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Abstract

Large Language Models (LLMs) have revolutionized the field of natural lan-
guage processing with their impressive capabilities. However, their enormous size
presents challenges for deploying them in real-world applications. Traditional
compression techniques, like pruning, often lead to suboptimal performance due to
their uniform pruning ratios and lack of consideration for the varying importance
of features across different layers. To address these limitations, we present a novel
Adaptive Layer Sparsity (ALS) approach to optimize LLMs. Our approach consists
of two key steps. Firstly, we estimate the correlation matrix between intermediate
layers by leveraging the concept of information orthogonality. This novel per-
spective allows for a precise measurement of the importance of each layer across
the model. Secondly, we employ a linear optimization algorithm to develop an
adaptive sparse allocation strategy based on evaluating the correlation matrix. This
strategy enables us to selectively prune features in intermediate layers, achieving
fine-grained optimization of the LLM model. Considering the varying importance
across different layers, we can significantly reduce the model size without sac-
rificing performance. We conduct extensive experiments on publicly available
language processing datasets, including the LLaMA-V1|V2|V3 family and OPT,
covering various benchmarks. Our experimental results validate the effectiveness
of our ALS method, showcasing its superiority over previous approaches. The
performance gains demonstrate its potential for enhancing LLMs’ efficiency and
resource utilization. Notably, our approach surpasses the state-of-the-art models
Wanda and SparseGPT, showcasing its ability to excel even under high sparsity
levels. Codes at: https://github.com/lliai/ALS.

1 Introduction

Large language models (LLMs) [62, 49, 3] have demonstrated remarkable performance in various
natural language processing (NLP) [55, 54, 4] tasks. However, their size and computational require-
ments pose significant challenges for widespread adoption and deployment. To address these practical
constraints, model compression techniques, such as weight pruning and quantization, can potentially
reduce the size and computational requirements of LLMs.

The emergence of LLMs has revolutionized the field of NLP. However, despite their revolutionary
impact, the massive scale and complexity of LLMs presents significant challenges for model com-
pression. Conventional pruning methods [27, 19, 38, 19, 15, 59], which often require one or more
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Figure 1: Overview of our framework. We first compute the sum of Redundancy Metric between
layer i-th and other layers to construct objective function. Then, we solve a linear programming
problem to optimize total sparsity ratios S(qi) (qi is pre-layer sparsity) under constraints.

iterations of fine-tuning or retraining to preserve performance, have become impractical for LLMs
due to the substantial computational cost and time required.

Due to the failure to the Magnitude approach to pruning [28] and other previous methods on LLMs,
recent efforts such as SparseGPT [17], Wanda [46], DSOT [65], Pruning Large Language Models
with BESA [57], and OWL [58] aim to address this challenge by reconstructing the layerwise outputs
of LLMs. Specifically, SparseGPT introduces a technique for pruning less significant weights and
reconstructing layerwise outputs based on an importance metric derived from the Hessian matrix.
To reduce the computational overhead of SparseGPT, Wanda proposes a simplified strategy that
relies solely on the product of weight and activation magnitudes for pruning. DSOT computes the
reconstruction error incrementally for each layer, optimizing the intra-layer sparse configuration
through further weight pruning or growth, which forms the basis for subsequent weight recovery and
additional pruning operations. These methods adopt a training-free approach. In contrast, BESA [57]
proposes learning the optimal pruning ratio within each layer through training, finding that considering
the overall sparsity configuration within a layer enhances the performance of sparse models. However,
this method primarily focuses on intra-layer sparsity configuration. It requires substantial training
time, typically taking at least 5 hours on an A100-80G GPU, which is considerably slower than
other training-free techniques [17, 46, 65]. Another notable method is OWL [58], which proposes a
non-uniform layerwise sparsity technique that assigns different sparsity ratios based on the outlier
ratio within each layer, leveraging the unique characteristic of LLMs where some features exhibit
significantly larger magnitudes by tuning hyperparameters such as the outlier threshold and sparsity
upper/lower bounds to obtain optimal parameter setting. Nevertheless, unlike the aforementioned
methods, OWL relies heavily on empirical analysis without providing a solid theoretical foundation
for its effectiveness.

However, existing methods have several significant drawbacks. First, for BESA, DSOT, and some
traditional techniques, minimizing the layer-by-layer pruning error does not effectively mitigate the
impact of pruning on model performance, as the pruning error accumulates across layers due to its
inherent greedy nature [24] and may also become trapped in local optima [13, 22]. Second, LLM
pruning methods such as Wanda, SparseGPT, and Magnitude apply uniform sparsity ratio to each layer,
despite the significant variations in each layer’s contribution to the final model performance [57, 65].
To achieve better performance for different layers, the sparsity needs to be manually adjusted for
all layers. Third, for the newly proposed OWL method, more theoretical analysis is needed on
why its outlier-based non-uniform sparsity outperforms uniform sparsity. Moreover, the choice of
hyperparameters in OWL, such as the outlier threshold and sparsity upper/lower bounds, is sensitive
to model performance, but their optimal ranges are not theoretically explained, and the effective
ranges and thresholds are derived through manual tuning. Furthermore, the transferability of these
hyperparameters across different datasets has yet to be systematically studied. Therefore, when
applying OWL to new models, complex adjustments by hand must be performed to determine the
potentially optimal parameter combination.

To address the multiple challenges of getting trapped in local optima, manually setting sparsity for all
layers, and relying on empirical manual experiments to derive optimal sparsity ratios, we propose a
simple, effective, and efficient method called Adaptive Layer Sparsity (ALS) for allocating sparsity
ratios. The overall pipeline of our proposed method is illustrated in Fig. 1. This technique optimizes
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the pruning rate across different layers. To the best of our knowledge, this is the first attempt to
reformulate the sparsity allocation problem in LLMs as a linear programming problem. We tackle
these challenges by constructing an objective function and constraints. The constraint of the linear
programming problem is that the total number of parameters should be less than the target model size.
We then compute the independence matrix [25] at both the layer level and intra-layer component level
based on the output or input features. According to our experiments, the independence between layers
is positively correlated with model performance, as shown in Fig. 2 (c). Therefore, maximizing the
independence between each layer of the model is considered our objective function. Unlike existing
black-box optimization methods, we formulate this problem as a linear one that can be solved by
any linear problem solver. This approach enables efficient global sparsity ratio allocation for LLMs
ranging from 7B to 70B parameters on a single A100-80GB GPU. If the model scale is too large,
reaching 160B, we can also perform multi-threaded computation on a CPU. For a 70B model, the
global sparsity configuration can be obtained in just 20 minutes on an A100-80G GPU.

To rigorously assess the efficacy of ALS, we conducted extensive experiments on diverse LLMs,
including LLaMA-V1 [49], LLaMA-V2 [50], LLaMA-V3 [1], and OPT [62] model families, with
parameter counts ranging from 6.7 billion to 70 billion. In the main experiments, we evaluated the
WikiText-2 perplexity and average accuracy on 7 zero-shot datasets at various sparsity ratios (20%
to 70%) for LLaMA-V2 7B/13B (Table 1) and at 50% sparsity for all model families (Tables 2 and
3). Detailed results for each zero-shot dataset on LLaMA-V2 family models at 50% sparsity are
presented in Table 4. The analysis experiments consist of 6 sets, examining the impact of calibration
data, sparsity bounds setting, and model redundancy on performance (Fig. 2), as well as the influence
of feature selection, standardization, and comparisons with Wanda and LoRA fine-tuning. Additional
experiments including detailed of main experiments, analyses of granularity, decreasing functions,
visualizations of layer redundancy, sparsity ratio allocation and comparison with OWL method are
provided in the Appendix C and D. These experimental results unequivocally demonstrate that ALS
consistently yields substantial performance improvements for sparse LLMs across various LLMs and
downstream tasks.

2 Related Work

Model Compression method try to design efficient models and reduce the memory and computa-
tional requirements of LLMs. These methods can be categorized into quantization [42, 12, 35, 33],
sparsification [17, 46, 10, 9] and distillation [56, 29, 30, 31, 32, 11, 53]. Quantization converts high
bit-width weights and activations into compact, low bit-width representations, while sparsification
increases the proportion of zero-valued elements in model weights. Our method optimizes LLM
sparsification by strategically allocating sparsity across the model’s layers to maximize performance
and minimize computational overhead. In contrast to optimization-based compression techniques
(e.g., OMPQ [35]) for CNN models in vision tasks, our approach focuses on different LLM models
and NLP tasks and devises various functions and strategies accordingly.

Sparsity in LLMs has garnered significant attention as a means to accelerate inference speed and
reduce memory consumption by applying sparsity in the model weights or activations. sparsity
techniques can be categorized into two main approaches: structured pruning [34, 23] and unstructured
pruning [16, 64, 46, 63]. While the primary focus of these works lies in determining the pruning
criteria, such as weight importance and pruning ratio, the enormous parameter scale of LLMs presents
an additional challenge in terms of pruning efficiency. Conventional pruning methods [15, 59, 63, 23,
27, 19, 38, 19], dating back to the early work of Hassibi [20] in the 1990s, which successfully reduced
model size and improved efficiency in deep learning architectures by removing redundant weights to
create sparse and lightweight models, heavily rely on extensive retraining and are often infeasible for
LLMs due to prohibitively high computational overhead and prolonged training times. To address
this issue, researchers have developed LLM-specific pruning techniques that prioritize train-free and
time efficiency. In the context of structured pruning, LLMpruner [34] explores the application of
structured pruning to LLMs and employs LoRA to recover the performance of the pruned model.
For unstructured pruning, SparseGPT [17] stands out as a notable method that draws inspiration
from the Optimal Brain Surgeon (OBS) [20] approach, taking into account the impact of removing
individual weights on the network reconstruction loss. SparseGPT introduces an efficient technique
for estimating the Hessian matrix, enabling the application of the traditional OBS method to large-
scale models. Another prominent unstructured pruning method, Wanda [46], employs a simple yet
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effective strategy based on the product of weight and activation values to identify and eliminate less
important weights, further enhancing the pruning speed. Despite these advancements, most existing
methods adopt a uniform pruning rate across all layers, which may lead to suboptimal performance.
In contrast, our approach introduces a novel layer adaptive pruning strategy that dynamically allocates
sparsity based on the importance of each layer, effectively minimizing performance degradation while
achieving high compression ratios.

Sparsity Allocation in Network Pruning. Conventional methods for achieving adaptive layer-
wise sparsity in neural networks [14, 5, 26] often rely on a layer-by-layer pruning approach, where
the objective is to minimize the sum of errors introduced in each layer. However, this greedy
strategy [24] leads to the accumulation of errors across layers, resulting in suboptimal performance
when directly adapted to LLMs. The extensive retraining required on vast datasets further amplifies the
challenges of applying these techniques to LLMs. Recent efforts, such as BESA [57] and DSOT [65],
have shifted focus to intra-block sparsity allocation, employing various strategies to optimize the
sparsity distribution within individual blocks. Despite operating at a finer granularity, these methods
fundamentally adhere to a layer-wise pruning paradigm, neglecting the importance of global sparsity
allocation. Consequently, the resulting allocation may be locally optimal [13, 22] within each layer
but globally suboptimal, potentially leading to solutions stuck in local optima. Recently, a new
approach called OWL [58] attempts to address this issue by introducing a non-uniform layer-wise
sparsity technique. This technique primarily relies on manually tuning the outlier threshold and
sparsity upper/lower bounds (which are very small values and sensitive to performance) through
extensive experimentation to obtain potentially optimal parameter configurations. Although OWL
demonstrates the potential for improved sparsity allocation, it heavily depends on empirical analysis
and fails to provide a solid theoretical foundation for its effectiveness, limiting its generalizability
and robustness across different LLMs architectures and datasets.

3 Methodology

3.1 Preliminary

Pruning LLMs is a method that aims to obtain a sparse representation of the model by eliminating
a predetermined fraction of the pre-trained weights. The primary objective is to minimize the
divergence between the outputs generated by the sparse and dense models [21]. However, directly
tackling this problem can be challenging due to the massive scale of LLMs. We discover that the
mutual information entropy in Eq. 1 can effectively quantify the degree of discrepancy between
different layers of the model.

I (xi;xj) = H (xi) +H (xj)−H (xi, xj) (1)

Neural networks can be decomposed into a sequence of layers. In the decomposed form, we represent
the neural network as F = {f1, f2, . . . , fL}, For a given random sample x0 ∈ Rd0 , let xi =
fi (fi−1 (. . . f1 (x0))) ∈ Rdi represents the output of the random sample at the i-th layer.

Based on the previous definitions of the marginal entropies and joint entropy, the mutual information
between xi and xj can be derived from Eq. 1 and formally defined as Eq. 2 [8].

I (xi;xj) =

∫
p (xi, xj) log

p (xi, xj)

p (xi) p (xj)
dxidxj (2)

High mutual information between layers indicates redundancy, while low mutual information suggests
that these layers have learned complementary representations [43]. When two variables xi and xj are
independent, their mutual information is zero, i.e., I(xi;xj) = 0. According to information theory
[41] and the Information Bottleneck (IB) theory [48], minimizing the mutual information between
layers can reduce redundancy, remove irrelevant information, and enhance the overall representational
capacity of the network. This "compression" of the representation enables the network to extract
higher-level and more compact features, thereby reducing the reconstruction error. In summary, by
sparsifying layers with higher mutual information and minimizing the mutual information throughout
the entire network, the reconstruction error can be minimized.
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3.2 Redundancy Metric

To approximate the mutual information between layers, we propose employing Monte Carlo sampling,
thereby circumventing the need for intractable integrals. Specifically, we randomly select N samples
x
(1)
0 , x

(2)
0 , . . . , x

(N)
0 from the training dataset, which follow a probability density function (PDF)P (x).

For each sample x(n)0 , the outputs at the i-th and j-th layers are denoted as x(n)i and x(n)j , respectively.

We can estimate the integral using the sample average: Î (xi;xj) ≈ 1
N

∑N
n=1 log

p
(
x
(n)
i ,x

(n)
j

)
p
(
x
(n)
i

)
p
(
x
(n)
j

) .

Î (xi;xj) is the estimated mutual information, p
(
x
(n)
i , x

(n)
j

)
is the joint PDF, and p

(
x
(n)
i

)
and

p
(
x
(n)
j

)
are the marginal PDFs. We aim to approximate these probability densities using kernel

density estimation.

Computing marginal and joint probability densities: Based on the kernel density estimation [44],
we can utilize it to estimate the probability density functions. This allows us to approximate the
probability density functions using the features of the samples. Kernel density estimation is a
non-parametric method for estimating the probability density function of a random variable. For
instance, given a set of samples Y = {y1, y2, . . . , yN}, The kernel density estimate is defined
as: p̂(y) = 1

Nh

∑N
i=1K

(
y−yi

h

)
, where K(·) is a kernel function, commonly used kernels include

Gaussian, Epanechnikov, etc., and h is the bandwidth parameter.

We apply kernel density estimation to compute the marginal and joint probability density functions
of the samples’ outputs at the i-th and j-th layers. The choice of the bandwidth parameter h can
be determined through cross-validation or other methods. However, to simplify our derivation, we
can consider that in high-dimensional spaces, the influence of the kernel function K is relatively
insignificant. We are mainly focused on the ratio of relative densities [40, 60]. Therefore, the
bandwidth parameter h can be cancelled out. We can calculate the marginal and joint probability
density functions of the samples’ outputs at the i-th and j-th layers using kernel density estimation,
which can be found in the Appendix.

Monte Carlo Approximation of Mutual Information. Substituting the kernel density estimates
into the Monte Carlo approximation formula for mutual information and simplifying the expression
using the feature matrix inner product approximation for the kernel function, as mentioned by
Tschannen [51], we obtain:

Î (xi;xj) ≈
1

N

N∑
n=1

log

∥∥∥x(n)Ti x
(n)
j

∥∥∥
F∥∥∥x(n)Ti x

(n)
i

∥∥∥
F

∥∥∥x(n)Tj x
(n)
j

∥∥∥
F

(3)

where ∥ · ∥F denotes the Frobenius norm. In this approximation, we employ the feature matrix
inner product to approximate the kernel function, K

((
x
(n)
i , x

(n)
j

)
,
(
x
(k)
i , x

(k)
j

))
≈
∥∥∥x(n)Ti x

(n)
j

∥∥∥
F

.

Similarly, for the marginal kernel functions is K
(
x
(n)
i , x

(k)
i

)
≈
∥∥∥x(n)Ti x

(n)
i

∥∥∥
F

.

Decreasing function: Since mutual information has no general upper bound, its upper limit depends
on the entropy of either xi or xj . To address this, we can use decreasing functions to transform
the range of mutual information, ensuring a bounded and more interpretable metric. For instance,
using eÎ(xi;xj) or a Gaussian function, we can redefine the measure as follows. Considering that a
batch of data is fed into the model simultaneously and each layer output concurrently, we can omit
the
∑N

n=1 and 1
N . Instead, we can use Xi and Xj to represent the calculations for the entire batch

input. Applying
∥∥XT

i Xj

∥∥ eÎ(Xi;Xj) as a decreasing function to Eq. 3. Therefore, we can derive
the Redundancy Metric (RM) formula, where RM(·) ∈ [0, 1] according to the Cauchy-Schwarz
inequality:

RM (Xi, Xj) =

∥∥XT
i Xj

∥∥2∥∥XT
i Xi

∥∥∥∥XT
j Xj

∥∥ (4)

The decreasing function transforms the range of the RM formula such that a value of 0 indicates
complete independence between layers, while 1 represents complete redundancy. This formulation
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can serve as the objective function for maximization. The complete derivation process for this section,
including the details of Eq. 4, is presented in Appendix B.

3.3 Linear Optimization

Our Redundancy Metric reveals the redundancy among layers in a neural network, guiding sparsity
ratio allocation. Experiments on LLaMA2-13B with various sparsity configurations show a negative
correlation between model redundancy and WikiText-2 perplexity (PPL). Model redundancy is defined
as the sum of each layer’s RM for the remaining layers, as depicted in Fig. 2 (c). Consequently,
redundancy minimization is adopted as the objective function, incorporating model size constraints
to formulate a linear programming problem that yields the optimal sparsity configuration.

Intra-layer Sparsity Allocation. For a given neural network, we construct a redundancy matrix
Ψ, where ψij = RM(xi, xj). The sum of non-diagonal elements for each row of the matrix is
computed as ρi =

∑L
j=1 ψij − 1. A smaller ρi indicates stronger independence between xi and the

outputs of other layers. We model this relationship using the monotonically decreasing function:
ωi = e−

1
µρi , where µ is a dynamic hyperparameter controlling the difference in sparsity ratios across

layers, defined as 1
n

∑n
j=1 ψij , which smooths the descent speed (Fig. 8). The importance factor for

the first i layers is represented by ωi. With these components, we formulate the linear programming
problem as follows:

Objective: max
q

L∑
i=1

 qi
L− i+ 1

L∑
j=i

ωj

 ,

Constraints:
L∑
i

S(qi) ≤ B.

(5)

where S(qi) denotes the model size of the i-th layer under sparsity qi, and B represents the target
model size. The optimal sparsity configuration is given by q. To maximize the model’s representative
capacity, our method try to assign smaller sparsity configurations to more independent layers by
maximizing an objective function. For a more fine-grained sparsity allocation, we extend our
approach to include intra-layer component-level sparsity allocation. After determining the sparsity
ratios for each layer, we treat the remaining parameters in this layer as the target size and construct
objective functions for its individual components. By applying ALS at this granular level, we obtain a
secondary sparsity allocation, resulting in unique sparsity ratios for every layer and component. This
hierarchical approach enables a highly customized and adaptable sparsity distribution throughout the
entire network architecture, potentially leading to enhanced efficiency and performance gains.

4 Experimental Results

Setup. For pruning, we follow the settings of Wanda, SparseGPT, and Magnitude. Regarding the
calibration data used in the linear optimization process, we follow the configurations of SparseGPT
and Wanda, selecting data from the C4 dataset and ensuring that all test data are zero-shot. We use
a calibration data size of 16 for linear optimization hyperparameters. The granularity, explained
in Appendix. E.1 for linear optimization results is set to 0.5%. For the values of xi, we use the
input, although output and intermediate gates can also be used. Hyperparameter analysis is primarily
conducted in the analysis section. Details about the experimental environment are provided in
Appendix E.1.

Evaluation and Metrics. We measure the performance of pruned models through zero-shot tasks
and language modeling. For zero-shot evaluation, we utilize seven tasks from the EleutherAI
LM Harness [47]: Winogrande [39], PIQA [2], OpenBookQA [37], HellaSwag [61], BoolQ [6],
ARC (Easy and Challenge) [7], and RTE (Recognizing Textual Entailment) [52]. We also include
WikiText2 [36]. For the first seven datasets, we use the accuracy metric provided in the EleutherAI
LM Harness. For WikiText2, we use the word_perplexity (PPL) metric. During evaluation, we ensure
using the same database version, GPU model, and random seed.

Models. We evaluate the performance of ALS on LLMs, including LLaMA-V1 7B/13B/30B/65B [49],
LLaMA-V2 7B/13B/70B [50], LLaMA-V3 8B [1], OPT 6.7B/13B [62].
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Table 1: WikiText-2 perplexity performance of ALS at varying sparsity rates for sparse
LLaMA-V2-7B/13B pruned by the Magnitude, SparseGPT, Wanda metric.

Models LLaMA-V2-7B LLaMA-V2-13B
Sparse 20% 30% 40% 50% 60% 70% 20% 30% 40% 50% 60% 70%
Magnitude 9.20 10.21 13.51 32.87 7.6e4 9e5 7.84 8.19 9.21 11.59 23.43 1.4e3
Magnitude w. ALS 8.91 9.60 11.03 15.19 83.23 2.8e5 7.86 8.18 8.95 10.78 18.52 204.17
SparseGPT 8.94 9.19 9.70 17.21 15.58 42.87 7.86 8.07 8.46 11.32 12.29 27.12
SparseGPT w. ALS 8.90 9.11 9.67 10.99 15.35 39.09 7.87 8.09 8.50 9.44 12.29 26.70
Wanda 8.92 9.23 9.85 12.31 19.57 219.46 7.88 8.11 8.56 11.21 14.42 116.99
Wanda w. ALS 8.90 9.15 9.81 11.61 20.91 214.10 7.90 8.14 8.63 9.86 14.81 91.58

Table 2: WikiText-2 perplexity performance of ALS at 50% sparsity rates for sparse
LLaMA-V1-7B/13B/30B/65B, LLaMA-V2-7B/13B/70B, LLaMA-V3 8B/70B and OPT-6.7B/13B
pruned by the Magnitude, SparseGPT, Wanda metric.

Models LLaMA-V1 LLaMA-V2 LLaMA-V3 OPT
Method 7B 13B 30B 65B 7B 13B 70B 8B 70B 6.7B 13B
Dense 9.38 8.20 6.09 4.93 8.71 7.68 4.52 7.26 2.92 11.29 11.33
Magnitude 42.26 43.61 13.68 8.88 32.87 11.59 8.59 1.1e3 19.29 1e3 4.1e4
Magnitude w. ALS 16.80 12.61 11.35 8.50 15.19 10.78 6.98 30.20 13.21 9.5e2 4e3
SparseGPT 18.35 9.90 10.07 7.82 17.21 11.32 7.84 16.87 8.49 13.35 12.53
SparseGPT w. ALS 11.87 9.97 8.28 7.97 10.99 9.44 7.58 10.23 7.24 12.29 11.49
Wanda 13.30 10.90 8.74 7.37 12.31 11.21 6.51 15.01 7.01 20.97 18.13
Wanda w. ALS 12.47 10.40 8.42 7.15 11.61 9.86 6.36 12.30 6.82 19.16 16.79

Baselines. We run ALS on LLMs with various methods, including Wanda [45], Magnitude-based
pruning [18] and SparseGPT [16].

4.1 Language Modeling

Quantitative Evaluation. In Table 2, we compare the wikitext2 (PPL) performance of different
pruning methods under 50% sparsity on the LLaMA-V1, LLaMA-V2, LLaMA-V3, and OPT models,
including Dense (unpruned), Magnitude pruning [28], SparseGPT pruning [17], Wanda pruning [46],
and the results of these pruning methods enhanced by ALS. The results show that the ALS generally
improves the performance of various pruning methods.

For LLaMA-V1 models, Magnitude pruning shows high perplexity, e.g., 42.26 for the 7B model,
reduced to 16.80 with ALS. SparseGPT performs better, with 18.35 for the 13B model, reduced to
11.87 with ALS. Wanda achieves the best results, with 13.30 for the 13B model, reduced to 12.47
with ALS.

For LLaMA-V2 and LLaMA-V3 models, ALS also reduces perplexity significantly. For instance, the
Magnitude pruning in 13B LLaMA-V2 model drops from 15.19 to 10.78, and Wanda pruning in the
8B LLaMA-V3 model from 15.01 to 12.30 with ALS.

On the OPT model, perplexity significantly increases after pruning. For instance, the 13B model
of OPT has a perplexity as high as 4.09e4 after Magnitude pruning, which remarkably reduces to
3.96e3 with ALS, demonstrating the effect of ALS in handling LLM pruning. However, there is an
example where performance does not significantly improve with ALS. For instance, the 13B model
of LLaMA-V1 has 9.90 perplexity after SparseGPT pruning, which slightly increases with ALS.

In summary, ALS significantly enhances model performance across various pruning methods by
effectively mitigating performance loss.

Varying Sparsity Rates. Table 1 presents the perplexity scores of sparse LLaMA-V2 7B and
13B models pruned by Magnitude, SparseGPT, and Wanda methods, with and without ALS, at
varying sparsity levels (20% to 70%). The results show that as sparsity increases, perplexity scores
generally deteriorate, indicating a decline in language modeling performance. However, as the
sparsity level increases, the performance gap between ALS and non-ALS methods widens, with ALS
exhibiting better performance at most sparsity levels. This suggests that ALS can help mitigate the
performance degradation caused by higher sparsity, becoming increasingly effective at maintaining
LLMs performance as the sparsity level grows.
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Table 3: Averaged accuracies (%) for zero-shot tasks at 50% sparsity rate for sparse LLaMA-V1
7B/13B/30B/65B, LLaMA-V2 7B/13B/70B, LLaMA-V3 8B and OPT-6.7B/13B .

Models LLaMA-V1 LLaMA-V2 LLaMA-V3 OPT
Method 7B 13B 30B 65B 7B 13B 70B 8B 70B 6.7B 13B
Dense 66.18 68.50 71.36 72.59 66.21 68.76 72.92 69.81 75.43 58.13 59.71
Magnitude 53.40 53.73 60.40 68.68 57.06 59.85 66.73 43.29 51.28 41.06 38.37
Magnitude w. ALS 56.28 61.21 62.61 69.42 60.09 63.39 70.28 57.43 53.64 43.31 40.92
SparseGPT 56.10 64.26 65.70 68.93 56.44 60.16 69.44 54.18 70.26 55.19 56.56
SparseGPT w. ALS 60.58 63.99 69.02 69.02 61.36 65.85 70.16 64.00 71.12 57.85 59.01
Wanda 58.87 64.74 68.54 71.71 61.88 64.48 71.87 58.12 72.25 47.81 50.46
Wanda w. ALS 61.47 64.82 69.35 71.41 62.84 66.58 71.75 62.48 73.12 47.89 50.50

Table 4: Accuracies (%) for zero-shot tasks with 50% sparsity using LLaMA-V2 family.

LLaMA-V2 Method winogrande piqa openbookqa hellaswag boolq arc_easy arc_challenge rte Mean

7B

Dense 69.06 79.11 44.20 75.98 77.74 74.49 46.25 62.82 66.21
Magnitude 63.30 73.67 38.80 65.58 62.94 57.70 37.46 57.04 57.06
Magnitude w. ALS 65.19 75.46 41.40 69.11 71.38 63.47 39.51 55.24 60.09
SparseGPT 63.14 71.71 35.60 63.91 69.05 58.29 34.98 54.87 56.44
SparseGPT w. ALS 67.96 76.39 40.00 70.52 70.98 67.97 41.13 55.96 61.36
Wanda 67.32 76.99 41.40 68.76 75.78 69.23 41.72 53.83 61.88
Wanda w. ALS 67.80 77.10 44.80 70.75 75.47 69.61 42.32 54.87 62.84

13B

Dense 72.38 80.52 45.20 79.39 80.58 77.53 49.15 65.34 68.76
Magnitude 65.27 77.20 40.60 73.01 57.68 67.17 41.89 55.96 59.85
Magnitude w. ALS 68.35 77.48 43.60 74.42 73.15 69.91 44.63 55.60 63.39
SparseGPT 67.25 75.84 41.20 69.63 68.50 63.76 38.40 56.68 60.16
SparseGPT w. ALS 71.19 78.13 44.40 74.99 81.16 69.82 43.94 63.18 65.85
Wanda 69.39 78.13 44.10 75.02 80.34 70.37 42.76 55.72 64.48
Wanda w. ALS 72.06 78.51 45.80 75.67 81.35 70.33 46.08 62.82 66.58

70B

Dense 77.98 82.70 48.80 83.80 83.79 81.06 57.34 67.87 72.92
Magnitude 73.64 79.54 44.20 79.29 71.07 74.79 50.68 60.65 66.73
Magnitude w. ALS 74.74 80.96 46.40 80.57 79.63 77.99 54.10 67.87 70.28
SparseGPT 75.37 79.38 44.80 79.88 82.81 77.02 48.38 67.87 69.44
SparseGPT w. ALS 76.72 80.36 45.20 80.09 81.56 77.86 50.17 69.31 70.16
Wanda 77.58 81.18 46.20 80.95 83.94 78.91 54.69 71.48 71.87
Wanda w. ALS 77.27 81.61 45.80 81.30 82.54 78.54 55.80 71.12 71.75

4.2 Zero-shot Tasks

In Table 3, we present the averaged accuracy performance of pruned LLaMA-V1, LLaMA-V2,
LLaMA-V3, and OPT models on seven downstream zero-shot tasks at a 50% sparsity ratio. For
detailed performance on specific tasks, please refer to Table 4, which shows improvements in most
tasks. The average accuracy across the majority of tasks demonstrates the effectiveness of ALS in
enhancing sparse large language models of any scale. Remarkably, for LLaMA3-8B, the incorporation
of ALS leads to an improvement of 14.14% and 9.87% compared to the Magnitude and SparseGPT
baselines, respectively. Similarly, for LLaMA1-13B, the addition of ALS results in an improvement
of 5.95% compared to the baselines.

The significant performance improvement of LLaMA-V3 8B may be attributed to the fact that the
new model is not well-suited for uniform pruning methods. we further use the LLaMA-V3 8B model
as an example to intuitively present the improvements brought by ALS from the perspective of the
heat map (Fig. 3 in the Appendix D). The heat map reveals that, at 50% sparsity, the redundancy
between layers of the LLaMA-V3 8B model exhibits a distinct pattern compared to other models.
The green distribution on both sides indicates that there is small redundancy between the shallow
layers and other layers. This suggests that the information captured by the middle and deep layers has
more overlap and similarity with other layers. The ALS method takes advantage of this inter-layer
redundancy pattern and apply high sparsity ratio into the layers with higher redundancy. It maximally
preserves the key information and reduces the impact of sparsification on model performance. From
the heat maps of different models in the Appendix D, it can also be observed that each model requires
a different sparsity ratio because the redundancy between its layers varies.
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Table 5: WikiText-2 perplexity of Wanda with
ALS at 50% sparsity on LLaMA-family models.

Models V1-7B V1-13B V1-30B V2-7B V2-13B
Dense 9.38 8.20 6.09 8.71 7.68
Wanda 13.30 10.90 8.74 12.31 11.21
w. ALS 12.47 10.40 8.42 11.61 9.86
w. LoRA 7.65 9.25 6.99 9.89 8.30

Table 6: Zero-shot accuracy (%) of Wanda with
ALS at 50% sparsity on LLaMA-family models.

Models V1-7B V1-13B V1-30B V2-7B V2-13B
Dense 66.18 68.50 71.36 66.21 68.76
Wanda 58.87 64.74 68.54 61.88 64.48
w. ALS 61.47 64.82 69.35 62.84 66.58
w. LoRA 71.64 66.71 71.44 65.05 67.81

Table 7: Results of feature choice from varying
component output of each layer on WikiText2
and zero-shot tasks.

Feature Choice PPL ACC
In 10.070 60.75

Out 10.012 60.56
Gate 10.030 60.76

Table 8: Impact of normalizing features and
per-layer weights for distance function on
WikiText2 and zero-shot tasks .

Distance Function PPL ACC
Vanilla 10.078 66.40

Feature-Norm 10.076 66.40
Feature-Norm+Weight-Norm 10.070 68.11

4.3 Ablation Study

In this part, we examine the impact of various components within the ALS framework and compare
it with LoRA Fine-tuning, specifically focusing on its bound setting, standardization on weight or
feature, granularity choice, which can be found in Appendix. E.1, feature choice and robustness to
calibration samples. All experimental setups are based on the LLaMA2-13B model with Wanda
pruning and ALS.

Comparison with LoRA Fine-tuning. Our experiments in Table 5 and Table 6 demonstrate the
substantial benefits of combining Wanda+ALS with LoRA fine-tuning across the LLaMA model
family. The improvements are most striking in the LLaMA-V1 7B model, which showed a dramatic
reduction in perplexity by 4.82 alongside a 10.17% increase in accuracy. Larger V1 models also
benefited, with the 30B and 13B variants showing perplexity reductions of 1.43 and 1.15, coupled
with accuracy gains of 2.09% and 1.89% respectively. The LLaMA-V2 models exhibited similar
positive trends, with both 7B and 13B versions showing perplexity improvements and accuracy
increases. These impressive results were achieved using just 2000 C4 samples for LoRA fine-tuning
in a zero-shot setting, highlighting the method’s efficiency and effectiveness even with limited training
data unrelated to the evaluation tasks.

Feature Selection and Normalization. Table 7 (a) compares the performance of input, output, and
gate features in capturing layer independence, with output features achieving slightly lower perplexity.
Table 8 (b) demonstrates the significant impact of jointly normalizing features and per-layer weights.
Applying this normalization strategy yields a substantial improvement in accuracy, increasing from
66.40% to 68.11%, while also reducing perplexity from 10.078 to 10.070.

Comparison with OWL. We compared the performance of our proposed method with the OWL
method on a set of benchmark datasets. The results are summarized in Table 9. We adopted the
optimal parameter settings described in the OWL paper. Across all tested configurations, our method
consistently achieved lower values compared to OWL, demonstrating its superior performance.
Specifically, in the unstructured 50% setting, Wanda with ALS outperformed OWL by a margin of
0.25 units. Furthermore, in the structured pruning settings of 2:4 and 4:8, the advantage of Wanda
with ALS increased to 0.95 and 0.44, respectively.

N:M Results. We also investigated the performance of our method in the N:M setting, where N
features are selected fromM available features. The results are shown in Table 9. Similarly, for OWL,
we used the optimal parameter combination reported in their paper. Across all N:M configurations,
ALS consistently achieved lower values compared to OWL. As the number of selected features N
increased, both methods exhibited performance improvements, but the advantage of ALS became
more pronounced. For instance, in the 2:4 case, ALS outperformed OWL by a margin of 0.95 units,
and this gap further widened to 1.82 in the 4:8 case. Overall, OWL is a method that is highly sensitive
to parameter settings, and obtaining the optimal parameters may require dozens of experiments to
determine the best combination. Moreover, there is no clear theoretical analysis explaining why such
a combination should be used.

9



0 50 100 150 200 250 300
Calibration Data

9.86

9.88

9.9

9.92

9.94

9.96

W
ik

ite
xt

2 
P

er
pl

ex
ity

0.45-0.55 0.30-0.70 0.15-0.85 0.0-1.0
Boundes

101

102

103

W
ik

ite
xt

2 
P

er
pl

ex
ity

1200 1220 1240 1260 1280 1300 1320
Model Redundancy

101

102

103

W
ik

ite
xt

2 
P

er
pl

ex
ity

Figure 2: (a) Calibration data experiment: PPL decreases slightly with more data. (b) Pruning
bounds: Model performance remains relatively stable between 30% and 70% bounds. (c) Model
redundancy: Higher RM metric, lower performance.

Table 9: WikiText-2 perplexity performance on
LLaMA-V2-13B at 50% sparsity rates.

Ratio Wanda w. ALS Wanda w. OWL
50% 9.86 10.11
2:4 15.52 16.47
4:8 11.65 12.09

Table 10: Pruning speed of various methods
with ALS on LLaMA-V2-7B.

ALS
Base Method RM (s) LP (ms) Total (min)
Magnitude (1.62s) 88.59 169 1.51
SparseGPT (1058s) 91.32 158 19.16
Wanda (199s) 89.47 160 4.81

Calibration Data. In Fig. 2 (a), we present the performance of pruning methods with different
numbers of calibration samples. We use the size of 2, 4, 8, 16, 32, 64, 128, 256. Although
this experiment reveals that the model’s performance improves with an increase in the size of the
calibration data, the improvement is quite limited. Even when comparing the scales of 2 and 256
in calibration samples, the perplexity decreases by only 0.11. These results further highlight the
robustness of ALS.

Boundes. In Fig. 2 (b) demonstrates the effect of pruning bounds on the performance of the LLaMA-
V2 13B model. When the pruning bounds are set too high (e.g., 0.0-1.0), the model’s performance
significantly deteriorates from 101to103 compared with 0.3-0.7, indicating that aggressive pruning
may impair the model’s representational capacity. However, when the pruning bounds are set between
30% and 70%, the model’s performance remains nearly unaffected.

Computation efficiency. As shown in Table 10, our ALS involves two computational phases: the
Redundancy Metric (RM) calculation, which consistently takes approximately 90 seconds across all
methods, and the Linear Programming (LP) solution, requiring roughly 160-170 milliseconds. The
total processing time varies notably depending on the base pruning method employed: Magnitude
pruning, requiring just 1.62 seconds for its base operation, achieves the fastest total completion
time of 1.51 minutes when combined with ALS. Wanda, with its base pruning time of 199 seconds,
completes the entire process in 4.81 minutes, while SparseGPT, requiring 1058 seconds for its base
operation, takes 19.16 minutes in total. Compared to BESA [57] with 4.5 hours for sparsity allocation
and pruning, our approach is notably faster, completing the process in minutes rather than hours.

5 Conclusion

In this work, we present Adaptive Layer Sparsity (ALS), a novel approach for optimizing LLMs
through the efficient allocation of sparsity across layers. By minimizing inter-layer redundancy, ALS
achieves significant model compression while maintaining performance, as demonstrated through
extensive experiments on diverse LLMs and tasks. We hope ALS offers valuable insights and practical
tools for deploying LLMs under limited computational resources, and that our work may shed light
on the role of sparsity in LLMs and its potential for model optimization. Future research will explore
the relationship between sparsity allocation and individual weight importance, and investigate the
integration of dynamic sparsity allocation with pruning metrics. By pushing the boundaries of model
compression and efficiency, we aim to enhance the development of more capable and accessible
LLMs for diverse applications.
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Appendix

A Limitation: Computational Complexity of Intra-Layer Component
Independence Calculation

In the ALS method, a key step is computing the independence matrix between layers. While
calculating the matrix at the layer level for a 70 billion parameter model with 80 layers requires only
an 80× 80 RM matrix, including intra-layer components increases the matrix size to 7× 80× 7× 80,
leading to 49 times more computational time and resources.

• High Computational Complexity: The increased matrix size results in exponential growth
in computation and resource consumption.

• Excessive Memory Usage: High-dimensional matrix computations require substantial
memory, potentially exceeding hardware capacities.

Solutions

• Hybrid Solution with C++: Store intermediate data locally and use C++ to handle calcula-
tions and solve the linear programming problem. This approach can be up to 50 times faster
than using Python alone.

• Alternatively, calculate sparsity ratios for each layer, determine the parameters to retain,
and use these as the target size for further linear programming. This approach requires only
an 80 × 80 RM matrix and 7 additional 7 × 7 matrices, without significantly increasing
computation time.

Hybrid Solution with C++ is a preferred solution because it will keep most of independent components
to maintain the model performance after pruning.

B Detailed Formulae Derivation

This section provides a detailed derivation of the key mathematical formulae used in the paper.

B.1 Detailed Derivation of the Mutual Information Approximation

The objective of LLMs is to minimize the reconstruction error between the outputs of the sparse and
dense models. We start by defining the mutual information between the outputs of different layers
to quantify the redundancy within the model. Mutual information I(X;Y ) measures the amount of
information obtained about one random variable X through observing the other random variable
Y . It quantifies the reduction in uncertainty of X due to the knowledge of Y . This measure helps
identify layers with high redundancy, which can be pruned to achieve a more efficient representation.

The mutual information I (Xi;Xj) between two layers i and j is given by:

I (Xi;Xj) = H (Xi) +H (Xj)−H (Xi, Xj) (6)

where H (Xi) and H (Xj) are the marginal entropies, and H (Xi, Xj) is the joint entropy. The
entropy H(X) measures the average amount of information or uncertainty in a random variable X .
These entropies are defined as:

H (Xi) = −
∫
p (xi) log p (xi) dxi (7)

H (Xj) = −
∫
p (xj) log p (xj) dxj (8)

H (Xi, Xj) = −
∫
p (xi, xj) log p (xi, xj) dxi dxj (9)

The mutual information can also be expressed in terms of the probability density functions as:

I (Xi;Xj) =

∫
p (xi, xj) log

p (xi, xj)

p (xi) p (xj)
dxi dxj (10)
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To approximate these values, we use Monte Carlo sampling. Given N i.i.d. samples
x(1),x(2), . . . ,x(N) drawn from the joint distribution p(xi, xj), the mutual information can be
approximated as:

Î (Xi;Xj) ≈
1

N

N∑
n=1

log
p
(
x
(n)
i , x

(n)
j

)
p
(
x
(n)
i

)
p
(
x
(n)
j

) (11)

Using kernel density estimation to approximate the probability densities. For instance:

p̂(y) =
1

Nhd

N∑
i=1

K

(
y − yi

h

)
(12)

Here, K(·) is the kernel function, h is the bandwidth parameter, and d is the dimension of y. Kernel
density estimation is a non-parametric method for estimating the probability density function p(y) of
a random vector y, given a set of i.i.d. samples Y = {y1,y2, . . . ,yN} drawn from p(y). Commonly
used kernels include the Gaussian and Epanechnikov kernels.

To compute the marginal and joint probability density functions of the samples’ outputs at the i-th
and j-th layers, we apply kernel density estimation:

p̂ (xi) =
1

Nhdi
i

N∑
n=1

K

(
xi − x

(n)
i

hi

)
(13)

p̂ (xj) =
1

Nh
dj

j

N∑
n=1

K

(
xj − x

(n)
j

hj

)
(14)

p̂ (xi,xj) =
1

Nhdi
i h

dj

j

N∑
n=1

K

(
xi − x

(n)
i

hi

)
K

(
xj − x

(n)
j

hj

)
(15)

where di and dj are the dimensions of xi and xj , respectively.

To derive the mutual information approximation, let’s start with the Monte Carlo approximation of
mutual information (Equation 7). Substituting the kernel density estimates (Equations 9-11) into
Equation 7, we get:

Î (Xi;Xj) ≈
1

N

N∑
n=1

log

∑N
k=1K

(
x
(n)
i −x

(k)
i

hi

)
K

(
x
(n)
j −x

(k)
j

hj

)
(∑N

k=1K

(
x
(n)
i −x

(k)
i

hi

))(∑N
k=1K

(
x
(n)
j −x

(k)
j

hj

)) (16)

Now, consider the feature matrix inner product approximation for the kernel function. Let:

K

(
x
(n)
i − x

(k)
i

hi

)
≈
∥∥∥x(n)T

i x
(k)
i

∥∥∥
F

(17)

K

(
x
(n)
j − x

(k)
j

hj

)
≈
∥∥∥x(n)T

j x
(k)
j

∥∥∥
F

(18)

where ∥ · ∥F denotes the Frobenius norm.

Therefore, the joint kernel function can be approximated by:

K
((

x
(n)
i ,x

(n)
j

)
,
(
x
(k)
i ,x

(k)
j

))
≈
∥∥∥x(n)T

i x
(n)
j

∥∥∥
F

(19)

Substituting these approximations (Equations 13-15) back into the mutual information formula
(Equation 12), we get:

Î (Xi;Xj) ≈
1

N

N∑
n=1

log

∥∥∥x(n)T
i x

(n)
j

∥∥∥
F∥∥∥x(n)T

i x
(n)
i

∥∥∥
F

∥∥∥x(n)T
j x

(n)
j

∥∥∥
F

(20)

This leads to the final expression for the mutual information approximation using Monte Carlo
sampling and kernel density estimation with the feature matrix inner product approximation.
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B.2 Redundancy Metric Derivation

Since mutual information has no general upper bound, its upper limit depends on the entropy of either
Xi or Xj , which represent the i-th and j-th layer output of a batch input. To address this, we can use
functions to transform the range of mutual information, ensuring a bounded and more interpretable
metric. For instance, using eÎ(Xi;Xj) or a Gaussian function, we can redefine the measure as follows.
Considering

∥∥xT
i xj

∥∥
F
eÎ(Xi;Xj) for a batch of inputs, we can remove the sum and 1

N , then obtain:

∥∥XT
i Xj

∥∥
F
· eÎ(Xi;Xj) =

∥∥XT
i Xj

∥∥2
F∥∥XT

i Xi

∥∥
F

∥∥XT
j Xj

∥∥
F

(21)

To derive the Redundancy Metric (RM) formula, we consider that a batch is a set of samples
processed simultaneously by the neural network. Because a batch is input simultaneously, we remove
the summation and division by N , obtaining the following formula:

RM (Xi,Xj) =

∥∥XT
i Xj

∥∥2
F∥∥XT

i Xi

∥∥
F

∥∥XT
j Xj

∥∥
F

(22)

In this formula, RM(·) ∈ [0, 1], where a value close to 0 indicates high independence between the
layers (low redundancy), and a value close to 1 indicates high redundancy (low independence).

B.3 Constraints and Objective Functions

Our redundancy metric is used to guide the allocation of sparsity ratios across layers. We construct a
redundancy matrix Ψ ∈ RL×L where each element ψij represents the redundancy between layers i
and j, computed using Equation 18. The overall redundancy of each layer is:

ρi =

L∑
j=1

ψij − 1 (23)

A lower ρi indicates higher independence. Using a monotonically decreasing function, we define the
importance factor ωi as:

ωi = e−
1
µρi (24)

where µ is a hyperparameter controlling the decay rate.

Our objective is to maximize the sum of the weighted sparsity ratios across all layers, subject to a
model size constraint B. The sparsity ratio qi ∈ [0, 1] represents the fraction of weights to be pruned
in the i-th layer. The optimization problem can be formulated as:

maximizeq
L∑

i=1

 qi
L− i+ 1

L∑
j=i

ωj

 (25)

subject to
L∑

i=1

S(qi) ≤ B (26)

0 ≤ qi ≤ 1, ∀i ∈ {1, 2, . . . , L} (27)

where S(qi) represents the model size of the i-th layer under sparsity ratio qi, and q =
[q1, q2, . . . , qL]

T is the vector of sparsity ratios for all L layers. The objective function (Equa-
tion 22) aims to allocate higher sparsity ratios to layers with higher importance factors. The constraint
(Equation 23) ensures that the total model size after pruning does not exceed the budget B.

C More Experimental Results

C.1 Zero-Shot results Details

Results in LLaMA-V1,V2,V3 and OPT series at 50% Sparsity
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Table 11: Accuracies (%) for zero-shot tasks with 50% sparsity using LLaMA-V1 family.
Llama V1 Method winogrande piqa openbookqa hellaswag boolq arc_easy arc_challenge rte Mean

7B

Dense 70.09 79.16 44.40 76.18 75.11 72.98 44.71 66.79 66.18
Magnitude 59.35 71.38 35.00 60.89 54.56 54.38 37.12 54.51 53.40
Magnitude w. ALS 61.25 74.16 36.60 65.62 59.82 59.98 38.31 54.51 56.28
SparseGPT 63.06 73.61 37.40 64.62 64.43 55.68 36.60 53.43 56.10
SparseGPT w. ALS 66.77 76.33 39.00 68.83 74.28 64.84 39.59 54.87 60.19
Wanda 66.38 74.76 39.00 68.92 70.70 61.74 38.91 50.54 58.87
SparseGPT w. ALS 66.30 77.26 38.60 69.59 73.70 65.66 40.02 60.65 61.47

13B

Dense 72.77 80.14 44.80 79.06 77.89 74.79 47.78 70.76 68.50
Magnitude 63.38 70.95 39.80 59.69 54.95 54.29 35.84 50.90 53.73
Magnitude w. ALS 68.04 76.39 42.00 71.10 70.70 63.81 40.27 57.40 61.21
SparseGPT 70.96 76.66 45.20 73.72 74.89 67.47 42.75 62.45 64.26
SparseGPT w. ALS 71.35 77.31 43.60 73.59 74.19 67.64 42.49 61.73 63.99
Wanda 71.51 77.91 43.60 74.13 75.96 69.65 43.77 61.37 64.74
SparseGPT w. ALS 71.35 77.37 43.00 74.34 75.17 69.70 44.45 63.18 64.82

30B

Dense 75.85 82.26 48.40 82.63 82.72 78.96 52.90 67.15 71.36
Magnitude 66.54 75.68 41.20 67.28 64.31 70.75 47.27 50.18 60.40
Magnitude w. ALS 69.93 77.04 41.60 68.67 74.19 72.52 46.76 50.18 62.61
SparseGPT 71.03 77.80 42.40 76.06 77.89 73.04 47.44 59.57 65.92
SparseGPT w. ALS 74.51 78.78 45.40 78.54 80.43 77.61 52.40 64.62 69.02
Wanda 74.51 79.60 47.40 79.31 80.64 77.57 51.54 57.76 68.54
SparseGPT w. ALS 73.64 80.20 46.80 79.50 81.28 78.37 53.67 61.37 69.35

65B

Dense 77.43 82.26 47.00 84.14 84.86 79.80 55.55 69.68 72.59
Magnitude 74.66 79.43 48.00 79.90 79.63 73.65 51.71 62.45 68.68
Magnitude w. ALS 74.98 80.36 48.40 79.91 80.92 74.62 50.85 65.34 69.42
SparseGPT 74.98 81.01 44.40 80.19 83.46 75.55 48.63 63.18 68.93
SparseGPT w. ALS 73.95 80.90 44.80 80.35 83.33 74.03 49.06 65.70 69.02
Wanda 77.19 80.69 48.60 81.72 84.71 77.56 52.47 70.40 71.71
Wanda w. ALS 76.40 81.39 47.00 81.68 84.68 76.94 52.39 70.76 71.41

Table 12: Accuracies (%) for zero-shot tasks with 50% sparsity using LLaMA-V2 family.
Llama V2 Method winogrande piqa openbookqa hellaswag boolq arc_easy arc_challenge rte Mean

7B

Dense 69.06 79.11 44.20 75.98 77.74 74.49 46.25 62.82 66.21
Magnitude 63.30 73.67 38.80 65.58 62.94 57.70 37.46 57.04 57.06
Magnitude w. ALS 65.19 75.46 41.40 69.11 71.38 63.47 39.51 55.24 60.09
SparseGPT 63.14 71.71 35.60 63.91 69.05 58.29 34.98 54.87 56.44
SparseGPT w. ALS 67.96 76.39 40.00 70.52 70.98 67.97 41.13 55.96 61.36
Wanda 67.32 76.99 41.40 68.76 75.78 69.23 41.72 53.83 61.88
SparseGPT w. ALS 67.80 77.10 44.80 70.75 75.47 69.61 42.32 54.87 62.84

13B

Dense 72.38 80.52 45.20 79.39 80.58 77.53 49.15 65.34 68.76
Magnitude 65.27 77.20 40.60 73.01 57.68 67.17 41.89 55.96 59.85
Magnitude w. ALS 68.35 77.48 43.60 74.42 73.15 69.91 44.63 55.60 63.39
SparseGPT 67.25 75.84 41.20 69.63 68.50 63.76 38.40 56.68 60.16
SparseGPT w. ALS 71.19 78.13 44.40 74.99 81.16 69.82 43.94 63.18 65.85
Wanda 69.39 78.13 44.10 75.02 80.34 70.37 42.76 55.72 64.48
SparseGPT w. ALS 72.06 78.51 45.80 75.67 81.35 70.33 46.08 62.82 66.58

70B

Dense 77.98 82.70 48.80 83.80 83.79 81.06 57.34 67.87 72.92
Magnitude 73.64 79.54 44.20 79.29 71.07 74.79 50.68 60.65 66.73
Magnitude w. ALS 74.74 80.96 46.40 80.57 79.63 77.99 54.10 67.87 70.28
SparseGPT 75.37 79.38 44.80 79.88 82.81 77.02 48.38 67.87 69.44
SparseGPT w. ALS 76.72 80.36 45.20 80.09 81.56 77.86 50.17 69.31 70.16
Wanda 77.58 81.18 46.20 80.95 83.94 78.91 54.69 71.48 71.87
SparseGPT w. ALS 77.27 81.61 45.80 81.30 82.54 78.54 55.80 71.12 71.75

Table 13: Accuracies (%) for zero-shot tasks with 50% sparsity using LLaMA-V3.

Llama V3
Method winogrande piqa openbookqa hellaswag boolq arc_easy arc_challenge rte Mean
Dense 73.01 80.52 44.80 79.15 81.19 77.61 53.24 68.95 69.81

8B

Magnitude 52.72 59.90 35.20 29.78 42.84 43.01 29.78 53.07 43.29
Magnitude w. ALS 65.35 70.95 37.00 65.50 68.90 59.93 37.29 54.51 57.43
SparseGPT 64.17 71.11 35.80 46.52 69.02 58.42 34.64 53.79 54.18
SparseGPT w. ALS 70.72 75.14 41.00 71.14 80.52 70.08 45.31 58.12 64.00
Wanda 66.93 73.39 37.20 47.03 75.90 65.66 39.25 59.57 58.12
Wanda w. ALS 70.17 74.97 39.20 67.65 79.14 67.47 42.41 58.84 62.48
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Table 14: Accuracies (%) for zero-shot tasks with 50% sparsity using OPT family.
OPT Method winogrande piqa openbookqa hellaswag boolq arc_easy arc_challenge rte Mean

6.7B

Dense 66.19 76.50 38.20 67.91 66.15 60.10 34.73 55.23 58.13
Magnitude 50.67 63.17 29.60 32.41 38.01 38.09 23.81 52.71 41.06
Magnitude w. ALS 52.41 64.69 30.00 39.85 40.86 41.46 26.28 50.90 43.31
SparseGPT 63.69 74.86 36.60 61.52 62.88 56.73 31.06 54.15 55.19
SparseGPT w. ALS 65.27 76.77 37.40 67.17 65.84 60.23 34.56 55.60 57.85
Wanda 58.17 64.04 29.60 47.17 60.86 46.17 25.94 50.54 47.81
SparseGPT w. ALS 56.83 65.02 29.00 48.35 60.89 46.13 25.68 51.26 47.89

13B

Dense 67.88 76.77 39.00 69.84 68.87 61.87 35.67 57.76 59.71
Magnitude 48.62 53.26 25.60 26.92 45.02 30.68 24.15 52.71 38.37
Magnitude w. ALS 51.14 54.90 25.60 26.43 61.53 30.98 25.17 51.63 40.92
SparseGPT 63.62 74.27 38.40 64.32 62.36 59.43 34.47 55.60 56.56
SparseGPT w. ALS 65.27 76.77 39.00 69.85 65.84 62.08 35.84 57.40 59.01
Wanda 59.67 65.28 30.70 50.63 62.05 48.85 28.93 57.56 50.46
SparseGPT w. ALS 60.59 65.94 29.80 50.84 61.96 47.83 29.33 57.74 50.50

Results in LLaMA-V2 7B/13B at various sparsity level

Table 15: LLaMA-V2 13B at various sparsity level
winogrande piqa openbookqa hellaswag boolq arc_easy arc_challenge rte mean

70%

Magnitude 49.49 53.21 26.60 29.57 38.72 32.20 24.57 52.71 38.38
Magnitude w. ALS 53.51 62.89 30.40 40.81 60.49 41.58 25.85 52.71 46.03
SparseGPT 59.27 63.71 35.20 43.81 64.07 48.44 26.88 52.71 49.26
SparseGPT w. ALS 60.14 62.46 33.60 43.49 65.60 47.10 29.44 53.43 49.41
Wanda 51.38 57.18 29.80 31.65 52.69 37.21 20.73 53.07 41.71
SparseGPT w. ALS 52.96 59.14 28.80 31.85 59.30 36.70 22.18 52.71 42.96

60%

Magnitude 57.22 70.84 33.00 61.11 47.55 51.94 32.08 52.71 50.81
Magnitude w. ALS 64.56 73.12 40.20 65.75 68.29 57.49 36.43 56.32 57.77
SparseGPT 68.43 75.03 40.60 66.70 76.33 62.08 38.14 58.12 60.68
SparseGPT w. ALS 67.96 73.56 40.80 66.50 73.91 63.76 38.57 53.43 59.81
Wanda 67.96 76.28 40.20 65.05 78.32 65.45 40.27 56.68 61.27
SparseGPT w. ALS 69.69 74.37 41.20 65.43 77.83 63.30 39.33 56.68 60.98

50%

Magnitude 65.27 77.20 40.60 73.01 57.68 67.17 41.89 55.96 59.85
Magnitude w. ALS 68.35 77.48 43.60 74.42 73.15 69.91 44.63 55.60 63.39
SparseGPT 67.25 75.84 41.20 69.63 68.50 63.76 38.40 56.68 60.16
SparseGPT w. ALS 71.19 78.13 44.40 74.99 81.16 69.82 43.94 63.18 65.85
Wanda 69.39 78.13 44.10 75.02 80.34 70.37 42.76 55.72 64.48
SparseGPT w. ALS 72.06 78.51 45.80 75.67 81.35 70.33 46.08 62.82 66.58

40%

Magnitude 70.88 78.95 45.00 77.33 74.22 74.45 47.18 59.21 65.90
Magnitude w. ALS 70.24 78.67 45.40 77.72 76.94 75.29 48.38 54.87 65.94
SparseGPT 72.38 79.82 46.00 77.77 78.75 73.23 48.46 58.48 66.86
SparseGPT w. ALS 71.90 77.53 46.40 77.68 79.30 73.27 47.10 59.93 66.64
Wanda 72.22 79.54 45.60 78.55 80.92 73.70 49.06 58.48 67.26
SparseGPT w. ALS 71.98 78.29 46.20 78.57 81.22 73.65 49.06 59.21 67.27

30%

Magnitude 71.43 80.31 45.00 78.89 79.82 76.14 49.15 60.29 67.63
Magnitude w. ALS 71.82 78.78 45.80 78.98 79.20 76.47 49.15 58.48 67.34
SparseGPT 73.09 79.82 45.60 78.96 79.91 76.14 50.09 62.09 68.21
SparseGPT w. ALS 72.77 78.78 46.40 78.96 79.97 75.88 49.23 61.73 67.97
Wanda 71.82 79.60 46.20 79.20 80.64 76.09 50.26 60.65 68.06
SparseGPT w. ALS 71.59 79.11 46.40 79.07 80.86 75.55 49.91 61.01 67.94
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Table 16: LLaMA-V2 7B at various sparsity level
winogrande piqa openbookqa hellaswag boolq arc_easy arc_challenge rte mean

70%

Magnitude 49.17 51.74 28.00 26.31 37.95 27.74 27.05 53.07 37.63
Magnitude w. ALS 49.57 55.55 27.00 28.39 44.65 34.39 25.34 51.26 39.52
SparseGPT 57.46 60.28 29.00 37.73 62.66 39.98 25.34 53.07 45.69
SparseGPT w. ALS 55.64 60.83 31.40 39.03 62.54 44.32 24.74 56.32 46.85
Wanda 51.70 54.52 26.60 30.13 38.93 31.57 20.90 52.71 38.38
SparseGPT w. ALS 50.20 56.37 28.60 30.01 48.10 32.37 21.76 52.71 40.02

60%

Magnitude 53.20 62.46 32.60 42.93 47.71 44.23 29.44 50.90 45.43
Magnitude w. ALS 58.01 66.81 35.20 51.70 63.09 51.89 31.74 58.12 52.07
SparseGPT 63.69 71.49 38.40 60.21 67.86 60.23 36.09 52.71 56.33
SparseGPT w. ALS 64.25 70.95 36.00 60.71 64.59 60.98 35.41 53.43 55.79
Wanda 62.51 72.20 37.60 57.45 68.81 60.27 34.81 53.79 55.93
SparseGPT w. ALS 63.38 71.93 38.60 57.72 63.64 59.93 34.64 54.51 55.54

50%

Magnitude 63.30 73.67 38.80 65.58 62.94 57.70 37.46 57.04 57.06
Magnitude w. ALS 65.19 75.46 41.40 69.11 71.38 63.47 39.51 55.24 60.09
SparseGPT 63.14 71.71 35.60 63.91 69.05 58.29 34.98 54.87 56.44
SparseGPT w. ALS 67.96 76.39 40.00 70.52 70.98 67.97 41.13 55.96 61.36
Wanda 67.32 76.99 41.40 68.76 75.78 69.23 41.72 53.83 61.88
SparseGPT w. ALS 67.80 77.10 44.80 70.75 75.47 69.61 42.32 54.87 62.84

40%

Magnitude 69.14 76.99 42.60 73.12 70.55 69.07 43.17 55.24 62.48
Magnitude w. ALS 68.82 76.82 44.20 74.64 75.87 71.25 45.73 60.29 64.70
SparseGPT 70.64 78.46 43.40 74.28 76.91 70.79 43.94 54.51 64.12
SparseGPT w. ALS 70.17 77.20 44.00 74.81 76.61 71.00 44.03 54.51 64.04
Wanda 69.30 79.33 44.20 74.35 75.72 71.89 45.82 54.87 64.43
SparseGPT w. ALS 68.75 77.53 44.60 74.65 76.12 72.18 45.22 55.23 64.29

30%

Magnitude 70.64 77.48 46.40 76.10 74.25 73.49 45.90 57.40 65.21
Magnitude w. ALS 70.40 78.40 44.40 76.26 77.09 73.91 47.35 59.21 65.88
SparseGPT 69.22 78.40 45.20 75.81 77.13 72.77 45.48 53.43 64.68
SparseGPT w. ALS 69.38 77.97 44.80 75.65 76.97 73.06 45.90 54.15 64.74
Wanda 68.51 78.24 45.40 76.11 77.28 73.11 46.50 55.96 65.14
SparseGPT w. ALS 68.51 78.89 44.80 76.10 77.16 73.57 45.99 58.48 65.44

D Visualization of Correlation Matrices

In this section, we present the visualization of correlation matrices obtained by solving the problem
under different experimental settings. Additionally, we provide the numerical results of the Sparse
Ratio Allocation. The RM heat maps are different with different models.

D.1 Visualization of RM Matrices

50% sparsity in LLAMA-V1/V2/V3 family.
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Figure 3: 50% sparsity in LLAMA-V1/V2/V3 family.

Various sparsity in LLAMA-V2 7B/13B

20



LLaMA-V2 7B, Sparsity 0.3

1 6 11 16 21 26 31

1

6

11

16

21

26

31

LLaMA-V2 7B, Sparsity 0.4

1 6 11 16 21 26 31

1

6

11

16

21

26

31

LLaMA-V2 7B, Sparsity 0.5

1 6 11 16 21 26 31

1

6

11

16

21

26

31

LLaMA-V2 7B, Sparsity 0.6

1 6 11 16 21 26 31

1

6

11

16

21

26

31

LLaMA-V2 7B, Sparsity 0.7

1 6 11 16 21 26 31

1

6

11

16

21

26

31

LLaMA-V2 13B, Sparsity 0.3

1 6 11 16 21 26 31 36

1

6

11

16

21

26

31

36

LLaMA-V2 13B, Sparsity 0.4

1 6 11 16 21 26 31 36

1

6

11

16

21

26

31

36

LLaMA-V2 13B, Sparsity 0.5

1 6 11 16 21 26 31 36

1

6

11

16

21

26

31

36

LLaMA-V2 13B, Sparsity 0.6

1 6 11 16 21 26 31 36

1

6

11

16

21

26

31

36

LLaMA-V2 13B, Sparsity 0.7

1 6 11 16 21 26 31 36

1

6

11

16

21

26

31

36

0.2

0.4

0.6

0.8

1

Figure 4: various sparsity in LLAMA-V2 7B/13B family.

D.2 Ratio allocation
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Figure 5: The sparsity ratio allocation in 50% sparsity in LLAMA-V1/V2/V3 family.
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D.3 Ratio allocation
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Figure 6: The sparsity ratio allocation in various sparsity in LLAMA-V2 7B/13B family.

E Extra Figures and Explanations

E.1 Experimental Environment and Hyperparameters

Granularity. The granularity for linear optimization results is set to 0.5%, meaning the sparsity
percentages can only have decimal places of 0.5% or 0.0%. The experiment is based on LLaMA-V2
13B, this study in Fig 7 examines the impact of granularity on perplexity (PPL) across selected values.
Initially, PPL remains relatively constant at 10.07 for granularities of 0.1 and 0.5. It then decreases
to 9.86 at a granularity of 1 and further to 9.67 at a granularity of 5. However, beyond this point,
the smoothed curve indicates a subsequent rise in PPL, suggesting that excessively high granularity
may negatively impact model performance. This analysis highlights a critical balance in optimizing
granularity to minimize PPL and enhance model accuracy and efficiency.

Environment. All pruning experiments are performed on dual NVIDIA A100 GPUs with 80GB
memory. However, our ALS method mainly runs on CPU, while the baseline methods Wanda,
SparseGPT, and Magnitude require GPU. The CPU used is an AMD EPYC™ 9554 64-core processor.

Hyperparameters We set weight and feature normalization, calibration data= 2, feature selection=
in, granularity=0.05, boundes= 0.3-0.7 for 3070% sparsity and 0.1-0.3 for 20% sparsity.
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Figure 7: The granularity experiment in LLAMA-V2 7B.
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E.2 Ratio allocation

Figure 8: The comparison of decreasing function
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E.3 Error Bar

In this subsection, we present LLaMA-V2 family error bar in 50% sparsity. The standard deviations
are runing multiple experiments and get from the EleutherAI LM Harness [47] package.

Table 17: Standard Deviations for Zero-Shot Tasks with 50% Sparsity using LLaMA-V2 Family
(Scaled by 100).

Llama V2 Method winogrande piqa openbookqa hellaswag boolq arc_easy arc_challenge rte

7B

Magnitude 1.3804 1.0545 1.8664 0.4969 0.8709 1.0100 1.3787 2.9974
Magnitude w. ALS 1.3692 1.0875 1.9436 0.4987 0.8575 0.9715 1.3952 2.9974
SparseGPT 1.3308 1.0099 2.0272 0.4989 0.7751 0.9426 1.4125 3.0096
SparseGPT w. ALS 1.3238 1.0771 1.9966 0.4990 0.7645 0.9346 1.4131 2.9953
Wanda 1.3262 1.0047 2.0395 0.4988 0.7765 0.9430 1.4200 2.9882
Wanda w. ALS 1.3285 1.0625 2.0144 0.4989 0.7700 0.9419 1.4206 2.9406

13B

Magnitude 1.3540 1.0593 1.9920 0.4956 0.8702 1.0098 1.3831 3.0092
Magnitude w. ALS 1.3107 1.0283 1.9874 0.4988 0.8575 0.9350 1.4206 2.9974
SparseGPT 1.2759 0.9869 2.0848 0.4974 0.7584 0.9152 1.4426 2.9148
SparseGPT w. ALS 1.2707 1.0077 1.9966 0.4990 0.7645 0.9346 1.4426 2.9256
Wanda 1.2686 0.9679 2.0951 0.4964 0.7474 0.9116 1.4491 2.9308
Wanda w. ALS 1.2707 0.9956 2.0144 0.4969 0.7556 0.8997 1.4475 2.9033

70B

Magnitude 1.2224 0.9494 2.1408 0.4864 0.7044 0.8752 1.4611 2.9148
Magnitude w. ALS 1.2224 0.9494 2.1408 0.4864 0.7044 0.8752 1.4611 2.9148
SparseGPT 1.2173 0.9346 2.1236 0.4878 0.6499 0.8407 1.4581 2.9033
SparseGPT w. ALS 1.2173 0.9346 2.1236 0.4878 0.6499 0.8407 1.4581 2.9033
Wanda 1.1878 0.9298 2.1613 0.4838 0.6216 0.8232 1.4610 2.7073
Wanda w. ALS 1.1878 0.9298 2.1613 0.4838 0.6216 0.8232 1.4610 2.7073

Figure 9: The error bar in 50% sparisity experiment in LLAMA-V2 7B.

24



Figure 10: The error bar in 50% sparisity experiment in LLAMA-V2 13B.

Figure 11: The error bar in 50% sparisity experiment in LLAMA-V2 70B.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See abstract and introduction. See abstract and introduction. The main claims
made in the abstract and introduction accurately reflect the paper’s contributions and scope,
providing a clear overview of the research objectives and findings.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Appendix A. Our paper discusses the limitations of the work performed
by the authors, providing insights into potential weaknesses and areas for improvement.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: Our paper does not include theoretical results, and therefore does not provide
assumptions or proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Experiment. Our paper fully discloses all the information needed to
reproduce the main experimental results, including detailed descriptions of the experimental
setup, parameters, and methodologies used, which are essential for verifying the main claims
and conclusions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our paper provides open access to the data and code, along with sufficient
instructions in the supplemental material to enable others to faithfully reproduce the main
experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:[Yes]

Justification: See Experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Appendix E.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [No]
Justification: NO.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: Only technical reports.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [No]
Justification: No.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: No.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification: NO
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NO.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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