
Graph Inverse Reinforcement Learning
from Diverse Videos

Sateesh Kumar Jonathan Zamora Nicklas Hansen
Rishabh Jangir Xiaolong Wang

UC San Diego

Reach

D
em

o
Si

m
R

ea
l

Push Peg in Box

Figure 1: GraphIRL. We propose an approach for performing inverse reinforcement learning
from diverse third-person videos via graph abstraction. Based on our learned reward functions, we
successfully train image-based policies in simulation and deploy them on a real robot.

Abstract

Research on Inverse Reinforcement Learning (IRL) from third-person videos has
shown encouraging results on removing the need for manual reward design for
robotic tasks. However, most prior works are still limited by training from a rela-
tively restricted domain of videos. In this paper, we argue that the true potential
of third-person IRL lies in increasing the diversity of videos for better scaling.
To learn a reward function from diverse videos, we propose to perform graph
abstraction on the videos followed by temporal matching in the graph space to
measure the task progress. Our insight is that a task can be described by entity
interactions that form a graph, and this graph abstraction can help remove irrele-
vant information such as textures, resulting in more robust reward functions. We
evaluate our approach, GraphIRL, on cross-embodiment learning in X-MAGICAL
and learning from human demonstrations for real-robot manipulation. We show sig-
nificant improvements in robustness to diverse video demonstrations over previous
approaches, and even achieve better results than manual reward design on a real
robot pushing task. Videos are available at https://graphirl.github.io/.

1 Introduction

Deep Reinforcement Learning (RL) is a powerful general-purpose framework for learning behavior
policies from high-dimensional interaction data, and has led to a multitude of impressive feats
in application areas such as game-playing [29] and robotics [24, 2]. Through interaction with an

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://graphirl.github.io/

unknown environment, RL agents iteratively improve their policy by learning to maximize a reward
signal, which has the potential to be used in lieu of hand-crafted control policies. However, the
performance of policies learned by RL is found to be highly dependent on the careful specification of
task-specific reward functions and, as a result, crafting a good reward function may require significant
domain knowledge and technical expertise.

As an alternative to manual design of reward functions, inverse RL (IRL) has emerged as a promising
paradigm for policy learning. By framing the reward specification as a learning problem, operators
can specify a reward function based on video examples. While imitation learning typically requires
demonstrations from a first-person perspective, IRL can in principle learn a reward function, i.e.,
a measure of task progression, from any perspective, including third-person videos of humans
performing a task. This has positive implications for data collection, since it is often far easier for
humans to capture demonstrations in third-person.

Although IRL from third-person videos is appealing because of its perceived flexibility, learning
a good reward function from raw video data comes with a variety of challenges. This is perhaps
unsurprising, considering the visual and functional diversity that such data contains. For example, the
task of pushing an object across a table may require different motions depending on the embodiment
of the agent. A recent method for cross-embodiment IRL, dubbed XIRL [56], learns to capture
task progression from videos in a self-supervised manner by enforcing temporal cycle-consistency
constraints. While XIRL can in principle consume any video demonstration, we observe that its
ability to learn task progression degrades substantially when the visual appearance of the video
demonstrations do not match that of the target environment for RL. Therefore, it is natural to ask the
question: can we learn to imitate others from (a limited number of) diverse third-person videos?

In this work, we demonstrate that it is indeed possible. Our key insight is that, while videos may be of
great visual diversity, their underlying scene structure and agent-object interactions can be abstracted
via a graph representation. Specifically, instead of directly using images, we extract object bounding
boxes from each frame using an off-the-shelf detector, and construct a graph abstraction where each
object is represented as a node in the graph. Often – in robotics tasks – the spatial location of an
object by itself may not convey the full picture of the task at hand. For instance, to understand a task
like Peg in Box (shown in Figure 1), we need to also take into account how the agent interacts with
the object. Therefore, we propose to employ Interaction Networks [7] on our graph representation
to explicitly model interactions between entities. To train our model, we follow [56, 9] and apply a
temporal cycle consistency loss, which (in our framework) yields task-specific yet embodiment- and
domain-agnostic feature representations.

We validate our method empirically on a set of simulated cross-domain cross-embodiment tasks from
X-MAGICAL [56], as well as three vision-based robotic manipulation tasks. To do so, we collect a
diverse set of demonstrations that vary in visual appearance, embodiment, object categories, and scene
configuration; X-MAGICAL demonstrations are collected in simulation, whereas our manipulation
demonstrations consist of real-world videos of humans performing tasks. We find our method to
outperform a set of strong baselines when learning from visually diverse demonstrations, while
simultaneously matching their performance in absence of diversity. Further, we demonstrate that
vision-based policies trained with our learned reward perform tasks with greater precision than human-
designed reward functions, and successfully transfer to a real robot setup with only approximate
correspondence to the simulation environment. Thus, our proposed framework completes the cycle
of learning rewards from real-world human demonstrations, learning a policy in simulation using
learned rewards, and finally deployment of the learned policy on physical hardware.

2 Related Work
Learning from demonstration. Conventional imitation learning methods require access to expert
demonstrations comprised of observations and corresponding ground-truth actions for every time step
[32, 5, 3, 36], for which kinesthetic teaching or teleoperation are the primary modes of data collection
in robotics. To scale up learning, video demonstrations are recorded with human operating the
same gripper that the robot used, which also allows direct behaviro cloning [43, 55]. More recently,
researchers have developed methods that instead infer actions from data via a learned forward [31]
or inverse [45, 35] dynamics model. However, this approach still makes the implicit assumption
that imitator and demonstrator share a common observation and action space, and are therefore not
directly applicable to the cross-domain cross-embodiment problem setting that we consider.

2

Temporal Alignment

Spatial
Interaction

Network
Matching

Bounding Boxes

Temporal Alignment

Embedding Video Sequence #1

Embedding Video Sequence #2

Video Sequence #3

Frame (a) Frame (b) Frame (c)
(a)

(b)

(c)

Spatial
Interaction

Network

Spatial
Interaction

Network

Encode Graph
Abstractions

Time

Em
be

dd
in

g
Sp

ac
e

Video Seq #1
Graphs

Video Seq #2
Graphs

Ta
sk

 P
ro

gr
es

s

Time

Graph Abstraction

Video Seq #1 Video Seq #2 Video Seq #2Video Seq #1

G
ra

ph
 In

ve
rs

e
R

L
R

L
w

/ L
ea

rn
ed

 R
ew

ar
d

Figure 2: Overview. We extract object bounding boxes from video sequences using an off-the-shelf
detector, and construct a graph abstraction of the scene. We model graph-abstracted object interactions
using Interaction Networks [7], and learn a reward function by aligning video embeddings temporally.
We then train image-based RL policies using our learned reward function, and deploy on a real robot.

Inverse RL. To address the aforementioned limitations, inverse RL has been proposed [30, 1, 19,
12, 6, 46] and it has recently emerged as a promising paradigm for cross-embodiment imitation in
particular [39, 21, 49, 23, 8, 11, 34, 56, 4]. For example, Schmeckpeper et al. [39] proposes a method
for integrating video demonstrations without corresponding actions into off-policy RL algorithms via
a latent inverse dynamics model and heuristic reward assignment, and Zakka et al. [56] (XIRL) learns
a reward function from video demonstrations using temporal cycle-consistency and trains an RL agent
to maximize the learned rewards. In practice, however, inverse RL methods such as XIRL are found
to require limited visual diversity in demonstrations. Our work extends XIRL to the setting of diverse
videos by introducing a graph abstraction that models agent-object and object-object interactions
while still enforcing temporal cycle-consistency.

Object-centric representations. have been proposed in many forms at the intersection of computer
vision and robotics. For example, object-centric scene graphs can be constructed for integrated task
and motion planning [10, 44, 57], navigation [14, 51], relational inference [50, 25],dynamics modeling
[7, 48, 28, 53, 33?], model predictive control [38, 26, 54], grasping [? ?] or visual imitation learning
[? ? 42]. Similar to our work, Sieb et al. [42] propose to abstract video demonstrations as object-
centric graphs for the problem of single-video cross-embodiment imitation, and act by minimizing
the difference between the demonstration graph and a graph constructed from observations captured
at each step. As such, their method is limited to same-domain visual trajectory following, whereas
we learn a general alignment function for cross-domain cross-embodiment imitation and leverage
Interaction Networks [7] for modeling graph-abstracted spatial interactions rather than relying on
heuristics.

3 Our Approach

In this section, we describe our main contribution, which is a self-supervised method for learning a
reward function directly from a set of diverse third-person video demonstrations by applying temporal
matching on graph abstractions. Our Graph Inverse Reinforcement Learning (GraphIRL) framework,
shown in Figure 2, consists of building an object-centric graph abstraction of the video demonstrations
and then learn an embedding space that captures task progression by exploiting the temporal cue
in the videos. This embedding space is then used to construct a domain invariant and embodiment
invariant reward function which can be used to train any standard reinforcement learning algorithm.

3

Problem Formulation. Given a task T , our approach takes a dataset of video demonstrations
D = {V1, V2, . . . , Vn}. Each video consists of image frames {Ii1, Ii2, . . . , Iik} where i denotes the
video frame index and k denotes the total number of frames in Vi. Given D, our goal is to learn a
reward function that can be used to solve the task T for any robotic environment. Notably, we do not
assume access to any action information of the expert demonstrations, and our approach does not
require objects or embodiments in the target environment to share appearance with demonstrations.

3.1 Representation Learning
To learn task-specific representations in a self-supervised manner, we take inspiration from Dwibedi
et al. [9] and employ a temporal cycle consistency loss. However, instead of directly using images,
we propose a novel object-centric graph representation, which allows us to learn an embedding space
that not only captures task-specific features, but depends solely on the spatial configuration of objects
and their interactions. We here detail each component of our approach to representation learning.

Object-Centric Representation. Given video frames {Ii1, Ii2, . . . , Iik}, we first extract object bound-
ing boxes from each frame using an off-the-shelf detector. Given N bounding boxes for an image, we
represent each bounding box as a 4 +m dimensional vector oj = {x1, y1, x2, y2, d1, d2, . . . , dm},
where the first 4 dimensions represent the leftmost and rightmost corners of the bounding box, and
the remaining m dimensions encode distances between the centroids of the objects. For each frame
Iij we extract an object-centric representation I ′ij = {o1, o2, . . . , om} such that we can represent our
dataset of demonstrations as D′ = {V ′

1 , V
′
2 , . . . , V

′
n} where V ′

i is the sequence of bounding boxes
corresponding to video Vi. Subsequent sections describe how we learn representations given D′.

Spatial Interaction Encoder. Taking inspiration from recent approaches on modeling physical
object dynamics [7, 48], we propose a Spatial Interaction Encoder Network to explicitly model
object-object interactions. Specifically, given a sequence V ′

i from D′, we model each element I ′
as a graph, G = (O,R), where O is the set of objects {o1, o2, . . . , om}, m is the total number of
objects in I ′, and R denotes the relationship between objects (i.e., whether two objects interact with
each other). For simplicity, all objects are connected with all other objects in the graph such that
R = {(i, j) | i ̸= j ∧ i ≤ m ∧ j ≤ m}. We use a fully-connected graph because this makes the least
assumption about the problem and task specific object interaction structure could then be learned
directly from the data. We compose an object embedding for each of oi ∈ O by combining self and
interactional representations as follows:

fo(oi) = ϕagg(fs + fin) with fs(oi) = ϕs(o) , fin(oi) =

m∑
j=1

ϕin((oi, oj)) | (i, j) ∈ R , (1)

where fs(oi) represents the self or independent representation of an object, fin represents the
interactional representation, i.e., how it interacts with other objects in the scene, fo is the final object
embedding, and (,) represents concatenation. Here, the encoders ϕs, ϕin and ϕagg denote Multi layer
Perceptron (MLP) networks respectively. We emphasize that the expression for fin(·) implies that
the object embedding fo(.) depends on all other objects in the scene; this term allows us to model
relationships of an object with the others. The final output from the spatial interaction encoder ψ(·)
for object representation I ′ is the mean of all object encodings:

ψ(I ′) =
1

m

m∑
i

f(oi) . (2)

The spatial interaction encoder is then optimized using the temporal alignment loss introduced next.

Temporal Alignment Loss. Taking inspiration from prior works on video representation learning
[9, 18, 27, 47, 16], we employ the task of temporal alignment for learning task-specific representations.
Given a pair of videos, the task of self-supervised alignment implicitly assumes that there exists true
semantic correspondence between the two sequences, i.e., both videos share a common semantic
space. These works have shown that optimizing for alignment leads to representations that could
be used for tasks that require understanding task progression such as action-classification. This is
because in order to solve for alignment, a learning model has to learn features that are (1) common
across most videos and (2) exhibit temporal ordering. For a sufficiently large dataset with single task,
the most common visual features would be distinct phases of a task that appear in all videos and if
the task has small permutations, these distinct features would also exhibit temporal order. In such

4

scenarios, the representations learned by optimizing for alignment are task-specific and invariant to
changes in viewpoints, appearances and actor embodiments.

In this work, we employ Temporal Cycle Consistency (TCC) [9] loss to learn temporal alignment.
TCC optimizes for alignment by learning an embedding space that maximizes one-to-one nearest
neighbour mappings between sequences. This is achieved through a loss that maximizes for cycle-
consistent nearest neighbours given a pair of video sequences. In our case, the cycle consistency
is applied on the graph abstraction instead of image features as done in the aforementioned video
alignment methods. Specifically, given D′, we sample a pair of bounding box sequences V ′

i =
{I ′i1 , . . . , I ′imi

} and V ′
j = {I ′j1, . . . , I ′jmj

} and extract embeddings by applying the spatial interaction
encoder defined in Equation 2. Thus, we obtain the encoded features Si = {ψ(I ′i1), . . . , ψ(I ′imi

)} and
Sj = {ψ(I ′j1), . . . , ψ(I ′jmj

)}. For the nth element in Si, we first compute its nearest neighbour, υnij ,
in Sj and then compute the probability that it cycles-back to the kth frame in Si as:

βk
ijn =

e−||υn
ij−Sk

i ||
2∑mj

k e−||υn
ij−Sk

i ||2
, υnij =

mj∑
k

αks
k
j , αk =

e−||Sn
i −Sk

j ||
2∑mj

k e−||Sn
i −Sk

j ||2
. (3)

The cycle consistency loss for nth element can be computed as Lij
n = (µn

ij − n)2, where µn
ij =∑mi

k βk
ijnk is the expected value of frame index n as we cycle back. The overall TCC loss is then

defined by summing over all pairs of sequence embeddings (Si, Sj) in the data, i.e., Ln
ij =

∑
ijn L

n
ij .

3.2 Reinforcement Learning

We learn a task-specific embedding space by optimizing for temporal alignment. In this section, we
define how to go from this embedding space to a reward function that measures task progression. For
constructing the reward function, we leverage the insight from Zakka et al. [56] that in a task-specific
embedding space, we can use euclidean distance as a notion of task progression, i.e., frames far apart
in the embedding space will be far apart in terms of task progression and vice versa. We therefore
choose to define our reward function as

r(o) = −1

c
||ψ(o)− g||2 , with g =

n∑
i=1

ψ(I ′imi
) , (4)

where o is the current observation, ψ is the Spatial Interaction Encoder Network from Section 3,
g is the representative goal frame, mi is the length of sequence V ′i and c is a scaling factor. The
scaling factor c is computed as the average distance between the first and final observation of all
the training videos in the learned embedding space. Note, that the range of the learned reward is
(−∞, 0]. Defining the reward function in this way gives us a dense reward because as the observed
state gets closer and closer to the goal, the reward starts going down and approaches zero when the
goal and current observation are close in embedding space. After constructing the learned reward,
we can use it to train any standard RL algorithm. We note that, unlike previous approaches [39, 56],
our method does not use any environment reward to improve performance, and instead relies solely
on the learned reward, which our experiments demonstrate is sufficient for solving diverse robotic
manipulation tasks.

4 Experiments

In this section, we demonstrate how our approach uses diverse video demonstrations to learn a
reward function that generalizes to unseen domains. In particular, we are interested in answering the
questions: (1) How do vision-based methods for IRL perform when learning from demonstrations
that exhibit domain shift? and (2) is our approach capable of learning a stronger reward signal
under this challenging setting? To that end, we first conduct experiments X-MAGICAL benchmark
[56]. We then evaluate our approach on multiple robot manipulation tasks using a diverse set of
demonstrations.

Implementation Details. All MLPs defined in Equation 2 have 2 layers followed by a ReLU
activation, and the embedding layer outputs features of size 128 in all experiments. For training, we
use ADAM [22] optimizer with a learning rate of 10−5. We use Soft Actor-Critic (SAC) [15] as
backbone RL algorithm for all methods. For experiments on X-MAGICAL, we follow Zakka et al.

5

Standard Environment Diverse Environment

Gripper S-stick M-stick L-stick Gripper S-stick M-stick L-stick

Figure 3: Overview of X-MAGICAL task variants. We consider two environment variants and four
embodiments for our simulated sweeping task experiments. Our work assesses the performance of
IRL algorithms in both the Diverse and Standard environments across all four embodiments in the
Same-Embodiment and Cross-Embodiment settings.

0 100 200 300 400 500
Steps (thousands)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

gripper

0 100 200 300 400 500
Steps (thousands)

0.0

0.2

0.4

0.6

shortstick

0 100 200 300 400 500
Steps (thousands)

0.0

0.2

0.4

0.6

0.8

1.0 mediumstick

0 100 200 300 400 500
Steps (thousands)

0.0

0.2

0.4

0.6

0.8

1.0 longstick

GraphIRL (Ours) XIRL TCN LIFS

0 100 200 300 400 500
Steps (thousands)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

gripper

0 100 200 300 400 500
Steps (thousands)

0.0

0.2

0.4

0.6

shortstick

0 100 200 300 400 500
Steps (thousands)

0.0

0.2

0.4

0.6

0.8

1.0 mediumstick

0 100 200 300 400 500
Steps (thousands)

0.0

0.2

0.4

0.6

0.8

1.0 longstick

GraphIRL (Ours) XIRL TCN LIFS

Figure 4: Cross-Embodiment Cross-Environment. Success rates of our method GraphIRL and
baselines on (top) Standard Environment Pretraining → Diverse Environment RL and (bottom)
Diverse Environment Pretraining → Standard Environment RL. All reported numbers are averaged
over 5 seeds. Our approach performs favorably when compared to other baselines on both settings.

[56] and learn a state-based policy; RL training is performed for 500k steps for all embodiments.
For robotic manipulation experiments, we learn a multi-view image-based SAC policy [20]. We
train RL agent for 300k, 800k and 700k steps for Reach, Push and Peg in Box respectively. For fair
comparison, we only change the learned reward function across methods and keep the RL setup
identical. The success rates presented for all our experiments are averaged over 50 episodes. Refer to
Appendix B for further implementation details.

Baselines. We compare against multiple vision-based approaches that learn rewards in a self-
supervised manner: (1) XIRL [56] that learns a reward function by applying the TCC [9] loss on
demonstration video sequences, (2) TCN [40] which is a self-supervised contrastive method for
video representation learning that optimizes for temporally disentangled representations, and (3)
LIFS [13] that learns an invariant feature space using a dynamic time warping-based contrastive
loss. Lastly, we also compare against the manually designed (4) Environment Rewards from Jangir
et al. [20]. The environment reward baseline is an oracle method since it is a dense reward and is
carefully designed for the task under consideration. For vision-based baselines, we use a ResNet-18
encoder pretrained on ImageNet [37] classification. We use the hyperparameters, data augmentation
schemes and network architectures provided in Zakka et al. [56] for all vision-based baselines. Please
refer to Appendix E.1 for description of environment rewards and Zakka et al. [56] for details on the
vision-based baselines.

4.1 Experimental Setup

We conduct experiments under two settings: the Sweep-to-Goal task from X-MAGICAL [56], and
robotic manipulation tasks with an xArm robot both in simulation and on a real robot setup. We
describe our experimental setup under these two settings in the following.

6

0 100 200 300
Steps (thousands)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

xArm Reach

0 200 400 600 800
Steps (thousands)

0.0

0.2

0.4

0.6

0.8

1.0 xArm Push

0 200 400 600
Steps (thousands)

0.0

0.2

0.4

0.6

0.8

1.0 xArm Peg in Box

GraphIRL (Ours) XIRL TCN LIFS Env. Reward

Figure 5: Robotic Manipulation. Success rates of our method GraphIRL and baselines on the tasks
of Reach, Push and Peg in Box. All results are averaged over 5 seeds. We observe significant gains in
performance specially over vision-based baselines due to large domain-gap

X-MAGICAL. We choose to extend X-MAGICAL [56], a 2D simulation environment for cross-
embodiment imitation learning. On this benchmark, we consider a multi-object sweeping task,
where the agent must push three objects towards a static goal region. We utilize two variants of
the X-MAGICAL benchmark, which we denote as Standard (original) and Diverse (ours) environ-
ments, shown in Figure 3. Standard only randomizes the position of objects, whereas Diverse also
randomizes visual appearance. We consider a set of four unique embodiments {gripper, short-stick,
medium-stick, long-stick}. In particular, we conduct experiments in the cross-environment and cross-
embodiment setting where we learn a reward function in the Standard environment on 3 held-out
embodiments and do RL in the Diverse environment on 1 target embodiment, or vice-versa. This pro-
vides an additional layer of difficulty for the RL agent as visual randomizations show the brittleness
of vision-based IRL methods. Refer to Appendix C for more details on performed randomizations.

Robotic Manipulation. Figure 1 shows initial and success configurations for each of the three task
that we consider: (1) Reach in which the agent needs to reach a goal (red disc) with its end-effector,
(2) Push in which the goal is to push a cube to a goal position, and (3) Peg in Box where the goal
is to put a peg tied to the robot’s end-effector inside a box. The last task is particularly difficult
because it requires geometric 3D understanding of the objects. Further, a very specific trajectory is
required to avoid collision with the box and complete the task. We collect a total of 256 and 162
video demonstrations for Reach and Peg in Box, respectively, and use 198 videos provided from
Schmeckpeper et al. [39] for Push. The videos consist of human actors performing the same tasks
but with a number of diverse objects and goal markers, as well as varied positions of objects. Unlike
the data collected by Schmeckpeper et al. [39], we do not fix the goal position in our demonstrations.
In order to detect objects in our training demonstrations, we use a trained model from Shan et al.
[41]. The model is trained on a large-scale dataset collected from YouTube and can detect hands
and objects in an image.; refer to Appendix E.2 for more details on data collection. Additionally,
we do not require the demonstrations to resemble the robotic environment in terms of appearance
or distribution of goal location. We use an xArm robot as our robot platform and capture image
observations using a static third-person RGB camera in our real setup; details in Appendix G.

4.2 Results

X-MAGICAL. Results for the cross-embodiment and cross-environment setting are shown in Figure
4. When trained on Standard, our method performs significantly better than vision-based baselines
(e.g., 0.58 GraphIRL for gripper vs 0.35 for XIRL and 0.99 GraphIRL for longstick vs 0.56 XIRL).
We conjecture that vision-based baselines struggle with visual variations in the environment, which
our method is unaffected by due to its graph abstraction. Additionally, when trained on diverse
environment, GraphIRL outperforms 3 out of 4 embodiments.

Robotic manipulation in simulation. In this section, we answer the core question of our work:
can we learn to imitate others from diverse third-person videos? In particular, we collect human
demonstrations for manipulation tasks as explained in Section 4.1 and learn a reward function as
explained in Section 3. This is a challenging setting because as shown in Figure 1, the collected data
and robotic environments belong to different domains and do not share any appearance characteristics.
Further, unlike previous works [39, 56], we do not use any environment reward as an additional
supervision to the reinforcement learning agent. Figure 5 presents our results. For the Reach task,
GraphIRL and environment reward are able to achieve a success rate of 1.0, while other baseline

7

Real XIRL Env. Reward GraphIRL (Ours)

Push 0.27 0.47 0.60
Reach 0.26 0.93 0.86
Peg in Box 0.06 0.60 0.53

Table 1: Real robot experiments. Success rate on robot manipulation tasks on physical hardware.
We evaluate each method for 15 trials using a fixed set of goal and start state configurations. Best
results are in bold.

0 100 200 300
Steps (thousands)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

xArm Reach

0 200 400 600 800
Steps (thousands)

0.0

0.2

0.4

0.6

0.8

1.0 xArm Push

0 500 1000 1500
Steps (thousands)

0.0

0.2

0.4

0.6

0.8

1.0 xArm Peg in Box

GraphIRL (10% Demos) GraphIRL (25% Demos) GraphIRL (100% Demos)

Figure 6: Impact of reducing number of demonstrations. Results averaged over 5 seeds. For
experiments with 100% demonstrations, we use 256, 198 and 162 videos for Reach, Push and Peg in
Box respectively.

methods are substantially behind GraphIRL (e.g. 0.477 XIRL and 0.155 TCN). The poor performance
of vision-based baselines could be attributed to substantial visual domain shift. Due to domain shift,
the learned rewards for these baselines produce low rewards for successful episodes, please refer
to Appendix A for a more detailed qualitative analysis. In the Push setting, we find that vision-
based baseline methods still perform poorly. Similar to Reach, XIRL performs the best out of the
vision-based baselines with a success rate of 0.187, and GraphIRL performs better than environment
reward (e.g. 0.832 GraphIRL vs 0.512 Environment Reward). We find that for Push, the learned
reward gives a much higher reward when the object gets very close to the goal as compared to the
environment reward which is linearly proportional to negative distance between goal and object
therefore the RL agent ends up learning a more precise policy when trained with the learned reward.
This result shows clear advantage of our method as we are able to outperform a hand-designed reward
function without using any task specific information. The Peg in Box task is rigorous to solve since
it requires 3-d reasoning and a precise reward function. Here, while all vision-based methods fail,
our GraphIRL method is able to solve the task with a success rate comparable to that achieved with
the hand-designed environment reward. Overall, our GraphIRL method is able to solve 2D and 3D
reasoning tasks with a real-robot without a hand-designed reward function or access to 3D scene
information.

Real robot experiments. Finally, we deploy the learned policies on a real robot. For each experiment,
we conduct 15 trials per method and report the average success rate. Results are shown in Table 1.
Interestingly, we find that GraphIRL outperforms XIRL in all three tasks on the real robot setup (e.g.
0.26 XIRL vs 0.86 GraphIRL on Reach and 0.27 XIRL vs 0.60 GraphIRL on Push), and on Push,
GraphIRL performs better than the environment reward specifically designed for the task (e.g. 0.47
Environment Reward vs 0.6 GraphIRL) which is in line with our findings in simulation.

4.3 Ablations

Variant Success Rate

MLP 0.61±0.116

IN 0.804±0.054

Table 2: Impact of modelling object-
object interaction on Push task.
MLP: Multi-layer perceptron and
IN: Spatial Interaction Network En-
coder. Results over 5 seeds.

Impact of Modelling Spatial Interactions. We study the
impact of modeling object-object spatial interactions using
Spatial Interaction Encoder Network described in Section 3.1.
Specifically, we replace our proposed encoder component with
an Multi-Layer Perceptron (MLP) by concatenating represen-
tations of all objects into a single vector and then feeding it
to a 3-layer MLP network. We denote this approach as MLP
and the Spatial Interaction Encoder Network based approach

8

as IN. Results in Table 2. We observe that modeling object
interactions leads to a 20% improvement in the RL success
rate (i.e. 0.61 for MLP vs 0.804 for Interaction Networks).

Impact of Decreasing Number of Demonstration Videos. Results in Figure 6. We find that our
approach is very data efficient and is capable of learning meaningful rewards even from a small
number of videos. It achieves decent RL success rate with only 10% of total videos used (e.g. 72%
for Push and 57.83% for Peg in Box). However, adding more video demonstrations generally leads
to improved performance as expected.

5 Conclusions and Limitations

Conclusion. We demonstrate the effectiveness of our proposed method, GraphIRL, in a number
of IRL settings with diverse third-person demonstrations. In particular, we show that our method
successfully learns reward functions from human demonstrations with diverse objects and scene
configurations, that we are able to train image-based policies in simulation using our learned rewards,
and that policies trained with our learned rewards are more successful than both prior work and
manually designed reward functions on a real robot. We also hereby commit to release our complete
code and data to the public.

Limitations. while our method relaxes the requirements for human demonstrations, collecting the
demonstrations still requires human labor; and although our results indicate that we can learn from
relatively few videos, eliminating human labor entirely remains an open problem. Moreover, our
approach assumes access to object bounding boxes. This implies that our method’s performance is
dependent on the performance of the object detector. Fortunately, 2d object detectors have become
very reliable as we show in our experiments, we are able to use an off-the-shelf object detector
to extract the bounding boxes without having to perform any manual labeling. Furthermore, the
proposed graph abstraction allows us to solve tasks despite the large domain gap but it has some
potential disadvantages too. In particular, we lose fine grained information such as object poses
and precise object interactions which could be useful for complex tasks such as medical procedures.
However, we conjecture that 2D images might also not be sufficient for such a task since inferring
accurate object pose, 3D geometric information from a 2D image itself is a challenging problem.
Finally, there are some forms of reward that cannot be learned using our approach. Specifically, we
may not be able to learn rewards where a penalty is imposed for certain actions or rewards for tasks
where the progress towards task completion cannot be defined at all by object configuration.

References
[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning.

In ICML, 2004.

[2] OpenAI Marcin Andrychowicz, Bowen Baker, Maciek Chociej, R. Józefowicz, Bob McGrew,
Jakub W. Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, Jonas Schneider,
S. Sidor, Joshua Tobin, P. Welinder, Lilian Weng, and Wojciech Zaremba. Learning dexterous
in-hand manipulation. The International Journal of Robotics Research, 39:20 – 3, 2020.

[3] Brenna Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot
learning from demonstration. Robotics and Autonomous Systems, 57:469–483, 05 2009.

[4] Sridhar Pandian Arunachalam, Sneha Silwal, Ben Evans, and Lerrel Pinto. Dexterous imitation
made easy: A learning-based framework for efficient dexterous manipulation. arXiv preprint
arXiv:2203.13251, 2022.

[5] Christopher G. Atkeson and Stefan Schaal. Robot learning from demonstration. In ICML, 1997.

[6] Yusuf Aytar, Tobias Pfaff, David Budden, Thomas Paine, Ziyu Wang, and Nando de Freitas.
Playing hard exploration games by watching youtube. In NIPS, 2018.

[7] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction
networks for learning about objects, relations and physics. Advances in neural information
processing systems, 29, 2016.

9

[8] Annie S Chen, Suraj Nair, and Chelsea Finn. Learning generalizable robotic reward functions
from" in-the-wild" human videos. arXiv preprint arXiv:2103.16817, 2021.

[9] Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, and Andrew Zisserman.
Temporal cycle-consistency learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1801–1810, 2019.

[10] Georgios Fainekos, Antoine Girard, Hadas Kress-Gazit, and George J. Pappas. Temporal logic
motion planning for dynamic robots. Autom., 45:343–352, 2009.

[11] Arnaud Fickinger, Samuel Cohen, Stuart Russell, and Brandon Amos. Cross-domain imitation
learning via optimal transport. arXiv preprint arXiv:2110.03684, 2021.

[12] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse
reinforcement learning. arXiv, 2017.

[13] Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Learn-
ing invariant feature spaces to transfer skills with reinforcement learning. arXiv preprint
arXiv:1703.02949, 2017.

[14] Saurabh Gupta, Varun Tolani, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra
Malik. Cognitive mapping and planning for visual navigation. International Journal of
Computer Vision, 128:1311–1330, 2019.

[15] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement, 2018.

[16] Isma Hadji, Konstantinos G Derpanis, and Allan D Jepson. Representation learning via global
temporal alignment and cycle-consistency. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11068–11077, 2021.

[17] Nicklas Hansen, Hao Su, and Xiaolong Wang. Stabilizing deep q-learning with convnets and
vision transformers under data augmentation. Advances in Neural Information Processing
Systems, 34:3680–3693, 2021.

[18] Sanjay Haresh, Sateesh Kumar, Huseyin Coskun, Shahram N Syed, Andrey Konin, Zeeshan
Zia, and Quoc-Huy Tran. Learning by aligning videos in time. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 5548–5558, 2021.

[19] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In NeurIPS, 2016.

[20] Rishabh Jangir, Nicklas Hansen, Sambaran Ghosal, Mohit Jain, and Xiaolong Wang. Look
closer: Bridging egocentric and third-person views with transformers for robotic manipulation.
IEEE Robotics and Automation Letters, 2022.

[21] Jun Jin, Laura Petrich, Zichen Zhang, Masood Dehghan, and Martin Jagersand. Visual geometric
skill inference by watching human demonstration. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 8985–8991. IEEE, 2020.

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[23] Youngwoon Lee, Andrew Szot, Shao-Hua Sun, and Joseph J Lim. Generalizable imitation
learning from observation via inferring goal proximity. Advances in Neural Information
Processing Systems, 34, 2021.

[24] Sergey Levine, P. Pastor, A. Krizhevsky, and Deirdre Quillen. Learning hand-eye coordination
for robotic grasping with deep learning and large-scale data collection. The International
Journal of Robotics Research, 37:421 – 436, 2018.

[25] Yikang Li, Wanli Ouyang, Bolei Zhou, Kun Wang, and Xiaogang Wang. Scene graph generation
from objects, phrases and region captions. 2017 IEEE International Conference on Computer
Vision (ICCV), pages 1270–1279, 2017.

10

[26] Yunzhu Li, Hao He, Jiajun Wu, Dina Katabi, and Antonio Torralba. Learning compositional
koopman operators for model-based control. arXiv preprint arXiv:1910.08264, 2019.

[27] Weizhe Liu, Bugra Tekin, Huseyin Coskun, Vibhav Vineet, Pascal Fua, and Marc Pollefeys.
Learning to align sequential actions in the wild. arXiv preprint arXiv:2111.09301, 2021.

[28] Joanna Materzynska, Tete Xiao, Roei Herzig, Huijuan Xu, Xiaolong Wang, and Trevor Darrell.
Something-else: Compositional action recognition with spatial-temporal interaction networks.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 1049–1059, 2020.

[29] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charlie Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 518:529–533, 2015.

[30] Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In ICML,
2000.

[31] Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen, Yide Shentu,
Evan Shelhamer, Jitendra Malik, Alexei A. Efros, and Trevor Darrell. Zero-shot visual imitation.
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
pages 2131–21313, 2018.

[32] Dean A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In D. Touretzky,
editor, Advances in Neural Information Processing Systems, volume 1. Morgan-Kaufmann,
1988.

[33] Haozhi Qi, Xiaolong Wang, Deepak Pathak, Yi Ma, and Jitendra Malik. Learning long-term
visual dynamics with region proposal interaction networks. In ICLR, 2021.

[34] Yuzhe Qin, Yueh-Hua Wu, Shaowei Liu, Hanwen Jiang, Ruihan Yang, Yang Fu, and Xiaolong
Wang. Dexmv: Imitation learning for dexterous manipulation from human videos. arXiv
preprint arXiv:2108.05877, 2021.

[35] Ilija Radosavovic, Xiaolong Wang, Lerrel Pinto, and Jitendra Malik. State-only imitation
learning for dexterous manipulation. 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 7865–7871, 2021.

[36] Harish Ravichandar, Athanasios S. Polydoros, Sonia Chernova, and Aude Billard. Recent
advances in robot learning from demonstration. Annual Review of Control, Robotics, and
Autonomous Systems, 3(1):297–330, 2020.

[37] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

[38] Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Ried-
miller, Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for
inference and control. In International Conference on Machine Learning, pages 4470–4479.
PMLR, 2018.

[39] Karl Schmeckpeper, Oleh Rybkin, Kostas Daniilidis, Sergey Levine, and Chelsea Finn. Rein-
forcement learning with videos: Combining offline observations with interaction. arXiv preprint
arXiv:2011.06507, 2020.

[40] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, Sergey
Levine, and Google Brain. Time-contrastive networks: Self-supervised learning from video.
In 2018 IEEE international conference on robotics and automation (ICRA), pages 1134–1141.
IEEE, 2018.

11

[41] Dandan Shan, Jiaqi Geng, Michelle Shu, and David F Fouhey. Understanding human hands in
contact at internet scale. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 9869–9878, 2020.

[42] Maximilian Sieb, Zhou Xian, Audrey Huang, Oliver Kroemer, and Katerina Fragkiadaki.
Graph-structured visual imitation. In Conference on Robot Learning, pages 979–989. PMLR,
2020.

[43] Shuran Song, Andy Zeng, Johnny Lee, and Thomas Funkhouser. Grasping in the wild: Learning
6dof closed-loop grasping from low-cost demonstrations. Robotics and Automation Letters,
2020.

[44] Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Rohan Chitnis, Stuart Russell, and Pieter
Abbeel. Combined task and motion planning through an extensible planner-independent
interface layer. In 2014 IEEE International Conference on Robotics and Automation (ICRA),
pages 639–646, 2014.

[45] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. ArXiv,
abs/1805.01954, 2018.

[46] Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observa-
tion. arXiv, 2018.

[47] Junyan Wang, Yang Long, Maurice Pagnucco, and Yang Song. Dynamic graph warping
transformer for video alignment. 2020.

[48] Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan Pascanu, and
Andrea Tacchetti. Visual interaction networks: Learning a physics simulator from video.
Advances in neural information processing systems, 30, 2017.

[49] Haoyu Xiong, Quanzhou Li, Yun-Chun Chen, Homanga Bharadhwaj, Samarth Sinha, and
Animesh Garg. Learning by watching: Physical imitation of manipulation skills from human
videos. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 7827–7834. IEEE, 2021.

[50] Danfei Xu, Yuke Zhu, Christopher Bongsoo Choy, and Li Fei-Fei. Scene graph generation by
iterative message passing. 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3097–3106, 2017.

[51] Wei Yang, X. Wang, Ali Farhadi, Abhinav Kumar Gupta, and Roozbeh Mottaghi. Visual
semantic navigation using scene priors. ArXiv, abs/1810.06543, 2019.

[52] Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regu-
larizing deep reinforcement learning from pixels. In International Conference on Learning
Representations, 2020.

[53] Yufei Ye, Maneesh Singh, Abhinav Gupta, and Shubham Tulsiani. Compositional video
prediction. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 10353–10362, 2019.

[54] Yufei Ye, Dhiraj Gandhi, Abhinav Gupta, and Shubham Tulsiani. Object-centric forward
modeling for model predictive control. In Conference on Robot Learning, pages 100–109.
PMLR, 2020.

[55] Sarah Young, Dhiraj Gandhi, Shubham Tulsiani, Abhinav Gupta, Pieter Abbeel, and Lerrel
Pinto. Visual imitation made easy. arXiv, 2020.

[56] Kevin Zakka, Andy Zeng, Pete Florence, Jonathan Tompson, Jeannette Bohg, and Debidatta
Dwibedi. Xirl: Cross-embodiment inverse reinforcement learning. In Conference on Robot
Learning, pages 537–546. PMLR, 2022.

[57] Yifeng Zhu, Jonathan Tremblay, Stan Birchfield, and Yuke Zhu. Hierarchical planning for long-
horizon manipulation with geometric and symbolic scene graphs. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 6541–6548. IEEE, 2021.

12

A Qualitative Analysis of Learned Reward

In this section, we present qualitative analysis of the reward learned using GraphIRL. We plot the
reward as defined in Equation 4 for GraphIRL and two baseline IRL methods for three test examples
across three tasks. The tasks we evaluate with are Peg in Box, Push, and Reach. For each task, we use
show two successful episodes and one unsuccessful episode. The length of each episode is 50, and
for each figure we have included, we provide images that align with critical points in the completion
of the task.

1 10 20 30 40 50
Steps

−1.5

−1.0

−0.5

0.0

Re
wa

rd

(a)

(b)

(c)
xArm Peg in Box

GraphIRL (Ours) XIRL TCN

(a) (b) (c)

1 10 20 30 40 50
Steps

−1.5

−1.0

−0.5

0.0

Re
wa

rd

(a)
(b)

(c)

xArm Peg in Box

GraphIRL (Ours) XIRL TCN

(a) (b) (c)

Figure 7: Peg in Box Task Progress: Success. For the Peg in Box task setting, we find that GraphIRL
provides an accurate measurement of task progress. Pictured are video frames (a), (b), (c) which
denote critical points of task progress. Task progress is measured using video frames from a 50-step
evaluation episode.

1 10 20 30 40 50
Steps

−1.5

−1.0

−0.5

0.0

Re
wa

rd

(a)

(b) (c)

xArm Peg in Box

GraphIRL (Ours) XIRL TCN

(a) (b) (c)

Figure 8: Peg in Box Task Progress: Failure. GraphIRL measures positive task progress until the
peg goes into the table, a critical failure point for the task. The physical interaction between the peg
and table is unnatural, and our method succeeds in recognizing this.

13

1 10 20 30 40 50
Steps

−1.5

−1.0

−0.5

0.0

Re
wa

rd

(a)
(b)

(c)
xArm Push

GraphIRL (Ours) XIRL TCN

(a) (b) (c)

1 10 20 30 40 50
Steps

−1.5

−1.0

−0.5

0.0

Re
wa

rd

(a)
(b)

(c)

xArm Push

GraphIRL (Ours) XIRL TCN

(a) (b) (c)

Figure 9: Push Task Progress: Success. The Push task setting is often completed within the first 10
steps of the evaluation episode, and as shown between Steps 1 through 10 in both success examples,
GraphIRL measures high task progress. XIRL and TCN on the other hand, incorrectly show much
lower task progress.

1 10 20 30 40 50
Steps

−1.5

−1.0

−0.5

0.0

Re
wa

rd

(a) (b) (c)

xArm Push

GraphIRL (Ours) XIRL TCN

(a) (b) (c)

Figure 10: Push Task Progress: Failure. GraphIRL’s understanding of object relationships is made
clear in this Push task failure, since without any forward movement of the box object towards the goal,
no positive task progress is made. Other baselines rely on direct visual input of the task, and because
of this, they inaccurately align visual states (a), (b), (c) of the task with positive task progress.

14

1 10 20 30 40 50
Steps

−2.0

−1.5

−1.0

−0.5

0.0

Re
wa

rd

(a)

(b)
(c)

xArm Reach

GraphIRL (Ours) XIRL TCN

(a) (b) (c)

1 10 20 30 40 50
Steps

−2.0

−1.5

−1.0

−0.5

0.0

Re
wa

rd (a)

(b)
(c)

xArm Reach

GraphIRL (Ours) XIRL TCN

(a) (b) (c)

Figure 11: Reach Task Progress: Success. In the Reach task setting, positive task progress is
measured by GraphIRL with forward movement of the end-effector gripper towards the goal location.
The image frames (a), (b), (c) reflect the alignment between measured task progress and visual state
of the task.

1 10 20 30 40 50
Steps

−2.0

−1.5

−1.0

−0.5

0.0

Re
wa

rd

(a) (b) (c)

xArm Reach

GraphIRL (Ours) XIRL TCN

(a) (b) (c)

Figure 12: Reach Task Progress: Failure. Our GraphIRL method measures an approximately linear
task progress in this failure example for Reach. The gripper’s distance to the goal region is indeed
minimized over time, though since it does not get within close-enough distance to the goal, the
measured task progress is lower compared to success examples shown in Figure 11.

We find that our method provides a superior and accurate reward signal to the agent compared
to the baseline visual IRL methods. We observe that if a task is being completed successfully or
unsuccessfully in a video, our method can obtain a reward that accurately reflects how close the agent
is to completing the task. Additionally, both XIRL and TCN yield low reward even for successful
episodes due to large distance between the current observation and the representative goal observation
in the embedding space which could be attributed to visual domain shift.

B Additional Implementation Details

Representation Learning. Each MLP in the Spatial Interaction Encoder Network defined in Equation
3.1 is implemented as a 2-layer network with a ReLU activation. The size of the final embedding ψ(·)
is 128 in our experiments. Please see Table 3 for a detailed list of hyperparameters for representation
learning. All the hyperparameters in Table 3 are kept fixed for all tasks considered in this work.

Reinforcement Learning. For X-MAGICAL, we follow Zakka et al. [56] and learn a state based
policy. The state vector has dimensions of 16 and 17 for the Standard and Diverse environments

15

Hyperparameter Value

of sampled frames 90
Batch Size 2
Learning Rate 10−5

Weight Decay 10−5

of training iterations 12000
Embedding Size 128
Softmax Temperature 0.1

Table 3: Hyperparameters for Representation Learning with GraphIRL.

respectively. The Diverse environment state has an additional dimension to represent the size of
blocks. For xArm, we learn an image based policy. Specifically, we use first-person and third-person
cameras to learn a policy from multi-view image data. We extract 84× 84 image from both cameras
and concatenate them channel-wise. We use the network architecture and attention mechanism
proposed in Jangir et al. [20]. Additionally, we apply data augmentation techniques: random ±4
pixel shift [52] and color jitter [17].

Extracting Reward. In order to compute the reward during Reinforcement Learning (RL) training,
we use the locations of objects available in simulation to extract the bounding boxes corresponding to
the current observation. The bounding boxes are used to construct the object representation which is
then passed to the trained Spatial Interaction Encoder Network to get the reward.

Criterion for Success. We use distance threshold to determine the success of an episode. The
thresholds are 5cms, 10cms and 8cms for Reach, Push and Peg in Box respectively. The distance
refers to distance between goal position and end-effector for Reach, and goal position and object
position for Push and Peg in Box.

Baseline Implementation Details. For all the vision-based baselines, we use the hyperparameters,
data augmentation schemes and network architectures provided in Zakka et al. [56]. Readers are
encouraged to read Zakka et al. [56] for more details on the vision-based baselines.

C X-MAGICAL Experiment Details

C.1 Demonstration Data

For collecting demonstration data in the X-MAGICAL Diverse environment, we trained 5 uniquely-
seeded Soft Actor-Critic (SAC) RL policies for 2 million steps for each embodiment using the
environment reward. We collect 1000 successful episode rollouts for each embodiment using the
5 trained policies. In particular, each policy is used to produce 200 episode rollouts for a given
embodiment.

C.2 Diverse Environment

Below, we explain the randomization performed on the blocks in the diverse environment that we use
in our experiments:

• Color: We randomly assign 1 out of 4 colors to each block.

• Shape: Each block is randomly assigned 1 out of 6 shapes.

• Size: The block sizes are also varied. In particular, we generate a number between 0.75 and
1.25 and multiply the default block size by that factor.

• Initial Orientation: The initial orientation of the blocks is also randomized. We randomly
pick a value between 0 to 360 degrees.

• Initial Location: The initial location of the boxes is randomized by first randomly picking
a position for the y-coordinate for all blocks and then randomly selecting x-coordinate
separately for each block. This randomization is also performed in the standard environment.

16

D Additional Results on X-MAGICAL Benchmark

0 100 200 300 400 500
Steps (thousands)

0.0

0.2

0.4

0.6

0.8
Su

cc
es

s R
at

e
gripper

0 100 200 300 400 500
Steps (thousands)

0.0

0.2

0.4

0.6

shortstick

0 100 200 300 400 500
Steps (thousands)

0.0

0.2

0.4

0.6

0.8

1.0 mediumstick

0 100 200 300 400 500
Steps (thousands)

0.0

0.2

0.4

0.6

0.8

1.0 longstick

GraphIRL (Ours) XIRL TCN LIFS

0 100 200 300 400 500
Steps (thousands)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

gripper

0 100 200 300 400 500
Steps (thousands)

0.0

0.2

0.4

0.6

shortstick

0 100 200 300 400 500
Steps (thousands)

0.0

0.2

0.4

0.6

0.8

1.0 mediumstick

0 100 200 300 400 500
Steps (thousands)

0.0

0.2

0.4

0.6

0.8

1.0 longstick

GraphIRL (Ours) XIRL TCN LIFS

Figure 13: Cross-Embodiment Same-Environment: We further evaluate GraphIRL in the cross-
embodiment same-environment setting (top) Standard Environment (bottom) Diverse Environment,
and it continues to provide competitive success rates akin to those achieved by XIRL. These results
confirm that GraphIRL is a consistent and reliable method for learning from video demonstrations in
visually similar environments.

To complement our cross-embodiment cross-environment results from the main paper, we also report
results for X-MAGICAL in the cross-embodiment same-environment setting. As shown in Figure 13,
we outperform TCN and LIFS by significant margins and achieve comparable results to XIRL. These
results reflect the effectiveness of GraphIRL when learning in a visually similar environment with
visually different agents.

E Appendix E: xArm Experiment Details

E.1 Description of Environment Rewards

In this section, we define the environment rewards for xArm environments that were compared against
GraphIRL in robot manipulation experiments under Section ??. We define pg, po, and pe as the
positions of the goal, object and robot end-effector respectively. The reward for Push is defined as
||po − pg||2, for reach it becomes ||pe − pg||2 and finally for Peg in Box, the reward is ||po − pg||2.
Note that the distances are computed using 2-d positions in the case of Reach and Push and 3-d
positions in the case of Peg in Box.

E.2 Demonstration Data

We use data from [39] for Push. We collect 256 and 162 demonstrations respectively for Reach
and Peg in Box. For Reach, we use 18 visually distinct goal position markers i.e. 3 different shapes
and each shape with 6 different colors in order to ensure visual diversity. Reach demonstrations
have minimum, average and maximum demonstration lengths of 1.76 seconds, 4.51 seconds and
9.23 seconds respectively. For Peg in Box, we use 4 visually distinct objects. In this case, the
minimum, average and maximum demonstration lengths are 1.73 seconds, 4.74 seconds and 11.7
seconds respectively. For both Reach and Peg in Box, the goal and object positions are also varied
across demonstrations to diversify trajectories. Please see https://sateeshkumar21.github.
io/GraphIRL/ for examples of collected demonstrations.

17

https://sateeshkumar21.github.io/GraphIRL/
https://sateeshkumar21.github.io/GraphIRL/

0 100 200 300 400
Steps (thousands)

0.0

0.2

0.4

0.6

Su
cc

es
s R

at
e

MuJoCo Pusher

GraphIRL (Ours) XIRL TCN LIFS Env. Reward

Figure 14: MuJoCo State Pusher Task Progress: Success GraphIRL provides a reward signal
that is both better than all other vision-based baselines and nearly as good as the task-specific
environment reward. This indicates that the reward learned from GraphIRL could be used across
multiple environments of the same task, showing strong generalization capabilities.

F Additional Results on Robot Manipulation in Simulation

We also experiment with the MuJoCo State Pusher environment used by Schmeckpeper et al. [39]
and Zakka et al. [56]. However, we make two changes, (1) Instead of using a fixed goal position,
we use a randomized goal position and learn a goal-conditioned policy and (2) we do not use the
sparse environment reward and instead only use the learned rewards for GraphIRL and learning-based
baselines. Figure 14 presents our results, we note that GraphIRL achieves slightly lower success rate
than the task-specific environment reward (e.g. GraphIRL 0.455 vs Environment Reward 0.6133).
Further, all vision-based baselines perform significantly lower than GraphIRL (e.g. GraphIRL 0.455
vs XIRL 0.125 and TCN 0.005). For all learning-based methods, we use the data from Schmeckpeper
et al. [39] as training demonstrations similar to Push experiments conducted in Section ??.

3rd-Person Camera

Egocentric Camera

(a)

Egocentric Camera

3rd-Person Camera

(b)

(c) (d)

Figure 15: Real Robot Setup. In (a) and (b), we provide images of our real-world environment for
the Peg in Box task. We use a static third-person camera and an egocentric camera which moves with
the arm while completing the task. Pictured in (c) and (d) are single image frames captured by our
third-person and egocentric cameras.

18

G Robot Setup

We use a Ufactory xArm 7 robot for our real robot experiments. As shown in Figure 15, we use a fixed
third-person camera and an egocentric camera that is attached above the robot’s gripper. Example
images of the egocentric and third-person camera feeds passed to the RL agent are shown in Figure
15 (c) and Figure 15 (d).

19

	Introduction
	Related Work
	Our Approach
	Representation Learning
	Reinforcement Learning

	Experiments
	Experimental Setup
	Results
	Ablations

	Conclusions and Limitations
	Qualitative Analysis of Learned Reward
	Additional Implementation Details
	X-MAGICAL Experiment Details
	Demonstration Data
	Diverse Environment

	Additional Results on X-MAGICAL Benchmark
	Appendix E: xArm Experiment Details
	Description of Environment Rewards
	Demonstration Data

	Additional Results on Robot Manipulation in Simulation
	Robot Setup

