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Abstract

Understanding the road structure is essential for achieving autonomous driving. This in-
tricate topic contains two fundamental components - the interconnections between lanes
and the associations between lanes and traffic elements (e.g., traffic lights), where a com-
prehensive topology reasoning method is still absent. On one hand, existing map learning
techniques face challenges in deriving lane connectivity using segmentation or laneline-based
representations; or prior approaches focus on centerline detection while neglecting interac-
tion modeling. On the other hand, the topic of assigning traffic elements to lanes is limited
in the image domain, leaving the construction of correspondence between image and 3D
views as an unexplored challenge. To address these issues, we present TopoNet, an end-
to-end topology reasoning network for analyzing driving scenes. To capture the topology
of driving environments effectively, we introduce three key designs: (1) an embedding mod-
ule that integrates semantic knowledge from 2D elements into a unified feature space; (2) a
curated scene graph neural network that models relationships and facilitates feature interac-
tions within the network; (3) instead of transmitting messages arbitrarily, a scene knowledge
graph is devised to differentiate prior knowledge from various types of the scene topology.
We evaluate TopoNet on the challenging scene understanding benchmark, OpenLane-V2,
where our approach outperforms all previous works by a great margin across all perceptual
and topological metrics. The code will be publicly released.

1 Introduction
Imagine an autonomous vehicle navigating towards a complex intersection and planning to go straight ahead:
it wonders when choosing the appropriate lane to enter and determining which traffic signal to adhere to.
This sophisticated challenge necessitates the agent to not only accurately perceive lane positions, but also
understand the topological relationships from sensor inputs. Specifically, the topology in a driving scene
includes: (1) the lane topology graph comprising centerlines as well as their connectivity, (2) and the
assignment relationships between lanes and various traffic elements such as traffic lights and road markers.
As depicted in Fig. 1, they collectively form a topological structure that furnishes explicit navigation cues
essential for downstream tasks like motion prediction and planning (Bansal et al., 2018; Chai et al., 2020).

Conventional driving datasets (Caesar et al., 2020; Wilson et al., 2021) typically incorporate lane topology
implicitly within High-Definition (HD) maps, which are primarily designed for data storage but not for neural
networks’ learning. Various formulations have been proposed to substitute HD maps, such as 2D and 3D
laneline detection (Pan et al., 2018; Garnett et al., 2019; Tabelini et al., 2021; Chen et al., 2022), bird’s-eye-
view (BEV) map element detection through segmentation (Pan et al., 2020; Roddick & Cipolla, 2020; Li et al.,
2022a; Hu et al., 2023) and vectorization (Liu et al., 2023a; Liao et al., 2023a;b). To derive lane connectivity,
a naïve strategy is to directly average the coordinates of two neighboring lanelines to get lane centerlines, and
then construct a lane graph based on the centerline instances. Yet, it requires complicated hand-crafted rules
and extensive post-processings. An alternative approach is to supervise perception networks with relationship
labels. Recent studies (Can et al., 2021; 2022a) employ a Transformer-based architecture for lane instances
prediction and an additional Multi-layer Perceptron (MLP) to learn connectivity. Nevertheless, they suffer
from extracting valuable information without explicit modeling of relationships.

Moreover, the problem of assigning relationships between traffic elements and lanes based on sensor inputs
remains largely unexplored. Langenberg et al. (2019) attempted to associate the ground truth representations
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Figure 1: Topology relationships of a driving scene. While approaching an intersection, an autonomous
vehicle has to reason about the correct lane and traffic information for subsequent navigation. We advocate,
and present TopoNet, to directly achieve topology understanding on the heterogeneous graph. “Topology
LL” and “Topology LT” represent the relationship among lane centerlines and the associations between lane
centerlines and traffic elements, respectively.

of lanelines and traffic lights in the image domain (specifically the perspective view, PV). However, integrating
traffic elements and lanes within a heterogenous graph (Fig. 1) presents a distinct set of challenges. One key
obstacle is that traffic elements are typically described as bounding boxes in PV, whereas lanes are depicted
as curves in 3D or BEV space. Besides, spatial locations remain less important for traffic elements as their
semantic meanings are essential, but positional clues of lanes are crucial for autonomous vehicles.

To address these issues, we present a Topology Reasoning Network (TopoNet), which predicts the driving
scene topology in an end-to-end manner. As an attempt to reason about scene topology in a single network,
TopoNet comprises a shared feature extractor, and two detection branches for traffic elements and centerlines
respectively. Motivated by the Transformer-based detection algorithms (Carion et al., 2020; Zhu et al., 2020),
we employ instance queries to extract local features via the deformable attention mechanism, which confines
the attention region and accelerates convergence. Since the clues for locating a specific centerline instance
might lie in its neighboring elements and related traffic elements’ features, a Scene Graph Neural Network
(SGNN) is devised to facilitate message passing among instance-level embeddings. Furthermore, we propose
a scene knowledge graph to capture prior topological knowledge from entities of different types. Specifically,
a series of GNNs are developed based on the categories of traffic elements and the centerline connectivity
relationships (i.e., predecessor, ego, successor). Updated queries are decoded to yield perception results and
topology relationships. With the proposed designs, we deploy TopoNet on the large-scale topology reasoning
benchmark, OpenLane-V2 (Wang et al., 2023). TopoNet outperforms state-of-the-art approaches by 15-84%
in centerline perception, 38-270% in topology reasoning tasks, and 37% in terms of the overall perception
and reasoning metric. Ablations are conducted to verify the effectiveness of our framework.

2 Related Work

2.1 Lane Graph Learning

Lane Graph Learning has gained significant attention due to its pivotal role in autonomous driving. Prior
works investigate building road graphs (He et al., 2020; Bandara et al., 2022) or more densely structured
lane graphs (Homayounfar et al., 2019; Zürn et al., 2021; He & Balakrishnan, 2022; Büchner et al., 2023)
from aerial images. However, roads in aerial images are often occluded by trees and buildings, resulting in
significant inaccuracies. Recently, there has been a growing focus on producing lane graphs from sensors
mounted on vehicles. STSU (Can et al., 2021) proposes a DETR-like network to detect centerlines and then
derive their connectivity by a subsequent MLP module. Building upon STSU, Can et al. (2022a) introduce
minimal cycle queries to ensure the proper order of overlapping lines. CenterLineDet (Xu et al., 2023) treats
centerlines as vertices and designs a graph-updating model trained by imitation learning. LaneGAP (Liao
et al., 2024) proposes a path-wise modeling approach to represent the lane graph. It is also worth noticing
that Tesla proposes the concept of the “language of lanes” to depict the lane graph as a sentence (Tesla,
2022). The attention-based model recursively predicts lane tokens and their connectivity. In this work, we
focus on explicitly modeling the centerline connectivity within the network to enhance feature learning and
incorporating traffic elements in the construction of a full driving scene graph.
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2.2 HD Map Perception

With the trending of BEV perception (Philion & Fidler, 2020; Li et al., 2022b; Zhou & Krähenbühl, 2022;
Liao et al., 2023b), recent works focus on learning HD maps with segmentation and vectorized methods. Map
segmentation works predict the semantic interpretation of each BEV grid, such as lanelines and pedestrian
crossings. They differentiate from each other primarily in the perspective view to BEV transformation
module, i.e., IPM-based (Xie et al., 2022; Can et al., 2022b), depth-based (Hu et al., 2022; Liu et al., 2023b),
or Transformer-based (Li et al., 2022b; Jiang et al., 2023). Though dense segmentation provides detailed
pixel-level information, it falls short in capturing the complex relationships between overlapping elements. Li
et al. (2022a) address the problem by grouping and vectorizing the segmented map with sophisticated post-
processings. VectorMapNet (Liu et al., 2023a) proposes to directly represent each map element as a sequence
of points and uses coarse key points to decode laneline locations sequentially. MapTR (Liao et al., 2023a)
further explores unified permutation-based modeling to eliminate ambiguities in point sequence ordering and
enhance both performance and efficiency. In fact, vectorization-based methods could be easily adapted for
centerline perception by adjusting the supervision since they have enriched the direction information for
lanelines. Shin et al. (2023) construct map elements as a graph by initially predicting vertices and then
utilizing a GNN module to detect edges. However, its GNN produces all vertex features simultaneously,
limiting instance-level interactions. Contrary to them, we leverage instance-wise feature transmission within
the GNN, enabling the extraction of significant prediction cues from other elements in the topology graph.

2.3 Driving Scene Understanding

The concept of Driving Scene Understanding primarily involves the comprehension of the spatial relation-
ships among elements within outdoor environments, extending beyond mere detection (Tian et al., 2020;
Mylavarapu et al., 2020b; Zipfl & Zöllner, 2022; Malawade et al., 2022a). Previous works focus on utilizing
the relationships of 2D bounding boxes for motion prediction (Li et al., 2020; Mylavarapu et al., 2020a;b;
Fang et al., 2023) and risk assessment (Yu et al., 2021; Malawade et al., 2022b). In the industrial context,
Mobileye presents an optimization-based method to construct lane topology and relationships between traffic
lights and lanes automatically based on their proprietary data sources (Mobileye, 2022). In the academia,
Langenberg et al. (2019) address the traffic light to lane assignment (TL2LA) problem with a convolutional
network by taking heterogeneous metadata as additional inputs. In contrast, TopoNet takes only RGB im-
ages as inputs and additionally reasons about lane entities’ topology. We train and evaluate TopoNet on the
large-scale driving scene understanding benchmark, which covers complicated urban scenarios.

2.4 Graph Neural Network

Graph Neural Network and its variants, such as graph convolutional network (GCN) (Kipf & Welling, 2017),
GraphSAGE (Hamilton et al., 2017), and GAT (Veličković et al., 2018), are widely adopted to aggregate
features of vertices and extract information from graph (Scarselli et al., 2008). Witnessing the impressive
achievements of GNN in various fields (e.g., recommendation system and video understanding) (Guo & Wang,
2020; Mohamed et al., 2020; Chang et al., 2021; Pradhyumna & Shreya, 2021), researchers in the autonomous
driving community try utilizing it to process unstructured data. Weng et al. (2020; 2021) introduce GNN to
capture interactions among agents for 3D multi-object tracking. LaneGCN (Liang et al., 2020) constructs
a lane graph from HD map, while others (Jia et al., 2022; 2023; Fang et al., 2023) model the relationship
of moving agents and lanelines as a graph to improve the trajectory forecasting performance. Inspired by
prior works, we design a GNN for the driving scene understanding task to enhance feature interaction and
introduce a class-specific knowledge graph to better integrate semantic information.

3 TopoNet
3.1 Problem Formulation

Given multi-view images, the goal of TopoNet lies in two perspectives - perceiving entities and reasoning
their relationships. As an instance-level representation is preferable for topology reasoning, a directed lane
centerline (LC) is described by an ordered list of points. We denote it as vl = [p0, ..., pn−1], where p =
(x, y, z) ∈ R3 describes a point’s coordinate in 3D space, p0 and pn−1 are the starting and ending point.
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Figure 2: Systematic diagram of TopoNet. TopoNet addresses the crucial problem of topology reasoning
for driving scenes in an end-to-end fashion. It consists of four stages, with the latter three compacted in a
Transformer decoder architecture. TopoNet handles traffic elements and centerlines as two parallel branches
at the Deformable decoder. Various types of instance queries (red, blue) then interact, exchange messages,
acquire and aggregate prominent knowledge in the proposed Scene Graph Neural Network. The explicit
relationship modeling inside the network serves as a favorable scheme for feature learning and topology
prediction. In this paper, we abbreviate traffic elements and lane centerlines as “TE” and “LC”, respectively.

Traffic elements (TE) are represented as 2D bounding boxes in different classes on the front-view images.
All existing lanes Vl and traffic elements Vt within a predefined range are required to be detected.

On the perceived instances, the topology relationships are built. The connectivity of directed lanes establishes
a map-like network on which vehicles can drive. We denote the lane graph as Gll = (Vl, Ell), where the edge
set Ell ⊆ Vl × Vl is asymmetric. An entry (i, j) in Ell is positive if and only if the ending point of the lane vi

is connected to the starting point of vj . The graph Glt = (Vl ∪ Vt, Elt) describes the correspondence between
lanes and traffic elements. This graph can be interpreted as a bipartite structure, where positive edges only
exist between Vl and Vt. Given the instance set Vl and Vt, the connectivity of predicted graph Gll and Glt is
represented by the adjacency matrices All and Alt, respectively. These matrices are required to be predicted
in the task of topology reasoning.

3.2 Overview

Fig. 2 illustrates the overall architecture of the proposed TopoNet. Given multi-view images, the feature
extractor generates multi-scale features, including a front-view feature FPV and a BEV feature FBEV. Two
independent decoders with the same deformable attention mechanism (Zhu et al., 2020) take FPV and FBEV to
update instance-level embeddings Qt and Ql, respectively. The proposed Scene Graph Neural Network
(SGNN) then refines centerline queries Ql in positional and topological aspects. The decoders and SGNN
layers are stacked iteratively for N layers to obtain local and global feature interactions. Task-specific heads
employ the refined queries to get final predictions. Next, we elaborate on the proposed SGNN.

3.3 Scene Graph Neural Network

A representative embedding (or query) provides ideal instance-wise detection or segmentation results, as
discussed in previous perception works (Carion et al., 2020; Wu et al., 2022). However, being discriminative
is not enough to recognize correct topology relationships. The reason is that it takes a pair of instance
queries as input to determine their relationship, in which feature embeddings are actually not independent.
Meanwhile, adopting the local feature aggregation scheme of point-wise queries (Liu et al., 2023a; Liao et al.,
2023a) for centerline perception is inadequate. Specifically, a key difference between centerlines and physical
map elements is that centerlines naturally encode lane topology and traffic rules, which cannot be inferred
from local features alone. Therefore, we aim to simultaneously acquire perception and reasoning results by
modeling not only discriminative instance-level representations but also inter-entity relationships.
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To this end, we present SGNN, which has several designs and merits compared to previous works. (1) It
adopts an embedding network to extract TE knowledge within a unified feature space. (2) It models all
entities in a frame as vertices in a graph, and strengthens interconnection among perceived instances to
learn their inherent relationships with a graph neural network. (3) Alongside the graph structure, SGNN
incorporates prior topology knowledge with a scene knowledge graph.

3.3.1 Embedding Network

As traffic elements are annotated on the perspective view, it is hard to harness their positional information
in the 3D feature space. However, their semantic meaning imposes a great effect. For instance, a road sign
indicating the prohibition of left turn usually corresponds to lanes that lay in the middle of the road. This
predefined knowledge is beneficial for locating corresponding lanes. We introduce an embedding network to
extract semantic information and transform it into a unified feature space to match with centerlines that
Q̃i

t = embeddingi
(
Qi

t

)
, where i denotes the i-th decoder layer. Note that the queries Q̃i

t remain intact in the
SGNN. This is intended since imagining traffic elements from centerlines is relatively challenging. Besides,
it would be hard to predict traffic elements’ attributes in the image feature space if their features have been
transformed into another spatial feature space and further updated through interactions with centerlines.

3.3.2 Feature Propagation in GNN

In this part, we introduce how topological relationships are modeled and how knowledge from different
queries is exchanged. Using GNN, relations can be conveniently formulated as edges in a graph where
entities are seen as vertices. However, it is nontrivial in driving scenarios, as there is no explicit constraint
or prior knowledge of topology structure. A possible way is to construct a fully connected graph (V, E),
with V = Vl ∪ Vt and E ⊆ V × V . However, this inevitably increases computational cost and introduces
unnecessary information transmission, such as between two traffic elements that are placed subjectively by
humans. Instead, we use Gll = (Vl, Vl ×Vl) for lane graph estimation and Glt = (Vl ∪Vt, Vl ×Vt) representing
the predicted TE to LC assignments, to guide the information transmission.

In graph Gll and Glt, lane queries Ql are refined by the connected neighbors and corresponding traffic
elements. Due to the fact that Ql and Qt represent different kinds of objects, the semantic gap still exists.
We introduce an adapter layer to combine this heterogeneous information into the information gain denoted
as R. The overall process in an SGNN layer is formulated as:

Qi′

l = SGNNi
ll

(
Qi

l, Gi−1
ll

)
,

Qi′′

l = SGNNi
lt

(
Qi

l, Q̃i
t, Gi−1

lt

)
,

Ri = downsamplei
(

ReLU
(
concat(Qi′

l , Qi′′

l )
))

,

Q̃i
l = Qi

l + Ri.

(1)

3.3.3 Vanilla Scene Graph

Given the directed lane graph Gi−1
ll predicted by the previous layer, our goal is to construct a weight

matrix T i
ll that controls the flow of messages in the current layer. In this directed graph, messages typically

propagate in a single direction, such as from a centerline to its successor. However, the spatial position of a
lane can serve as a good indication of the locations of neighboring lanes, which suggests that a bidirectional
information exchange could be advantageous. To facilitate this, we augment the weighted adjacency matrix
Ai−1

ll of Gi−1
ll by incorporating backward edges to construct T i

ll, thereby enabling message exchange between
two connected centerlines. The process can be formulated as:

T i
ll = βll ·

(
Ai−1

ll + transpose(Ai−1
ll )

)
+ I, (2)

where T 0
ll = I and I denotes the identical mapping for self-loop, βll is a hyperparameter to control the ratio

of features propagated between nodes.
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In the bipartite graph Glt, where only the correspondence between lanes and traffic elements is presented,
we utilize features of traffic elements to refine centerline embeddings as follows:

T i
lt = βlt · Ai−1

lt , (3)

where T 0
lt = O is a matrix in which all entries are zero.

After obtaining the weight matrices, SGNN utilizes the graph convolutional layer (GCN) (Kipf & Welling,
2017) to perform feature propagation among queries:

Qi′

l = GCNi
ll

(
Qi

l, T i
ll

)
,

Qi′′

l = GCNi
lt

(
Qi

l, Q̃i
t, T i

lt

)
.

(4)

3.3.4 Scene Knowledge Graph
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Figure 3: Scene knowledge graph illustration. For the
centerline colored blue in the left case, related weight ma-
trices in the graph are categorically independent. Different
traffic elements and lane-directed connections bring different
information to the centerline, which is encoded as a scene
knowledge graph on the right.

Though GCN enables feature propagation in
the built graphs and treats nodes differently
based on their connectivity, the semantic
meaning of vertices remains unused. For exam-
ple, a traffic element indicating to go straight
is not equally important as that indicating a
red light. To incorporate categorical prior, we
design the scene knowledge graph to treat ver-
tices in different classes differently. Fig. 3 illus-
trates an example process of updating a center-
line query LC1 on the given knowledge graph.

On the graph Glt, we use Wi
lt ∈ R|Ct|×Fl×Ft

to denote the learnable weights, where Ct de-
scribes the attribute set of traffic elements, Fl

and Ft are the number of feature channel of
LC and TE queries respectively. A center-
line query with index x aggregates information
from its corresponding traffic elements based
on their classification scores:

Ki
lt = Ai−1

lt ,

Qi′′

l(x)
=

∑
∀y∈N(x)

∑
∀ct∈Ct

βlt · Si
t(ct,y)

Ki
lt(x,y)

Wi
lt(ct)

Q̃i
t(y)

, (5)

where N(x) outputs the indices of all neighbors of the vertex with index x, and Si
t ∈ R|Ct|×|Qi

t| represents
the classification scores of traffic element queries.

Although all centerlines fall into the same category, the directed connection nature, namely predecessor and
successor, still poses an impact on the process of feature propagation. To this end, we formulate the learnable
weight matrix for the lane graph as Wi

ll ∈ R|Cl|×Fl×Fl , where Cl = {successor, predecessor, self-loop}. The
centerline queries are further updated by:

Ki
ll = stack

(
Ai−1

ll , transpose(Ai−1
ll ), I

)
,

Qi′

l(x)
=

∑
∀y∈N(x)

∑
∀cl∈Cl

βll · Ki
ll(cl,x,y)

Wi
ll(cl)

Qi
l(y)

. (6)

3.4 Learning

We employ multiple losses to train TopoNet in an end-to-end manner. As depicted in Fig. 2, all heads utilize
queries to generate perception and reasoning results. Nevertheless, they are not entirely independent, as the
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topology head requires matching results from perception heads. Similar to Transfomer-based networks (Car-
ion et al., 2020; Zhu et al., 2020), the supervision is applied on each decoder layer to optimize the query
feature iteratively. The overall loss of the proposed model is L = LdetTE + LdetLC + Ltop.

Perception. Following the head design in DETR (Carion et al., 2020), the TE head predicts 2D bounding
boxes with classification scores. Note that for predicting traffic elements, we take Qt instead of Q̃t to preserve
their positional information in the perspective view. The LC head produces 11 ordered 3D points and a
confidence score from each centerline query q̃l ∈ Q̃l. The ground truth coordinate of centerlines is normalized
based on the predefined BEV range. The Hungarian algorithm is utilized to generate matchings between
ground truth and predictions for both heads, with the matching cost the same as the loss function. Then
task-specific losses LdetTE and LdetLC are applied accordingly. Specifically, for the TE head, we employ the
Focal loss (Lin et al., 2017b) for classification, an L1 regression loss, and an IOU loss for localization. For
centerlines, we use Focal loss and L1 loss as the classification and regression loss, respectively.

Reasoning. The topology head reasons pairwise relationships on the given embeddings to predict All and
Alt. Similar to STSU (Can et al., 2021), for a pair of instances, we use two MLP layers to reduce the
feature dimension for each instance. Then the concatenated feature is sent into another MLP with a sigmoid
activation to predict their relationship. Based on the matching results from perception heads, the ground
truth of each pair of embeddings is assigned. In the LC head, we adopt embeddings generated in the SGNN
module, i.e., the refined queries Q̃l for lanes and the semantic embeddings Q̃t for traffic elements. Due to
the sparsity of the graph, Focal loss is deployed in Ltop to deal with the imbalance in sample distribution.

4 Experiments

4.1 Implementation Details

Feature Encoding. We adopt a ResNet-50 (He et al., 2016), which is pre-trained on ImageNet (Deng et al.,
2009), with an FPN (Lin et al., 2017a) to obtain multi-scale image features. Following previous works (Zhu
et al., 2020; Li et al., 2022b), the output features are from stage S8×, S16× and S32× of ResNet-50, where
the subscripts n× indicates the downsampling factor. In the FPN module, the features are transformed into
a four-level output with an additional S64× level. The number of output channels of each level is set to
256. Then we adopt a simplified view transformer with 3 encoder layers proposed in BEVFormer (Li et al.,
2022b). Note that we do not use temporal information, and thus the temporal self-attention layer in the
BEVFormer encoder is replaced by a deformable attention (Zhu et al., 2020) layer. The size of BEV grids is
set to 200 × 100, with four different height levels of {−1.5m, −0.5m, +0.5m, +1.5m} relative to the ground.

Deformable Decoder. For the decoder, we utilize the decoder layer in Deformable DETR (Zhu et al., 2020)
that each decoder layer contains three layers: a self-attention layer with 8 attention heads, a deformable
attention layer with 8 attention heads and 4 offset points, and a two-layer feed-forward network with 512
channels in the middle. After each operation, a dropout layer with a ratio of 0.1 and a layer normalization
is applied. The dimension of initial queries q = [qp, qo] ∈ Q is set to 256, where qp is utilized to generate
the initial reference point, and qo is the initial object query. The query number for centerlines and traffic
elements is set to 200 and 100. The reference points will remain unchanged across different layers.

Scene Graph Neural Network. We utilize a simplified version of Graph Convolutional Network
(GCN) (Kipf & Welling, 2017) as our GNN layer. Given an input matrix Qi ∈ RN×C , with N representing
the number of nodes and C denoting the number of channels, the output of the operation is:

Qi′
= σ

(
T iQiWi

)
, (7)

where Wi ∈ RC×C is the learnable weight matrix, T i ∈ RN ′×N describes the adjacency matrix with N ′

output nodes, and σ(·) is the activation function. Note that the matrix T is inferred without gradients
during training. For the traffic element branch, an embedding network is employed before each GNN layer.
The embedding network is a two-layer MLP, in which the output channels are 512 and 256. In between the
MLP, a ReLU activation function and a dropout layer are included. βll and βlt are set to 0.6.
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Prediction Heads. The prediction head for perception comprises a classification head and a regression
head. For the traffic element branch, the classification head is a single-layer MLP, which outputs the sigmoid
probability of each class. The regression head is a three-layer MLP with ReLU, which predicts the normalized
coordinates of 2D bounding boxes in the form of {cx, cy, width, height}. For centerline, the classification
head consists of a three-layer MLP with LayerNorm and ReLU in between, which predicts the confidence
score. The regression head is a three-layer MLP with ReLU, which predicts the normalized point set of
11 × 3 for a centerline. To predict topology relationships, relationship heads are applied. Given the instance
queries Q̃a and Q̃b with 256 feature channels, the topology head first applies a three-layer MLP:

Q̃′
a = MLPa(Q̃a), Q̃′

b = MLPb(Q̃b), (8)

where the number of output channels is 128. For each pair of queries q̃′
a ∈ Q̃′

a and q̃′
b ∈ Q̃′

b, the output is the
confidence of the relationship, with independent MLPs for different types of relationships:

conf. = sigmoid
(

MLPtop
(
concat(q̃′

a, q̃′
b)

))
. (9)

Loss. LdetTE includes a classification, a regression, and an IoU loss that LdetTE = λcls ·Lcls+λreg ·Lreg +λiou ·
Liou. λcls, λreg, and λiou are set to 1.0, 2.5, and 1.0, respectively. The classification loss Lcls is a Focal loss.
Note that the regression loss Lreg is an L1 Loss calculated on a normalized format of {cx, cy, width, height},
while the IoU loss Liou is a GIoU loss computed on the denormalized coordinates. For centerline detection,
LdetLC comprises a classification and a regression loss that LdetLC = λcls · Lcls + λreg · Lreg, where λcls

and λreg are 1.5 and 0.025 respectively. Note that the regression loss is calculated on the denormalized 3D
coordinates. For topology reasoning, we adopt the same Focal loss but different weights on different types
of relationships. The loss Ltop is defined as λtopll

· Ltopll
+ λtoplt

· Ltoplt
, where both λtopll

and λtoplt
are 5.0.

Training. The resolution of input images is 2048 × 1550, except for the front-view image, which is 1550
× 2048 and cropped into 1550 × 1550. For data augmentation, ×0.5 resizing and color jitter are used. We
adopt the AdamW optimizer (Loshchilov & Hutter, 2018) and a cosine annealing schedule with an initial
learning rate of 1 × 10−4. TopoNet is trained for 24 epochs with a batch size of 8 with 8 Tesla A100 GPUs.

4.2 Dataset and Metrics

We conduct experiments on the OpenLane-V2 benchmark (Wang et al., 2023). The dataset contains topo-
logical structures in the driving scenes. Ablation studies are conducted on the subset_A of OpenLane-V2.

Dataset. Built on top of the Argoverse 2 (Wilson et al., 2021) and nuScenes (Caesar et al., 2020) datasets,
the OpenLane-V2 benchmark includes images from 2,000 scenes collected worldwide under different environ-
ments. The dataset is split into two subsets, namely subset_A and subset_B. Each subset contains 1,000
scenes with multi-view images and annotations at 2Hz. All lanes within [−50m, +50m] along the x-axis and
[−25m, +25m] along the y-axis are annotated in the 3D space. Centerlines are described in the form of lists
of points that each list comprises 201 points in 3D space. Points of a centerline are ordered according to the
spatial position, and the order of points determines the direction of a centerline. Statistically, about 90%
of frames have more than 10 centerlines while about 10% have more than 40. Traffic elements follow the
typical labeling style in 2D detection that objects are labeled as 2D bounding boxes on the front-view images.
Each element is annotated as a 2D bounding box on the front view image, with its attribute. There are 13
types of attributes, including unknown, red, green, yellow, go_straight, turn_left, turn_right, no_left_turn,
no_right_turn, u_turn, no_u_turn, slight_left, and slight_right. The topology relationships are provided
in the form of adjacency matrices based on the ordering of centerlines and traffic elements. In the adjacency
matrices, an entry (i, j) is positive (i.e., 1) if and only if the elements at i and j are connected.

Perception Metrics. The DET score is the typical mean average precision (mAP) for measuring instance-
level perception performance. The DETl score uses Fréchet distance (Eiter & Mannila, 1994) as the similarity
measure, which is very sensitive to line direction and local deviation and thus suitable for evaluating direc-
tional lane centerlines. The final score is averaged over match thresholds of T = {1.0, 2.0, 3.0}:

DETl = 1
|T|

∑
t∈T

APt. (10)
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Table 1: Comparison with state-of-the-art methods on the OpenLane-V2 benchmark. TopoNet out-
performs all previous works by a wide margin, especially in directed centerline perception and topology
reasoning. *: Topology reasoning evaluation is based on matching results on Chamfer distance. The highest
score is bolded, while the second one is underlined.

Data Method DETl↑ TOPll↑ DETt↑ TOPlt↑ OLS↑
su

bs
et

_
A

STSU (Can et al., 2021) 12.7 0.5 43.0 15.1 25.4
VectorMapNet (Liu et al., 2023a) 11.1 0.4 41.7 5.9 20.8
MapTR (Liao et al., 2023a) 8.3 0.2 43.5 5.9 20.0
MapTR* (Liao et al., 2023a) 17.7 1.1 43.5 10.4 26.0
TopoNet (Ours) 28.5 4.1 48.1 20.8 35.6

su
bs

et
_

B

STSU (Can et al., 2021) 8.2 0.0 43.9 9.4 21.2
VectorMapNet (Liu et al., 2023a) 3.5 0.0 49.1 1.4 16.3
MapTR (Liao et al., 2023a) 8.3 0.1 54.0 3.7 21.1
MapTR* (Liao et al., 2023a) 15.2 0.5 54.0 6.1 25.2
TopoNet (Ours) 24.3 2.5 55.0 14.2 33.2

Note that the defined BEV range is relatively large compared to other lane detection benchmarks (Li et al.,
2022a; Liu et al., 2023a), and accurate perception of lanes in the distance is hard. As a result, thresholds
T are relaxed based on the distance between the lane and the ego car. For traffic elements, the DETt uses
IoU as the similarity measure and is averaged over different types of attributes A of traffic elements:

DETt = 1
|A|

∑
a∈A

APa. (11)

Reasoning Metrics. The TOP score is an mAP metric adapted from the graph domain. Specifically,
given a ground truth graph G = (V, E) and a predicted one Ĝ = (V̂ , Ê), it builds a set of vertices V̂ ′ by a
projection from V̂ such that V = V̂ ′ ⊆ V̂ , where the Fréchet and IoU distances are utilized for similarity
measure among lane centerlines and traffic elements respectively. Inside the predicted V̂ ′, two vertices are
regarded as connected if the confidence of the edge is greater than 0.5. Then the TOP score is the averaged
vertice mAP between (V, E) and (V̂ ′, Ê′) over all vertices:

TOP = 1
|V |

∑
v∈V

∑
n̂′∈N̂ ′(v) P (n̂′)1(n̂′ ∈ N(v))

|N(v)| , (12)

where N(v) denotes the ordered list of neighbors of vertex v ranked by confidence, N̂ ′(v) denotes the
ordered list of predicted neighbors of vertex v, and P (v) is the precision of the i-th vertex v in the ordered
list. The TOPll is for topology among centerlines on graph (Vl, Ell), and the TOPlt for topology between
lane centerlines and traffic elements on graph (Vl ∪ Vt, Elt).

Overall Metrics. The primary task of the dataset is scene structure perception and reasoning. The
OpenLane-V2 Score (OLS) summarizes metrics covering different aspects of it:

OLS = 1
4

[
DETl + DETt + f(TOPll) + f(TOPlt)

]
, (13)

where f is the square root function.

4.3 Main Results

In Table 1, we compare the proposed TopoNet to several state-of-the-art methods, whose implementation
details are described in Appendix A. TopoNet outperforms all previous algorithms by a large margin. As
the SOTA map learning method MapTR ignores the direction of centerlines with the permutation-equivalent
modeling (Liao et al., 2023a), we additionally evaluate MapTR based on Chamfer distance matching. How-
ever, its performance on DETl, as well as topology metrics, significantly degenerates from TopoNet under
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Table 2: Comparison on centerline perception with a unified feature extractor. “Topology” denotes
that the network is trained with topology supervision.

Method Topology DETl↑ TOPll↑ DETl,chamfer↑ FPS
STSU (Can et al., 2021) ✓ 14.2 0.6 13.8 12.8
VectorMapNet (Liu et al., 2023a) ✗ 12.7 - 10.3 1.0
MapTR (Liao et al., 2023a) ✗ 10.0 - 21.7 11.5
TopoNet (Ours) ✓ 27.7 4.6 27.4 10.1

fair comparison. The large performance gap indicates that reasoning the complex topology raises greater
challenges upon merely perceiving presented instances, highlighting the effectiveness of TopoNet’s design. All
methods achieve similar DETt, since we adopt the same traffic element detection branch. In more detail, To-
poNet possesses slightly superior traffic light detection performance, which indicates that its comprehensive
framework is capable of performing heterogeneous feature learning between traffic elements and centerlines,
thereby enhancing the performance of DETt and TOPlt. On the other hand, since all methods employ a
shared backbone, it should be noted that the convergence of traffic light detection could be influenced by
other branches, especially when the model struggles to learn centerlines and topological information with a
large loss in the LC head. Therefore, given that all methods have the same TE head, our experimental anal-
ysis primarily focuses on centerline detection and topology reasoning. Regarding LC-TE topology reasoning,
the performance of TopoNet is benefited from its overall superior centerline and traffic element detection
performance as well as the proposed SGNN module, in which different entities are modeled differently.

Comparison on Centerline Perception. To have a fair comparison, we use a unified backbone and
PV-to-BEV transformation module for various SOTA methods on the centerline perception task. We keep
the topology supervision for STSU, as it was originally designed for detecting centerlines and their topology
relationship. Since VectorMapNet and MapTR initially target laneline detection where there is no rela-
tionship between visible lanelines, we alter the supervision from laneline to centerline and ignore topology
supervision to preserve their original design choice.

To better align with previous works (Liu et al., 2023a; Liao et al., 2023a), we also provide DETl,chamfer with
the Chamfer distance as the similarity measure. It does not take the lane direction into account and is
thresholded on {0.5, 1.0, 1.5}. As shown in Table 2, TopoNet outperforms other methods on all metrics. We
also find that the original design of online mapping approaches struggles with managing lane topology and
traffic elements. As shown in Table 1 and Table 2, when the effect from lane topology and traffic elements is
removed, MapTR’s performance in centerline detection improves from 17.7 to 21.7 on DETl,chamfer score. In
contrast, TopoNet’s performance in centerline detection decreased by 0.8 points on DETl due to the removal
of the traffic element branch and the lane-traffic element feature interaction in SGNN. This suggests that
TopoNet benefits from detecting traffic elements and reasoning the LT topology, attributable to the effective
design of our pipeline. Besides, the FPS of TopoNet is 10.1 on an A100 bare machine. Compared to other
methods on the same machine with an aligned input size of 512× 676, our method has comparable online
efficiency but stronger performance.

Table 3: Comparison on BEV seg-
mentation. When rendering center-
lines on the BEV grids, TopoNet also
outperforms the previous approach.

Method mIoU↑
HDMapNet (Li et al., 2022a) 18.3
STSU (Can et al., 2021) 24.6
VectorMapNet (Liu et al., 2023a) 18.9
MapTR (Liao et al., 2023a) 32.1
LaneGAP (Liao et al., 2024) 35.0
TopoNet (Ours) 35.1

Comparison on BEV Segmentation. DETl is defined to eval-
uate the validity of each point on a single centerline, ensuring
a consistent instance representation of lanes. In contrast, the
Intersection over Union (IoU) focuses on pixel-level accuracy in
segmentation formulation. It provides a fair comparison of the
overall geometric accuracy across various methods with different
lane formulations, such as HDMapNet (Li et al., 2022a) and Lane-
GAP (Liao et al., 2024). Except for HDMapNet, the vectorized
centerline predictions of each method are rendered to BEV with a
fixed line width of 0.75m aligned with the setting in HDMapNet.
As shown in Table 3, TopoNet surpasses other methods in terms
of IoU. We also conduct a fair comparison with a concurrent work
LaneGAP (Liao et al., 2024), which utilizes path-wise modeling
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GT (BEV) STSU VectorMapNet MapTR TopoNet (Ours)

GT (Front-view) Pred (Front-view, TopoNet)Multi-view Vision-only Input

Figure 4: Qualitative results of TopoNet and other algorithms on subset_A of the OpenLane-V2 dataset.
TopoNet achieves superior lane graph prediction performance compared to other SOTA methods in the
complex intersection scenario. It also successfully builds all connections between traffic elements and lanes
(top right, and correspondingly colored lines in BEV). Colors denote categories of traffic elements.

Table 4: Ablation on the design of scene graph
neural network. “SG” represents the vanilla scene
graph, and “SKG” is the enhanced SGNN with the
proposed scene knowledge graph.

Method DETl↑ TOPll↑ DETt↑ TOPlt↑ OLS↑
Baseline 25.7 4.0 47.2 20.6 34.6
+ SG 27.7 3.7 48.0 20.1 35.0
+ SKG 28.5 4.1 48.1 20.8 35.6

Table 5: Ablation on feature propagation in the
SGNN. “LL only” denotes aggregation of spatial in-
formation from lane connectivity, and “LT only” in-
cludes lane-traffic element relationship.

Method DETl↑ TOPll↑ DETt↑ TOPlt↑ OLS↑
LL only 27.9 3.8 47.8 20.3 35.1
LT only 27.8 3.9 47.5 20.5 35.1
TopoNet 28.5 4.1 48.1 20.8 35.6

to represent lane graph. Transforming lane paths into lane pieces in the LaneGAP’s post-processing stage
necessitates high geometric accuracy, making it unsuitable for evaluation using DETl. This method achieves
similar performance to TopoNet in terms of IoU. However, we note that piece-wise modeling of TopoNet can
effectively capture the precise locations of lane splits or merges, as well as the topology between lanes and
traffic elements, making it more suitable for practical applications.

4.4 Ablation Study

Effect of Design in Scene Graph Neural Network. We alternate the proposed network into a baseline
without feature propagation by downgrading the SGNN module to an MLP and supervising topology reason-
ing at the final decoder layer only. The concatenation and down-sampling operations, as well as the traffic
element embedding, are also removed. As illustrated in Table 4, the proposed SKG outperforms models
in other settings, demonstrating its effectiveness for topology understanding. Compared to the SG version,
the scene knowledge graph provides an additional improvement of 0.8% for centerline perception, owning
to the predefined semantic prior encoded in the categories of traffic elements. The improvement of traffic
element detection and topology reasoning is also consistent. Given that transformers are widely regarded as
a variant of GNN, this also reveals that explicitly designing the feature interaction between queries within a
transformer decoder can further enhance performance, especially when instances have a strong correlation.

Effect on Feature Propagation. In the “LL only” setting, we set the βlt parameter to 0. Similar to
the baseline, we remove the concatenation and down-sampling operations, as well as the traffic element
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Table 6: Ablation on the number of GNN layers
in the scene knowledge graph. Model performance
drops as the number of SGNN layers increases.

# GNN DETl↑ TOPll↑ DETt↑ TOPlt↑ OLS↑
1 28.5 4.1 48.1 20.8 35.6
2 27.9 4.0 47.5 20.9 35.3
3 20.4 0.5 46.1 15.7 28.3

Table 7: Ablation on edge weight in the scene
knowledge graph. The magnitude of edge weight has
an impact on model performance.

Weight DETl↑ TOPll↑ DETt↑ TOPlt↑ OLS↑
0.5 28.4 4.0 47.7 20.8 35.4
0.6 28.5 4.1 48.1 20.8 35.6
0.7 27.3 4.1 47.7 20.7 35.1

embedding. For “LT only”, we set the βll parameter to 0, while other modules remain intact. Results
are reported in Table 5. In the “LL only” setting, the drop on TOPlt demonstrates the importance of the
graph Glt. Besides, it can be observed that the performance of DETl experiences a certain decline under
this setting as well. This might result from the lack of traffic element features’ guidance for lane centerline
detection within intersections. Compared to non-intersection areas, there is a higher number of centerlines
within intersections, while they lack distinct lane marking features and require traffic elements’ guidance.

With the “LT only” design, DETl degenerates when removing the graph Gll, showing the importance of
feature propagation between centerline queries. These experiments show that both branches are necessary
for achieving satisfactory model performance on the primary task.

Effect on the Number of GNN Layers. Though GNN is beneficial for propagating features in the
knowledge graph, raising the number of GNN layers leads to degenerated performance. As shown in Table 6,
SGNN with a single GNN layer achieves the best performance. The reason is that a GNN layer increases
the similarity of adjacent vertices, causing the over-smoothing effect commonly associated with GNNs.

Effect on Edge Weight. Edge weight in the scene knowledge graph represents how much information
is propagated through the SGNN layers. We choose the edge weights around the reciprocal of the average
number of lane neighbors in the dataset to balance the contributions of features from neighboring nodes and
the central node itself. In Table 7, 0.6 corresponds to the most appropriate ratio.

4.5 Qualitative Analysis

We provide a qualitative comparison on validation set in Fig. 4. We show the raw output of each method,
without the post-processing technique suggested in STSU (Can et al., 2021), to avoid the potential intro-
duction of accumulated inaccuracies and misalignment with quantitative evaluation. TopoNet predicts most
centerlines correctly and constructs a lane graph in BEV. Yet, prior works fail to output all entities or get
confused about their connectivity. More visualizations are provided in Appendix C.

5 Conclusion and Future Work

In this paper, we discuss abstracting driving scenes as topology relationships of various entities and propose
TopoNet, to address the problem. Importantly, our method models feature interactions via the graph
neural network architecture and incorporates traffic knowledge in heterogeneous feature spaces with the
knowledge graph-based design. Our experiments on the large-scale OpenLane-V2 benchmark demonstrate
that TopoNet excels previous SOTA approaches on perceiving and reasoning about the driving scene topology
under complex urban scenarios.

Limitations and Future Work. Benefiting from the query-based design for feature propagation, TopoNet
performs well in outputting positive predictions. However, post-processes such as merging or pruning are
still needed to produce clean output, just as other lane topology works (Can et al., 2021; Büchner et al.,
2023). The topic of incorporating the merging ability with auto-regressive or other association mechanisms
deserves future exploration. Meanwhile, it will be interesting to see if more categories of traffic elements and
a more sophisticated knowledge graph design will make any advances.
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Appendix

A Re-implementation of SOTA Methods

Since there are no prior methods for the task of driving scene understanding, we adapt three state-of-the-art
algorithms which are initially designed for lane graph estimation or map learning: STSU (Can et al., 2021),
VectorMapNet (Liu et al., 2023a), and MapTR (Liao et al., 2023a). To ensure a fair comparison, we employ
the same input resolution, the same ResNet-50 image backbone, and the same FPN neck for extracting
features from surrounding images. Additionally, we incorporate a Deformable DETR head specifically for
traffic elements, aligning all settings with TopoNet. As for the topology reasoning module, we treat it
differently based on their own modeling concepts of instance query. The topology heads for each method are
the same MLPs as in TopoNet. All the methods are trained for 24 epochs to ensure a fair comparison.

STSU. The original model predicts centerlines and their relationships under the monocular setting. It
employs a BEV positional embedding and a DETR head to predict three Bezier control points for each
centerline, and uses object queries in the decoder to predict the connectivity of centerlines. To adapt to
the multi-view inputs, we re-implement STSU by computing and concatenating the BEV embedding of
images from different views. The concatenated embedding is then fed into the DETR encoder. We retain
the original DETR decoder to predict the Bezier control points, which are interpolated into 11 equidistant
points as outputs. The lane-lane relationship prediction head of STSU is preserved as well.

VectorMapNet utilizes a DETR-like decoder to estimate key points and an auto-regressive module to
generate detailed graphical information for a map elements instance, such as lanelines and pedestrian cross-
ings. We supervise VectorMapNet’s decoder with centerline labels to adapt to the OpenLane-V2 task. The
perception range is defined as ±30m×±15m in the original setting, and we expand it to ±50m×±25m. The
centerline outputs of VectorMapNet are interpolated to 11 equidistant points during the prediction process.
For topology prediction, we use the key point object queries in the VectorMapNet decoder as instance queries
of centerlines. We implement the modification on the given codebase of VectorMapNet while retaining other
settings. However, due to their lack of support for 3D centerlines, we only predict 2D centerlines in the BEV
space and ignore the height dimension during training and evaluation.

MapTR. MapTR directly predicts polylines with a fixed number of points using a DETR-like decoder. It
utilizes a hierarchical query, representing each line instance with multiple point queries and one instance
query. For topology prediction, we use the average of the hierarchical queries of an instance in the MapTR
decoder as the instance query of a centerline. The traffic element head and the topology head are with the
same setting as in TopoNet. We align the original backbone setting with TopoNet. The perception region is
also expanded to ±50m × ±25m. The implementation is also done on the open-source codebase of MapTR
with other settings retained. Due to the lack of support for 3D centerlines, we only predict 2D centerlines
in BEV and ignore the height dimension during training and evaluation.

B More Experiments

Table 8: Ablation on traffic element embedding. TE embedding is necessary to deal with inconsistency
in the feature space of different queries.

Method DETl↑ TOPll↑ DETt↑ TOPlt↑ OLS↑
w/o embedding 28.4 4.1 46.9 20.5 35.2
TopoNet 28.5 4.1 48.1 20.8 35.6

Effect on Traffic Element Embedding. In the “w/o embedding” setting, we remove the traffic element
embedding network and use Qt as the input of SGNN directly. As shown in Table 8, removing the em-
bedding results in a 1.2% performance drop in traffic element recognition. The reason is that TE queries
contain a large amount of spatial information in the PV space due to the 2D detection supervision signals,
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Table 9: Comparison with the winning methods in the CVPR 2023 Autonomous Driving Chal-
lenge. The upper part is the Leaderboard on the OpenLane-V2 test split. The down part is the performance
on the val split with ResNet-50 backbones. The listed teams utilized non-shared backbones for the lane and
traffic element branches. “# Params.” refers to the total number of backbone parameters. “*”: using
post-processing on the topology prediction. TopoNet surpasses the third-place method on the overall per-
formance, with only 25M backbone parameters and 24 epoch training.

Data Team & Method Backbone # Params. Epoch DETl↑ TOPll↑ DETt↑ TOPlt↑ OLS↑

te
st

MFV (Wu et al., 2023) (1st) ViT-L + CSPNet (YOLOv8x) 375M 48 + 20 35.8 22.5* 79.7 33.5* 55.2
Victory (Lu et al., 2023) (2nd) Swin-S + Swin-S 100M Unknown 21.8 13.2* 72.5 22.6 44.6
PlatypusWhispers (Kalfaoglu et al., 2023) (3rd) RegNetY-800mf + ConvNext-B 95M 40 + 30 22.1 6.0 70.6 15.7 39.2
TopoNet (Ours) ResNet-50 (shared) 25M 24 25.8 10.1* 59.5 23.7* 41.4

v
a
l

MFV (Wu et al., 2023) (1st) ResNet-50 (LC only) 25M 20 18.2 - - - -
PlatypusWhispers (Kalfaoglu et al., 2023) (3rd) ResNet-50 + ResNet-50 50M 24 + 24 22.1 5.8 58.2 15.5 36.0
TopoNet (Ours) ResNet-50 (shared) 25M 24 28.5 4.1 48.1 20.8 35.6

resulting in significant inconsistencies in the feature spaces. In all, the experiments demonstrate that TE
embedding effectively filters out irrelevant spatial information and extracts high-level semantic knowledge
to help centerline detection and lane topology reasoning.

Comparison on the OpenLane-V2 leaderboard. We compare TopoNet with the winning methods in
the CVPR 2023 Autonomous Driving Challenge in Table 9. The leading methods of the competition employ
various tricks to maximize the performance, such as stronger and non-shared backbones, longer training
epochs, training on the validation set, extensive hyper-parameter tuning, and complex data augmentation and
post-processing strategies. Because most methods in the competition employ SOTA 2D detection approaches
and non-shared backbones, we primarily compare the effectiveness of TopoNet in the context of lane graph
perception. After utilizing the post-processing technique of MFV (Wu et al., 2023) on lane-lane topology
prediction, TopoNet achieves a DETl score of 25.8 and a TOPll of 10.1 on the OpenLane-V2 test set, achieving
superior centerline detection performance compared to the second-place method. TopoNet employs a shared
ResNet-50 backbone, being up to 15× smaller in backbone parameter size than the awarded methods,
demonstrating great training efficiency.

We further provide the comparison on the validation split, where these methods report performance with a
ResNet-50 backbone and without most tricks. MFV, the first-place method in the competition, achieves a
DETl score of 18.2, and the third-place team PlatypusWhisperers (Kalfaoglu et al., 2023) gets a DETl score
of 22.1. With less data augmentation and hyper-parameter tuning, TopoNet achieves a much higher DETl

score of 28.5, surpassing all methods above. These fair comparisons on the validation set well demonstrate
the effectiveness of TopoNet’s pipeline.

C More Visualization

We provide additional qualitative comparisons on subset_B of OpenLane-V2 in Fig. 5. Fig. 6 shows a
case where a bus occludes the intersection in the front view image. TopoNet fails to predict lanes and the
topology, especially those in the left half of the crossing. A large-scale dataset and learning techniques, such
as active learning, would solve such failure cases in a real-world deployment.
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Figure 5: Qualitative results of TopoNet and other algorithms on subset_B of the OpenLane-V2 dataset.
Colors denote categories of traffic elements.

GT (BEV) STSU VectorMapNet MapTR TopoNet (Ours)

GT (Front-view) Pred (Front-view, TopoNet)Multi-view Vision-only Input

Figure 6: Failure case under large-area occlusion. TopoNet fails to predict centerlines and the lane
graph in the intersection with a large bus colluding in front. Note that the relationship between the left lane
and the red light is an incorrect annotation where our algorithm reasons about the direction of the left lane
and avoids the false positive prediction.
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