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Figure 1: RhythmicNet: Given an input of a silent human movement video, RhythmicNet generates a
soundtrack for it.

Abstract

One of the primary purposes of video is to capture people and their unique activities.
It is often the case that the experience of watching the video can be enhanced by
adding a musical soundtrack that is in-sync with the rhythmic features of these
activities. How would this soundtrack sound? Such a problem is challenging since
little is known about capturing the rhythmic nature of free body movements. In this
work, we explore this problem and propose a novel system, called ‘RhythmicNet’,
which takes as an input a video with human movements and generates a soundtrack
for it. RhythmicNet works directly with human movements, by extracting skeleton
keypoints and implementing a sequence of models translating them to rhythmic
sounds. RhythmicNet follows the natural process of music improvisation which
includes the prescription of streams of the beat, the rhythm and the melody. In
particular, RhythmicNet first infers the music beat and the style pattern from body
keypoints per each frame to produce the rhythm. Next, it implements a transformer-
based model to generate the hits of drum instruments and implements a U-net based
model to generate the velocity and the offsets of the instruments. Additional types
of instruments are added to the soundtrack by further conditioning on generated
drum sounds. We evaluate RhythmicNet on large scale video datasets that include
body movements with inherit sound association, such as dance, as well as ’in the
wild’ internet videos of various movements and actions. We show that the method
can generate plausible music that aligns with different types of human movements.

1 Introduction

Rhythmic sounds are everywhere, from raindrops falling on surfaces, to birds chirping, to machines
generating unique sound patterns. When sounds accompany visual scenes, they enhance the percep-
tion of the scene by complementing it with additional cues such as semantic association of events,
means of communication, drawing attention to parts of the scene, and many more. For visual scenes
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Figure 2: System Overview of RhythmicNet. Keypoints are extracted from human activity video
and are processed through Video2Rhythm stage to generate the rhythm. Afterwards Rhythm2Drum
converts the rhythm to drum performance. In the last step, Drum2Music component adds additional
instrument tracks on top of the drum track.

that include activity of people, rhythmical music that is in-sync with the rhythm of body movements
can emphasize the actions of the person and enhance the perception of the activity [, 2]]. Indeed,
to support such synchrony, a usual practice is that a musical soundtrack is chosen manually in
professionally edited videos.

Drum instruments serve as the fundamental part in music by generating the underlying leading
rhythm patterns. While drum instruments vary in shape, form, and mechanics, their main purpose
is to set the essential rhythm for any music. Indeed, drums are known to have existed from around
6000 BC, and even beforehand there were instruments based on principle of hitting two objects and
generating sounds [3]]. On top of drum patterns, additional instruments add secondary patterns and
melody, creating rich multifaceted music. In modern music, in composition and improvisation, it
is also the case that composers would start a new musical piece by designing the rhythm for the
corresponding drum track. As the piece evolves, additional accompanying instruments tracks are
gradually superimposed on top of the drum track to produce the final music.

Inspired by the possibility of associating rhythmic soundtracks to videos, in this work we explore
automatic generation of rthythmic music correlated with human body movements. We follow similar
music composition and improvisation steps as in music improvisation by first generating the rhythm
of the music that is strongly correlated with the beat and movements patterns. Such rhythm can then
be then used to generate novel drums music accompanying the body movements. With the rhythm
being inferred, we follow further steps of music improvisation and add new instruments (piano and
guitar) tracks to enrich the music. In summary, we address the challenge of generating a rhythmic
soundtrack for a human movement video by proposing a novel pipeline named ‘RhythmicNet’, which
translates human movements from the domain of video to rhythmic music with three sequential
components: Video2Rhythm, Rhythm2Drum, and Drum2Music.

In the first stage of RhythmicNet, given a human movement video, we extract the keypoints from the
video and use a spatio-temporal graph convolutional network [4] in conjunction with transformer
encoder [5] to capture motion features for estimation of music beats. Since music beats are periodic
and there are various visual changes occurring in human movements, we propose an additional stream,
called the style, which captures fast movements. The combination of the two streams constitutes the
movements rhythm and guides music generation in the next stage, called Rhythm2Drum. This stage
includes an encoder-decoder transformer that given the rhythm, generates the drums performance
hits and a U-net [6] which subsequently generates drums velocities and offsets. We find that these
two stages are critical for generation of quality drum music. In the last stage, called Drum2Music,
we complete the drum music by adopting an encoder-decoder architecture using transformer-XL [7]]
to generate a music track of either piano or guitar conditioning on the generated drum performance.
An overview of RhythmicNet is shown in Fig. 2] Our main contributions are: (i) To the best of
our knowledge, we are the first to generate a novel musical soundtrack that is in-sync with human
activities. (ii) We introduce an entire pipeline, named ‘RhythmicNet’, which implements three stages
to complete the transformation. (iii) RhythmicNet is robust and generalizable. Experiments on
datasets of large-scale dance videos and ‘in the wild’ internet videos show that music generated by
RhythmicNet will be consistent with human body movements in videos.



2 Related Work

Generation of sounds for a video is a challenging problem since it aims to relate two signals that
are indirectly correlated. It belongs to the class of problems of Audio-Visual learning, which deals
with exploration and leveraging of the correlation of both audio and video for tasks such as audio-
visual correspondence [8, (9, [10} [11], video sound separation [12} [13} [14} [15]], audio-visual event
localization [16]], transformations of audio to body movements [[17} [18} [19], lips movements [20]
and talking faces [21}, 122} 23]]. Audio-visual systems are usually developed by using multi-modal
learning techniques which have been shown effective in action recognition [24} 25|, speech question
answering [26} 27, 28, |29} 130]], 3D world physical simulation [31]], and medical images analysis [32}
331134, 350 136].

Several approaches were proposed for the relation of sounds to a video. A deep learning approach
showed the potential of such application by proposing a recurrent neural network to predict the audio
features of impact sounds from videos. The approach was able to produce a waveform from these
features [37]]. In a subsequent work, a conditional generative adversarial network was proposed to
achieve cross-modal audio-visual generation of musical performances [38]. In both methods, single
image was used as an input, and the network performed supervision on instrument classes to generate
a low-resolution spectrogram. Concurrently, for natural sounds, a Sample RNN-based method [39]
has been introduced to generate sounds such as baby crying, water flowing, given a visual scene.
This approach was enhanced by an audio forwarding regularizer that considers the real sound as
an input and outputs bottle-necked sound features which provide stronger supervision for natural
sound predictions only from visual features [40]. Compared to natural sounds with relatively simple
characteristics, music contains more complex elements. While such problem is more challenging,
the possibility to correlate movement and sounds was shown by a rule-based sensor system which
succeeded to convert sensed motion to music notes [41]].

In recent years there has been remarkable progress in the generation of music from video. An interac-
tive background music synthesis algorithm guided by visual content was introduced to synthesize
dynamic background music for different scenarios [42]]. The method, however, relied on reference
music retrieval and could not generate new music directly. Direct music generation approaches have
been developed for videos capturing a musician playing an instrument. A ResNet-based method
was proposed to predict the pitch and the onsets events, given video frames of top-view videos of
pianists playing the piano [43]]. Later, Audeo [44] demonstrated the possibility to transcribe video to
high-quality music. While the results of such methods are promising, the generation is limited to a
single instrument. Thereby, Foley Music [45] proposed a Graph-Transformer network to generate
Midi events from body keypoints and achieved convincing synthesized music from Midi. Further,
Multi-instrumentalist Net [46] showed generation of music waveform of different instruments in an
unsupervised way. While these approaches demonstrate the possibilities of generating music from
videos, the videos need to contain solid visual cues such as instruments to indicate the types of music
being generated. It still remains unclear whether it is possible to generate music when such visual
cues do not exist. With respect to human movement, this would be extracting the characteristics of
the movement and attempting to match music with them. In this regard, a recent novel approach of
dance beat tracking was proposed [47]]. The approach is aimed at detecting the characteristics of
musical beats from a video of a dance by using visual information only. Inspired by this work, we
design a novel methodology to estimate in a precise way musical characteristics, such as beats, from
movements and utilize them to improvise new music.

There has been vital recent progress in the generation of music from its representations, such
as symbolic representations, as well. In particular, Musical Instrument Digital Interface (Midi)
representation has been shown to be useful in modeling and generating music. Initial works converted
Midi into piano-roll representation and used generative adversarial networks [48]] or variational
autoencoders [49,|50] to generate new music. A limitation of the piano-roll is that it may result in
memory inefficiency when the length of the music is too long. In order to address this limitation, event-
based representation has been proposed and was shown to be a useful and efficient representation
in modeling music [51} 152, 153]]. While the event-based representation enabled models to obtain
convincing generated results, it lacks metrical structure, leading to unsteady beats in the generated
samples. Thereby, recently, a new representation called Remi was proposed to impose a metrical
structure in the input data so that the models can include awareness of the beat-bar-phrase hierarchical
structure in the music [54]. In our work, we utilize the Remi representation by converting the Midi into
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Figure 3: Detailed schematics of the components in the Video2Rhythm stage.

Remi in the Drum2Music stage. While the methods mentioned above generate unconditional music,
it was shown to be possible to constrain music generation. For example, it was proposed to constrain
generative models to sample for predefined attributes [55]. Systems such as Jukebox [56] and
MuseNet [57]] showed the possibility of generating music based on user preferences which correspond
to network model specifically trained with labeled tokens as a conditioning input. Furthermore, a
Transformer autoencoder has been proposed to aggregate encoding of Midi data across time to obtain
a global representation of style from a given performance. Such a global representation can be used to
control the style of the music [58]. Additional models have been proposed, such as a model capable
of generating kick drums given conditional signals including beat, downbeat, onset of snare and
Bass [59]]. In RhythmicNet, conditioning additional music instruments on the drum track is expected
to provide a richer soundtrack. For this purpose, in the Drum2music stage, we utilize the Transformer
autoencoder and consider the drum track as the conditioning input and generate the track of another
musical instrument, such as piano or guitar.

3 Methods

RhythmicNet includes three sequential components: 1) Association of rhythm with human movements
(Video2Rhythm), 2) Generation of drum track from rhythm (Rhythm2Drum), 3) Adding instruments
to the drum track (Drum2Music). We describe the details of each stage below.

Video2Rhythm. We decompose the rhythm into two streams: beats and style. We propose a novel
model to predict music beats and a kinematic offsets based approach to extract style patterns from
human movements.

Music Beats Prediction. Beat is a binary periodic signal determined by fixed tempo, and it

is obtained by music beat prediction network, which learns the beat by pairing body keypoints
with ground truth music beats in a supervised way. To predict regular music beats from human
body movements, we extract 2D skeleton keypoints via the OpenPose framework [60] and perform
first-order difference to obtain the velocity for each video. Motion sequences is considered as three
dimensional tensor X € RV *T*2 where V is the number of keypoints, 7" is the number of frames,
and the last dimension indicates the 2D coordinates. We formulate the prediction of music beats as
a temporal binary classification problem: Given the skeleton keypoints X, we aim to generate the
output with the same length Y € RT, where each frame is classified into ‘beat’ (y = 1) or ‘non-beat’
(y = 0).
We encode the keypoints using a spatio-temporal graph convolutional neural network (ST-GCN) [4].
Such encoding represents the skeleton sequence as an undirected graph G = (V, E), where each
node v; € V corresponds to a key point of the human body and edges reflect the connectivity
of body keypoints. The sequence passes through a spatial GCN to obtain the features at each
frame independently, and then a temporal convolution is applied to the features to aggregate the
temporal cues. The encoded motion features are then represented as P = AXWgWyp € RV *TexCo,
where X is the input, A € RY*V is the adjacency of matrix of the graph defined based on the
body keypoints connections. Wg and W are the weight matrices of spatial graph convolution and
temporal convolution. 7}, and C,, indicate the number of temporal dimension and feature channels.
We obtain the final motion features P € R7»*C» by averaging the node features.

Given the motion feature P, we use a transformer encoder that contains a stack of multi-head self-
attention layers to learn the correlation between different frames. Due to the periodicity of the music
beats, we introduce two components to allow the model to capture them more accurately: 1) We adopt
a relative position encoding [[61] to allow attention to explicitly resolve the distance between two
tokens in a sequence instead of using common positional sinusoids to represent timing information.



This encoding is critical for modeling the timing in music where relative differences matter more
than their absolute values [52]. 2) We use temporal self-similarity matrix of motion features (SSM),
which has been shown effective in human action recognition in regularization of the transformer and
counting the repetitions of periodic movements [62] 63| 164]. SSM can be constructed by computing
all pairwise similarities S;; = f(P;, P;) between pairs of frame-level motion features P; and P},
where f(-) is the similarity function. We use the negative of the squared euclidean distance as the
similarity function, f(a,b) = —||a — b||?, followed by taking softmax over the time axis. SSM has

only one channel and it goes through a convolution layer S = Conv(S) and then added to every
attention head in the self attention component implemented as

QKT +S+R
vV Dy,

where QQ, K,V are the standard query, key and value respectively, and R is the ordered relative
position encoding for each possible pairwise distance among pairs of query and key on each head.
We train the model using weighted binary cross-entropy loss that puts more weight toward the beat
category to address imbalances.

In comparison with previous work [47], the combination of graph representation, relative self-
attention and SSM components enables the model to better capture the spatial-temporal structures in
body dynamics which allows for more accurate beat estimation.

The output of the network is the beat activation function; i.e., for each video frame, the model predicts
its probability of being a ‘beat’ frame. To obtain beat positions, we apply an algorithm based on
HMM decoding proposed in [63].

Style Extraction. While beats represent the monotonic periodic pattern occurring at fixed time
intervals (i.e. periodic signal), there are additional a-periodic components in the rhythm. In particular,
between two music beats, there are typically various irregular movements that contribute to the
rhythm. In contrast to beats, these patterns are inconsistent and it is unclear how to systematically
extract such patterns from visual information. We, therefore, define an additional stream, called style,
which records incidences of transitional movements of the human body, such as rapid and sudden
movements. For prediction of such events, we apply a rule-based approach since the definition of style
is implicit and there is no data to learn a mapping from body keypoints to transitional movements. The
style is defined as a binary stream that indicates transition time points as 1 and non-transitional time
points as 0. We compose the style stream by implementing several steps based on spectral analysis
of kinematic offsets of the motion [66]. The first step is to compute kinematic offsets. Kinematic
offsets are 1D time series signal representing the average acceleration of the human body over time.
To obtain kinematic offsets, we calculate the directogram of the motion by factoring it into different
angles. Given Fy(j,t) as the velocity magnitude of joint j at time ¢, we formulate the directogram
D(t,0) [67] as:

Attention(Q, K, V') = Softmax( WV,

1 |9_¢| S 2’ﬂ/-zvbins
0 otherwise

D(t,0) = ZFt(j, t)19(£LF:(4,t)), where 1o(¢) = { (1)

J

The indicator function 14(¢) is used to distribute the motion of all joints into Ny;,,s angular intervals.
Then the first-order difference of the directogram is calculated to obtain the acceleration of motion
across different angles. The mean acceleration in the positive direction measures motion strength
(i.e., the larger the value, the more remarkable in motion strength) and corresponds to the kinematic
offsets.

Once kinematic offsets are obtained, in the next step we perform a Short-Time-Fourier Transform
(STFT) on them to identify peaks in the change of acceleration. The highest frequency bin in STFT
(out of 8) represents the most profound transitions in the signal and we use the highest frequency
bin to extract the style patterns from motion. The peaks are defined as 10% top magnitudes over the
duration of the video. We mark the timepoints of the peaks as 1 and other timepoints as 0. Since
STFT results with low temporal resolution (due to hop-size set to 4 for efficient computation) we
upsample the binary signal by the hop size to obtain a binary signal that matches the resolution of the
video. The output signal is re-sampled to have the same sampling rate as the music beats.

Rhythm Composition. We obtain the rhythm by adding the streams of the beats and the style into a
single signal. The rhythm should correspond to the correlation of body movements with the tempo of
the soundtrack.
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Figure 4: Detailed schematics of the components in the Rhythm2Drum stage.
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Figure 5: Detailed schematics of the components in the Drum2Music stage.

Rhythm2Drum. The stage of Rhythm2Drum interprets the provided rhythm from previous stage
into drum sounds. In this stage we follow the Groove VAE setup [50]], where each drum track can be
represented by three matrices: hits, velocities, and offsets. The hits represent the presence of drum
onsets and is a binary matrix H € RV*T where N is the number of drum instruments and 7 is the
number of time steps (one per 16-th note). The velocities is a continuous matrix, V', that reflects how
hard drums are struck, with values in the range of [0, 1]. The offsets O is also a continuous matrix
and stores the timing offsets, with values in the range of [—0.5,0.5). These values indicate how far
and in which direction each note’s timing lie, relative to the nearest 16-th note. The matrices V' O,
and H have the same shape.

Given the input rhythm sequence Y € R'*7, we aim to generate the H, V and O. In contrast to

GrooveVAE [50], which models all three matrices simultaneously with multiple losses, we model
H, V, and O smoothly in two steps using the combination of an encoder-decoder transformer [5]]
and a U-net [[6]. In the first step, the binary rhythm is passed as an input to the transformer encoder.
In the decoder, the H matrix is converted into word a sequence defined by a small vocabulary set
of all possible combinations of hits, and is mapped back to a binary matrix for the final output. We
observe that autoregressively learning the hits H as a word sequence, the transformer can generate
more natural and diverse drum onsets. We train the transformer with the cross-entropy loss. In the
second step, we add style patterns (velocity and offsets) to the onsets. Since H has the same shape as
V and O, we can consider it as a transformation between 2 images of the same shape. To achieve
such transformation, we adopt a U-net [6] to take the onset matrix H as an input and to generate
V and O. We use Mean-Square Error (MSE) loss for U-net optimization. Finally, we convert the
generated matrices H, V' and O to the Midi representation to produce the drum track.

Drum2Music. In this last stage we add further instruments to enrich the soundtrack. Since the drum
track contains rhythmic music, we propose to condition the additional instrument stream on the
generated drum track. Specifically, we propose an encoder-decoder architecture, such that the encoder
receives the drum track as an input, and the decoder generates the track of another instrument. We
consider the piano or guitar as the additional instruments, since these are dominant instruments. We
use Remi representation [54] to represent multi-track music. Compared to the commonly-used Midi-
like event representation [52], the Remi representation includes information such as Tempo changes,
Chord, Position, and Bar, which allow our model to learn the dependency of note events occurring at
same positions across bars. For both the encoder and decoder, we adopt the transformer-XL network
model which extends the transformer by including the recurrence mechanism [7]]. The recurrence
mechanism enables the model to leverage the information of past tokens beyond the current training
segment and to look further into the history.

The encoder contains stack of multi-head self-attention layers. Its output E; can be represented as:
E; = Enc(x;, MF), where M¥ is the encoder memory used for the i-th bar input and the encoder
hidden state sequence computed in previous recurrent steps. Similarly, in the decoder, the prediction
of j-th token of the i-th bar y; ; is formulated as y; ; = Dec(y; <, M, E;), where y; ;- ; are the
previously generated tokens in the same bar, M is the decoder memory used for i-th bar, and E;
is the corresponding encoder output of the same bar. The decoder consists of a stack of layers with
casual self-attention, cross-attention to the encoder output, and feed-forward network.



Models\Metrics CML. (%) CML, (%) Cem (%) F (%)

TCN [&7] 4497 45.15 48.14 63.04

TF 16.07 16.24 32.85 46.90

ST-GCN 54.89 55.45 4923 64.78

ST-GCN+TF 61.89 62.34 55.00 71.93

ST-GCN+TF+SSM 63.20 63.58 57.72 73.07

ST-GCN+TF+RelAttn 63.01 68.31 59.19 74.67
ST-GCN+TF+SSM+RelAttn | 71.43 (+26.46%) | 71.94 (+26.79%) | 61.59 (+13.45%) | 75.79 (+12.75%)

Table 1: Music beat prediction evaluation. The abbreviation of each component stands for: TF
(transformer), ST-GCN (spatio-temporal graph convolutional network), SSM (Self-similarity Matrix),
RelAttn (Relative Attention); F (F-score measure), Cem (Cemgil’s score), CML,. (Correct metrical
level continuous accuracy), CML; (Correct metrical level total accuracy). Bold font indicates the
best value.

Model\Metric (lower better) NDB MSE Velocity MSE Offsets
GrooveVAE [50] 46 0.0437 0.0402
TF multi-outputs w.o. hits sequence 44 0.0507 0.0348
TF multi-outputs w. hits sequence 39 0.0493 0.0369
TF w. hits sequence + Unet 39 (J15%) | 0.0267 (J40%) | 0.0169 (158%)

Table 2: Rhythm2Drum performance evaluation. Abbreviations stand for: TF (encoder-decoder
transformer), Multi-outputs (Predict the hits, velocities and offsets simultaneously), w./w.o0. hits
sequence (whether using word tokens to represent the hits). Bold font indicates the best value.

For the training data, we split the music piece into segments with a total number of bars. In the
encoder, for recurrent step ¢, we provide the ¢-th bar of drum performance z; to the transformer-XL.
We adopt a teacher forcing strategy and feed the ground truth tokens into the decoder to generate the
next tokens. We minimize the negative log-likelihood (NLL) between generated tokens and ground
truth tokens to optimize the model. During inference, the drum track is given to the encoder for each
bar and the tokens in the decoder are generated one by one. Finally, we use the temperature-controlled
stochastic top-k sampling method [68]] to randomly generate a new music track.

4 Experiments & Results

Datasets. We use the AIST Dance Video Database, a large-scale collection of dance videos in 60fps
for training and testing of Video2Rhythm [69]]. This database includes 10 street dance genres, 35
dancers, 9 camera viewpoints, and 60 musical pieces covering 12 types of tempo. For each genre, we
use 1080 dance videos, resulting in total of 10, 800 videos. We split the samples into train/validate/test
sets by 0.8/0.1/0.1 based on the dance genres, dancers, and camera ids.

For Rhythm2Drum, we use the Groove Midi dataset [S0] which contains 1150 Midi files and over
22,000 measures of drumming. We split the data into 0.8/0.1/0.1 of train/validate/test sets.

For Drum2Music, we extract two subsets of Lakh Midi dataset [[70] to separately train Drum2Piano
and Drum2Guitar models. For Drum2Piano, we select the Midi files that contain both tracks of drums
and acoustic piano with at least 16 bars, and we consider 16 bars to be a single segment. This results
in 34991/1944/1944 segments for train/validate/test sets respectively. For drum2guitar, we perform a
similar selection to obtain 12904/717/717 segments for train/validate/test sets respectively.

Implementation Details. We use Pytorch [71] to implement all models in RhymicNet with two Titan
X GPUs. For all videos, we extract 17 keypoints of body joints. In Video2Rhythm, the network
contains a 10-layer ST-GCN and a 2-layer transformer encoder with 2-head attention. For the style
extraction part, the motion sequence is down-sampled to 15fps to calculate the kinematic offsets.
The number of bins used for the directogram is 12, and a 16-point FFT with hop-size of 4 is applied
to extract candidate styles. Each detected style is repeated 4 times to match the hop size, and then
is up-sampled to original time resolution of 60fps and re-indexed in unit of quarter note based on
estimated tempo. In Rhythm2Drum, the Hits transformer includes 3 layers, and 4 heads in both the
encoder and the decoder. The vocabulary size of the decoder input is 152, consisting of all possible
combinations of 9 types of drum hits in the dataset. U-net that generates velocity and offsets contains



Metrics PC/bar | PI I0I | PCHT | NLHT | NLL |
Dataset (Piano) 5.48 6.16 | 0.31 - - -
Drum?2Piano w.o. memory 7.17 4.63 | 0.12 0.63 0.52 0.77
Drum2Piano 6.82 5.86 | 0.14 0.63 0.54 0.53
Dataset (Guitar) 5.33 5.51 | 0.22 - - -
Drum2Guitar w.o. memory 3.54 8.94 | 0.52 0.56 0.46 0.58
Drum2Guitar 5.63 5.69 | 0.13 0.64 0.51 0.40

Table 3: Drum2Music evaluation. For PC/bar, PI, 10l values, the closer to the dataset the better. For
PCH and NLH values, the larger, the better.

4 down-sample blocks with channel sizes of 16, 32, 64, 128. In Drum2Music, the model consists of a
recurrent transformer encoder and a recurrent transformer decoder. We set the number of encoder
layers, decoder layers, encoder heads and decoder heads to 4, 8, 8, and 8 respectively. The length of
the training input tokens and the length of the memory is 256. We provide additional configuration
details in the supplementary materials. Code. System setup and code are available in a Github
reposito

Video2Rhythm Evaluation. Following the rubrics proposed for musical beat tracking [72], we
compute the performance in terms of F-score measure, Cemgil’s score (Cem), and Correct Metrical
Level continuity required/not required (CML,/;) score. To compare with existing approaches,
we implement a baseline temporal convolutional network (TCN) for beat prediction [47]]. The
comparison and ablation results are shown in Table|I} The best method of Video2Rhythm (ST-
GCN+TF+SSM+RelAttn) significantly outperforms the baseline model in all metrics by a large
margin. In particular, the continuity scores outperform the baseline model by more than 25%,
indicating the estimated beat sequence is significantly more consistent.

Rhythm2Drum Evaluation. We use several metrics to evaluate Rhythm2Drum. For measuring the
diversity of the generated drum hits, we adopt the Number of Statistically-Different Bins (NDB)
metric proposed and used in [[73} [74, 45]]. To compute NDB, we cluster all training examples into
k = 50 Voronoi cells by K-means. The generated examples are then assigned to the nearest cell. NDB
is reported as the number of cells where the number of training examples is statistically significantly
different from the number of generated examples by a two-sample Binomial test. For each model, we
generate 9000 samples from the testing set and perform the comparison. For evaluation of velocities
and offsets, we compute the Mean-Squared Error (MSE) for the test set. We compare our methods
with the baseline model GrooveVAE [50]]. The results are shown in Table[2] The results show that
using hits sequences to generate the drum track enables a more diverse set of samples such that the
next U-net component, which generates velocities and offsets, in turn will generate more realistic
drumming sounds.

Drum2Music Evaluation. To evaluate the generated piano and guitar tracks, we use objective metrics
such as PC/bar (pitch count per bar), PI (average pitch interval), IOI (average inter-onset interval)
described in [[75]. For these metrics we compare the statistics calculated on the test dataset and on
the generated music. For additional metrics of PCH (pitch class histogram) and NLH (note length
histogram), we calculate the overlapping area (OA) between the statistics on the test dataset and the
generated music for each sample and report the average of them. In addition, we compare the NLL
loss based on the validation set. The numerical results are shown in Table[3] We compare two versions
(with and without using memory) to show the effectiveness of the recurrence mechanism. Our results
show that for both Drum2Piano and Drum2Guitar with recurrent encoder-decoder transformer (i.e.
with memory), the NLL loss is lower for the validation set and the statistics of the generated samples
are much closer to the test dataset than the no-memory counterpart.

In the wild Experiments and Qualitative Evaluation. In Fig.[6] we show a set of examples of generated
soundtracks for video clips in AIST dataset and ‘in the wild’ clips downloaded from YouTube. For
the AIST dataset, we generate and compare tracks of predicted beats with the ground-truth(GT) beats.
The predicted and GT tracks appear to be in close agreement. We then demonstrate the extracted
style and its correspondence to frames which exhibit special movements. The beat and style tracks
constitute the thythm from which the waveform of drum music is generated. To test and demonstrate
the generality of RhythmicNet we apply it to videos clips of various human activity. Examples of such

>https://github.com/shlizee/RhythmicNet



Style Beat Beat Beat Beat Style
3 3 3 3 3 3

Break Dance

LI S IS R I I S R

N R 1 EEN R 1 WEN 1 1 1 WEm 1 % WEm 1 % W 1 5 1 mmmo 1 mm i1 mm 3 mm 1 mmPredBeat
GT beat
lllllll_lIllllllll_llllllllllll_style

Rhythm

p——Drum

House Dance
(AIST)

Ice Skating
(in the wild)

Pred Beat
1Style
Rhythm

Football
(in the wild)

ot -
+ Guitar

Figure 6: Examples of generated beat and style streams and corresponding audio waveforms for dance
(AIST videos) and ‘in the wild’ videos. Dark Blue: predicted beats, Red: ground truth beats, Green:
extracted style, Purple: rhythm, Light Blue: audio waveform of generated drums. Supplementary
Materials include additional examples and sounded video clips.

activities are shown in Fig. |6|and include Ice Skating and Playing Football. We provide additional
examples and videos clips along with the soundtracks in the Supplementary Materials. The generated
rhythms are well synchronized with the videos and the drum track appears to be in-sync with the
activities. In addition, we demonstrate the generated waveform an additional instrument (guitar) in
Fig.|0l Additional instruments indeed provide a richer music that accompanies the movements.

Human Perceptual Evaluation of Soundtrack Music. In addition to the objective evaluation of the
different components of RhythmicNet we also performed human perceptual surveys using Amazon
Mechanical Turk. These surveys were intended to evaluate the effectiveness of RhythmicNet gener-
ated soundtracks to align with the movements and the extent that the generated soundtrack enhance
the overall perception of the video compared with various soundtrack controls. Since RhythmicNet
ultimately targets in the wild videos, for which there are no given background soundtracks we
ran three surveys that focused on these videos. For all surveys, no background on the survey or
RhythmicNet was given to the participants to avoid perceptual biases. We surveyed 85 participants
individually, where each participant was asked to evaluate 10 videos each with around 10 seconds
(850 segments in total) along with different generated soundtracks.

In the first survey, we asked people (non-experts) to choose the video that they prefer, including a
video without soundtrack and 3 variations of soundtracks generated by our approach (drums-only
or drums with another instrument). Results in Table [] clearly indicate a preference of a video



Soundtrack Preference
No Soundtrack | Drums Only | Drums + Piano | Drums + Guitar
votes 7.3% 31.2% 32.1% 29.4%
Table 4: Soundtrack preference.

Soundtrack match to the video Soundtrack match to the video (Ablation)
. Random Video2Rhythm | Video2Rhythm +
Random | Shuffle | RhythmicNet + GrooVAE + GrooVAE Rhythm2Drum
30.8% 27.8% 41.4% 23.3% 33.3% 43.4%
Table 5: Soundtracks match to movements in the video.

with a soundtrack. Furthermore, interestingly, preference for which instruments are included in the
track split almost equally between the 3 provided variations, with slight preference for tracks with
Drums+Piano.

In the second survey, we asked people to watch the same human activity video with different
soundtracks and answer the question: "In which video the sound best matches the movements?". The
given options of the soundtracks were generated soundtracks with Random, Shuffle and RhythmicNet
rhythms. The Random drum track was generated with Rhythm2Drum method with a random rhythm
with 50% chance to be ON or OFF at each time step. The chance of 50% was chosen such that there
is a significant probability that the a rhythm that sounds like a real rhythm will be sampled. We
found that sampling with lower probability would generate rhythms that do not sound well at all. The
Shuffle drum track was generated with Rhythm2Drum method but the order in the rhythm is shuffled.
RhythmicNet option corresponded to the drum track generated with Rhythm2Drum method. From
results shown in Table [5|left) we observe a clear indication that the drum tracks generated with our
method are chosen to be the best match to the movements more frequently (41.4% (Ours) v.s. 30.8%
(Random) and 27.8% (Shuffle)).

In an additional survey, we performed a perceptual ablation study to test how the two components,
Video2Rhythm and Rhythm2Drum, influence the perception of the soundtrack compared to baseline
approaches. Survey results shown in Table [5(right) and suggest that in comparison to the baseline
these two components significantly improve the perception of the soundtrack.

5 Conclusion and Discussion

In this exploratory work, we have considered a creative task of automatically generating novel
rhythmic soundtracks consistent with human body movements captured in a video. Our results
show that RhythmicNet pipeline is able to achieve this creative task and generate soundtracks that
align with movements and enhance the perception of them when the video is being watched. At
its core, RhythmicNet defines and implements a systemic approach of soundtrack generation by
following the process of music improvisation in which a rhythm of movements is established and is
translated to drumming music with potentially additional accompanying instruments. We foresee
future potential applications in video creation and editing, which RhythmicNet can pave the way to
unlock. As features for music generation we have chosen body keypoints, while it is unclear which
features are most informative for music generation. For human body movements, body keypoints are
strongly correlated with movements, and in addition, body keypoints are efficiently computed per
each frame. In terms of limitations and future enhancements of the current setup of RhythmicNet,
novel components will need to be considered to address the transition from rhythmic drum track to a
full bodied music with a symphony of instruments, since currently the addition of a single instrument
(piano or guitar) to the drum track is implemented. Furthermore, enabling RhythmicNet to operate in
real-time would allow the music to be interactive with people and their movements. However this
may require a more computationally extensive generative approach. Due to the fact that the main cue
for the generated music is human body movements, one possible concern could be that the soundtrack
generated with RhythmicNet could be used to manipulate the original sounds of the video, and to
create a fake impression of people activity. Also additional concern is that generated music could
sound too familiar to the music on which the models in RhythmicNet have been trained. These are
common concerns in the application of generative models. Failure in RhythmicNet may bring up an
unsatisfying soundtrack but we do not expect serious consequences from this.
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