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ABSTRACT

This paper introduces a novel regularization based on KL-divergence and cross-
entropy for imbalance node classification via Graph neural networks. We evaluate
the performance of our approach on several benchmark datasets and compare it
with state-of-the-art methods. The experimental results demonstrate the effective-
ness of our proposed method in addressing imbalance node classification tasks.

1 INTRODUCTION AND RELATED WORK

Graph neural networks (GNNs) have emerged as a powerful tool for learning from graph-structured
data. They have been successfully applied to various tasks, such as node classification, link pre-
diction, and graph classification. However, in many real-world graphs, nodes are inherently class-
imbalanced. This imbalance can lead to the GNNs being biased towards major classes, Park et al.
(2022); Song et al. (2022), and the traditional GNN models underperformed. In this work, we ad-
dress imbalance node classification, proposing a straightforward approach that seamlessly comple-
ments existing methods. We introduce a regularization based on KL divergence and cross-entropy.
This regularization strategy is inspired by the insight that the underrepresented class samples are
more valuable and should be emphasized during the learning process.

In recent years, significant research has addressed the challenge of imbalance node classification in
graph neural networks (GNNs). We review the existing data-level and algorithm-level methods and
focus on loss function engineering techniques that have been proposed to tackle this problem.

Data-level (Augmentation methods) methods in imbalanced node classification with graph neural
networks aim to address class imbalance by manipulating the training data. These methods focus on
generating synthetic samples or modifying existing ones to balance the class distribution. DR-GCN
Shi et al. (2020) introduces conditional GAN to generate virtual nodes that are similar to adjacent
node features of source nodes. GraphSMOTE Zhao et al. (2021) synthesizes the features of minor
nodes by interpolating two minor nodes as SMOTE Chawla et al. (2002) does and determines the
edges of synthesized nodes with edge predictor. Our work differs from this line of research as we
just apply the regularization to the available training dataset.

Algorithm-level methods have been developed to incorporate class-awareness into the GNN archi-
tecture. GraphENS Park et al. (2022) synthesizes the whole ego network for the minor class by
combining two different ego networks based on their similarity. Another approach tries to min-
imize the generalization bound and adjusts the softmax by considering the relative quantity ratio
between two classes, a.k.a. BalancedSoftmax Ren et al. (2020). PC-Softmax Hong et al. (2021) is a
correction algorithm that rewards minor classes only in the inference.

The paramount role of loss function engineering in addressing class imbalances within imbalanced
node classification is evident. One common technique is to assign higher weights to the minority
class samples during the training process. This can be achieved by designing loss functions and
encouraging a wider separation between the minority and majority classes. Re-Weight Japkowicz
& Stephen (2002) is an example of such a technique. Furthermore, TAM Song et al. (2022) com-
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Table 1: Experimental results of our Regularization method (KLCE) and other baselines on three class-
imbalanced node classification benchmark datasets: Cora, CiteSeer and PubMed. We report averaged balanced
accuracy (bAcc.) and F1-score with the standard errors for 20 repetitions on GCN

Dataset Cora CiteSeer PubMed
Imbalance Ratio (ρ = 10) bAcc. F1 bAcc. F1 bAcc. F1

G
C

N

Re-Weight 65.52 ±0.84 65.54 ±1.20 44.52 ±1.22 38.85 ±1.62 70.17 ±1.25 66.37 ±1.73

PC Softmax 67.79 ±0.92 67.39 ±1.08 49.81 ±1.12 45.55 ±1.26 70.20 ±0.60 68.83 ±0.73

DR-GCN 60.17 ±0.83 59.31 ±0.97 42.64 ±0.75 38.22 ±1.22 65.51 ±0.81 64.95 ±0.53

GraphSMOTE 62.66 ±0.83 61.76 ±0.96 34.26 ±0.89 28.31 ±1.48 68.94 ±0.89 64.17 ±1.43

+ KLCE 66.18 ±0.82 64.83 ±0.97 40.37 ±1.72 39.51 ±1.73 72.73 ±0.54 72.40 ±0.58

Log-loss 52.57 ±0.38 43.66 ±0.75 35.33 ±0.17 23.01 ±0.15 63.60 ±0.09 47.93 ±0.10

+ TAM 52.00 ±0.40 42.81 ±0.75 33.16 ±0.18 22.13 ±0.20 64.20 ±0.24 49.11 ±0.43

+ KLCE 59.07 ±1.22 53.74 ±1.91 54.46 ±1.06 51.41 ±1.38 70.04 ±0.48 71.39 ±0.48

+ TAM + KLCE 61.41 ±1.35 57.28 ±1.93 42.32 ±1.54 36.00 ±2.20 63.00 ±0.59 50.03 ±1.83

BalancedSoftmax 64.90 ±1.05 61.23 ±1.28 51.13 ±1.00 46.66 ±1.30 69.33 ±0.68 63.71 ±1.42

+ TAM 63.09 ±1.10 59.48 ±1.34 38.89 ±2.01 31.96 ±2.72 67.83 ±1.24 59.61 ±2.29

+ KLCE 67.22 ±0.73 64.25 ±0.88 55.90 ±0.87 53.28 ±1.14 72.98 ±0.52 72.89 ±0.76

+ TAM + KLCE 61.59 ±1.22 59.42 ±1.23 44.88 ±2.06 40.03 ±2.78 67.70 ±1.04 61.69 ±2.06

GraphENS 69.69 ±0.52 69.77 ±0.60 53.62 ±1.12 50.08 ±1.39 71.15 ±0.80 67.92 ±1.15

+ TAM 69.95 ±0.70 70.16 ±0.68 56.01 ±0.80 54.83 ±0.98 71.35 ±0.77 68.81 ±1.31

+ KLCE 72.32 ±0.62 71.57 ±0.62 57.47 ±0.93 55.98 ±1.03 72.89 ±0.49 72.76 ±0.54

+ TAM + KLCE 71.89 ±0.61 71.58 ±0.65 59.12 ±0.83 58.27 ±0.89 73.81 ±0.42 73.24 ±0.50

pensates minor classes in the training phase and adapts the loss function to create a larger margin
between classes, thereby mitigating misclassification.

2 METHODOLOGY

Problem Formulation: We consider X ∈ X and Y ∈ Y as node-feature and labels, respectively,
where |Y| = k. We denote the learned distribution over classes as P (Ŷ|X) := {P (Ŷ = j|X)}kj=1

where P (Ŷ = j|X) := 1
n

∑n
i=1 P (Ŷ = j|Xi) is the prediction of model for j-th class for given

node-features {Xi}ni=1. The KL divergence KL(P∥Q) is given by KL(P∥Q) :=
∫
Z log

(
dP
dQ

)
dP .

We also define the cross-entropy between P and Q, as H(P,Q) = −
∫
Z log

(
dP
)
dQ. Let us define

Pk := {Pj}kj=1 as the target class distribution.
Regularization: In our regularization loss, denoted as (KLCE), we incorporate two loss terms
within our GNN model, KLCE := λKLCEH(P (Ŷ|X),Pk) + KL(P (Ŷ|X)∥Pk),where

KL(P (Ŷ|X)∥Pk) =

k∑
j=1

P (Ŷ = j|X) log

(
P (Ŷ = j|X)

Pj

)
,

H(P (Ŷ|X),Pk) = −
k∑

j=1

P (Ŷ = j|X) log(Pj)

is the KL-divergence and cross-entropy between the learned distribution across classes and the target
class distribution, and λKLCE ∈ (−1, 1) is a hyper-parameter for tuning between the KL-divergence
and cross-entropy.
Regarding the target class distribution, we can assign more probability mass points to minority
classes while reducing them for the majority classes. We can also consider the uniform distribu-
tion if the test dataset is balanced. Integrating these specific regularization terms during training
encourages the model to acquire a distribution that aligns more closely with this target class dis-
tribution over classes. This method effectively tackles the class imbalance issue present in graph
node classification. To the best of our knowledge, applying these particular regularization terms to
address imbalance classification, especially in the context of node classification, represents a novel
contribution.

3 EXPERIMENTS AND DISCUSSIONS
We conducted some experiments to test our KLCE regularization loss, inspired by the baselines in
Song et al. (2022). Details of experiments and more results are available in Appendix B. We com-
pared our KLCE with other baselines under the GCN model, (Kipf & Welling, 2016), in Table 1. We
report averaged balanced accuracy (bAcc) and F1-score with the standard errors for 20 repetitions
on the GCN model. The performance of our KLCE regularization loss under more GNN architec-
tures, e.g., GAT and GraphSage, is studied in Appendix B. Our approach enhances the performance
(accuracy and F1 scores) of several imbalance algorithms baselines, e.g., BalancedSoftmax and
GraphENS, when integrated with them. Furthermore, a notable benefit is the reduction in variance
across most of the conducted experiments.
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A OTHER RELATED WORKS

Numerous Graph Neural Networks (GNNs) have emerged for non-euclidean graph-based tasks,
spanning node, edge, and graph levels. GCNs, introduced in Kipf & Welling (2016), simplify the
Cheby -Filter from Defferrard et al. (2016) for one-hop neighbors. GAT Veličković et al. (2017)
computes the coefficient implicitly using a learnable attention mechanism. GraphSAGE Hamilton
et al. (2017) stands for Graph Sampling and Aggregation, which generates node embeddings based
on local network neighborhoods using neural networks. MPGNNs, as proposed in Gilmer et al.
(2017), outline a general GNN framework, treating graph convolutions as message-passing among
nodes and edges. For graph-level tasks, like graph classification, a typical practice involves applying
a graph readout (pooling) layer after graph filtering layers composed of graph filters. We consider
GCN, GAT, and GraphSage for comparability as our GNN model.

B EXPERIMENT

B.1 EXPERIMENT DETAILS

Datasets: We summarized the dataset statistics in Table 2. For our experiments, we consider citation
network datasets—Citeseer, Cora and Pubmed (Sen et al., 2008)— where nodes are documents and
edges are citation links. Chameleon and Squirrel Rozemberczki et al. (2021)- where nodes are
Wikipedia’s pages and edges are links between them, and Wisconson 1 is a graph of webpages
crawled from the Internet by the Carnegie Mellon University.

Table 2: Dataset statistics.
Dataset Nodes Edges Classes Features
Citeseer 3,327 4,732 6 3,703
Cora 2,708 5,429 7 1,433
Pubmed 19,717 44,338 3 500
Chameleon 2277 36101 5 2325
Squirrel 5201 217073 5 2089
Wisconsin 251 515 5 1703

Hyperparameters: We utilize two hyper-parameters λ and λKLCE for our regularization method
when added to a baseline,

Baseline + λKLCE

= Baseline + λ
(
λKLCEH(P (Ŷ|X),Pk) + KL(P (Ŷ|X)∥Pk)

) (1)

where KLCE as the regularization loss is added directly to the baseline, e.g., BalancedSoftmax
(+TAM) or GraphENS(+TAM). We have used Optuna to find the best hyperparameter for each
model and dataset. We chose λ in the range of (0, 1) and λKLCE from the range of (−1, 1). We
have used Optuna under multiple settings and have found that the default searching setting works
best in terms of the trade-off between optimal results and time complexity. We have used the Tree-
structured Parzen Estimator, which is used by Optuna by default, and for the target function of
Optuna, we have aimed to maximize the average of validation F1 score and accuracy.

Imbalance ratio: The distribution of train sets for each dataset can be seen in Table 3. All datasets
follow a 10-imbalance ratio except Wisconsin, which has a ρ equal to 11.63. All the training

Target class distribution: For each dataset, the computation of Pk for the regularization term
involves two steps. Firstly, we calculate the ratio of each class within all six datasets, as detailed in
Table 3. Subsequently, we derive a normalized inverse ratio for each specific dataset for each class.
The inversion is intended to emphasize the significance of the minority class, and normalization is
applied to the output to transform it into a probability distribution.

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
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Table 3: Number of training nodes per class
Dataset (ρ = 10) L0 L1 L2 L3 L4 L5 L6

Cora 20 20 20 20 2 2 2
CiteSeer 20 20 20 2 2 2 -
PubMed 20 20 2 - - - -
Chameleon 225 220 218 22 22 - -
Squirrel 487 494 501 50 50 - -
Wisconsin (ρ = 11.63) 4 38 50 5 5 - -

Hardware and setup: All of our Experiments were conducted on a single server containing an
Nvidia GTX 1080ti GPU, AMD Ryzen5 3600x CPU @ 3.80GHz and 32GB RAM. With this setup,
all experiments were completed within one week.

Training: To choose the training mask, we use the training masks provided by Pytorch Geometric.
We train each model for 200 epochs while finding the best hyper-parameters based on the Validation
f1 score and balanced accuracy. After 30 trials, the best hyper-parameters found by Optuna are used
for an accurate run with 2000 epochs.

Optimizer: Considering the regularization terms, we use Adaptive Moment Estimation (ADAM)
from PyTorch as the optimizer. Also, ℓ2 regularization with weight decay of 5e − 4 and dropout in
some layers are used to prevent over-fitting. We use a learning rate of 0.01.

Baselines: For baselines, inspired by Song et al. (2022), we consider Re-weight Japkowicz &
Stephen (2002), PC-Softmax Hong et al. (2021), DR-GCN (Shi et al., 2020), GraphSMOTE (Zhao
et al., 2021), BalancedSoftmax Ren et al. (2020), GraphENS (Park et al., 2022), TAM (Song et al.,
2022) and traditional Log-loss function.

B.2 MORE EXPERIMENTS

The results for six datasets are presented in Tables 4 and 5. We can observe the many cases, and our
KLCE approach outperforms other baselines when combined with them.
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Table 4: Experimental results of our regularization methods and other baselines on three class-imbalanced
node classification benchmark datasets: Chameleon, Squirrel and Wisconsin. We report averaged balanced
accuracy (bAcc.) and F1-score with the standard errors for 20 repetitions on three representative GNN archi-
tectures, i.e., GCN, GAT and GraphSage

Dataset Chameleon Squirrel Wisconsin (ρ = 11.63)

Imbalance Ratio (ρ = 10) bAcc. F1 bAcc. F1 bAcc. F1

G
C

N

Re-Weight 36.07 ±0.87 35.61 ±0.81 26.92 ±0.53 25.04 ±0.59 44.13 ±3.08 40.74 ±3.27

PC Softmax 36.86 ±1.04 36.24 ±1.01 26.49 ±0.59 25.73 ±0.49 30.90 ±3.10 28.15 ±2.16

DR-GCN 33.34 ±0.81 29.60 ±0.79 23.34 ±0.43 18.20 ±0.49 29.44 ±1.36 27.08 ±1.37

GraphSMOTE 41.50 ±0.82 40.80 ±0.79 27.14 ±0.49 26.67 ±0.53 45.36 ±4.21 40.91 ±4.39

Log-loss 44.99 ±0.87 37.34 ±1.33 31.55 ±0.24 23.76 ±0.21 37.27 ±1.45 33.14 ±0.97

+ TAM 33.02 ±0.32 25.23 ±0.31 27.23 ±0.28 19.59 ±0.33 39.75 ±2.05 34.12 ±1.43

+ KLCE 53.16 ±0.51 52.36 ±0.56 37.21 ±0.42 35.20 ±0.50 48.75 ±2.23 43.04 ±1.49

+ TAM + KLCE 33.56 ±0.47 27.22 ±0.81 26.52 ±0.37 20.37 ±0.34 42.83 ±1.89 36.60 ±1.13

BalancedSoftmax 55.21 ±1.99 55.07 ±2.10 39.17 ±0.35 37.35 ±0.49 47.93 ±1.89 41.77 ±1.19

+ TAM 33.28 ±0.41 27.28 ±0.56 27.46 ±0.33 20.83 ±0.37 48.83 ±0.33 40.74 ±1.29

+ KLCE 55.16 ±0.54 55.34 ±0.56 40.03 ±0.21 38.19 ±0.33 48.67 ±2.03 41.75 ±1.49

+ TAM + KLCE 34.10 ±0.51 27.90 ±0.59 26.94 ±0.38 21.07 ±0.40 47.83 ±2.13 39.53 ±1.36

GraphENS 56.89 ±0.41 56.87 ±0.43 36.78 ±0.46 35.95 ±0.48 44.17 ±2.13 39.38 ±1.65

+ TAM 41.33 ±0.62 38.86 ±0.78 26.94 ±0.47 22.41 ±0.69 42.96 ±2.49 38.43 ±1.66

+ KLCE 56.89 ±0.45 56.84 ±0.42 36.79 ±0.36 35.84 ±0.35 45.46 ±2.53 40.97 ±1.90

+ TAM + KLCE 42.41 ±0.54 40.27 ±0.75 27.96 ±0.50 23.31 ±0.66 44.26 ±2.47 39.73 ±1.76

G
A

T

Re-Weight 35.72 ±0.65 34.19 ±0.74 25.79 ±0.52 24.32 ±0.62 42.15 ±2.33 37.66 ±2.27

PC Softmax 38.32 ±0.88 37.46 ±0.84 26.52 ±0.31 25.71 ±0.44 41.89 ±3.95 38.03 ±3.35

DR-GCN 34.84 ±0.72 31.53 ±0.86 24.69 ±0.46 21.81 ±0.42 33.93 ±2.34 31.75 ±2.50

GraphSMOTE 40.18 ±0.67 39.43 ±0.76 27.10 ±0.49 26.63 ±0.63 40.77 ±2.24 38.96 ±2.48

Log-loss 49.96 ±0.69 46.79 ±0.92 30.84 ±0.33 23.30 ±0.29 37.12 ±1.47 32.77 ±1.42

+ TAM 42.33 ±0.59 37.02 ±0.92 27.62 ±0.28 21.13 ±0.35 35.94 ±1.94 32.04 ±1.39

+ KLCE 53.52 ±0.60 52.94 ±0.65 34.80 ±0.81 34.08 ±0.85 46.99 ±2.04 41.19 ±1.24

+ TAM + KLCE 44.17 ±0.73 42.67 ±1.03 27.65 ±0.27 25.06 ±0.40 41.03 ±2.28 35.93 ±1.43

BalancedSoftmax 54.78 ±0.35 54.36 ±0.37 35.84 ±0.91 34.90 ±0.97 43.30 ±1.68 39.01 ±1.25

+ TAM 45.92 ±0.54 43.97 ±0.89 27.90 ±0.29 21.72 ±0.46 44.10 ±1.91 37.62 ±1.24

+ KLCE 54.73 ±0.44 54.54 ±0.47 35.75 ±1.00 35.19 ±0.99 42.96 ±2.18 38.54 ±1.62

+ TAM + KLCE 46.63 ±0.71 45.06 ±1.04 28.25 ±0.33 23.59 ±0.56 40.74 ±2.49 35.22 ±1.68

GraphENS 57.79 ±0.61 57.80 ±0.66 38.97 ±0.65 38.56 ±0.63 41.15 ±1.94 39.27 ±1.65

+ TAM 48.74 ±0.74 48.03 ±0.85 28.60 ±0.35 27.44 ±0.70 42.30 ±2.38 38.19 ±1.77

+ KLCE 57.94 ±0.58 57.95 ±0.62 40.06 ±0.47 39.52 ±0.46 40.65 ±1.99 38.58 ±1.78

+ TAM + KLCE 50.54 ±0.76 50.16 ±0.80 30.31 ±0.33 29.60 ±0.36 42.05 ±2.21 37.77 ±1.62

G
ra

ph
Sa

ge

Re-Weight 36.49 ±1.21 34.84 ±1.30 29.83 ±0.59 25.88 ±0.42 68.13 ±3.19 63.45 ±2.27

PC Softmax 40.71 ±0.82 39.95 ±0.98 29.23 ±0.50 28.19 ±0.54 70.57 ±3.34 67.13 ±2.91

DR-GCN 39.58 ±0.58 38.37 ±0.72 28.78 ±0.50 25.01 ±0.70 69.30 ±1.99 64.60 ±2.00

GraphSMOTE 33.31 ±0.63 30.83 ±0.67 25.51 ±0.43 19.79 ±0.49 65.14 ±3.84 62.53 ±3.40

Log-loss 44.55 ±0.50 39.64 ±0.67 27.72 ±0.22 21.55 ±0.18 43.36 ±1.85 38.56 ±1.50

+ TAM 39.44 ±0.49 33.42 ±0.64 26.06 ±0.28 20.15 ±0.28 42.24 ±1.74 38.73 ±1.44

+ KLCE 50.64 ±0.47 50.77 ±0.46 31.23 ±0.27 30.94 ±0.28 54.29 ±2.12 52.03 ±1.89

+ TAM + KLCE 40.84 ±0.70 37.97 ±0.86 27.49 ±0.41 22.82 ±0.68 51.46 ±1.87 50.23 ±1.74

BalancedSoftmax 51.57 ±0.47 50.98 ±0.51 32.05 ±0.22 31.15 ±0.24 59.86 ±2.01 57.20 ±1.58

+ TAM 42.19 ±0.53 39.33 ±0.74 26.99 ±0.45 22.43 ±0.50 53.44 ±2.01 50.82 ±1.34

+ KLCE 52.05 ±0.46 52.11 ±0.48 32.50 ±0.26 32.25 ±0.26 62.63 ±2.18 58.13 ±1.95

+ TAM + KLCE 42.65 ±0.57 40.49 ±0.75 26.03 ±0.30 22.07 ±0.31 54.20 ±1.95 50.89 ±1.61

GraphENS 53.27 ±0.46 53.20 ±0.47 31.98 ±0.51 31.59 ±0.53 64.98 ±2.42 61.26 ±2.15

+ TAM 48.73 ±0.60 47.90 ±0.63 30.46 ±0.39 30.14 ±0.47 53.73 ±2.99 48.67 ±1.94

+ KLCE 53.79 ±0.48 53.74 ±0.50 32.58 ±0.47 32.34 ±0.48 66.03 ±2.32 61.40 ±2.02

+ TAM + KLCE 49.51 ±0.52 48.84 ±0.53 31.23 ±0.43 30.77 ±0.47 54.80 ±3.01 49.29 ±1.95
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Table 5: Experimental results of our Regularization method (KLCE) and other baselines on three class-
imbalanced node classification benchmark datasets: Cora, CiteSeer and PubMed. We report averaged bal-
anced accuracy (bAcc.) and F1-score with the standard errors for 20 repetitions on three representative GNN
architectures, i.e., GCN, GAT and GraphSage

Dataset Cora CiteSeer PubMed
Imbalance Ratio (ρ = 10) bAcc. F1 bAcc. F1 bAcc. F1

G
C

N

Re-Weight 65.52 ±0.84 65.54 ±1.20 44.52 ±1.22 38.85 ±1.62 70.17 ±1.25 66.37 ±1.73

PC Softmax 67.79 ±0.92 67.39 ±1.08 49.81 ±1.12 45.55 ±1.26 70.20 ±0.60 68.83 ±0.73

DR-GCN 60.17 ±0.83 59.31 ±0.97 42.64 ±0.75 38.22 ±1.22 65.51 ±0.81 64.95 ±0.53

GraphSMOTE 62.66 ±0.83 61.76 ±0.96 34.26 ±0.89 28.31 ±1.48 68.94 ±0.89 64.17 ±1.43

+ KLCE 66.18 ±0.82 64.83 ±0.97 40.37 ±1.72 39.51 ±1.73 72.73 ±0.54 72.40 ±0.58

Log-loss 52.57 ±0.38 43.66 ±0.75 35.33 ±0.17 23.01 ±0.15 63.60 ±0.09 47.93 ±0.10

+ TAM 52.00 ±0.40 42.81 ±0.75 33.16 ±0.18 22.13 ±0.20 64.20 ±0.24 49.11 ±0.43

+ KLCE 59.07 ±1.22 53.74 ±1.91 54.46 ±1.06 51.41 ±1.38 70.04 ±0.48 71.39 ±0.48

+ TAM + KLCE 61.41 ±1.35 57.28 ±1.93 42.32 ±1.54 36.00 ±2.20 63.00 ±0.59 50.03 ±1.83

BalancedSoftmax 64.90 ±1.05 61.23 ±1.28 51.13 ±1.00 46.66 ±1.30 69.33 ±0.68 63.71 ±1.42

+ TAM 63.09 ±1.10 59.48 ±1.34 38.89 ±2.01 31.96 ±2.72 67.83 ±1.24 59.61 ±2.29

+ KLCE 67.22 ±0.73 64.25 ±0.88 55.90 ±0.87 53.28 ±1.14 72.98 ±0.52 72.89 ±0.76

+ TAM + KLCE 61.59 ±1.22 59.42 ±1.23 44.88 ±2.06 40.03 ±2.78 67.70 ±1.04 61.69 ±2.06

GraphENS 69.69 ±0.52 69.77 ±0.60 53.62 ±1.12 50.08 ±1.39 71.15 ±0.80 67.92 ±1.15

+ TAM 69.95 ±0.70 70.16 ±0.68 56.01 ±0.80 54.83 ±0.98 71.35 ±0.77 68.81 ±1.31

+ KLCE 72.32 ±0.62 71.57 ±0.62 57.47 ±0.93 55.98 ±1.03 72.89 ±0.49 72.76 ±0.54

+ TAM + KLCE 71.89 ±0.61 71.58 ±0.65 59.12 ±0.83 58.27 ±0.89 73.81 ±0.42 73.24 ±0.50

G
A

T

Re-Weight 66.72 ±0.80 66.52 ±1.06 45.59 ±1.73 39.43 ±2.03 69.13 ±1.25 64.81 ±1.70

PC Softmax 67.02 ±0.65 66.57 ±0.89 50.70 ±1.73 47.14 ±1.85 72.20 ±0.49 70.95 ±0.82

DR-GCN 59.30 ±0.76 57.79 ±1.03 44.04 ±1.26 39.44 ±1.76 69.56 ±1.01 68.49 ±0.71

GraphSMOTE 56.50 ±0.71 54.27 ±1.09 44.94 ±1.36 41.63 ±1.78 62.86 ±0.53 53.00 ±1.17

+ KLCE 60.83 ±1.21 59.21 ±1.22 55.33 ±1.90 54.64 ±2.24 66.24 ±0.71 63.46 ±1.22

Log-loss 50.69 ±0.36 43.45 ±0.57 34.49 ±0.21 22.58 ±0.15 61.15 ±0.34 45.98 ±0.26

+ TAM 49.05 ±0.60 43.24 ±0.86 33.17 ±0.33 22.07 ±0.24 61.86 ±0.29 47.75 ±0.34

+ KLCE 65.47 ±0.73 63.36 ±0.76 51.83 ±1.08 49.54 ±1.31 68.66 ±0.71 68.42 ±0.74

+ TAM + KLCE 61.03 ±1.60 55.09 ±2.26 42.58 ±1.52 35.35 ±2.38 62.91 ±0.90 56.44 ±1.64

BalancedSoftmax 62.27 ±0.87 58.42 ±1.21 43.50 ±1.68 37.58 ±2.14 69.30 ±0.75 64.75 ±1.40

+ TAM 62.66 ±1.14 59.66 ±1.52 44.37 ±1.29 38.13 ±1.75 65.48 ±1.02 57.13 ±1.73

+ KLCE 63.79 ±1.15 61.96 ±1.08 51.01 ±1.20 48.40 ±1.45 70.49 ±0.77 69.90 ±0.93

+ TAM + KLCE 62.30 ±1.52 59.87 ±1.58 46.05 ±1.32 43.54 ±1.56 67.17 ±1.22 66.43 ±1.56

GraphENS 70.07 ±0.62 68.79 ±0.77 52.29 ±0.91 48.84 ±1.23 71.86 ±0.80 69.17 ±1.13

+ TAM 70.06 ±0.77 68.71 ±0.90 56.02 ±0.87 54.47 ±1.10 72.23 ±0.67 69.86 ±1.05

+ KLCE 70.92 ±0.64 70.06 ±0.64 57.24 ±0.81 56.55 ±0.97 72.91 ±0.47 72.30 ±0.52

+ TAM + KLCE 71.12 ±0.63 69.96 ±0.74 55.98 ±0.83 54.79 ±0.96 72.93 ±0.43 72.58 ±0.50

G
ra

ph
Sa

ge

Re-Weight 63.76 ±0.98 63.46 ±1.22 46.64 ±1.92 41.38 ±2.76 69.03 ±1.17 64.01 ±2.18

PC Softmax 64.03 ±0.81 63.73 ±0.99 50.14 ±1.89 47.38 ±2.13 71.39 ±0.84 70.25 ±1.02

DR-GCN 61.05 ±1.17 60.17 ±1.23 46.00 ±0.93 47.73 ±1.12 69.23 ±0.68 67.35 ±0.90

GraphSMOTE 65.37 ±0.55 65.13 ±0.68 38.94 ±1.05 33.60 ±1.68 64.15 ±0.55 54.00 ±1.14

+ KLCE 71.51 ±0.81 71.01 ±0.89 48.49 ±1.16 48.54 ±1.26 70.00 ±0.61 69.20 ±0.75

Log-loss 49.54 ±0.16 39.45 ±0.34 34.12 ±0.10 21.73 ±0.12 61.36 ±0.07 45.89 ±0.08

+ TAM 50.94 ±0.29 41.94 ±0.60 34.91 ±0.21 22.63 ±0.17 62.67 ±0.34 47.68 ±0.51

+ KLCE 55.87 ±1.86 55.05 ±1.78 34.67 ±0.18 22.21 ±0.23 62.18 ±0.33 48.98 ±1.31

+ TAM + KLCE 54.43 ±1.31 46.27 ±2.03 36.73 ±0.94 26.09 ±1.62 62.38 ±0.52 47.22 ±1.58

BalancedSoftmax 53.34 ±0.88 46.81 ±1.40 35.90 ±1.04 26.76 ±1.39 63.58 ±0.82 51.48 ±1.91

+ TAM 53.34 ±0.88 46.81 ±1.40 34.16 ±1.04 24.98 ±1.32 63.97 ±0.82 52.36 ±1.95

+ KLCE 51.97 ±1.22 49.58 ±1.27 41.52 ±1.45 37.08 ±1.62 66.72 ±0.67 60.14 ±1.49

+ TAM + KLCE 51.68 ±1.63 49.45 ±1.63 39.73 ±1.39 35.87 ±1.63 67.39 ±0.62 62.64 ±1.21

GraphENS 65.85 ±0.72 65.96 ±0.77 53.32 ±0.89 51.05 ±1.15 70.55 ±0.53 69.55 ±0.66

+ TAM 67.04 ±0.63 66.93 ±0.69 51.87 ±1.09 49.11 ±1.37 70.46 ±0.66 67.23 ±0.93

+ KLCE 68.86 ±0.61 68.58 ±0.68 55.60 ±0.70 55.20 ±0.76 71.06 ±0.58 71.00 ±0.63

+ TAM + KLCE 69.29 ±0.56 68.96 ±0.55 56.96 ±0.75 55.86 ±0.87 71.80 ±0.45 71.74 ±0.50
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