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Abstract

Visual Place Recognition (VPR) enables robust localization through image re-
trieval based on learned descriptors. However, drastic appearance variations of
images at the same place caused by viewpoint changes can lead to inconsistent
supervision signals, thereby degrading descriptor learning. Existing methods
either rely on manually defined cropping rules or labeled data for view differ-
entiation, but they suffer from two major limitations: (1) reliance on labels or
handcrafted rules restricts generalization capability; (2) even within the same view
direction, occlusions can introduce feature ambiguity. To address these issues,
we propose Mutual VPR, a mutual learning framework that integrates unsuper-
vised view self-classification and descriptor learning. We first group images by
geographic coordinates, then iteratively refine the clusters using K-means to dy-
namically assign place categories without orientation labels. Specifically, we adopt
a DINOv2-based encoder to initialize the clustering. During training, the encoder
and clustering co-evolve, progressively separating drastic appearance variations
of the same place and enabling consistent supervision. Furthermore, we find that
capturing fine-grained image differences at a place enhances robustness. Experi-
ments demonstrate that Mutual VPR achieves state-of-the-art (SOTA) performance
across multiple datasets, validating the effectiveness of our framework in improv-
ing view direction generalization, occlusion robustness. The code can be found at
https://github.com/Gucci233/MutualVPR.

1 Introduction

Visual Place Recognition (VPR) is the task of determining a previously visited location from a query
image by matching it against a database of geo-tagged reference images. It serves as a key component
in long-term localization and loop closure for autonomous systems such as mobile robots [10} 11} [32]]
and self-driving vehicles [12} [17].

Existing VPR methods either utilizes contrastive learning [4} 30, 20} [15} 2] or classification-based
learning [26, 22, |6, [7]] to learn the place representation. Contrastive learning-based approaches
facilitate the learning of robust and discriminative descriptors. However, they depend heavily on
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Figure 1: The problem of inconsistent supervision in existing VPR researches. The proposed
mutual-learning framework define place labels by adaptive clustering in embedding space, enforcing
supervision consistency.

hard sample mining, which incurs significant computational cost and limits scalability to large-scale.
Classification-based VPR methods divide the environment into spatial grids based on geographic
coordinates, assigning each grid cell a unique class label, therefore, avoiding the need for expensive
sample mining.

However, as shown in Figure|I| a), views captured from the same location but in different directions
can result in drastically different visual scenes. If view direction is not considered, such views are
treated as originating from the same place, which may introduce inconsistent supervision signals.

CosPlace [6] first attempts to address this problem by manually defining class labels based on view
directions. However, this method does not provide explicit guarantees of intra-class visual similarity
or inter-class visual distinctiveness. As a result, view variation may still persist. EigenPlaces [7]
proposes a cropping strategy with the assumption that views toward a common reference point are
similar. However, as shown in Figuremb), real-world scenes often involve occlusions from buildings,
vehicles, and other structures. Such occlusions can lead to significant visual differences thus introduce
inconsistent supervision. Consequently, visually dissimilar scenes may be incorrectly grouped under
the same label. Such supervision inconsistency misaligns the supervisory signal with the true visual
similarity, thereby undermining the model’s ability to learn robust and discriminative features.

To address the problem of supervision inconsistency, we propose Mutual VPR, a mutual learning
framework that jointly refines image descriptors from the same geo-grids and view classification as
shown in Figure[I|c). Unlike prior methods that rely on fixed or heuristically defined place labels,
Mutual VPR dynamically updates both feature representations and place label assignments through
iterative, feature-driven mutual learning. This co-evolution enables the system to align semantic
content with supervision more effectively.

Our main contributions can be summarized as follows:

* We propose a mutual learning framework where feature learning and clustering co-evolve,
effectively mitigating supervision inconsistency.

* A adaptive clustering strategy dynamically refines pseudo-labels based on visual semantics,
handling view directions and occlusions without orientation labels.

* Our method achieves state-of-the-art (SOTA) performance on challenging VPR benchmarks,
demonstrating robustness to diverse appearance variations and inconsistent supervision.



2 Related Works

2.1 Contrastive Learning-based VPR

Recent advances in VPR have largely benefited from deep learning-based approaches. Methods
such as NetVLAD [4] pioneered the use of trainable aggregation layers to produce compact and
discriminative global image descriptors. Contrastive learning [8l[24] has become prevalent, employing
triplet-based or contrastive objectives to encourage the model to learn discriminative representations.

However, images taken at the same location may be captured from very different view direc-
tions—resulting in large visual appearance gaps between positive samples. Conversely, images
from nearby but distinct locations may look similar due to aligned view directions, increasing the
risk of erroneous negatives. This mismatch between place labels and visual similarity can mislead
contrastive objectives and degrade performance.

To mitigate the impact of view direction variation, MixVPR [2], CricaVPR [20], SALAD [15] and
BoQ [3]] train on the GSV-Cities dataset [1l], where all images within the same class share a consistent
view direction. By ensuring this, these methods reduce inconsistent supervision.

Sample mining strategies such as GCL [19] and Clique Mining (CM) [14] further enhance learning:
GCL assigns graded similarity labels to reduce supervision noise, while CM forms batches of very
similar images to create harder training samples.

Despite these improvements, all these approaches still face challenges when images from the same
location exhibit diverse view directions or occlusions, limiting their generalization under extreme
conditions.

Other methods [9} 13 (33 21]] aim to enhance robustness by incorporating local feature matching, but
they often rely on a two-stage process, which incurs significant computational overhead.

2.2 Classification-based VPR

Despite their [2 20l [15) [3} [18]] success, contrastive learning-based methods rely on hard sample
mining, which increases training complexity and computational overhead. An alternative approach is
to formulate VPR as a classification problem, reducing the need for explicit pairwise comparisons.
Methods such as DaC [28]] directly partitions images into grids based on their geographic coordinates,
training the feature extractor by classifying images into their corresponding grids. However, it does
not take into account the variations in viewpoint within each grid. Furthermore, CosPlace [6] and
EigenPlaces [7] categorize images into location and view-based classes, allowing efficient training
with categorical cross-entropy loss.

CosPlacell6] partitions the dataset into geographic cells and classifies images based on view direction
labels. However, this rule-based scheme overlooks visual similarity among samples within the same
cell. As a result, it often assigns semantically similar images to different class and vice versa, leading
to inconsistent supervision.

EigenPlaces [7] introduces a classification scheme based on the Singular Value Decomposition
(SVD) of image locations, grouping images that share a common reference point. A key advantage
of this approach is its independence from manually defined view direction labels. However, the
underlying assumption—that images oriented toward the same reference point share similar visual
content—often fails in urban environments due to occlusions caused by buildings, vehicles, or
vegetation. Consequently, such scenes may exhibit substantial visual differences despite similar
viewing intent, resulting in supervision inconsistencies that undermine classification reliability.

3 Problem Analysis

To better understand the issue of supervision inconsistency in classification-based VPR methods, we
visualize the image descriptors extracted by CosPlace [6], EigenPlace [[7], and our method using
t-SNE.

As shown in Figure[2] each View corresponds to an image captured at a specific geographic position
and camera orientation, while a Class denotes a group of views considered to represent the same
place.



In practice, class labels can be assigned based on orientation labels (as in CosPlace), where each
direction corresponds to a predefined class. However, this scheme often fails to align with true scene
semantics, leading to inconsistent supervision when visually similar views fall into different classes.
Alternatively, labels derived from descriptor clustering group images by visual similarity, naturally
ensuring semantic consistency.

Such supervision inconsistencies mainly manifest as view variations and occlusions. View variation
can be further divided into two types:
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Figure 2: Supervision Inconsistency in Classification-based Methods. The left panel shows t-SNE
visualizations of image descriptors extracted from a single geo-grid using different methods on the SF-
XL dataset. “orientation labels” indicate samples colored according to their assigned view directions,
while “clustering labels” refers to labels obtained by applying K-means clustering to the descriptors.
The top-right panel illustrates issues related to view variation, using image examples drawn from
samples in the t-SNE visualization on the left. The bottom-right panel illustrates occlusion induced
issues, using image example from the same reference point.

View variation a): Views with large scene overlap are assigned to different labels due to orientation
labels based on view direction. In panel a), Views II and III are labeled as Class 2, while the highly
similar View I is labeled as Class 1. As shown in the t-SNE plots of CosPlace and EigenPlaces,
their features directly inherit this flawed supervision, forming two separate clusters despite the
strong visual overlap. When our learned features are colored by orientation labels, this artificial split
remains; however, coloring the same features by clustering results yields a single, coherent group.
This contrast highlights the core issue — the conflict between fixed directional supervision and actual
visual semantics.

View variation b): The opposite inconsistency occurs when visually distinct views are assigned the
same label. In panel b), Views II and III share Class 5 despite clear visual differences, while View I
(Class 4) is semantically closer to View II. Feature visualizations colored by orientation labels reflect
this mistaken grouping, whereas clustering-based coloring reorganizes them into more meaningful,
semantically consistent clusters. This again exposes the mismatch between visual reality and rigid
label assignment, underscoring the need for adaptive supervision.

Occlusion-induced inconsistencies are demonstrated by “Occlusion” in Figure 2] where images cap-
tured from different viewpoints but oriented toward the same reference point may exhibit significantly
different visual content due to obstacles. In the "Occlusion" panel, Views I, II and III are captured
from the same geo-grid but are occluded by trees or different buildings, leading to distinct visual
content. Although these views share the same reference point, their semantic content diverges. This
violates the assumptions of EigenPlace, resulting in supervision inconsistency.

We therefore argue that effective supervision for VPR should reflect semantic similarity rather than
rely solely on spatial proximity or fixed directional assumptions. Without semantically consistent
supervision, models are prone to learning unstable features, reducing their ability to generalize across
complex, realworld scenarios.



4 Approach
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Figure 3: Mutual Learning Framework via Adaptive Clustering. We initialize spatial grids using
UTM coordinates and assign coarse intra-grid categories. Features are extracted using DINOv2[23]]
with adapter and GeM [25] pooling, while adaptive clustering where iterative K-means is guided
by LMCL loss dynamically refines view direction categories within grids. Clusters and features co-
evolve: updated clusters supervise feature learning (stage 1), and improved features guide reclustering
(stage 2), enabling robust supervision under occlusions and view direction changes.

The proposed Mutual VPR framework integrates unsupervised view self-classification with joint
descriptor training in a mutual learning paradigm (as shown in Figure[3). The key lies in its adaptive
clustering mechanism, which iteratively refines place categories throughout training.

4.1 Feature Encoder

Mutual VPR is built upon DINOV2 [23]], and incorporates the MulConv adapter [20] to enhance the
model’s capacity for robust feature representation. MulConv adopts a bottleneck structure with three
parallel convolutional branches operating at different receptive fields, enabling the extraction of
multi-scale features. This design improves the model’s ability to handle variations in object scale
and spatial context, which is beneficial in environments with diverse structural patterns. It can be
expressed as:

Zl/ = MHA (LN (21_1)) + z1—1,

2= MLP (LN (2])) + s - Adapter (LN (2)) + z;. )

where z;_; denotes the input features from the previous layer, LN(-) is Layer Normalization, and
MHA(+) refers to Multi-Head Attention. MLP(-) stands for the feed-forward network, while
Adapter(-) represents the MulConv adapter module. The parameter s is a learnable scaling factor
that controls the contribution of the adapter branch.

4.2 Mutual Learning via Adaptive Clustering
4.2.1 Place Label Initialization

Similar to CosPlace[6]], but without using view direction labels, we first partition images into coarse
location-based classes using UTM coordinates. At this stage, view direction variations within the
same location are not considered. Formally, a coarse location class is defined as:
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where M is a hyperparameter controlling the size of the grid. This step serves as an initialization of
place labels, which are later refined through adaptive clustering.



4.2.2 Mutual Learning of Feature Extraction and Clustering

While UTM-based grouping ensures spatial locality, it fails to capture appearance variations caused
by view direction changes and occlusions. To address this, we introduce a mutual learning framework
that combines feature-aware supervision with adaptive clustering.

Within each coarse UTM region, we perform iterative K-means clustering based on learned descriptors,
enabling view direction categories to adapt dynamically as feature representations evolve. Formally,
view direction categories are defined as:

C’:{ei,nj7h|ei,nj€x,h€K}, 3)
where K controls the granularity of view direction partitioning. Unlike static classification methods
with fixed view direction labels, our approach allows continuous refinement of view direction clusters,
better aligning them with actual visual similarity.

As training progresses, the feature encoder and clustering process update each other iteratively. This
self-correcting mechanism avoids error accumulation from early misassignments and ensures images
are grouped into more consistent view direction categories over time.

Following CosPlace [[6], we adopt Large Margin Cosine Loss (LMCL) [29] as our classifier to enforce
discriminative feature learning. At inference time, descriptors are directly extracted from the feature
encoder and used for image retrieval based on their distances.

4.3 Implementation Details

In the implementation, DINOv2’s ViT-B 14 is employed as the backbone network, with all parameters
frozen except for the Adapter. Input image size is resized to 504x504 to meet the input requirements
of ViT-B 14. GeM pooling and a fully connected layer reduce the dimensionality to 512 for the final
descriptor. For dataset classification, margin M is set to 10, and K clusters are set to 3. The feature
extractor is initialized with a learning rate of le-5, while the classifier uses le-2. We employ the
Adam optimizer and apply a cosine annealing scheduler to the feature extractor. Training is conducted
for 50 epochs, each consisting of 10,000 iterations. To reduce training time due to the huge dataset,
we divide all UTM classes from the coarse classification into eight groups, with each group serving
as the training set for one epoch. In each epoch, one-fifth of the classes within the selected group is
randomly chosen for feature-aware clustering.

During training, we found that increasing overlapping ratio of cropped images can enhance semantic
continuity. For the multi-angle cropping strategy, we crop panoramic images from different starting
angles every 60° to generate training data. In our experiments, the starting angles are set to 0° and
30°. Since all images are cropped from panoramas, adjacent images naturally share semantic content.
In our work, adjacent classes—such as class 2 and 3—represent neighboring view directions.

5 Experimental Results

5.1 Research Questions

In this work, we focus on the supervision inconsistency problem in VPR. We aim to investigate the
following research questions:

Q1: How does our method perform compared to SOTA VPR approaches across standard benchmarks?
Q2: How well does our method generalize to challenging dataset with occlusion?
Q3: How does our adaptive clustering compare to orientation labels in handling supervision inconsis-

tency?

5.2 Datasets and Evaluation Metrics

For contrastive learning-based VPR methods, we use the GSV-Cities dataset [[1] for training. For
classification-based VPR methods, we use the SF-XL dataset [[6] for training. The selected training set
is a subset of about 0.9M panoramic images, following CosPlace. A multi-angle cropping strategy as
describe in Section4.3|is applied. Eigenplaces use all panoramic images of about 3.4M for cropping.



For evaluation, we adopt several widely used VPR benchmarks: Pitts30k-test, Pitts250k-test [4],
MSLS-val [31]], Tokyo 24/7 [27], and SF-XL-test v1 [6]. To assess the generalization capability of
our method, we also evaluate it on SF-XL-occlusion [3]] dataset. This dataset, originally designed
to assess the robustness of VPR methods under severe occlusion, also exposes the limitations of
conventional supervision strategies. The detailed statistics of the datasets can be seen in Appendix [A]

We employ the standard Recall @K metric, defined as the ratio of correctly located queries to the total
number of queries. Correct localization involves searching for positive examples by matching images
within 25-meter radius threshold based on geographical coordinates.

The experiment is executed on a server with three NVIDIA RTX 3090 GPUs, using PyTorch for
training and testing.

5.3 Comparison with Other Methods

MSLS-val Pitts30k Pitts250k Tokyo24/7  SF-XL-testvl
Method Desc.dim. Train set
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5
NetVLAD 131072 GSV-Cities 828 903 87.0 943 89.1 948 695 825 - -
GeM 2048 GSV-Cities 725 8.7 845 928 851 934 603 737 256 35.5
AnyLoc(ViT-B+GeM) 768 - 326 416 777 889 793 8.5 717 876 333 452
ConvAP 2048 GSV-Cities 815 875 897 952 912 964 746 832 4l1.1 53.0
MixVPR 4096 GSV-Cities 87.1 914 916 955 943 981 870 933 692 77.4
CricaVPR* 4096 GSV-Cities 90.0 954 949 973 - - 93.0 975 - -
CricaVPR; 4096 GSV-Cities 885 951 91.6 957 943 98,6 895 946 728 80.1
CricaVPR; (PCA) 512 GSV-Cities 87.1 926 904 949 925 97.1 874 929 684 77.1
BoQf 512 GSV-Cities 884 939 931 961 938 975 919 955 79.6 85.9
SALAD' 512+32 GSV-Cities 885 942 906 951 921 97.0 923 951 70.2 777
SALAD+CM' 512432 MSLS+GSV-Cities 904 962 909 959 932 978 928 962 784 85.4
EigenPlaces 512 SF-XL 88.1 929 923 961 935 975 848 940 838 89.6
CosPlace 512 SF-XL 844 902 89.6 949 904 966 765 892 64.8 73.1
Mutual VPR (Ours) 512 SF-XL 892 951 909 964 926 979 924 96.6 80.8 86.4

Table 1: Comparison of various methods on multiple benchmark datasets. The upper block lists
contrastive learning methods, while the lower block lists classification-based methods. CricaVPR*
denotes the results from the original paper relying on batch interaction, and CricaVPR; is our single-
query variant. T indicates a retrained 512-D or 512+32-D version. Best results are shown in bold,
second best are underlined.

To answer the research question Q1, we compare our method with SOTA VPR methods, including
both contrastive learning-based and classification-based approaches. The former includes NetVLAD
(4], GeM [25], AnyLoc [18], ConvAP [1]],MixVPR [2]], CricaVPR [20], BoQ [3], SALAD [15] and
CM [14]. The latter includes EigenPlaces [7], and CosPlace [6]].

It should be noted that our NetVLAD is trained on a ResNet-50 backbone, unlike the original version
trained on VGG16. Nevertheless, its descriptor dimensionality is still very high, which prevents
evaluation on the SF-XL-test set due to memory constraints when processing 2M samples. The
comparison results are shown in Table|l] It shows that Mutual VPR consistently delivers competitive
or superior performance across multiple benchmarks, showing strong generalization capability.

For classification-based baselines, Mutual VPR generally outperforms CosPlace across datasets, even
when CosPlace uses ground-truth labels. This demonstrates the benefit of our adaptive clustering,
which mitigates the limitations of orientation labels with fixed splits that may misrepresent visual
similarity under viewpoint changes or occlusions. EigenPlaces, on the other hand, is specifically
designed to handle extreme viewpoint variations. While it performs well on SF-XL-testvl1, its
performance drops on more diverse datasets such as Tokyo 24/7 and MSLS-Val. This is because
EigenPlaces’ strong focus on viewpoint invariance can limit its generalization to scenarios involving
occlusions or other challenging conditions. In contrast, Mutual VPR achieves a balance: it effectively
handles viewpoint variations while remaining robust to occlusions and other extreme conditions,
leading to better overall generalization. Supporting experiments validate this claim in Appendix D}

Among contrastive learning-based methods, those trained on the GSV-Cities dataset generally exhibit
strong performance. This is largely attributed to the nature of GSV-Cities, which contains multiple
captures of the same location under highly consistent viewpoints. Such data inherently mitigates
supervision inconsistencies caused by view variations, allowing contrastive methods to learn more
stable representations. However, achieving this level of performance requires large-scale, carefully



curated data and extensive sample mining. Recent state-of-the-art methods, such as SALAD+CM,
further leverage large and diverse training sets (MSLS + GSV-Cities) to achieve the highest average
performance across multiple benchmarks.

In contrast, our Mutual VPR is trained solely on SF-XL yet achieves robust and well-balanced
performance across diverse conditions. Although not always the top performer on every individual
benchmark, it ranks closely behind SALAD+CM in overall accuracy and even surpasses it on Pitts30k
and Tokyo24/7 in terms of R@5. Moreover, unlike methods such as CricaVPR*, which rely on
batch-level feature interaction to enhance localization accuracy and suffer a substantial drop in
single-query inference (as indicated by CricaVPR}), our approach maintains stable performance
without requiring inter-sample dependencies, further underscoring its practical robustness.

5.4 Evaluate on Occlusion Dataset

To answer research questions Q2, we evaluate the generalization capability of our method using
a dataset characterized by significant occlusions, which further reflects the impact of inconsistent
supervision on retrieval performance. Table 2] presents the retrieval performance on the SF-XL-
Occlusion dataset, where each query is affected by occlusion.

Our method achieves 47.4% R @1, significantly outperforming all baselines, including EigenPlaces
(36.8%) and CosPlace (32.9%), as well as several contrastive learning methods such as MixVPR
(30.3%) and SALAD (31.6%). Among the contrastive learning baselines, CricaVPR; (40.8%),
SALAD+CM (40.8%), and BoQ (38.2%) show competitive performance, but still remain below our
method for top-k retrieval metrics. These results demonstrate that our approach maintains robust
retrieval under heavy occlusion.

SF-XL-Occlusion

Method Desc.dim.
R@1 R@5 R@10 R@20

GeM 2048 11.8 15.8 17.1 224
AnyLoc(ViT-B+GeM) 768 6.6 14.5 19.7 26.3
ConvAP 2048 23.7 26.3 28.9 31.6
Mix VPR 4096 30.3 35.5 38.2 44.7
CricaVPR, 4096 40.8 51.3 54.6 59.9
BoQf 512 38.2 50.0 53.3 59.2
SALADT 512+32 31.6 42.1 46.1 51.3
SALAD+CMT 512432 40.8 53.7 58.3 61.3
EigenPlaces 512 36.8 51.8 56.6 59.2
CosPlace 512 329 434 46.1 48.7
No Classification 512 17.1 25.0 26.3 31.6
Mutual VPR (Ours) 512 47.4 65.8 71.1 73.7

Table 2: Comparison on SF-XL-Occlusion. Each query in SF-XL-Occlusion is affected by occlusion,
making it suitable for testing robustness under missing visual cues. The upper block lists contrastive
learning methods, and the lower block lists classification-based ones. “No Classification” indicates
that no intra-grid classification is applied—images within the same grid are treated as belonging to
the same class. Best results are shown in bold, and second best are underlined.

Our strong performance under occlusion stems from two key advantages:

Adaptive Supervision Consistency: Unlike static supervision methods (e.g. CosPlace, EigenPlaces),
our approach refines class assignments through iterative, feature-aware clustering. This process
corrects initial supervision errors caused by occlusions or view changes, progressively aligning
features from occluded and unoccluded samples belonging to the same place. As a result, the
model learns to associate semantically similar scenes across varying view directions, improving label
consistency and robustness.

See Appendix [B.T|for a visual example showing a misclassified occluded query being reassigned to
the correct class after training.



Semantic Proximity within Class: Our method brings semantically similar views closer in feature
space, even when they originate from different view directions. This contrasts with rigid label-based
schemes, where visually similar scenes are separated due to orientation labels.

This semantic proximity benefits retrieval: even if an occluded query is not correctly classified, it can
still be retrieved as long as its feature lies within the threshold distance.

We conducted experiments showing that our method achieves consistently lower inter-class distances
than CosPlace and EigenPlaces across adjacent view directions. Quantitative analysis and distance
comparisons are presented in Appendix [B.2]

These findings suggest that by iteratively updating class assignments based on feature similarity, our
approach naturally brings semantically similar scenes—despite view differences or occlusions—closer
in the feature space. This results in more compact and coherent class boundaries.

In contrast, these methods which rely on rigid, manually defined labels often split visually similar
scenes into separate classes, creating artificial gaps in the feature space. Our method mitigates
such fragmentation, enabling smoother transitions between adjacent classes and enhancing retrieval
robustness.

5.5 Ablations

5.5.1 Adaptive vs Static Label Supervision

To answer research question Q3, we compare manually assigned view direction labels with our
adaptive clustering approach across various settings.

* Fixed view direction Labels (CosPlace) : Using predefined view direction labels from
geographic metadata.

* Fixed view direction Labels (CosPlace) + Cropping: Applying multi-angle cropping while
still relying on predefined view direction labels.

* Adaptive Clustering (Ours): Using our adaptive clustering but training on raw images
without multi-angle cropping.

* Adaptive Clustering (Ours) + Cropping: Incorporating both self-adaptive clustering and
multi-angle cropping.

Tokyo24/7  SF-XL-testvl

Method / Diff. Backbone Cropping strategy

R@1 R@5 R@1 R@5
CosPlace ResNet50 0° 76.5 89.2 64.8 73.1
CosPlace ResNet50 30° 80.1 90.2 70.1 80.6
CosPlace ResNet50 0°+30° 851 924 8l.1 86.2
Mutual VPR(Ours)  ResNet50 0° 829 902 745 83.1
Mutual VPR(Ours)  ResNet50 30° 81.6 91.0 724 81.6
Mutual VPR(Ours)  ResNet50 0°+30° 854 925 748 82.5
CosPlace DINOv2 0° 90.2 953 76.6 86.3
CosPlace DINOvV2 30° 89.8 950 759 86.1
CosPlace DINOv2 0°+30° 91.0 958 79.1 86.3
Mutual VPR(Ours)  DINOv2 0° 91.1 97.1 77.0 84.6
Mutual VPR(Ours)  DINOv2 30° 899 960 78.1 84.4
MutualVPR(Ours)  DINOv2 0°+30° 92.1 96.5 80.8 86.4

Table 3: Performance Comparison of Ground Truth and Cropping. CosPlace represents a method
that uses ground-truth and our method represents mutual learning frame. 0° and 30° indicate the
starting angles when cropping the panorama.

We conducted experiments using both DINOv2 and ResNet50 as backbones. For each starting angle,
we cropped the panoramic image into six evenly spaced views; e.g. with starting angles of 0° and 30°,
this results in a total of 12 cropped images. In our method using ResNet50, we clustered all views
into six classes (K = 6), while for DINOv2, we followed the same procedure but set K = 3.

While CosPlace sees clear gains from multi-angle cropping on SF-XL-testvl (R@1 up to 81.1%), its
performance on Tokyo24/7 (R@1 at 85.1%) reveals limited generalization, likely due to overfitting.



In contrast, Mutual VPR achieves consistently strong results across both datasets. Both methods
benefit from the multi-angle cropping strategy, which increases semantic continuity, but Mutual VPR
gains more thanks to its adaptive clustering that better aligns semantically similar views.

5.5.2 Cluster Number

The number of clusters, K, is a hyperparameter that determines the granularity of dataset partitioning
using K-means. With fewer clusters, the images within each class tend to be more compact and exhibit
higher similarity in the feature space. Conversely, a larger K results in finer partitioning, increasing
the diversity of images within the feature space. In our experiments, we evaluated K = 1, 3, 6, and
the corresponding results are shown in Table ]

Tokyo24/7  SF-XL-testvl

Backbone K

R@1 R@5 R@1 R@5
ResNet50 1 683 848 52.1 62.0
ResNet50 3 81.0 89.8 739 81.4
ResNet50 6 829 902 745 83.3
DINOv2 1 806 914 61.1 71.1
DINOv2 3 911 971 770 84.6
DINOv2 6 860 940 709 79.6

Table 4: Different Cluster Numbers. Trained on the original dataset, results with a descriptor
dimension of 512. K = 1 can be considered as not classifying the dataset, while K = 6 aims to
match the number of cluster labels with the ground truth clustering labels.

As expected, the case without clustering (K = 1) yields the worst performance, demonstrating the
effectiveness of incorporating view direction classification. For the ResNet50 backbone, performance
is highest when K = 6, though the improvement over K = 3 is marginal. In contrast, for the DINOv2
backbone, optimal performance is achieved with K = 3, outperforming K = 6 by approximately
10%. These results suggest that the optimal number of clusters depends not only on the dataset but
also on the backbone. Determining an appropriate K for a given dataset and model remains an open
question in the context of the proposed method.

More ablation studies can be found in the Appendix [C]

6 Conclusion and Future Work

We proposed Mutual VPR, a mutual learning framework that addresses supervision inconsistencies in
VPR caused by view direction variations and occlusions. By dynamically refining view direction
categories through adaptive clustering guided by feature learning, our method eliminates reliance on
orientation labels and achieves semantically consistent supervision. Extensive experiments show that
Mutual VPR achieves robust and generalizable performance across diverse and challenging datasets,
validating the effectiveness of our adaptive clustering strategy for real-world VPR applications.

A limitation of our approach is the fixed cluster number K, which may not fully capture varying view
direction distributions. Since classification and descriptor learning are mutually reinforced, a static
K may limit model’s adaptability. Our studies underscore its impact on performance, suggesting the
need for dynamic adjustment. Future work will explore adaptive clustering to optimize K based on
dataset characteristics, enhancing the synergy between classification and representation learning.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction clearly state the contributions of the paper.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations and future work are discussed in the Section [6l
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental setting and details are described in the Section [5]and some
experimental details is shown in Appendix [B]and Appendix

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open Access to Data and Code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Code will be submitted along with the Supplementary Material. And code also
can be found athttps://github.com/Gucci233/MutualVPR.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The experimental setting and details are described in the Section @.3]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports the mean and standard deviation of the results in the tables
and figures.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides the details of the compute resources in the last paragraph
of the Section [5.2] and analyzed the parameter quantities of different backbones in the

Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and ensured that our research
conforms to it.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not release data or models that have a high risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for Existing Assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper properly credits the original owners of the assets and mentions the
license and terms of use.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We publish our source code, and the new assets are well documented in this
paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

¢ For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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A Dataset Details

We train on several large-scale datasets, including SF-XL[6]] for classification-based methods , GSV-
Cities [1]] for contrastive learning, and evaluate on Pitts30k-test [4]], MSLS-val [31], Tokyo 24/7
[27]].

GSV-Cities is a large-scale dataset containing 560k images depicting 67k unique places captured
from consistent viewpoints, each labeled with geographic coordinates. SF-XL consists of images
cropped from panoramic views at the same location, covering diverse viewing angles and acquisition
years, making it suitable for learning viewpoint- and time-robust representations.

A summary of above datasets is provided in Table[5]

Dataset Database Query
SF-XL-train 5.6M

SF-XL-test 2M 1000
SF-XL-val 8K 8064
SE-XL-occlusion 2M 76
GSV-Cities-train 560K

Pitts30k-test 10K 6818
MSLS-val 18.9k 740
Tokyo24/7-test 76K 315

Table 5: Experimental dataset statistics.

B Supervision Correction and Feature Distance Analysis

To further support our claims on supervision correction and semantic proximity, we provide additional
visualizations and feature-level analysis of our method.

B.1 Visualization of Supervision Correction

To demonstrate how adaptive clustering resolves initial supervision inconsistencies (e.g., caused by
occlusion), we visualize clustering results before and after training.
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Figure 4: The t-SNE visualization of clustering results on SF-XL-Occlusion before and after
training. The query (black dot) is reassigned from class 1 to class 2, correcting its initial misclassifi-
cation.

As shown in Figure 4] we select a query (black dot) and its neighboring samples from the same

geo-grid cell. Initially, the query is assigned to class 1, but after training, it transitions to class 2.
These two classes correspond to adjacent view directions with overlapping semantic content.
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Figure 5: Close-up of the query and its nearest samples. Visual inspection shows class 2 has
stronger semantic similarity to the query.

Figure[5]shows a visual comparison of samples in class 1 and class 2, where class 2 clearly exhibits
stronger visual similarity with the query. This supports our claim that adaptive clustering can realign
mislabeled samples by leveraging feature similarity during training, improving robustness to occlusion
and supervision noise.

This demonstrates that our adaptive clustering effectively mitigates the impact of occlusions during
training by refining feature-grouping over time. It enables the model to build robust associations
between partially occluded and unobstructed views from the same location.

B.2 Feature Distance Analysis Across Classes

We further analyze how our adaptive clustering improves semantic continuity between classes by
comparing feature distances of samples from adjacent categories.

To ensure fairness, we use SOTA method EigenPlaces as a proxy for selecting image pairs with
adjacent labels and minimum mutual distances. As shown in Figure 6] we compare the pairwise
feature distances obtained by our method and CosPlace.
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Figure 6: Visualization results. Feature distance comparisons between adjacent classes, using
EigenPlaces as a proxy. Our method shows tighter clustering both overall (a) and for similar pairs
with d < 0.8 (b), indicating better feature continuity across classes.
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The results show that our method consistently achieves the smallest feature distances across adjacent
view directions Even when we focus on sample pairs with closer feature distances (< 0.8), as shown
in Figure[6]b. Our method still maintains closer feature relationships.

Our method consistently yields lower feature distances than CosPlace and EigenPlaces, indicating that
our approach encourages more compact and semantically smooth transitions between neighboring
classes. This explains why even occluded queries, if misclassified, can still retrieve the correct place
as long as the distance remains within the retrieval threshold.

C More Studies

C.1 Comparison of High-Dimensional Descriptor

SF-XL-Occlusion | SF-XL-testvl
Method Desc.dim.
‘ R@1 R@5 R@10 R@20 ‘ R@1 R@5 R@10 R@20
BoQ 8192 49.8 65.8 70.3 75.9 82.3 87.9 91.3 92.9
SALAD 8192+256 | 454 62.2 67.1 74.6 82.4 86.6 89.2 90.0
SALAD+CM 8192+256 | 46.1 579 64.5 68.4 80.6 85.3 87.7 89.1

Mutual VPR (Ours) 8192 514 675 72.8 75.8 82.8 889 90.8 91.4

Table 6: Comparison on SF-XL-Occlusion and SF-XL-testvl. Comparison with high-dimensional
DINOv2-based methods. Our method shows limited improvement when increasing dimensions,
but still achieves competitive performance. Best results are shown in bold, and second best are
underlined.

Since our method already achieves excellent performance with a relatively low descriptor dimension
(512), we further conduct a fair comparison with SOTA methods under similar dimensional settings,
as shown in Table[6] The original BoQ model has a very high dimensionality of 12288, making it
infeasible to evaluate on the SF-XL dataset. Therefore, we reduce its projection dimension from 384
to 256, resulting in a total descriptor dimension of 8192.

To ensure fairness, we trained BoQ, SALAD, and SALAD+CM for 30 epochs on the GSV-Cities
dataset until convergence. As shown in Table [6] most methods benefit significantly from higher
feature dimensions. In contrast, our method shows only a moderate improvement when increasing
the dimension from low (Table[T]and Table [2)) to high, possibly because our dimensionality control is
achieved through a simple MLP, whereas other methods involve additional internal projection layers.

Nevertheless, our method still delivers outstanding performance, achieving the best results in both
R@]1 and R@5 metrics.

C.2 Fine-tuning Strategies

To assess the effectiveness of our framework in accommodating different fine-tuning strategies, we
evaluated MulConV, the method used in our work for adapting DINOv2 features, against PEFT-
based approaches proposed in SelaVPR [21]] and EDTformer [16]. Table[7] presents retrieval per-
formance across multiple datasets, including Tokyo 24/7, MSLS-Val, Pitts30k, SF-XL-v1, and
SF-XL-Occlusion.

Method Tokyo247 MSLS-val  Pitts30k ~ SF-XL-vl  SF-XL-Occlusion
SelaVPR 90.9/96.1 86.4/93.6 89.9/95.8 753/84.3 40.5/54.1
EDTformer 87.3/93.7 855/93.8 89.5/957 1764/82.7 38.8/52.0

MulConV (Ours) 92.1/96.5 89.2/95.1 90.9/96.4 80.8/86.4 47.4765.8

Table 7: Comparison of different fine-tuning strategies within our framework. Metrics are R@ 1
/R@5.

The results demonstrate that all fine-tuning strategies achieve competitive performance, indicating
that our framework effectively leverages pretrained representations. Among the evaluated methods,
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MulConV consistently delivers the highest retrieval accuracy across all datasets, particularly under
challenging conditions with occlusions or extreme viewpoint variations. This superior performance
motivated our choice of MulConV as the fine-tuning strategy in our framework. These findings
highlight both the flexibility and robustness of our approach, showing that it can accommodate various
adaptation methods while benefiting most from MulConV.

C.3 Comparison of Different Backbones

To investigate the impact of different backbone architectures on retrieval performance, we conduct
experiments using VGG16, ResNet50, and DINOv?2 as feature extractors under a consistent training
protocol (with K = 3 and no differential cropping). The results are shown in Table([S]

SF-XL-testvl
R@1 R@S5

VGGl6 15.0m 77.5b 615  70.8
ResNet50 24.6m 213b 739 814
DINOv2 1009m 122.8b 77.0 84.6

Backbone Params. Flops.

Table 8: Comparisons of various backbone. Train under different backbones when K=3 on origin
dataset without multi-angle cropping. For VGG16, only the parameters of the last layer are trained.
For ResNet50, only the parameters beyond the third layer are trained. For DINOv2, only the adapter
module is trained.

Despite having significantly fewer FLOPs than VGG16, ResNet50 achieves much better performance
(R@1 of 73.9 vs. 61.5), highlighting the advantage of deeper residual connections and stronger
feature representations. DINOv2, a vision transformer pretrained with self-supervised learning,
achieves the best retrieval accuracy (R@1 of 77.0 and R@5 of 84.6), even though only a small adapter
is trained on top. This confirms the strong generalization and representational capacity of DINOv2
features, making it a suitable backbone for downstream place recognition tasks.

These findings support our choice of using DINOv2 in the main experiments, striking a good balance
between high performance and efficient finetuning.

D Discussion on EigenPlaces’ Performance on SF-XL-testvl

Although our method generally outperforms existing approaches, it shows a slight drop on SF-XL-
testvl, where EigenPlaces performs marginally better.

This arises from their methodological difference: EigenPlaces, being geometry-driven, groups views
of the same focal point from different directions, thus enforcing a strong viewpoint-invariant prior
that aligns well with SF-XL’s panorama-cropped, multi-view structure.

In contrast, our approach clusters images purely in visual feature space. While it lacks explicit
geometric constraints, it learns semantically and spatially coherent clusters that generalize more
flexibly to complex scenes with occlusion, clutter, or fine-grained variations.

To verify the above observation and better understand the performance gap on SF-XL-testvl, we
conducted a quantitative analysis to measure the degree of viewpoint invariance across different class
construction strategies. Specifically, we sampled approximately 9k UTM grids (about 1M images)
and applied k-means clustering using three methods: CosPlace, EigenPlaces, and ours. For each
grid, we computed the feature distances between clusters with opposing headings (0° vs. 180°), as
illustrated in Fig.

The average inter-cluster distances were CosPlace: 1.1614, EigenPlaces: 1.0759, and Ours: 1.1247.
These results quantitatively confirm that EigenPlaces exhibits the strongest viewpoint invariance,
which explains its superior performance on benchmarks characterized by extreme viewpoint changes
such as SF-XL-testvl. Conversely, CosPlace shows the largest inter-cluster distance and correspond-
ingly lower performance, further validating that this metric meaningfully reflects a model’s sensitivity
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0° vs. 180° View Distance Statistics
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Figure 7: Comparison of viewpoint invariance. Box plot of inter-cluster distances (0° vs. 180°) for
CosPlace, EigenPlaces, and Ours. Smaller values indicate stronger viewpoint invariance.

to viewpoint variation. Our method lies between the two, achieving a balanced trade-off—less rigid
viewpoint invariance but greater robustness to occlusion, scene clutter, and appearance ambiguity.
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