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Abstract
We present an information-theoretic perspective
to group fairness trade-offs in federated learning
(FL) with respect to sensitive attributes, such as,
gender, race, etc. Existing works mostly focus
on either global fairness (overall disparity of the
model across all clients) or local fairness (dispar-
ity of the model at each individual client), without
necessarily considering their trade-offs. There is
a lack of understanding of the interplay between
global and local fairness in FL, and if and when
one implies the other. To address this gap, we
leverage a body of work in information theory
called partial information decomposition (PID)
which first identifies three sources of unfairness
in FL, namely, Unique Disparity, Redundant Dis-
parity, and Masked Disparity. Using canonical
examples, we demonstrate how these three dispar-
ities contribute to global and local fairness. This
decomposition helps us derive fundamental limits
and trade-offs between global or local fairness,
particularly under data heterogeneity, as well as,
derive conditions under which one implies the
other. We also present experimental results on
real-world datasets to support our theoretical find-
ings. This work offers a more nuanced under-
standing of the sources of disparity in FL that can
inform the use of local disparity mitigation tech-
niques, and their convergence and effectiveness
when deployed in practice.

1. Introduction
With the growing use of FL in various high-stakes applica-
tions, such as finance, healthcare, recommendation systems,
etc., it is crucial to ensure that these models do not dis-
criminate against any demographic group based on sensitive
features (Smith et al., 2016). While there are several meth-
ods to achieve group fairness in the centralized settings (?),
these methods do not directly apply to a FL setting since
each client only has access to their own local dataset, and
hence, is restricted to only performing local disparity miti-
gation.

Some recent works (Du et al., 2021; Abay et al., 2020;
Ezzeldin et al., 2023) focus on developing models that are
fair when evaluated on the entire dataset across all clients,
a concept known as global fairness. For example, several
banks have decided to engage in a FL process to train a
model that will determine loan qualifications without ex-
changing data among them. A globally fair model is one that
does not discriminate against any protected group, when
evaluated on the entire dataset across all the banks. On
the other hand, local fairness considers the disparity of the
model at each individual client, i.e., when evaluated on a
client’s local dataset. Local fairness is an important consid-
eration, as the models will ultimately be deployed and used
at the local client (Cui et al., 2021).

One might notice that global and local fairness evaluation
can differ from each other when the local demographics
at a client differ from the global demographics across the
entire dataset (data heterogeneity, e.g., a bank with predom-
inantly White customers). Previous research has mostly
focused on achieving either global fairness (Du et al., 2021)
or local fairness (Cui et al., 2021), without considering their
trade-offs and interplay. We provide more related works in
Appendix B. In this work, we aim to provide a fundamental
understanding of group fairness trade-offs in the FL setting.
Our main contributions can be summarized as follows:

• Partial information decomposition (PID) of global and
local disparity into three sources of unfairness: We for-
malize the notion of global and local fairness in federated
learning using information theory. We first define global
disparity as the mutual information between a model’s
prediction (denoted by Ŷ ) and the sensitive attribute (de-
noted by Z), i.e., I(Z; Ŷ ) (Definition 1). Then, we show
that local disparity can be represented as the conditional
mutual information I(Z; Ŷ |S) where S denotes the client
(Definition 2). We also demonstrate relationships between
these information-theoretic terms and well-known fairness
metrics such as statistical parity (see Lemma 1).

Next, we propose a PID that breaks down the global and
local disparity into three components: Unique Disparity,
Redundant Disparity, and Masked Disparity. We provide
canonical examples to help understand these three sources
of disparities in the context of FL (see Section 3.1).
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• Fundamental limits and trade-offs between local and
global fairness: With the use of the decomposed dis-
parities, we have been able to uncover the fundamental
information-theoretic limits and trade-offs between global
and local disparities. We show the limitations of achieving
global fairness using local fairness due to the redundant
disparity (see Theorem 1) and the limitations of achiev-
ing local fairness using global fairness due to the masked
disparity (see Theorem 2).

• Understanding scenarios where local fairness implies
global fairness and vice versa: We also identify the
conditions under which one form of fairness (local or
global) implies the other. Specifically, we have established
conditions under which local fairness can result in global
fairness (Theorem 4) and conditions under which global
fairness can result in local fairness (Theorem 5).

• Experimental demonstrations: We provide experimen-
tal evaluations on the Adult dataset to validate our theoret-
ical findings. We demonstrate practical scenarios where
unique, redundant, and masked disparities are prevalent.

2. Preliminaries
Let K be the total number of federating clients. A client
is represented as S∈[K] where [K]={1, 2, . . . ,K}. A
client S=k has a dataset Dk={(xi, yi, zi)}i=1,...nk

where
xi denotes the input features, yi ∈ {0, 1} is the true label,
zi∈{0, 1} is the sensitive attribute (1 for privileged group,
0 for unprivileged group), and nk denotes the number of
datapoints at client S=k. The entire dataset is given by
D̂ = ∪K

k=1Dk. When denoting a random variable drawn
from this dataset, we let X denote the input features, Z
denote the sensitive attribute, and Y denote the true label.
We also let Ŷ represent the predictions of a model fθ(X),
parameterized by θ.

Next, explore the concept of group fairness in the context
of FL and formally discuss two prevalent perspectives of
fairness: global and local.

Definition 1 (Global Disparity). The global disparity of a
model fθ with respect to Z is defined as I(Z; Ŷ ), the mutual
information between Z and Ŷ (where Ŷ = fθ(X)).

This is related to a widely-used group fairness notion
called statistical parity. Existing works (Hardt et al., 2016)
define the global statistical parity of the model fθ as:
Pr(Ŷ=1|Z=1)=Pr(Ŷ=1|Z=0). Global statistical parity
is satisfied when Z is independent of Ŷ , which is equivalent
to zero mutual information I(Z; Ŷ ) = 0. To further justify
our choice of I(Z; Ŷ ) as a measure of global disparity, we
provide a relationship between the absolute statistical par-
ity gap and mutual information when they are non-zero in
Lemma 1 (Proof in Appendix C).

Lemma 1. Let Z and Ŷ be binary and Pr(Z = 0) =

Figure 1. Venn diagram showing PID of I(Z; (A,B)).

1 − Pr(Z = 1) = α. The global statistical parity gap
SPglobal = |Pr(Ŷ = 1|Z = 1) − Pr(Ŷ = 1|Z = 0)| is

bounded by
√

0.5 I(Z;Ŷ )
2α(1−α) .

Similarly, existing literature (Ezzeldin et al., 2023)
defines local statistical parity at a client k as:
Pr(Ŷ=1|Z=1, S=k)=Pr(Ŷ=1|Z=0, S=k). A criti-
cal observation that we make in this work is that: local
client unfairness can be quantified as the conditional
mutual information I(Z, Ŷ |S).
Definition 2 (Local Disparity). The local disparity is de-
fined as I(Z; Ŷ |S), the mutual information between Z and
Ŷ conditioned on S.
Lemma 2. I(Z, Ŷ |S) = 0 if and only if Pr(Ŷ = 1|Z =
1, S = k) = Pr(Ŷ = 1|Z = 0, S = k) at all clients.

The proof (see Appendix C) uses the fact that
I(Z, Ŷ |S)=

∑K
k=1 Pr(S=k)I(Z, Ŷ |S=k) where

I(Z, Ŷ |S=k) is the local mutual information at client k,
and Pr(S=k)=nk

n , the proportion of data points at client
k. For the rest of this paper, we use I(Z; Ŷ ) to denote the
global disparity and I(Z, Ŷ |S) to denote the local disparity.

2.1. Background on Partial Information Decomposition

The Partial Information Decomposition (PID) decomposes
the mutual information I(Z; (A,B)) about a random vari-
able Z contained in the tuple (A,B) into four non-negative
terms as follows :

I(Z; (A,B)) = Uni(Z,A|B) + Uni(Z,B|A)

+ Red(Z;A,B) + Syn(Z; (A,B)) (1)

Here, Uni(Z,A|B) denotes the unique information about Z
that is present only in A and not in B, Red(Z : (A,B)) de-
notes the redundant information about Z that is present
in both A and B, and Syn(Z; (A,B)) denotes the syn-
ergistic information not present in either of A or B in-
dividually, but present jointly in (A,B). Observe in
Fig. 1 that Uni(Z:A|B) can be viewed as the information-
theoretic sub-volume of the intersection between I(Z;A)
and I(Z;A|B). Similarly for Red(Z:(A,B)). Defin-
ing any one of the PID terms suffices to get the others.
Hence, we include a popular definition of Uni(Z:A|B)
from (Bertschinger et al., 2014) in Appendix C. We also
include an example to better understand PID in Appendix C.
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Figure 2. Venn diagram showing PID of Global and Local Dispar-
ity with canonical examples where each disparity is maximum.

3. Main Results
3.1. Partial Information Decomposition of Disparity in

Federated Learning

Proposition 1. The global and local disparity in a federated
setting can be decomposed into PID terms as follows:

I(Z; Ŷ ) = Uni(Z:Ŷ |S) + Red(Z:Ŷ , S). (2)

I(Z; Ŷ |S) = Uni(Z:Ŷ |S) + Syn(Z:(Ŷ , S)). (3)

We also refer to Fig. 2 for a pictorial illustration of this result.
The proof follows directly from the relationship between
different PID terms.

The term Uni(Z:Ŷ |S) captures the information about sensi-
tive attribute Z that is present only in the model prediction
Ŷ and not in the clients S. We refer to this as the Unique
Disparity. It is important to note that this does not provide
a complete picture of the model’s disparity, as S may also
contain redundant information with Ŷ about Z.

The term Red(Z:Ŷ , S) denotes the redundant information
about sensitive attribute Z that is present in both prediction
Ŷ and client S. We call this as the Redundant Disparity.
The unique and redundant disparities make up the global
disparity I(Z; Ŷ ).

The term Syn(Z:(Ŷ , S)) represents the synergistic informa-
tion about sensitive attribute Z that is not present in either Ŷ
or S individually, but is present jointly in (Ŷ , S). We refer
to this as the Masked Disparity, as it is only observed when
Ŷ and S are considered together. The unique and masked
disparities make up the local disparity I(Z; Ŷ |S).

Canonical Examples. Assume binary model predictions,
sensitive attributes, and two clients, i.e., Ŷ , Z, S ∈ {0, 1}.
Note that I(Z; (Ŷ , S)) = H(Z)−H(Z|Ŷ , S) ≤ H(Z) =
1, i.e., the maximum disparity is 1 bit for this case.

Example 1 (Pure Uniqueness). Let Ŷ = Z and Z ⊥
⊥ S. The model accepts only males from each client
dataset. This model is both locally and globally un-
fair. Here, Red(Z:Ŷ , S) = 0, Uni(Z:Ŷ |S) = 1, and
Syn(Z; (Ŷ , S)) = 0

Each client has the same proportion of privileged and un-

privileged groups, Z ⊥⊥ S. If the model makes its predic-
tions solely based on the sensitive attribute, i.e., Ŷ = Z,
the unique disparity, Uni(Z:Ŷ |S) = 1, since all informa-
tion about Z is encoded in Ŷ and none is present in S.
Red(Z:Ŷ , S) = 0, since Ŷ and S do not share any in-
formation about Z. Similarly, Syn(Z; (Ŷ , S)) = 0, since
jointly, (Ŷ , S) do not contain any information about Z. As
a result, both the global and local disparities, I(Z; Ŷ ) =
I(Z; Ŷ |S) = 1, indicating that the model is globally and
locally unfair.

Example 2 (Pure Redundancy). Let Ŷ = Z = S. Client
S = 0 has all females with negative predicted outcomes
and client S = 1 has all males with positive predicted
outcomes. It is clear that this model achieves local fair-
ness at each client however it is globally unfair. In
terms of PID, Red(Z:Ŷ , S) = 1, Uni(Z:Ŷ |S) = 0, and
Syn(Z; (Ŷ , S)) = 0.

The sensitive attributes are skewed across clients, with client
S = 0 containing only females (Z = 0) and client S = 1
containing only males (Z = 1). The model makes its predic-
tions based on these sensitive attributes. In this case, the re-
dundant disparity, Red(Z:Ŷ , S) = 1, since all information
about Z is contained in both Ŷ and S. The unique disparity,
Uni(Z:Ŷ |S) = 0, since there is no information about Z in
Ŷ that is not present in S. Similarly, Syn(Z; (Ŷ , S)) = 0,
since jointly, (Ŷ , S) do not contain any information about
Z that is not present in Ŷ and S individually. As a result,
the global disparity, I(Z; Ŷ ) = 1, and the local disparity,
I(Z; Ŷ |S) = 0, indicate that the model is globally unfair
but locally fair. It is not surprising that the model is globally
unfair, as the predictions are based on the sensitive attributes.
However, since each client has only one protected group,
the model exhibits local fairness. In generally, redundant
disparity is observed when Z − S − Ŷ forms a Markov
chain, but Z and Ŷ are correlated.

Example 3 (Pure Synergy). Let Ŷ = Z ⊕ S and Z ⊥⊥ S.
The model accepts males from client S = 0 and females
from client S = 1, while others are rejected. This model is
not locally fair but globally fair. Here, Red(Z:Ŷ , S) = 0,
Uni(Z:Ŷ |S) = 0, and Syn(Z; (Ŷ , S)) = 1.

The sensitive attributes are identically distributed across
clients, i.e., Z ⊥⊥ S. The model prediction is an XOR of
the sensitive attribute Z and clients S, i.e., Ŷ = Z ⊕ S.
Thus, the model accepts males (Z = 1) from client S = 0
and females (Z = 1) from client S = 1, while rejecting all
other individuals. The masked disparity Syn(Z; (Ŷ , S)) =
1, since (Ŷ , S) specifies information about Z that is not
specified either Ŷ or S. With both Ŷ and S having no
information about Z, i.e., I(Z;S) = I(Z; Ŷ ) = 0, it follows
that there can not be any unique or redundant disparity. The
model is locally unfair, with I(Z; Ŷ |S) = 1, but globally
fair, with I(Z; Ŷ ) = 0. The model achieves global fairness
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by balancing the local unfairness at each client.

These examples demonstrate pure uniqueness, redundancy,
and synergy. In practice, it is usually a combination of these
cases as we show in the experimental section. These also
extend to multiple clients and sensitive attributes.

3.2. Fundamental Limits and Tradeoffs

Limitations in Achieving Global Fairness with Local
Fairness. As clients only have access to their own datasets,
applying local disparity mitigation methods at each client
can be convenient. Cui et al. (2021) argue for local fair-
ness as models are deployed at the local client level. In
Theorem 1, we formally demonstrate the limitations of this
approach. Even if local clients are able to use some optimal
local mitigation methods and model aggregation techniques
to achieve local fairness, the global disparity may still be
greater than zero.

Theorem 1 (Impossibility of Using Local Fairness to At-
tain Global Fairness). As long as redundant disparity
Red(Z:Ŷ , S) > 0, the global disparity I(Z; Ŷ ) > 0 even if
local disparity goes to 0.

The proof leverages PID of global disparity as shown in (2).
Recall example 2, where a locally fair model would fail to
be globally fair due to a non-zero redundant disparity.

Limitation in Achieving Local Fairness with Global Fair-
ness. We now consider the scenario where a model is trained
to achieve global fairness and is subsequently deployed at
the local client level.

Theorem 2 (Global Fairness Does Not Imply Local Fair-
ness). As long as masked disparity Syn(Z:(Ŷ , S)) > 0,
there exist scenarios where global fairness is attained but
local fairness is not.

The proof leverages the decomposition of local disparity as
shown in (3). This demonstrates that while it is possible
to train a model to achieve global fairness, it may still ex-
hibit disparity when deployed at the local level due to the
canceling of disparities between clients, recall example 3
(Pure Synergy).

Definition 3 (Interaction Information). The difference be-
tween global and local disparity is: I(Z; Ŷ )− I(Z; Ŷ |S) =
I(Z; Ŷ ;S). This term is the “interaction information.”

Interaction information quantifies the redundancy and syn-
ergy present in a system. Positive interaction information
indicates a system with high levels of redundancy and global
disparity, while negative interaction information indicates
a system with high levels of synergy and local disparity.
Interaction information can inform the trade-off between
local and global disparity.

Towards Achieving Global Fairness with Local Fairness.

Theorem 3 (Necessary and Sufficient Condition to Achieve
Global Fairness Using Local Fairness). If local disparity
I(Z, Ŷ |S) goes to zero, then the global disparity I(Z; Ŷ )
also goes to zero, if and only if the redundant disparity
Red(Z:Ŷ , S) = 0.

Lemma 3. Z ⊥⊥ S =⇒ Red(Z:Ŷ , S) = 0. When Z and
S are independent, the redundant disparity is zero.

The results of Theorem 3 and Lemma 3 suggest that when
the proportion of each protected group is equal across all
clients, the redundant disparity will decrease to zero. Hence,
when the local disparity goes to zero, the global disparity
will also decrease to zero. However, in practice, this pro-
portion is fixed since the dataset at each client cannot be
changed, i.e., I(Z;S) is fixed. Therefore, we explore an-
other more controllable condition to eliminate redundant
disparity even when I(Z;S) > 0.
Lemma 4. If synergistic disparity Syn(Z:(Ŷ , S)) = 0,
the redundant disparity Red(Z:Ŷ , S) = 0 if Ŷ and S are
independent Ŷ ⊥⊥ S or I(Ŷ ;S) = 0, even if I(Z;S) > 0.
Theorem 4. If local disparity goes to zero, then the global
disparity also goes to zero, if the model prediction Ŷ is
independent of S, i.e., I(Ŷ ;S) = 0.

Theorem 4 demonstrates that, in order to reduce redundant
disparity and achieve global fairness when there is a strong
correlation between Z and S, one potential solution is to
enforce independence between Ŷ and S. This means that
the model should make predictions at the same rate across
all clients. The proofs are provided in Appendix D.

Towards Achieving Local Fairness with Global Fairness.
Theorem 5. Local disparity will always be less than global
disparity if masked disparity Syn(Z:(Ŷ , S)) = 0.

Corollary 1. The local disparity will always be less than
global disparity if Z, Ŷ , S form a Markov chain Z− Ŷ −S.

Experimental Demonstration: To validate our theoretical
findings, we experiment on a real-world dataset (Adult)
in Appendix A. We demonstrate practical scenarios where
unique, redundant, and masked disparities are prevalent, for
two or more clients. We analyze the PID under various
data heterogeneity scenarios with varying sensitive attribute
distributions and varying synergy levels across clients. We
use PID functions from python dit package (James et al.,
2018) to estimate the terms.

Conclusions and Extended Work: This work provides a
more nuanced understanding of the sources of disparity in
FL than no other unfairness measure provides. This can
inform the use of bias mitigation techniques, and the effec-
tiveness of models when deployed in practice. Extended
work would investigate how PID decomposition could be di-
rectly estimated in a federated setting as well as extensions
to other fairness metrics, such as equalized odds.
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A. Experimental Demonstrations
In this section, we provide experimental evaluations on real-world datasets to validate our theoretical findings. We investigate
the PID of global and local fairness under various conditions and scenarios.

Dataset. UCL Adult dataset (Dua & Graff, 2017), which comprises over 40,000 data points. The objective is to predict
whether the annual earnings of an individual is more than 50K per year. We select gender as a sensitive attribute, with Male
as Z = 1 and Female as Z = 0.

Evaluation. We define global and local disparities as mutual information measures. To estimate these values, we use
the python dit package (James et al., 2018), which includes PID functions that allows us to decompose the global and
local disparities into unique, redundant, and masked disparities. We implement the definition of unique information
from (Bertschinger et al., 2014).

Demonstrating the Disparities. First, we demonstrate scenarios with unique, redundant, and masked disparities for the
Adult dataset using two clients, S = 0, 1. We do this by strategically splitting the dataset between the clients and training our
federated model using FedAvg (McMahan et al., 2017). For context, a model in the centralized case, achieved an accuracy
of 84.67% and disparity I(Z; Ŷ ) = 0.03537.

Scenario 1 Unique Disparity on Adult dataset. Unique disparity is observed when the sensitive attribute is evenly distributed
across clients (Z ⊥⊥ S). To achieve this, we randomly distribute the dataset among the two clients to ensure I(Z;S) = 0.
The global and local disparity is 0.0359 bits. Decomposing these we get the unique disparity as 0.0359 and zero redundant
and masked disparity, indicating that the source of the disparity is solely from the dependence between the model predictions
and sensitive attributes, and not from S. This matches the centralized case.

Scenario 2 Redundant Disparity on Adult dataset. Redundant disparity occurs when there is high heterogeneity of sensitive
attributes across clients (Z ≈ S). To achieve this, we distribute the dataset so as client S = 0 contains mainly females
Z = 0 and client S = 1 contains mainly males, Z = 1, resulting in I(Z;S) = 0.8486. The model trained had a global
disparity of 0.0431 and a local disparity of 0.0014. By decomposing these, we find that the redundant disparity is 0.0431,
masked disparity is 0.0014, and zero unique disparity.

Scenario 3 Masked Disparity on Adult dataset. The masked disparity is observed when the model predictions Ŷ = Z ⊕ S.
To attain this, we distribute the dataset such that the first client dataset contains males (Z = 1) with true labels Y = 1 and
females (Z = 0) with true labels Y = 0. The second client dataset contains the remaining (males with Y = 0 and females
with Y = 1). The trained model had a local disparity of 0.1761 and a global disparity of 0.0317. With a masked disparity of
0.1761, redundant disparity of 0.0317, and zero unique disparity. The non-zero redundant disparity is due to the way we
split the data, which resulted in I(Z;S) = 0.2409.

We summarize the three scenarios in Fig. 3. Additionally, we evaluate the effects of using local fairness mitigation technique
on the various disparities present. This is achieved by incorporating a statistical parity regularizer at each individual client.
The results are presented in Table 1.

Table 1. Table illustrates the effects of using a naive local disparity mitigation technique on the various scenarios. It proved efficacious
only when Unique disparity is present (scenario 1). However, with high redundancy or synergy (scenarios 2 &3), the utilization of the
disparity mitigation technique exacerbated disparities.

Loc. Glob. Uniq. Red. Mas.
Scenario 1 0.0359 0.0359 0.0359 0.0000 0.0000
+ fairness 0.0062 0.0062 0.0062 0.0000 0.0000
Scenario 2 0.0014 0.0431 0.0000 0.0431 0.0014
+ fairness 0.0110 0.0626 0.0000 0.0626 0.0110
Scenario 3 0.1761 0.0317 0.0000 0.0317 0.1761
+ fairness 0.0935 0.0418 0.0053 0.0365 0.0882

PID of Disparity under Heterogeneous Sensitive Attribute Distribution. We analyze the PID of local and global
disparities under different sensitive attribute distributions across clients. We train the model with two clients, each having
equal-sized datasets. We use α=Pr(Z=0|S=0) to represent sensitive attribute heterogeneity. Note that for a fixed α, the
proportions of sensitive attributes at the other client are fixed. For example since Pr(Z=0)=0.33 for the Adult dataset,
α=0.33 results in even distribution of sensitive attribute across the two clients. Our results are in Fig. 4 and Table 2.
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Figure 3. Plot demonstrating scenarios with unique, redundant, and masked disparities for the Adult dataset two client case. (left) Unique
disparity when sensitive attributes are equally distributed across clients. (center) Redundant disparity when there is a dependency between
clients and sensitive attributes. (right) Masked disparity when model predictions Ŷ ≈ Z ⊕ S.

Figure 4. Plot illustrates PID of global and local fairness varying levels of sensitive attribute heterogeneity (α) and two clients case. When
α is close to 0.3, the data is split evenly across clients, resulting in a higher level of unique disparity. As α deviates from 0.3, i.e., higher
dependency between Z and S, the unique disparity decreases while redundant and masked disparity increase.

Table 2. The PID of global and local disparity for varying sensitive attribute heterogeneity α.
α I(Z;S) Loc. Glob. Uniq. Red. Mas.

0.1 0.1877 0.0262 0.0342 0.000 0.0342 0.0262
0.2 0.0575 0.0336 0.0364 0.0064 0.0301 0.0273
0.3 0.0032 0.0363 0.0365 0.0332 0.0032 0.0031
0.4 0.0154 0.0311 0.0319 0.0186 0.0133 0.0125
0.5 0.0957 0.0368 0.0413 0.0023 0.0390 0.0345

Observing Levels of Masked Disparity. Here, we aim to gain a deeper understanding of the circumstances leading to
masked disparities. Through scenario 3, we showed how high masked disparities can occur. However, the level of synergy
portrayed in the example may not always be present in reality. We attempt to quantify this using a metric synergy level. The
synergy level (λ) measures how closely the model prediciton Ŷ aligns with the XOR of Z and S. A value of 1 represents
perfect alignment, while a value of 0 indicates independence. To achieve a high synergy level, we apply the method outlined
in Scenario 3. To decrease the level, we randomly switch data points between clients until the synergy level reaches 0. The
number of data points switched controls the level of synergy, ranging from 0 to 1. We conduct experiments with varying
levels of synergy to observe the impact on masked disparity. The results are summarized in Fig. 5 and Table 3.

Table 3. PID of global and local disparity under varying synergy levels λ.
λ I(Z;S) Loc. Glob. Uniq. Red. Mas.
0 0.0035 0.0402 0.0373 0.0338 0.0035 0.0063
0.25 0.0113 0.0486 0.0419 0.0308 0.0111 0.0178
0.5 0.0299 0.0536 0.0335 0.0127 0.0208 0.0410
0.75 0.0846 0.0932 0.0366 0.0023 0.0343 0.0909
1 0.2409 0.1644 0.0149 0.0000 0.0150 0.1644
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Figure 5. The plot demonstrates the relationship between the synergy level (λ) and global and local fairness. As the synergy level increases,
the masked disparity and local disparity also increases as expected.

Experiments with Multiple Clients. Here, we examine scenarios involving multiple clients. Observations are similar to the
two-client case we previously studied. We experiment with K = 10 clients. we study the disparities that occur when the
data distribution is near i.i.d. distributed among the clients. We manipulate the proportion of sensitive attributes in the first
half of the clients by using α. α = Pr(Z = 0|S = 1, . . . , 5). α = 0.33 would correspond to the case where the sensitive
attribute is distributed independently among the clients. We choose values of α that are close to 0.33. These distributions
closely emulate the realistic scenarios that occur in the real world. In this scenario, we observe the presence of all types of
disparities. Our results are summarized in Fig. 6 and Table 4.

Figure 6. The plot shows the PID of disparities when the data is near i.i.d. among K = 10 clients. All types of disparities can be observed.
The value α = 0.33 represents the case where the data is i.i.d. and only unique disparity is observed.

Table 4. PID of global and local disparity for various sensitive attribute distributions across 10 clients.
α Unique Redundant Masked Global Local Accuracy

0.25 0.0219 0.0190 0.0178 0.0409 0.0409 84.85%
0.33 0.0376 0.000 0.0000 0.0376 0.0376 85.58%
0.4 0.0268 0.0141 0.0137 0.0410 0.0405 84.85%

0.45 0.0107 0.0289 0.0270 0.039 0.0377 84.85%

Setup. In our federated learning model, both the server and clients had two hidden layers, each containing 32 hidden units.
The activation function used was ReLU, with a binary cross-entropy loss function and Adam optimizer. The first round
began with the server initializing the weights of the model and sharing them with all clients. Each client then trained their
local model on their designated local dataset, which was carefully divided to observe various disparities. The training
process for each client was done using a batch size of 64 and 2 epochs. After training, each client shared their weight
parameters with the server. The server then used the FedAvg algorithm to aggregate the weights of all clients and update the
model. The updated weights were then shared back with the clients. This process was repeated for several rounds until the
loss converged. The final model is then used for our evaluations.

B. Related works
There are various perspectives to fairness in FL (Shi et al., 2021). One such definition is client-fairness (Li et al., 2019),
which aims to achieve equal performance across all client devices. In this work, we are instead interested in group fairness,
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i.e., fairness with respect to demographic groups based on gender, race, etc. Methods for achieving group fairness in a
centralized machine learning setting (Hardt et al., 2016; Dwork et al., 2012; Kamishima et al., 2011; Pessach & Shmueli,
2022) may not directly apply in a FL setting since each client only has access to their local dataset.

Existing works on group fairness in FL generally aim to develop models that achieve global fairness, without much
consideration for the local fairness at each client (Ezzeldin et al., 2023). For instance, one approach to achieve global
fairness in FL poses a constrained optimization problem to find the best model locally, while also ensuring that disparity at
a client does not exceed a threshold and then aggregates those models (Chu et al., 2021; Rodrı́guez-Gálvez et al., 2021;
Zhang et al., 2020). Other techniques involve bi-level optimization that aims to find the optimal global model (minimum
loss) under the worst-case fairness violation (Papadaki et al., 2022; Hu et al., 2022; Zeng et al., 2021), or re-weighting
mechanisms (Abay et al., 2020; Du et al., 2021), both of which often require sharing additional parameters with a server.
More recently, (Cui et al., 2021) argue for local fairness, as the model will be deployed at the local client level, and propose
constrained multi-objective optimization.

While previous works have made progress in attaining either global fairness (often with additional information sharing) or
sometimes local fairness, their interplay has received less attention. In fact, the terms “global fairness” and “local fairness”
have often been used somewhat loosely in the literature, without a clear understanding of their relationship, with the notable
exceptions of (Ezzeldin et al., 2023; Cui et al., 2021) which claim that global and local fairness are equivalent when the
dataset is i.i.d. across clients. Our work addresses this gap by formalizing both global and local fairness and deriving
fundamental limits and trade-offs, particularly under data-heterogeneity, by leveraging a body of work in information theory
called partial information decomposition (PID) (Bertschinger et al., 2014).

Information-theoretic measures have been widely used to express and handle group fairness in the fairness literature
(Kamishima et al., 2012; Calmon et al., 2017; Ghassami et al., 2018; Dutta et al., 2021; 2020b;a; Cho et al., 2020; Baharlouei
et al., 2019; Grari et al., 2019; Wang et al., 2021; Galhotra et al., 2022; Alghamdi et al., 2022; Kairouz et al., 2019).
Kamishima et al. (2012) uses mutual information as a regularizer with the loss function to minimize the correlation between
Ŷ and Z. Alternate Reyni-measures have also been explored in Baharlouei et al. (2019); Grari et al. (2019).

Dutta et al. (2020a; 2021) introduces PID into algorithmic fairness and explainability for the problem of selectively
quantifying disparity that is not due to critical (core) features. We also refer to Dutta & Hamman (2023) for a survey of
PID in fairness and explainability. PID is also generating interest in other machine learning applications (Ehrlich et al.,
2022; Tax et al., 2017; Liang et al., 2023; Wollstadt et al., 2023; Mohamadi et al., 2023; Pakman et al., 2021). In this
work, instead of trying to minimize mutual information as a regularizer, our goal is to quantify the fundamental trade-offs
between local and global fairness in federated learning and develop insights on their interplay to better understand what is
information-theoretically possible using any optimization technique.

C. Additional Results and Proofs for Section 2
Example 4 (Understanding PID). Let Z = (Z1, Z2, Z3) with Z1, Z2, Z3 ∼ i.i.d. Bern(1/2). Let A = (Z1, Z2, Z3 ⊕ N),
B = (Z2, N), N ∼ Bern(1/2) is independent of Z. Here, I(Z; (A,B)) = 3 bits.

The unique information about Z that is contained only in A and not in B is effectively contained in Z1 and is given by
Uni(Z:A|B) = I(Z;Z1) = 1 bit. The redundant information about Z that is contained in both A and B is effectively
contained in Z2 and is given by Red(Z:(A,B)) = I(Z;Z2) = 1 bit. Lastly, the synergistic information about Z that is not
contained in either A or B alone, but is contained in both of them together is effectively contained in the tuple (Z3 ⊕N,N),
and is given by Syn(Z:(A,B)) = I(Z; (Z3 ⊕N,N)) = 1 bit. This accounts for the 3 bits in I(Z; (A,B)). Here, B does
not have any unique information about Z that is not contained in A, i.e., Uni(Z:B|A) = 0.

Definition 4 (Unique Information). Let ∆ be the set of all joint distributions on (Z,A,B) and ∆p be the set of joint
distributions with the same marginals on (Z,A) and (Z,B) as the true distribution, i.e., ∆p = {Q ∈ ∆ : q(z, a) = Pr(Z =
z,A = a) and q(z, b) = Pr(Z = z,B = b)}. Then, Uni(Z:A|B) = minQ∈∆p

IQ(Z;A | B), where IQ(Z;A | B) is the
conditional mutual information when (Z,A,B) have joint distribution Q.

Lemma 1. Let Z and Ŷ be binary and Pr(Z = 0) = 1− Pr(Z = 1) = α. The global statistical parity gap SPglobal =

|Pr(Ŷ = 1|Z = 1)− Pr(Ŷ = 1|Z = 0)| is bounded by
√

0.5 I(Z;Ŷ )
2α(1−α) .
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Proof. Mutual information can be expressed as KL divergence.

I(Z; Ŷ ) = D
(
P (Ŷ , Z)||P (Ŷ ), P (Z)

)
Using Pinskers Inequality,

dtv(P,Q) ≤
√

0.5D(P,Q)

where, dtv(P,Q) is the total variation between two probability distributions P,Q.

dtv

(
Pr(Ŷ , Z),Pr(Ŷ ) Pr(Z)

)
=
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2
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Ŷ |Z=z

(ŷ)− Pr
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(ŷ)

∣∣∣∣∣
=

1

2
Pr(Z = 1)

[
|Pr(Ŷ = 1|Z = 1)− Pr(Ŷ = 1)|+ |Pr(Ŷ = 0|Z = 1)− Pr(Ŷ = 0)|

]
+

1

2
Pr(Z = 0)

[
|Pr(Ŷ = 1|Z = 0)− Pr(Ŷ = 1)|+ |Pr(Ŷ = 0|Z = 0)− Pr(Ŷ = 0)|

]
=

1

2
α(1− α)|SP1|+ 1

2
α(1− α)|SP0|+ 1

2
α(1− α)|SP1|+ 1

2
α(1− α)|SP0|

= α(1− α)|SP1|+ α(1− α)|SP0| (4)

where, Pr(Z = 0) = 1− Pr(Z = 1) = α and

SPi = Pr(Ŷ = i|Z = 1)− Pr(Ŷ = i|Z = 0) = Pr(Ŷ = i|Z = 1)− Pr(Ŷ = i).

To complete the proof, we show that |SP1| = |SP0|

SP1 =Pr(Ŷ = 1|Z = 1)− Pr(Ŷ = 1)

=Pr(Ŷ = 1|Z = 1)−
(
1− Pr(Ŷ = 0)

)
=− 1 + Pr(Ŷ = 1|Z = 1) + Pr(Ŷ = 0)

=− Pr(Ŷ = 0|Z = 1) + Pr(Ŷ = 0) = −SP0

Hence, |SP1| = |SP0| and from (4), we get

2α(1− α)|SP1| ≤
√
0.5MI

Corollary 2. The statistical parity at each client k can be expressed as

|SPk| ≤

√
0.5 I(Z, Ŷ |S = k)

2αk(1− αk)

where, αk = Pr(Z = 0|S = k) = 1− Pr(Z = 1|S = k).

D. Additional Results and Proofs for Section 3
Theorem 3 (Necessary and Sufficient Condition to Achieve Global Fairness Using Local Fairness). If local dispar-
ity I(Z, Ŷ |S) goes to zero, then the global disparity I(Z; Ŷ ) also goes to zero, if and only if the redundant disparity
Red(Z:Ŷ , S) = 0.

Proof. From the PID of local and global disparity,

I(Z; Ŷ ) = Uni(Z:Ŷ |S) + Red(Z:Ŷ , S).

I(Z; Ŷ |S) = Uni(Z:Ŷ |S) + Syn(Z:(Ŷ , S)).
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Therefore if, I(Z; Ŷ |S) = 0, then Uni(Z:Ŷ |S) = 0
Hence,

I(Z; Ŷ ) = Red(Z:Ŷ , S)

I(Z; Ŷ ) = 0 ⇐⇒ Red(Z:Ŷ , S) = 0

Lemma 3. Z ⊥⊥ S =⇒ Red(Z:Ŷ , S) = 0. When Z and S are independent, the redundant disparity is zero.

Proof. By leveraging the PID of I(Z;S) and the non-negative property of the PID terms.

I(Z;S) = Uni(Z:S|Ŷ ) + Red(Z:Ŷ , S)

I(Z;S) ≥ Red(Z:Ŷ , S)

Hence, Z ⊥⊥ S =⇒ Red(Z:Ŷ , S) = 0.

Lemma 4. If synergistic disparity Syn(Z:(Ŷ , S)) = 0, the redundant disparity Red(Z:Ŷ , S) = 0 if Ŷ and S are
independent Ŷ ⊥⊥ S or I(Ŷ ;S) = 0, even if I(Z;S) > 0.

Proof. Interaction information expressed in PID terms:

I(Z; Ŷ ;S) = I(Z; Ŷ )− I(Z; Ŷ |S)
= Red(Z:Ŷ , S)− Syn(Z; (Ŷ , S))

If synergistic information Syn(Z; (Ŷ , S)) = 0, we have:

I(Z; Ŷ ;S) = I(Z; Ŷ )− I(Z; Ŷ |S)
= Red(Z:Ŷ , S) ≥ 0

Since the interaction information is positive and symmetric,

I(Ŷ ;S) ≥ I(Ŷ ;S)− I(Ŷ ;S|Z) = Red(Z:Ŷ , S)

and therefore, Ŷ ⊥⊥ S =⇒ Red(Z:Ŷ , S) = 0.

Remark 1. It is worth noting that the independence between Ŷ and S can be approximately achieved if the true Y and
S are independent, as Ŷ is an estimation of Y . However, it is often the case that Y ⊥⊥ S is fixed due to the fixed nature
of datasets at each client. The mutual information I(Y ;S) can provide insight into the expected value of I(Ŷ ;S), as the
federated model typically aims to also achieve a reasonable level of accuracy. It may even be possible to enforce Ŷ ⊥⊥ S at
the cost of accuracy.

Corollary 1. The local disparity will always be less than global disparity if Z, Ŷ , S form a Markov chain Z − Ŷ − S.

Proof. By leveraging the PID of I(Z;S|Ŷ ),

I(Z;S|Ŷ ) = Uni(Z:S|Ŷ ) + Syn(Z:(Ŷ , S))

Hence, I(Z;S|Ŷ ) = 0 =⇒ Syn(Z:(Ŷ , S)) = 0


