 7 billion measurements taken across 38 networks

B. Satellites
* TROPOMI (TROPOspheric Monitoring Instrument on Sentinel-5 Precursor)

Type: Total and tropospheric column ozone; ozone profile product

Spatial resolution: ~5.5x3.5 km at nadir (Level-2 column); profiles are coarser
Time resolution: Daily global swath (polar orbiter)

Period: 2018—present

TEMPO (Tropospheric Emissions: Monitoring of Pollution instrument on Intelsat-40e)
Type: Column ozone (and other chemical species); ozone profile product

Spatial resolution: ~2.0x4.75 km (Level-2 column); profiles at ~8x4.75 km

Time resolution: Hourly (daylight) over North America (geostationary)

Period: 2023—present

GOME-2 (Global Ozone Monitoring Experiment-2 on MetOp-A/B/C)
Type: Total column ozone (UV-Vis)

Spatial resolution: ~40x40 km (MetOp-A); ~80x40 km (MetOp-B/C)
Time resolution: Near-daily global (polar orbiters)

Period: 2006—present

MLS (Microwave Limb Sounder on Aura)

Type: Ozone profiles (focused on upper troposphere)

Spatial resolution: ~6x165 km (cross-track x along-track) at tangent point; vertical
resolution ~3 km near the tropopause


https://psl.noaa.gov/data/nnja_obs/
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Time resolution: ~240 limb scans per orbit; near-daily global coverage (polar orbiter)
Period: 2004—present

* OMI (Ozone Monitoring Instrument on Aura)
Type: Total column ozone (UV-Vis); other trace gases
Spatial resolution: 13 x24 km at nadir (Level-2 pixels)
Time resolution: Daily global swath (polar orbiter)
Period: 2004—present

* OMPS (Ozone Mapping and Profiler Suite on Suomi National Polar-orbiting Partnership
(NPP), NOAA-20, NOAA-21)
Type: Nadir Mapper (total column), Nadir Profiler (ozone profiles), Limb Profiler (ozone
profiles; Suomi NPP only)
Spatial resolution:
Nadir Mapper: ~50x50 km at nadir on Suomi NPP; finer on newer platforms (~10x10
km on NOAA-21)
Nadir Profiler: ~250x250 km at nadir on Suomi NPP; ~50x 50 km on NOAA-20
Limb Profiler: ~36x48 km horizontal; ~1 km vertical sampling (Suomi NPP)
Time resolution: Nadir Mapper daily global; Nadir Profiler ~12-day global cycle; Limb
Profiler daily limb tracks
Period: 2011—present across the OMPS constellation with Suomi NPP from 201 1-present,
NOAA-20 2017-present, and NOAA-21 2022—present

e CrIS (Cross-track Infrared Sounder on Suomi NPP, NOAA-20, NOAA-21)
Type: Ozone profiles from thermal IR retrievals
Spatial resolution: ~14 km at nadir, coarser off-nadir
Time resolution: Near-daily global swaths with ~2 passes per day (polar orbiters)
Period: Suomi NPP 2011-present; NOAA-20 2017—present; NOAA-21 2022—present

* TROPESS (TRopospheric Ozone and its Precursors from Earth System Sounding; JPL
retrieval suite using AIRS/CrIS/OMI)
Type: Ozone profiles (thermal IR + UV-Vis)
Spatial resolution: AIRS (Atmospheric Infrared Sounder) ~13.5 km; CrIS (Cross-track
Infrared Sounder) ~14 km at nadir; OMI (Ozone Monitoring Instrument) ~13x24 km for
column and profiles
Time resolution: Near-daily global swaths (polar orbiters)
Period: AIRS 2002—present, CrIS 201 1—present, OMI 2004—present

C. Vertical profiles

* Ozonesondes
Type: In situ ozone profiles (surface to ~30-35 km)
Spatial resolution: Point (station), vertical ~100-150 m
Time resolution: Usually weekly at long-term sites
Period: ~1960s—present

* Ozone LiDAR: NDACC (Network for the Detection of Atmospheric Composition Change),
TOLNet (Tropospheric Ozone LiDAR Network)
Type: Remote-sensed ozone profiles (lower/mid troposphere)
Spatial resolution: Point (station), vertical ~150-750 m
Time resolution: ~10-minute retrievals
Period: ~1990s—present

D. Field campaigns and aircraft

¢ ATom (Atmospheric Tomography Mission)
Type: In situ ozone (and other chemical species) along global flight transects
Spatial resolution: Along-track; 1-10 s sampling; vertical profiling ~0.2—-12 km
Time resolution: Per-flight, across four seasonal deployments
Period: 20162018

* KORUS-AQ (Korea—United States Air Quality Study)
Type: In situ and remote ozone, aircraft and surface measurements
Spatial resolution: Regional (Korean peninsula/Seoul metro); along-track aircraft and site
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stations
Time resolution: Intensive field campaign monitoring
Period: May—June 2016

* TAGOS (In-service Aircraft for a Global Observing System)
Type: In situ ozone along commercial aircraft routes
Spatial resolution: Along-track at cruise altitudes (~9—12 km)
Time resolution: Continuous flights
Period: 201 1-present, with MOZAIC (Measurement of OZone by Airbus In-service air-
Craft) predecessor data from 1994-2014

E. Models, reanalysis, and archives

* GEOS-CF (Goddard Earth Observing System—Composition Forecast)
Type: Chemistry-coupled forecasts/analyses of ozone (and other chemical species)
Spatial resolution: 0.25° global
Time resolution: Hourly
Period: 2018—present

* GEOS-Chem (Goddard Earth Observing System—Chemistry)
Type: Simulated ozone and other chemical species from offline chemical transport model
Spatial resolution: Global 4°x5° or 2°x2.5°; nested 0.25°x0.3125° regions
Time resolution: Typically hourly
Period: User-defined simulations; usually 2000s to present

* CAMS Global Reanalysis—EAC4 (Copernicus Atmosphere Monitoring Service - ECMWF
Atmospheric Composition Reanalysis 4)
Type: Atmospheric composition reanalysis
Spatial resolution: 0.75°x0.75° global
Time resolution: 3-hourly
Period: 20032024 with updates using a 12 h fixed reanalysis window

* MERRA-2 (Modern-Era Retrospective analysis for Research and Applications, Version 2)
Type: Atmospheric reanalysis including both ozone and meteorology fields
Spatial resolution: 0.5°x0.625° global
Time resolution: Hourly to 3-hourly
Period: 1980—present

¢ NNJA (NOAA-NASA Joint Archive of Observations for Earth System Reanalysis)*®
Type: Atmospheric reanalysis and observation archive including ozone satellite observations
from MLS, GOME-2, OMI, and OMPS
Spatial resolution: Satellite resolutions above
Time resolution: Hourly to daily
Period: 1979—present



