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Abstract001

Despite the rapid development of AI models in med-002

ical image analysis, their validation in real world003

clinical settings remains limited. Models are often004

developed without continuous feedback from clini-005

cians, which can lead to a lack of alignment with the006

actual needs. To address this, we introduce a generic007

framework designed for deploying and testing image-008

based AI models early in such settings. Using this009

framework, we deployed a trained model for fetal010

ultrasound standard plane detection and evaluated011

it in real-time sessions with both novice and expert012

users. Feedback from these sessions revealed that013

while the model offers potential benefits to medical014

practitioners, the need for navigational guidance015

was identified as a key area for improvement. These016

findings underscore the importance of early testing017

of AI models in real-world settings, leading to in-018

sights that can guide the refinement of the model019

and system based on actual user feedback.020

1 Introduction021

The clinical community is eagerly anticipating the022

validation of AI in real-world clinical settings [1].023

This is distinct from retrospective validation using024

previously recorded videos [2]. For many imaging025

modalities, dynamic decision-making is required not026

only for image recognition (i.e. “what am I looking027

at?”) but also for image acquisition (i.e. “where028

to look at in the first place?”). Furthermore, AI029

systems are anticipated to face more practical chal-030

lenges in real-world clinical settings [3–5]. Lessons031

learned from case studies studying the deployment032

of AI tools for clinical applications highlight that033

well-performing AI models may fail for unexpected034

reasons in the real world. For instance, Beede et035

al. [6] studied the deployment of a diabetic retinopa-036

thy detection system with >90% sensitivity and037

specificity in the lab but faced severe ungradability038

issues in a real-world setting. Their system refused039

to grade 21% of the images citing quality issues,040

although the images were acceptable to human read-041

ers, introducing unnecessary delay in a busy clinic.042

This underscores that the actual utility and value of043

an AI model remain unclear until it is tested under044

real-world conditions.045

Real-world clinical deployment is challenging.046

First, the success of an AI tool in the clinic strongly 047

depends on how well it integrates with the clinical 048

workflow [7]. However, researchers are often not 049

allowed to deploy developmental work directly into 050

a medical device in the clinic for security reasons, 051

effectively creating an upper bound on how well- 052

integrated the deployment can be. Second, existing 053

deployment tools focus on making the inferencing 054

pipeline efficient and streamlined, while research 055

code is often messy. These factors lead to overhead, 056

discouraging AI researchers from deploying their 057

models early in their development process. However, 058

we advocate for testing deep learning models in the 059

clinical setting as early as possible. If things should 060

fail, they should fail early. 061

In this paper, we introduce a framework for the 062

deployment of dynamical image-based AI systems 063

from research in a clinical setting. As a case study, 064

we illustrate our framework in the setting of fetal 065

ultrasound standard plane detection, where despite 066

active development of AI methods [8–11], actual 067

deployment in the real world is rarely seen. We 068

aim to be as integrated into the clinical workflow 069

as possible, expecting only the HDMI output from 070

the medical device. We discuss the constraints and 071

present our design solution, aiming to lower the en- 072

try barrier of deploying and testing machine learning 073

models directly from research, without the burden 074

of making it efficient or optimized. We aim to speed 075

up the development cycle, gain initial user feedback, 076

refine development goals, and iterate. We describe 077

how, using our designed solution, we deployed an 078

explainable AI model for fetal ultrasound standard 079

plane detection, and invited clinical practitioners to 080

use the system as they scan their patients. Finally, 081

we also report our findings from interviews with clin- 082

ical practitioners using our deployed system. This 083

study highlights a significant step towards bridging 084

the gap between research and practice in the field 085

of medical image analysis. 086

2 Method 087

2.1 Design challenges & requirements 088

Designing a generic framework for deploying image- 089

based AI systems in a clinical setting presents several 090

challenges and requirements. These include: 091

Device Output The system should not expect any 092
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output from the medical device other than a video093

feed via an HDMI cable. This is because any other094

form of output may not generalize across different095

medical devices.096

Prediction Latency The system should aim to097

generate predictions at minimal latency. This is098

different from processing retrospective videos, which099

favors processing large amount of data simultane-100

ously by batch inferencing. In a live supporting101

system, video frames from the past become irrele-102

vant as time progresses, and therefore the system103

should focus on responding to new video frames as104

quickly as possible to provide real-time feedback.105

Local Processing The system should be able to106

run the entire processing pipeline locally, since data107

security is crucial for many clinical applications.108

Furthermore, this approach incurs a lower learning109

overhead for researchers than a more complicated110

workflow, such as a remote-server-edge-client archi-111

tecture.112

Wireless Display The system should have a mech-113

anism for showing the live results on a wirelessly-114

connected display device. Wired connections are not115

always possible in the room setting of a clinic.116

Video Recording The system should optionally117

support video recording in parallel to the predic-118

tion process. This means that while the AI model is119

making predictions in real-time, the system should si-120

multaneously be able to record the video feed, which121

is helpful for further development of the prototype122

model.123

Physical Setup The physical setup should be as124

small and stealthy as possible, so that it does not125

introduce any obstructions in a busy clinic.126

Software Compatibility On the software level,127

the framework should be able to accommodate re-128

search code, which is typically chaotic by nature.129

Ease-of-use should be prioritized over computational130

efficiency.131

2.2 Design solution132

Our design solution, as illustrated in Figure 1, is133

a robust and flexible framework that leverages a134

variety of technologies to capture and process real-135

time video streams from medical devices. Code is136

available at http://ANON-REPO-URL/137

HDMI-to-USB Converter Box We use this de-138

vice to capture the real-time video stream from the139

medical device. The converter box feeds the video140

stream to a small computation server and appears141

as a USB webcam device on the server. This setup142

allows us to use common software packages such as143

OpenCV to capture and process the video stream.144
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Figure 1. System architecture. Live video is streamed
from the scanner to the server, where all processing steps
are executed within respective containers. Results are
subsequently rendered on a webpage, which is accessible
wirelessly from tablets.

Computation Server The server is responsible 145

for all computation needs of the deployment. This 146

server can be CPU-only to satisfy economical con- 147

siderations or security restrictions of the clinical 148

authority, or equipped with a GPU to meet the 149

computational needs of the researchers. 150

Docker Containers Within the server, we achieve 151

our design requirements with the use of Docker con- 152

tainers [12]. These containers perform various tasks: 153

• Video Frame Broadcaster This container 154

grabs video frames from the converter box via 155

OpenCV and broadcasts them through a web- 156

socket. 157

• Recorder This container listens to the web- 158

socket and records the video, saving it into 159

an mp4 file for retrospective AI development 160

activity. 161

• Webpage Server This container also listens 162

to the websocket, coordinates prediction on 163

the live video stream, and hosts a webpage for 164

displaying results. It acts as a prediction task 165

manager/router, sending latest video frames to 166

the inference engine for model predictions, and 167

displaying results to the clinician (see Figure 2) 168

upon receiving response from the inference en- 169

gine. 170

• Inference Engine This container encapsu- 171

lates all the code needed to runs the model 172

prediction. 173

Docker Compose Manages the lifecycle (start, 174

restart, etc.) of the containers. 175

Wireless Router Connects display devices and 176

the server. 177

Tablets Display inference results accessible via a 178

webpage hosted by the server. 179
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Our design solution is underpinned by a number180

of key principles and considerations, which we will181

discuss next:182

2.2.1 Containerization & System Stability183

One of the primary benefits of our design is the use184

of containerization. This approach ensures that a185

failure at the component level, such as a runtime186

error in the AI inference engine, does not shut down187

the entire system. This means that even if one part188

of the system encounters an issue, other components,189

like video recording, continue to function normally.190

Furthermore, the containerized environment allows191

for the execution of research code in an isolated192

setting, making the system much more tolerant to193

the inherent messiness of research code. The use of194

Docker Compose as an orchestration tool allows the195

system to auto-restart failed inference engines.196

2.2.2 Environment Isolation & Model De-197

ployment198

Containerization also inherently provides the benefit199

of environment isolation. This means models devel-200

oped with different dependencies can be deployed201

on the same machine without conflicting with each202

other. It is not necessary for the model to be ex-203

ported in a deploy-specialized format (e.g., ONNX,204

TorchScript), since the original research code can205

be executed within the isolated environment. This206

flexibility simplifies the deployment process and ac-207

celerates the transition from research to clinic.208

2.2.3 Advanced Inferencing Pipeline &209

Workflow Management210

For advanced inferencing pipelines that involve pre-211

dictions with multiple models, more inference engine212

containers can be added. The pipeline can be man-213

ually programmed into the webpage server applica-214

tion. We chose not to orchestrate such workflows215

with existing workflow management software (e.g.,216

Apache Airflow), which, while optimized for produc-217

tion environments, introduces unnecessary overhead218

for researchers wanting to test their prototype mod-219

els in the clinic.220

2.2.4 Distributed Execution & Performance221

Optimization222

For advanced use cases, containerization also allows223

execution of components among distributed com-224

putational units. For example, latency-insensitive,225

computationally heavy workloads can be executed on226

a remote GPU server. For slow, compute-intensive227

models, it is possible to modify the web server appli-228

cation to only perform inference when the ultrasound229

operator has frozen the screen. This approach opti- 230

mizes system performance and ensures efficient use 231

of computational resources. 232

2.2.5 User Feedback & Result Display 233

By displaying the result via a simple web applica- 234

tion, we can easily stream results to multiple clients 235

simultaneously. This allows researchers to collect 236

user feedback from multiple target users, such as 237

clinical operators and patients, providing insights 238

for system improvement. 239

3 Experiment 240

Using our framework, we deploy an AI model for 241

fetal ultrasound standard plane detection. We first 242

examine the additional latency introduced by this 243

setup compared to running the model directly with- 244

out containerization (see subsection 3.2). Then, 245

we conduct a pilot study with clinicians using our 246

system in a real-world clinical setting (see subsec- 247

tion 3.3). This helps in guiding both downstream 248

technical development and future full-blown random- 249

ized control trails. 250

3.1 Fetal Ultrasound Standard Plane 251

Detection 252

Standard obstetric trimester scans involve capturing 253

ultrasound images of the fetal head, stomach, and 254

femur [13]. The accuracy of this task is crucial as 255

it impacts the downstream task of fetal weight esti- 256

mation [14], which directly influences the accurate 257

monitoring of fetal growth. 258

We chose to approach the standard plane detec- 259

tion problem with PCBM, a hierarchical variant 260

of the concept bottleneck model [15] developed by 261

Lin et al. [16] for fetal ultrasound scan quality as- 262

sessment. It approaches the problem by emulating 263

the step-by-step decision-making process of experts, 264

starting with visual concepts from image segmenta- 265

tion and then applying property concepts directly 266

tied to the task. 267

Compared to standard black-box approaches, this 268

method is explainable, providing transparency in 269

its decision-making process, which arguably allows 270

for a better understanding and trust in the model’s 271

predictions. Instead of predicting whether or not 272

an image is of a standard plane, PCBM offers ad- 273

ditional explanation to what anatomical landmarks 274

are present or missing (see Figure 2). 275

To determine the validity of these claims, we de- 276

cided to deploy a trained PCBM model in the clinic. 277

We aim to determine whether the model’s explain- 278

ability provides any additional value as a computer- 279

aided detection (CAD) tool. More importantly, we 280

want to establish whether such a tool fits well in the 281
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Figure 2. (Left) Setup at the clinic. The tablet was placed next to the scanner, while the remaining equipment was
placed on a table. (Right) Screenshot of displayed prediction. A video recording is provided in the supplementary
material.

clinical workflow, bringing benefits that are actually282

appreciated by medical workers.283

3.2 Equipment284

Following our framework as illustrated in Figure 1,285

we selected Magewell USB Capture Plus HDMI286

box as our HDMI-to-USB converter, TP-Link287

802.11ac router (model number: TL-WR902AC)288

as our WiFi router, and two Microsoft Surface289

tablets as our display devices. We first measured290

the duration required to process one video frame,291

using three different computational devices as the292

server: a workstation (i7-7800X, Quadro P5000,293

TITAN V, 128GB RAM), a laptop (i7-10750H, RTX294

2070 Super, 16GB RAM), and a mini PC (Intel295

NUC12WSKi7, i7-1260P, 32GB RAM). We also de-296

termined the extra latency introduced by our frame-297

work as compared to running the native research298

code directly (see Table 1). This was to understand299

the trade-off between the deployment ease offered300

by containerization and the potential increase in301

latency.302

For our deployment, we selected the mini PC as303

our server to remain compliant with safety stan-304

dards [17]. This was a requirement set by our de-305

ployment hospital to ensure the safety of both the306

patients and the medical practitioners. A photo of307

the setup in the clinic is shown in Figure 2.308

3.3 Clinical sessions309

We deployed the system at ANON HOSPITAL and310

recruited two volunteer patients in their mid-third311

trimester with ANON IRB’s approval. We invited312

six novice participants (P1-P6), all senior under-313

graduate students enrolled in a medical program,314

to use our system while scanning the patients. P1315

& P2 were given all explanations as predicted by 316

PCBM. P3 & P4 were only told whether a cur- 317

rent image is a standard plane, close to a standard 318

plane, or at a completely unknown plane. P5 & P6 319

were control users without any guidance from our 320

system. We observed the participants during the 321

scan and interviewed them afterward to gather their 322

feedback about our system. In separate sessions, 323

we also invited an obstetrician (P7) and an expe- 324

rienced sonographer (P8) to use our tool, allowing 325

us to gain valuable insights from a professional per- 326

spective about our system. These sessions provide 327

an early evaluation of PCBM’s performance in real 328

clinical settings before committing to a large-scale 329

randomized control trial study. 330

4 Results 331

4.0.1 Level of Integration into Clinical 332

Workflow 333

Almost all participants expressed a desire for the 334

prediction results to be displayed directly on the ul- 335

trasound machine. However, most participants were 336

able to accept the current setup as a viable solu- 337

tion for testing purposes without being disruptive to 338

their workflow. Meanwhile, the novice participants 339

(P1-P4) specifically requested a higher frame rate. 340

They expressed that a higher frame rate would allow 341

them to move the ultrasound probe faster without 342

the system lagging behind. 343

4.0.2 Usefulness of the Additional Explana- 344

tion Provided by PCBM 345

P1 found the explanation on whether a specific 346

anatomical landmark is visible helpful, while P2 347

took a neutral stance. Without the explanation, P3 348
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Table 1. Time taken (in seconds) to process one video frame across different computational machines by running
native code vs. using our framework.

machine Workstation Laptop Mini PC
CPU P5000 TITAN V CPU RTX 2070S CPU

native 1.00± 0.04 0.25± 0.04 0.34± 0.04 2.69± 0.56 0.39± 0.20 1.19± 0.09
framework 1.06± 0.04 0.31± 0.04 0.40± 0.05 2.75± 0.56 0.45± 0.21 1.23± 0.10
difference 0.06± 0.02 0.06± 0.02 0.05± 0.01 0.06± 0.02 0.06± 0.02 0.03± 0.01

and P5 found it challenging to identify what was349

missing from an image before it could be considered350

a standard plane image.351

4.0.3 Usefulness of the Tool in Helping a352

Novice User to Take High Quality Fe-353

tal Ultrasound Standard Plane Images354

P1-P4 commented that the tool has helped indicat-355

ing whether they are looking at a standard plane,356

while P5 wished for similar guidance. However, P1-357

P4 had difficulty in identifying which plane they were358

currently looking at. They adapted the strategy of359

blindly scanning around until the tool indicated that360

they were at one of the standard planes.361

4.0.4 Additional Findings362

P1, P3 & P4 expressed their wish for more naviga-363

tional support. Following their strategy, the tool364

showed signs that they were near a standard plane365

every now and then, but without navigational guid-366

ance, they did not know where they should move367

the probe to get closer to the standard plane. They368

acknowledged that a higher frame rate might be369

helpful, but ultimately it would be ideal if the tool370

could tell them the direction they should move the371

probe if they wanted to reach a certain standard372

plane. This was especially the case for the femur,373

which had to be taken from a challenging sagittal374

view.375

On the other hand, our interview with P7 sug-376

gested that users who are already familiar with the377

task may have a different use case for our tool. In-378

stead of relying on the tool for navigational guid-379

ance, the expert used the tool for confirmation380

of thoughts. During the session, P7 took multi-381

ple screenshots whenever an image appeared like382

a standard plane image. After the session, P7 ran383

through the screenshots while looking at the model384

predictions, checking through the explanations from385

PCBM, and picked the best images for reporting.386

Meanwhile, P8 tended to rely on self-judgement387

rather than relying on feedback from PCBM. How-388

ever, P8 commented that our predictions are gen-389

erally accurate, and acknowledged that the system390

could be valuable for inexperienced users.391

This feedback was instrumental for us in under-392

standing the different applicability of an AI tool in393

a real-world setting with different types of clinical 394

users. 395

5 Discussion & Conclusion 396

We have introduced a generic framework designed to 397

deploy image-based AI models in real-world clinical 398

settings, which focuses on research code compati- 399

bility and clinical workflow integration. Using this 400

framework, we have successfully deployed a model 401

for fetal ultrasound standard plane detection in a 402

clinical environment, and evaluated its performance 403

in real-time sessions with both novice and expert 404

users. The feedback gathered from these sessions 405

has provided valuable insights into the model’s per- 406

formance, its integration into the clinical workflow, 407

and its potential benefits to medical practitioners. 408

Our findings from the interviews show that the 409

deployed PCBM model works well as a feedback tool. 410

However, if the intended purpose is to guide a novice 411

user in taking better standard plane images, the tool 412

would be an even better fit for the clinical workflow 413

if it could provide navigational guidance. Zooming 414

out to a bigger picture, this also emphasizes that in 415

ultrasound, image acquisition is the major part of 416

the challenge, which calls for different solutions than 417

what the medical image analysis community typi- 418

cally focuses on [18, 19]. These findings underscore 419

the importance of a framework that supports early 420

deployment and testing of research models in real- 421

world settings: Early deployment serves the crucial 422

purpose of guiding the refinement and development 423

of the continued technical research towards solving 424

actually relevant clinical problems. 425

Leveraging our experience in this deployment, we 426

hope to demonstrate the importance of early de- 427

ployment of AI models. Early deployment leads 428

to insights that are otherwise undiscovered, while 429

the developmental works proceed in an undesired 430

direction. This approach allows for the refinement of 431

the model and system based on real-world feedback, 432

ultimately leading to a tool that is more effective 433

and beneficial in a clinical setting. 434
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