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ABSTRACT

We provide a general framework for learning diffusion bridges that transport prior
to target distributions. It includes existing diffusion models for generative model-
ing, but also underdamped versions with degenerate diffusion matrices, where the
noise only acts in certain dimensions. Extending previous findings, our framework
allows to rigorously show that score matching in the underdamped case is indeed
equivalent to maximizing a lower bound on the likelihood. Motivated by superior
convergence properties and compatibility with sophisticated numerical integration
schemes of underdamped stochastic processes, we propose underdamped diffusion
bridges, where a general density evolution is learned rather than prescribed by a
fixed noising process. We apply our method to the challenging task of sampling
from unnormalized densities without access to samples from the target distribu-
tion. Across a diverse range of sampling problems, our approach demonstrates
state-of-the-art performance, notably outperforming alternative methods, while
requiring significantly fewer discretization steps and no hyperparameter tuning.

1 INTRODUCTION

In this paper we propose a general diffusion-based framework for sampling from a density

ptarget =
ρtarget

Z , Z :=
∫
Rd ρtarget(x) dx, (1)

where ρtarget ∈ C(Rd,R≥0) can be evaluated pointwise, but the normalization constant Z is typi-
cally intractable. This task is of great practical relevance in the natural sciences, e.g., in fields such
as molecular dynamics and statistical physics (Stoltz et al., 2010), but also in Bayesian statistics
(Gelman et al., 2013).

Recently, multiple approaches based on diffusion processes have been proposed, where the overall
idea is to learn a stochastic process in such a way that it transports an easy prior distribution to the
potentially complicated target over an artificial time. Typically, the process is defined as an ordinary
Itô diffusion, in particular, demanding non-degenerate noise. In this work, we aim to generalize this
setting to diffusion processes with degenerate noise. This is motivated by the following model from
statistical physics.

Classical sampling approaches based on stochastic processes have been extensively conducted using
some version of the overdamped Langevin dynamics

dXs = ∇ log ptarget(Xs) ds+
√
2 dWs, X0 ∼ pprior, (2)

whose stationary distribution is given by ptarget (under some rather mild technical assumptions on
the target and prior pprior). Furthermore, we can define an extended dynamics by introducing an
additional variable, bringing the so-called underdamped Langevin dynamics

dXs = Ys ds, X0 ∼ pprior, (3a)

dYs = (∇ log ptarget(Xs)− Ys) ds+
√
2 dWs, Y0 ∼ N (0, Id), (3b)

where now the stationary distribution is given by τ(x, y) := ptarget(x)N (y; 0, Id) (and π(x, y) :=
pprior(x)N (y; 0, Id) can be interpreted as an extended prior distribution). Intuitively, the y-variable
can be interpreted as a velocity, which is coupled to the space variable x via Hamiltonian dynamics.

While both (2) and (3) converge to the desired (extended) target distribution after infinite time, their
convergence speed can be exceedingly slow, in particular for multimodal targets (Eberle et al., 2019).
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Figure 1: Illustration of uncontrolled (see (2) and (3)) and controlled (see (4) and (15)) diffusion processes
in the overdamped and underdamped regime, transporting the Gaussian prior distribution to the target. For
the underdamped case, we show both the positional coordinate (left/blue) as well as the velocity (right/black).
While the underdamped version enjoys better convergence guarantees, both uncontrolled diffusions only con-
verge asymptotically. Learning the control, we can achieve convergence in finite time.

At the same time, it has been observed numerically that the underdamped version can be significantly
faster (Stoltz et al., 2010). This might be attributed to the fact that the Brownian motion is only
indirectly coupled to the space variable, leading to smoother paths of X and lower discretization
error in numerical integrators (since ∇ log ptarget only depends on X , but not Y ). In particular, for
smooth and strongly log-concave1 targets, the number of steps to obtain KL divergence ε can be
reduced from Õ(d/ε2) to Õ(

√
d/ε) (Ma et al., 2021).

The idea of learned diffusion-based sampling is to reach convergence to multimodal targets after
finite time. In particular, for overdamped diffusion models, the convergence rate can be shown to
match the one of Langevin dynamics without the need for log-concavity assumptions as long as the
learned model exhibits sufficiently small approximation error (Chen et al., 2022). In the overdamped
setting, this can be readily formulated as adding a control function to the dynamics (2),

dXs = (∇ log ptarget(Xs) + u(Xs, s)) ds+
√
2 dWs, (4)

where the task is to learn u ∈ C(Rd× [0, T ],Rd) as to reach XT ∼ ptarget (Richter & Berner, 2024;
Vargas et al., 2024); see Fig. 1 for an illustration. It is now natural to ask the question whether we can
use the same control ideas to the (typically better behaved) underdamped dynamics (3). Motivated
by this guiding question this paper includes the following:

• Controlled diffusions with degenerate noise: Building on previous work based on path space
measures, we generalize diffusion-based sampling to processes with degenerate noise, in particular
including controlled underdamped Langevin equations (Section 2).

• Underdamped methods in generative modeling: This framework can be used to derive and
analyze underdamped methods in generative modeling. In particular, we derive the ELBO and
variational gap for diffusion bridges where both forward and reverse-time processes are learned.

• Novel underdamped samplers: Moreover, our framework culminates in underdamped versions
of existing sampling methods and in particular in the novel underdamped diffusion bridge sam-
pler (Section 3). In extensive numerical experiments, we can demonstrate significantly improved
performance of our method.

• Numerical integrators and ablation studies: We provide careful ablation studies of our im-
provements, including the benefits of our novel integrators for controlled diffusion bridges as well
as end-to-end training of hyperparameters (Section 4). We note that the latter eliminates the need
for tuning and also significantly improves existing methods in the overdamped regime.

1.1 RELATED WORK

Many approaches to sampling problems build an augmented target, using a sequence of densi-
ties bridging the prior and target distributions and defining forward and backward kernels to ap-
proximately transition between the densities, often referred to as annealed importance sampling
(AIS) (Neal, 2001). For instance, taking uncorrected overdamped Langevin kernels, leads to Unad-
justed Langevin Annealing (ULA) (Thin et al., 2021; Wu et al., 2020). Moreover, Monte Carlo Dif-

1Or, more general, log-concave outside of a region.
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fusion (MCD) optimized the extended target distribution to minimizing the variance of the marginal
likelihood estimate (Doucet et al., 2022b). Going one step further, Controlled Monte Carlo Diffu-
sions (CMCD) (Vargas et al., 2024) proposed an objective to directly optimize the transition kernels
to match the annealed density.

On the other hand, there has recently also been methods prescribing the backward transition kernel,
however, having an intractable sequences of densities. For instance, this includes the Path Inte-
gral Sampler (PIS) (Zhang & Chen, 2021; Vargas et al., 2023b), Time-Reversed Diffusion Sampler
(DIS) (Berner et al., 2024), Diffusion generative flow samplers (DGFS), Denoising Diffusion Sam-
pler (DDS) (Vargas et al., 2023a), as well as the Particle Denoising Diffusion Sampler (Phillips
et al., 2024) combining the latter with SMC components. For the diffusion-based samplers, the
optimal forward transition corresponds to the score of the current density, which also be learned
via its associated Fokker-Planck equation (Sun et al., 2024) or its representation via the Feynman-
Kac formula (Akhound-Sadegh et al., 2024). Finally there has been methods learning both kernels
separately, i.e., the (Diffusion) Bridge2 Sampler (DBS) (Richter & Berner, 2024).

For some of the above methods improved convergence has been observed when using underdamped
versions or Hamiltonian dynamics, which can be viewed as a form of momentum. In particular,
ULA has been extended to Uncorrected Hamiltonian Annealing (UHA) (Geffner & Domke, 2021;
Zhang et al., 2021), MCD has been extended to Langevin Diffusion Variational Inference (LDVI)
(Geffner & Domke, 2022), and the works on DDS and CMCD also proposed underdamped versions.

Our proposed framework in principle encompasses all these works as special cases, (Tab. 2), not-
ing, however, that each of the previously existing methods brings some respective additional details.
Moreover, we can easily derive novel algorithms using our framework, ranging from an under-
damped version of DIS to an underdamped version of the Diffusion Bridge Sampler (App. A.9).
Our unifying framework allows us to easily share integrators and training techniques for the dif-
ferent methods. First, we remedy tuning for all considered methods by learning hyperparameters
end-to-end, also resulting in better performance (Fig. 5). Second, we improve underdamped meth-
ods with our novel integrator (Fig. 8 and Fig. 4). Third, we show how to scale DBS to more complex
targets by using a suitable parametrization (Tab. 4 & Fig. 10) and divergence-free training objective
(Prop. 2.3 vs. Prop. A.6). This makes our underdamped version of DBS a state-of-the-art method
across a wide range of tasks (Tab. 1, Fig. 3, & Tab. 3).

2 DIFFUSION BRIDGES WITH DEGENERATE NOISE

In this section, we lay the theoretical foundations for diffusion bridges with degenerate noise, ex-
tending the frameworks suggested in Richter & Berner (2024) and Vargas et al. (2024). Relating to
the example from the introduction, we note that this includes cases where the noise only appears in
certain dimensions of the stochastic process and in particular underdamped dynamics. We refer to
Apps. A.1 and A.2 for a summary of our notation and assumptions.

The general idea of diffusion bridges is to learn a stochastic process that transports a given prior
density to the prescribed target. This can be achieved via the concept of time-reversal (see, e.g.,
Fig. 2). To this end, let us define the forward and reverse-time SDEs

dZs = (f + η u) (Zs, s) ds+ η(s) d⃗Ws, Z0 ∼ π, (5)

dZs = (f + η v) (Zs, s) ds+ η(s) ⃗dWs, ZT ∼ τ, (6)

on the state space RD, where d⃗Ws and ⃗dWs denote forward and backward Brownian motion in-
crements (see App. A.1 for details), respectively, both living in dimension d ≤ D. The function
f ∈ C(RD × [0, T ],RD) is typically fixed and maps to the full space, whereas the control functions
u, v ∈ C(RD× [0, T ],Rd) will be learned as to approach the desired bridge. In our setting, the noise
coefficient η ∈ C([0, T ],RD×d) may be degenerate in the sense that it has the shape η = (0, σ)⊤,
where 0 ∈ RD−d×d and σ ∈ C([0, T ],Rd×d) is assumed to be invertible for each t ∈ [0, T ].
Importantly, the (scaled) control functions and the (scaled) Brownian motions operate in the same
dimensions. Referring to the underdamped Langevin equation (3), we may think of Z = (X,Y )⊤.

The general idea is to learn the control functions u and v such that the two processes defined in (5)
and (6) are time reversals with respect to each other. This task can be approached via measures on

2We clarify the connection to Schrödinger bridges and other diffusion bridges in Remark A.1.
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P⃗
u,π : dZs = (f + η u) (Zs, s) ds+ η(s)d⃗Ws

⃗Pv,τ : dZs = (f + η v) (Zs, s) ds+ η(s) ⃗dWs

L(u, v) = D(P⃗u,π| ⃗Pv,τ )

u∗, v∗ ∈ argminu,v L(u, v)

π

τ

u

v

π

τ

u∗

v∗

Figure 2: Illustration of our general framework for learning diffusion bridges with degenerate noise. Left: We
consider forward and reverse-time SDEs (see (5) and (6)), starting at the (extended) prior π and target τ and
controlled by u and v, respectively. Middle: We learn optimal controls u∗ and v∗ by minimizing a suitable
divergence D between the associated path measures P⃗u,π and ⃗Pv,τ on the SDE trajectories (Problem 2.1).
Right: In general, the optimal controls are not unique and we depict an alternative solution (transparent).
However, every solution leads to a perfect time-reversal and, in particular, represents a diffusion bridge with
the right marginals π at time s = 0 and τ at time s = T . We note that the trajectories can be smooth since we
allow for degenerate diffusion coefficients, where the Brownian motion noise only acts in certain dimensions.

the space of continuous trajectories C([0, T ],RD), also called path space (see App. A.1 for details).
To this end, let us denote by P⃗u,π the measure of the forward process (5) and by ⃗Pv,τ the measure
of the backward process (6). We may consider the following optimization problem; see also Fig. 2.

Problem 2.1 (Time-reversal). Let D : P × P → R≥0 be a divergence and let U ⊂ C(RD ×
[0, T ],Rd) be the set of admissible controls3. We aim to identify optimal controls u∗, v∗ such that

u∗, v∗ ∈ argminu,v∈U×U D
(
P⃗

u,π| ⃗Pv,τ
)
. (7)

Clearly, if we can drive the divergence in (7) to zero, we have solved the time-reversal task and it
readily follows for the time marginals4 that P⃗u∗,π

T = τ and ⃗Pv∗,τ
0 = π. We note that optimality

in Problem 2.1 can be expressed by a local condition on the level of time marginals for any time in
between prior and target.

Lemma 2.2 (Nelson’s relation). The following statements are equivalent:

(i) P⃗u,π = ⃗Pv,τ .

(ii) u(·, t)− v(·, t) = η⊤(t)∇ log P⃗u,π
t for all t ∈ (0, T ] and P⃗u,π

T = τ .

(iii) u(·, t)− v(·, t) = η⊤(t)∇ log ⃗Pv,τ
t for all t ∈ [0, T ) and ⃗Pv,τ

0 = π.

Proof. The equivalence follows from the classical Nelson relation (Nelson, 1967; Anderson, 1982;
Föllmer, 1986), which also holds for degenerate η; cf. Haussmann & Pardoux (1986); Millet et al.
(1989); Chen et al. (2022).

However, we cannot directly use Lemma 2.2 to approach Problem 2.1 since the marginals ⃗Pv,τ
t and

P⃗
u,π
t are typically intractable. Instead, to turn (7) into a feasible optimization problem, we need a

way to explicitly compute divergences between path measures, which (in analogy to a likelihood
ratio) typically involves the Radon-Nikodym derivative between those measures. A key observation
is that this can indeed be achieved for forward and reverse-time processes, as stated in the following
proposition.

Proposition 2.3 (Likelihood of path measures). Let η+(s) be the pseudoinverse of η(s) for each
s ∈ [0, T ]. Then for P⃗u,π-almost every Z ∈ C([0, T ],RD) it holds that

log dP⃗u,π

d ⃗Pv,τ
(Z) = log π(Z0)

τ(ZT ) − 1
2

∫ T

0
∥(η+f + u)∥2(Zs, s) ds+

1
2

∫ T

0
∥(η+f + v)∥2(Zs, s) ds

+
∫ T

0
(η+f + u)(Zs, s) · η+(s) d⃗Zs −

∫ T

0
(η+f + v)(Zs, s) · η+(s) ⃗dZs.

3We refer to App. A.2 for assumptions on U . We note that a divergence D is zero if and only if both its
arguments coincide (in the space of probability measures P on C([0, T ],RD); see App. A.1).

4We denote the marginal of a path space measure P at time t ∈ [0, T ] by Pt. Similarly, we denote by Ps|t
the conditional distribution of Ps given Pt; see App. A.1.
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Proof. Following Vargas et al. (2024, proof of Proposition 2.2), the proof applies the Girsanov
theorem to the forward and reverse-time processes; see App. A.5.

We refer to Prop. A.6 in the appendix for an alternative version of Prop. 2.3, which for non-
degenerate noise, has been used to define previous diffusion bridge samplers (Richter & Berner,
2024). However, the latter version relies on a divergence instead of backward stochastic process
which renders it prohibitive for high dimensions and does not guarantee an ELBO after discretiza-
tion; see also Remark 3.2.

It is important to highlight that the optimization task in Problem 2.1 allows for infinitely many
solutions. For numerical applications one may either accept this non-uniqueness (cf. Richter &
Berner (2024)) or add additional constraints, such as regularizers (leading to, e.g., the so-called
Schrödinger bridge (De Bortoli et al., 2021)), a prescribed density evolution (Vargas et al., 2024) or
a fixed noising process (Berner et al., 2024). Those different choices lead to different algorithms, for
which we can now readily state corresponding degenerate (and thus underdamped) versions using
our framework, see App. A.9.

Divergences and loss functions for sampling. In order to solve Problem 2.1, we need to choose
a divergence D, in turn leading to a loss function L : U × U → R≥0 via L(u, v) := D(P⃗u,π| ⃗Pv,τ ).
A common choice is the Kullback-Leibler (KL) divergence, which brings the loss

LKL(u, v) := DKL

(
P⃗

u,π| ⃗Pv,τ
)
= EZ∼P⃗u,π

[
log dP⃗u,π

d ⃗Pv,τ
(Z)
]
. (8)

While we will focus on the KL divergence in our experiments, we mention that our framework can
be applied to arbitrary divergences. In particular, one can use divergences that allow for off-policy
training and improved mode exploration, such as the log-variance divergence (Richter et al., 2020),
which we illustrate in App. A.10.3.

2.1 IMPLICATIONS FOR GENERATIVE MODELING: THE EVIDENCE LOWER BOUND

Contrary to the sampling setting described above, generative modeling typically assumes that one
has access to samples X ∼ ptarget, but cannot evaluate the (unnormalized) density. In this section
we show how our general setup from the previous section can also be applied in this scenario.
For instance, it readily brings an underdamped version of stochastic bridges (Chen et al., 2021)
and serves as a theoretical foundation for underdamped diffusion models stated in Dockhorn et al.
(2021).

To this end, we may approach Problem 2.1 with the forward5 KL divergence

DKL(P⃗
v,τ | ⃗Pu,π) = EZ∼P⃗v,τ

[
log dP⃗v,τ

d ⃗Pu,π
(Z)
]
. (9)

For the sake of notation, we have reversed time, which can be viewed as interchanging τ and π.
Since the process corresponding to P⃗v,τ starts at the target measure τ , we indeed require samples
from this measure to compute the divergence in (9). At the same time, looking at Prop. 2.3, we
realize that the divergence cannot be computed directly, since τ cannot be evaluated. A workaround
is to instead consider an evidence lower bound (ELBO) (or, equivalently, a lower bound on the
log-likelihood). In our setting, we have the following decomposition.
Lemma 2.4 (ELBO for generative modeling). It holds that

EZ0∼τ [log ⃗Pu,π
0 (Z0)]︸ ︷︷ ︸

evidence / log-likelihood

= DKL(P⃗
v,τ |P⃗ṽ,τ )︸ ︷︷ ︸

variational gap

+EZ0∼τ [log τ(Z0)]−DKL(P⃗
v,τ | ⃗Pu,π),︸ ︷︷ ︸

ELBO

(10)

where ṽ(·, t)− u(·, t) = η⊤(t)∇ log ⃗Pu,π
t .

Proof. This follows from Lemma 2.2 and the chain rule for KL divergences; see App. A.5.

Crucially, we observe that the ELBO in Lemma 2.4 does not depend on the target τ anymore as the
dependency cancels between the two terms (cf. Prop. 2.3). Moreover, the variational gap is zero
if and only if v = ṽ almost everywhere, i.e., the path measures are time-reversals conditioned on
the same terminal condition due to Lemma 2.2. The ELBO is maximized when additionally ⃗Pu,π

0

5While we optimize the measures in both arguments of the KL divergence, the measure P⃗u,π corresponding
to the generative process is in the second component, which is typically referred to as “forward” KL divergence.

5
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equals the target measure τ , i.e., if and only if we found a minimizer (u∗, v∗) of Problem 2.1. In
consequence, it provides a viable objective to learn stochastic bridges in an underdamped setting (or,
more generally, with degenerate noise coefficients η) using samples from the target distribution τ .

We note that for non-degenerate coefficients η, the ELBO from Lemma 2.4 has already been derived
in Chen et al. (2021); see also Richter & Berner (2024); Vargas et al. (2024). For diffusion models,
i.e., v = 0 and f such that P⃗0,τ

T ≈ π, this ELBO reduces to the one derived by Berner et al. (2024);
Huang et al. (2021). In particular, it has been shown that maximizing the ELBO is equivalent
to minimizing the denoising score matching objective (with a specific weighting of noise scales)
typically used in practice.

For general forward and backward processes, allowing for degenerate noise, as stated in (5) and (6),
the derivation of the ELBO is less explored. For (underdamped) diffusion models with degenerate
η, a corresponding (hybrid) score matching loss has been suggested and connected to likelihood
optimization by Dockhorn et al. (2021, Appendix B.3). In the following proposition, we show that
this also follows as a special case from Lemma 2.4.
Proposition 2.5 (Underdamped score matching maximizes the likelihood). For the ELBO defined
in (10) (setting v = 0) it holds

ELBO(u) = −T
2 EZ∼P⃗0,τ , s∼Unif([0,T ])

[∥∥u(Zs, s) + η⊤(s)∇ log P⃗0,τ
s|0 (Zs|Z0)

∥∥2]+ const.,

where the constant does not depend on u.

Proof. Following Huang et al. (2021, Appendix A), the proof combines Prop. 2.3 with Stokes’
theorem; see App. A.5. Note that in our notation u learns the negative and scaled score.

3 UNDERDAMPED DIFFUSION BRIDGES

To approach Problem 2.1 and minimize divergences (such as the KL divergence) in practice, we need
to numerically approximate the Radon-Nikodym derivative in Prop. 2.3. Analogously to Vargas et al.
(2024, Proposition E.1), we can discretize the integrals to show that

dP⃗u,π

d ⃗Pv,τ
(Z) ≈ π(Ẑ0)

∏N−1
n=0 p⃗n+1(Ẑn+1

∣∣Ẑn)

τ(ẐN )
∏N−1

n=0 ⃗pn(Ẑn

∣∣Ẑn+1)
, (11)

where the expressions for the forward and backward transition kernels p⃗n and ⃗pn depend on the
choice of the integrator for Z. Since we have degenerate diffusion matrices, the backward kernel
⃗p can exhibit vanishing values, which requires careful choice of the integrators for Z. In particular,

naively using an Euler-Maruyama scheme as an integrator is typically not well-suited (Leimkuhler
& Reich, 2004; Neal, 2012; Doucet et al., 2022b); see also Fig. 4.

We therefore consider alternative integration methods, specifically splitting schemes (Bou-Rabee &
Owhadi, 2010; Melchionna, 2007), which divide the SDE into simpler parts that can be integrated
individually before combining them. Such methods are particularly useful when certain parts can be
solved exactly. To formalize splitting schemes, we leverage the Fokker-Planck operator framework,
proposing a decomposition of the generator L for diffusion processes Z of the form (5).

We can define L via the (kinetic) Fokker-Planck equation6

∂tp = Lp with Lp = −∇ ·
(
(f + ηu)p) + 1

2 Tr(ηη
⊤∇2p) (12)

governing the evolution of the density p(·, t) = P⃗
u,π
t of the solution to the SDE in (5). In order

to approximate the generator L, we want to assume a suitable structure for f and η, such that
we decompose L into simpler pieces. For this, we come back to the setting of the underdamped
Langevin equation stated in the introduction in equation (3). We can readily see that its controlled
counterpart can be incorporated in the framework presented in Section 2 by making the choices
D = 2d, Z = (X,Y )⊤, and

f(x, y, s) = (y, f̃(x, s)− 1
2σσ

⊤(s)y)⊤, η = (0, σ)⊤ (13)

in (5) and (6), where 0 ∈ Rd×d. Following Monmarché (2021); Geffner & Domke (2022) we split
the generator as L = LA + LB + LO (sometimes referred to as free transport, acceleration, and

6We denote by Tr the trace and by∇ the del operator w.r.t. spatial variable z; see App. A.1.
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Algorithm 1 Training of an underdamped diffusion sampler
Require: ▷ See App. A.10 for details

• model: neural networks uθ, vγ with initial parameters θ(0), γ(0)

• fixed hyperparameters: number of gradient steps K, number of discretization steps N , batch size m,
optimizer method step, integrator method integrate

• learned hyperparameters: prior distribution pprior = N (ζµ, diag(softplus(ηΣ))), diffusion and mass
matrices σ = diag(softplus(ησ)), M = diag(softplus(ηM )), and terminal time T = N softplus(ηδ)

with initial parameters η(0)
µ , η

(0)
Σ , η

(0)
σ , η

(0)
M , η

(0)
δ

Θ(0) = {θ(0), γ(0), η
(0)
µ , η

(0)
Σ , η

(0)
σ , η

(0)
M , η

(0)
δ }, π = pprior ⊗N (0,M), τ̃ = ρtarget ⊗N (0,M)

for k ← 0, . . . ,K − 1 do
for i← 1, . . . ,m do ▷ Approximate cost (batched in practice)

Ẑ0 ∼ π ▷ See (16)
rndi ← log π(Ẑ0)
for n← 0, . . . , N − 1 do

Ẑn+1 ← integrate(Ẑn,Θ
(k)) ▷ See App. A.8

rndi ← rndi + log p⃗n+1(Ẑn+1

∣∣Ẑn)− log ⃗pn(Ẑn

∣∣Ẑn+1) ▷ See (11)
rndi ← rndi − log τ̃(ẐN )

L̂ ← 1
m

∑m
i=1 rndi ▷ Compute loss

Θ(k+1) ← step
(
Θ(k),∇ΘL̂

)
▷ Gradient descent

return optimized parameters Θ(K)

damping) with

LAp = −y · ∇xp, LBp = −f̃ · ∇yp, LOp = −∇y ·
(
gp) + 1

2 Tr(σσ
⊤∇2

yp), (14)

where g(x, y, s) = − 1
2σσ

⊤(s)y + σ(s)u(x, y, s), resulting in[
dXs

dYs

]
=

[
Ys

0

]
︸︷︷︸

A

ds+

[
0

f̃(Xs, s)

]
︸ ︷︷ ︸

B

ds+

[
0(

− 1
2σσ

⊤(s)Ys + σu(Zs, s)
)
ds+ σ(s)dWs

]
︸ ︷︷ ︸

O

, (15)

where we use a standard normal for the last d components of the initial and terminal distributions
following Geffner & Domke (2022), i.e.,

π(x, y) = pprior(x)N (y; 0, Id) and τ(x, y) = ptarget(x)N (y; 0, Id). (16)

According to the Trotter theorem (Trotter, 1959) and Strang splitting formula (Strang, 1968), the
time evolution of the system can be approximated as:

e(LA+LB+LO)t ≈
[
eLAδeLBδeLOδ

]N
+O(Nδ3), (17)

where a finite number of time steps of length δ approximates the system dynamics. For a higher
accuracy, symmetric splitting can be used:

e(LA+LB+LO)t ≈
[
eLO

δ
2 eLB

δ
2 eLAδeLB

δ
2 eLO

δ
2

]N
+O(Nδ2), (18)

which reduces the approximation error (Yoshida, 1990). The optimal composition of terms is
generally problem-dependent and has been extensively studied for uncontrolled Langevin dynam-
ics (Monmarché, 2021). For the controlled setting, prior works often use the OBAB ordering
(Geffner & Domke, 2022; Doucet et al., 2022a). In this work, we additionally consider OBABO
and BAOAB, which show improved performance (cf. Section 4).

Further details on the integrators for forward and backward kernels p⃗ and ⃗p corresponding to these
splitting schemes can be found in App. A.8. We refer to Algorithm 1 for an overview of our method
and to App. A.10 for further details. A few remarks are in order (see also App. A.3).
Remark 3.1 (Mass matrix). Previous works, such as Geffner & Domke (2021) and Doucet et al.
(2022b), consider incorporating a mass matrix M ∈ C([0, T ],Rd×d) into the SDE formulation
in (15) and terminal conditions. For simplicity, we have omitted this consideration in the current
section. However, additional details on its inclusion and effects can be found in App. A.7. Further-
more, we conducted experiments where we learned the mass matrix, as discussed in Section 4.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Results for benchmark problems of various dimensions d, averaged across four runs. Evaluation crite-
ria include importance-weighted errors for estimating the log-normalizing constant ∆logZ , effective sample
size ESS, Sinkhorn distanceWγ

2 , and a lower bound (LB) on logZ; see App. A.10.2 for details on the metrics.
The best results are highlighted in bold. Arrows (↑, ↓) indicate whether higher or lower values are preferable.
Blue shading indicates that the method uses the underdamped Langevin equation.

FUNNEL (d = 10) MANYWELL (d = 50) LGCP (d = 1600)

METHOD ∆logZ ↓ ESS ↑ Wγ
2 ↓ ∆logZ ↓ ESS ↑ logZ (LB) ↑ ESS × 10 ↑

ULA
0.310±0.020 0.140±0.003 169.859±0.195 0.016±0.003 0.179±0.008 482.024±0.009 0.029±0.003

0.130±0.021 0.151±0.016 159.212±0.093 0.009±0.002 0.418±0.002 484.087±0.063 0.030±0.004

MCD
0.173±0.046 0.206±0.026 164.967±0.334 0.005±0.002 0.737±0.002 483.137±0.368 0.031±0.004

0.088±0.008 0.375±0.016 144.753±0.153 0.005±0.000 0.866±0.012 484.933±0.298 0.032±0.006

CMCD
0.023±0.003 0.567±0.023 104.644±0.710 0.004±0.002 0.859±0.001 483.875±0.275 0.032±0.004

0.268±0.198 0.369±0.186 148.990±19.81 0.008±0.003 0.585±0.034 483.535±0.232 0.028±0.004

DIS
0.047±0.003 0.498±0.021 107.458±0.826 0.006±0.002 0.798±0.002 405.686±4.019 0.015±0.003

0.048±0.009 0.550±0.039 114.580±0.457 0.005±0.000 0.856±0.002 DIVERGED DIVERGED

DBS
0.021±0.003 0.603±0.014 102.653±0.586 0.005±0.001 0.887±0.004 486.376±1.020 0.032±0.002

0.010±0.001 0.779±0.009 101.418±0.425 0.005±0.000 0.898±0.002 497.545±0.183 0.174±0.017

Remark 3.2 (Discrete Radon-Nikodym derivative). We note that our discretization of the Radon-
Nikodym derivative in (11) corresponds to a (discrete-time) Radon-Nikodym derivative between the
joint distributions of the discretized forward and backward processes. In particular, we can analo-
gously define a KL divergence which allows us to obtain a (guaranteed) lower bound for the log-
normalization constant logZ in discrete-time. On the other hand, this is not the case if we discretize
the divergence-based Radon-Nikodym derivative in Prop. A.6 as done in previous work Berner et al.
(2024); Richter & Berner (2024). Moreover, we can still optimize the divergences between the cor-
responding discrete path measures as presented in (8) and App. A.10.3. Finally, we note that the dis-
cretized Radon-Nikodym derivative does not depend on f̃ for the integrators considered in App. A.8.
We thus choose f̃ to have a good initialization for Z, e.g., as Langevin dynamics; see App. A.10.

Remark 3.3 (Properties of the score). Since the target density ptarget in (16) only appears in the
coordinates where η vanishes, Nelson’s identity in Lemma 2.2 shows that

u∗(x, y, T )− v∗(x, y, T ) = σ⊤(T )∇y logN (y; 0,M), (19)

i.e., the optimal controls u∗ and v∗ do not depend on the score of the target distribution,
∇x log ptarget, at terminal time T , as in the case of corresponding overdamped versions. This can
lead to numerical benefits in cases where this score would attain large values, e.g., when ptarget is
essentially supported on a lower dimensional manifold (Dockhorn et al., 2021; Chen et al., 2022).

4 NUMERICAL EXPERIMENTS

In this section, we present a comparative analysis of underdamped approaches against their over-
damped counterparts. We consider five diffusion-based sampling methods, specifically, Unad-
justed Langevin Annealing (ULA) (Thin et al., 2021; Geffner & Domke, 2021), Monte Carlo Diffu-
sions (MCD) (Doucet et al., 2022b; Geffner & Domke, 2022), Controlled Monte Carlo Diffusions
(CMCD) (Vargas et al., 2024), Time-Reversed Diffusion Sampler (DIS)7 (Berner et al., 2024), and
Diffusion Bridge Sampler (DBS) (Richter & Berner, 2024). We stress that the underdamped versions
of DIS and DBS have not been considered before.

To ensure a fair comparison, all experiments are conducted under identical settings. Our evaluation
methodology adheres to the protocol suggested in Blessing et al. (2024). For a comprehensive
overview of the experimental setup and additional details, we refer to App. A.10. Moreover, we
provide further numerical results in App. A.10.3, including the comparison to competing state-of-
the-art methods. The code is publicly available8.

4.1 BENCHMARK PROBLEMS

We evaluate the different methods on various real-world and synthetic benchmark examples.

7It is worth noting that we do not separately consider the Denoising Diffusion Sampler (DDS) (Vargas et al.,
2023a), as it can be viewed as a special case of DIS (Berner et al., 2024).

8https://anonymous.4open.science/r/UnderdampedDiffusionBridges
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Figure 3: Effective sample size (ESS) for real-world benchmark problems of various dimensions d, averaged
across four seeds. Here, N refers to the number of discretization steps. Solid/dashed lines indicate the usage of
the overdamped (OD) and underdamped (UD) Langevin, respectively.
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Figure 4: Effective sample size (ESS) and wallclock time of the diffusion bridge sampler (DBS) for different
integration schemes, averaged across multiple benchmark problems and four seeds. Integration schemes include
Euler-Maruyama (EM) for over (OD) - and underdamped (OD) Langevin and various splitting schemes (OBAB,
BAOAB, OBABO).

Real-world benchmark problems. We consider seven real-world benchmark problems: Four
Bayesian inference tasks, namely Credit (d = 25), Cancer (d = 31), Ionosphere (d = 35), and
Sonar (d = 61). Additionally, Seeds (d = 26) and Brownian (d = 32), where the goal is to perform
inference over the parameters of a random effect regression model, and the time discretization of a
Brownian motion, respectively. Lastly, LGCP (d = 1600), a high-dimensional Log Gaussian Cox
process (Møller et al., 1998).

Synthetic benchmark problems. We consider two synthetic benchmark problems in this work:
The challenging Funnel distribution (d = 10) introduced by Neal (2003), whose shape resembles
a funnel, where one part is tight and highly concentrated, while the other is spread out over a wide
region. Moreover, we consider the ManyWell (d = 50) target, a highly multi-modal distribution with
25 = 32 modes.

4.2 RESULTS

Underdamped vs. overdamped. Our analysis of both real-world and synthetic benchmark prob-
lems reveals consistent improvements when using underdamped Langevin equations compared to
their overdamped counterparts, as illustrated in Table 1 and Figure 3. The underdamped diffusion
bridge sampler (DBS) demonstrates particularly impressive performance, consistently outperform-
ing other methods. Remarkably, even with as few as N = 8 discretization steps, it often surpasses
competing methods that utilize significantly more steps.

Numerical integration schemes. Here, we further examine various numerical schemes for the
diffusion bridge sampler (DBS) introduced in Section 3. Results and a discussion for other methods
can be found in App. A.10.3. To provide a concise overview, we present the average effective
sample size (ESS) and wallclock time across all tasks, excluding LGCP, in Fig. 4. Detailed results
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Figure 5: Effective sample size (ESS) of the underdamped diffusion bridge sampler (DBS) for various com-
binations of learned parameters, averaged across multiple benchmark problems and four seeds using N = 64
discretization steps. Haperparameters include mass matrix M , diffusion matrix σ, terminal time T , and ex-
tended prior distribution π. See Fig. 9 for the results with N = 8 discretization steps.

for individual benchmarks can be found in App. A.10.3. While is is known that classical Euler
methods are not well-suited for underdamped dynamics (Leimkuhler & Reich, 2004), our findings
indicate that both OBAB and BAOAB schemes offer significant improvements without incurring
additional computational costs. The OBABO scheme yields the best results overall, albeit at the
expense of increased computational demands due to the need for double evaluation of the control
per discretization step. However, it is worth noting that in many real-world applications, target
evaluations often constitute the primary computational bottleneck. In such scenarios, OBABO may
be the preferred choice despite its higher computational requirements.

End-to-end hyperparameter learning. Finally, we examine the impact of end-to-end learning
of various hyperparameters on the performance of the underdamped diffusion bridge sampler. Our
investigation focuses on optimizing the (diagonal) mass matrix M , diffusion matrix σ, terminal time
T , and prior distribution π. Fig. 5 and Fig. 9 illustrate the effective sample size, averaged across all
tasks (excluding LGCP) for N = 64 and N = 8 diffusion steps, respectively. The results reveal that
learning these parameters, particularly the terminal time and prior distribution leads to substantial
performance gains. We note that this feature enhances the method’s user-friendliness by minimizing
or eliminating the need for manual hyperparameter tuning.

5 CONCLUSION AND OUTLOOK

In this work we have formulated a general framework for diffusion bridges including degenerate
stochastic processes. In particular, we propose the novel underdamped diffusion bridge sampler,
which achieves state-of-the-art results on multiple sampling tasks without hyperparameter tuning
and only a few discretization steps. We provide careful ablation studies showing that our improve-
ments are due to the combination of underdamped dynamics, our novel numerical integrators, as
well as end-to-end learned hyperparameters and forward and backward transitions. Our results also
offer motivation to extend the method by Chen et al. (2021) and benchmark underdamped diffusion
bridges for generative modeling using the ELBO derived in Lemma 2.4. Different from diffusion
models, diffusion bridges require SDE simulations during training, but can also be applied to more
general prior distributions.

Finally, our favorable findings encourage further investigation of the theoretical convergence rate of
underdamped diffusion samplers. Similar to what has already been observed in generative modeling
by Dockhorn et al. (2021), we find significant and consistent improvements over overdamped ver-
sions, in particular also for high-dimensional targets with only a few steps N . However, previous
results showed that (for the case v = 0), the improved convergence rates of underdamped Langevin
dynamics do not carry over to the learned setting, since (different from the score ∇ log ptarget in
Langevin dynamics) the control u depends not only on the smooth X but also on Y (Chen et al.,
2022). Specifically, they show that a small KL divergence between the path measures generally
requires the step size δ to scale at least linearly in d (instead of

√
d). While the tightness of our

lower bounds on logZ corresponds to such KL divergences, we believe the results can still can be
reconciled with our empirical findings due to the following reasons: (1) our samplers are initialized
as Langevin dynamics (see App. A.10) such that theoretical benefits of the underdamped case hold
at least initially (2) the learning problem becomes numerically better behaved (see (19)), leading to
better approximation of the optimal parameters, (3) learning both u and v as well as the prior π,
diffusion coefficient σ, and terminal time T (see Fig. 5) can reduce the discretization error.
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Hao Wu, Jonas Köhler, and Frank Noé. Stochastic normalizing flows. Advances in Neural Informa-
tion Processing Systems, 33:5933–5944, 2020.

Haruo Yoshida. Construction of higher order symplectic integrators. Physics letters A, 150(5-7):
262–268, 1990.

Guodong Zhang, Kyle Hsu, Jianing Li, Chelsea Finn, and Roger Grosse. Differentiable annealed im-
portance sampling and the perils of gradient noise. In Advances in Neural Information Processing
Systems, 2021.

Qinsheng Zhang and Yongxin Chen. Path integral sampler: a stochastic control approach for sam-
pling. arXiv preprint arXiv:2111.15141, 2021.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

CONTENTS

A.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

A.3 Further remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

A.4 Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

A.5 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.6 Additional statements on diffusion models . . . . . . . . . . . . . . . . . . . . . . 19

A.7 Including a mass matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A.8 Numerical discretization schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A.8.1 OBAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

A.8.2 BAOAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A.8.3 OBABO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A.9 Underdamped version of previous diffusion-based sampling methods . . . . . . . . 23

A.10 Further computational details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

A.10.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

A.10.2 Evaluation criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A.10.3 Further experiments and comparisons . . . . . . . . . . . . . . . . . . . . 26

A.1 NOTATION

We denote by Tr(Σ) and Σ+ the trace and the (Moore-Penrose) pseudoinverse of a real-valued
matrix Σ, by ∥µ∥ the Euclidean norm of a vector µ, and by µ1 · µ2 the Euclidean inner product
between vectors µ1 and µ2.

For a function p : RD × [0, T ] → R, depending on the variables z = (x, y) ∈ Rd × RD−d ≃ RD

and t ∈ [0, T ], we denote by ∂tp it partial derivative w.r.t. the time coordinate t and by ∇xp and
∇yp its gradients w.r.t. the spatial variables x and y, respectively. Moreover, we denote by

∇p =

[
∇xp
∇yp

]
(20)

the gradient w.r.t. both spatial variables z = (x, y). We analogously denote by ∇2p the Hessian of
p w.r.t. the spatial variables. Similarly, we define ∇ · f =

∑D
i=1 ∂xi

fi to be the divergence of a
(time-dependent) vector field f = (fi)

D
i=1 : RD × [0, T ] → RD w.r.t. the spatial variables.

We denote by N (µ,Σ) a multivariate normal distribution with mean µ ∈ Rd and (positive semi-
definite matrix) covariance matrix Σ ∈ Rd×d and write N (x;µ,Σ) for the evaluation of its density
(w.r.t. the Lebesgue measure) at x ∈ Rd. Moreover, we denote by Unif([0, T ]) the uniform distri-
bution on [0, T ]. For an Rd-valued random variable X with law P and a function f : Rd → R, we
denote by

EX∼P[f(X)] =

∫
f dP (21)

the expected value of the random variable f(X).
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For suitable processes Z = (Zt)t∈[0,T ] and Y = (Yt)t∈[0,T ], we define forward and backward Itô
integrals via the limits ∫ t

t

Xs · d⃗Ys = lim
n→∞

kn∑
i=0

Xtni
· (Ytni+1

− Ytni
), (22)

∫ t

t

Xs · ⃗dYs = lim
n→∞

kn∑
i=0

Xtni+1
· (Ytni+1

− Ytni
), (23)

where t < tn0 < · · · < tnkn
= t is an increasing sequence of subdivisions of

[
t, t
]

with mesh tending
to zero; see Vargas et al. (2024) for details. The relation between forward and backward integrals is
given in Lemma A.5.

We denote by P the set of probability measures on C([0, T ],RD), equipped with the Borel σ-field
associated with the topology of uniform convergence on compact sets. For suitable vector fields u,
v and distributions π, τ , we denote by Pu,π ∈ P and Pv,τ ∈ P the forward and reverse-time path
measures, i.e., the laws or pushforwards on C([0, T ],RD), of the solutions Z = (Zt)t∈[0,T ] to the
SDEs

Zt = Z0 +

∫ t

0

(f + η u) (Zs, s) ds+

∫ t

0

η(s) d⃗Ws, Z0 ∼ π, (24)

Zt = ZT −
∫ T

t

(f + η v) (Zs, s) ds−
∫ T

t

η(s) ⃗dWs, ZT ∼ τ, (25)

respectively. In the above, W denotes a standard d-dimensional Brownian motion satisfying the
usual conditions, see, e.g., Kunita (2019). Note that we consider degenerate diffusion coefficients
η of the form η = (0, σ)⊤. We denote the marginal of a path space measure P at time t ∈ [0, T ]
by Pt, which can be interpreted as the pushforward under the evaluation Z 7→ Zt. Moreover, we
denote by Ps|t the conditional distribution of Ps given Pt.

A.2 ASSUMPTIONS

Throughout the paper, we assume that all vector fields are smooth, i.e., for a vector field g it holds
g ∈ C∞(RD × [0, T ],Rd), and satisfy a global Lipschitz condition (uniformly in time), i.e., there
exists a constant C such that for all z1, z2 ∈ RD and t ∈ [0, T ] it holds that

∥g(z1, t)− g(z2, t)∥ ≤ C∥z1 − z2∥. (26)

These assumptions also define the set of admissible controls U ⊂ C∞(RD × [0, T ],Rd).

Moreover, we assume that the diffusion coefficients appearing in the dimensions with the control,
σ, are invertible for all t ∈ [0, T ] and satisfy that σ ∈ C∞([0, T ],Rd×d). Our continuity assump-
tions on the SDE coefficient functions and the global Lipschitz condition in (26) guarantee strong
solutions with pathwise uniqueness (see, e.g., Le Gall (2016, Section 8.2)) and are sufficient for
Girsanov’s theorem in Thm. A.3 to hold (see, e.g., Delyon & Hu (2006)). Moreover, our conditions
allow the definition of the forward and backward Itô integrals via limits of time discretizations as
in (22) and (23) that are independent of the specific sequence of refinements (Vargas et al., 2024).

Finally, we assume that all SDEs admit densities of their time marginals (w.r.t. the Lebesgue mea-
sure) that are sufficiently smooth9 such that we have strong solutions to the corresponding Fokker-
Planck equations. The existence of continuously differentiable densities and our assumptions on the
SDE coefficient functions are sufficient for Nelson’s relation in Lemma 2.2 to hold; see, e.g., Millet

9Sufficient conditions for the existence of densities can be found in Millet et al. (1989, Proposition
4.1) and Haussmann & Pardoux (1986, Theorem 3.1). For time-independent SDE coefficient functions, a
result by Kolmogoroff (1931) guarantees that the Fokker-Planck equation is satisfied if the density is in
C2,1(Rd× [0, T ],R); see also Pavliotis (2014, Proposition 3.8). and Schilling & Partzsch (2014, 19.6 Proposi-
tion). However, we note that popular results by Friedman (1964, Section 1.6) (see also Friedman (1975, Section
5) and Durrett (1984, Section 9.7)) for showing existence and uniqueness of solutions to Fokker-Planck equa-
tions require uniform ellipticity assumptions, which are not satisfied for our degenerate diffusion coefficients.
We refer to Bogachev et al. (2022, Sections 6.7(ii) and 9.8(i)-(iii)) for existence and uniqueness in the degen-
erate case and note that we only make use of the Fokker-Planck equation for motivating our splitting schemes
in Section 3.
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et al. (1989). While we use the above assumptions to simplify the presentation, we note they can be
significantly relaxed.

A.3 FURTHER REMARKS

Remark A.1 (Stochastic bridges and bridge sampling). By stochastic bridge or diffusion bridge
(also referred to as general bridge by Richter & Berner (2024)), we refer to a SDE that satisfies the
marginals pprior and ptarget at times t = 0 and t = T , respectively. For a given diffusion coefficient
of the SDE, there exist infinitely many drifts satisfying these constraints. In particular, for every
sufficiently regular density evolution between the prior and target, we can find a drift (given by
a unique gradient field) that establishes a corresponding stochastic bridge; see, e.g., Vargas et al.
(2024, Proposition 3.4) and Neklyudov et al. (2023, Appendix B.3).

However, any stochastic bridge solves our problem of sampling from ptarget and the non-uniqueness
can even lead to better performance in gradient-based optimization (Sun et al., 2024; Blessing et al.,
2024). Other previous methods have obtained unique objectives by prescribing the density evolution,
e.g., as diffusion process in DIS (Berner et al., 2024) or geometric annealing between prior and target
in CMCD (Vargas et al., 2024).

Another popular approach of obtaining uniqueness consists of minimizing the distance10 to a ref-
erence process (additionally to satisfying the marginals). In case the distance is measured via a
Kullback-Leibler divergence between the path measures of the bridge and reference process, this
setting is often referred to as (dynamical) Schrödinger bridge problem. In the context of samplers,
reference processes have been chosen as scaled Brownian motions in DIS (Zhang & Chen, 2021) and
ergodic processes in DDS (Vargas et al., 2023a); see also Richter & Berner (2024) for an overview.

A special case of such a Schrödinger bridge problem is given if the marginals pprior and ptarget are
Dirac measures. Sampling from the solution to such a problem is equivalent to sampling from the
reference SDE conditioned on the start and end point at the times t = 0 and t = T (specified by
the Dirac measures). For instance, if the reference measure is a Brownian motion, solutions are
commonly referred to as Brownian bridges. As special cases of our considered bridges, solutions
to such problems are also sometimes called diffusion bridges and we refer to Schauer et al. (2013);
Heng et al. (2021) for further details and numerical approaches. However, our sampling problem is
in some form orthogonal to such tasks: in case of a Dirac target distribution, sampling is trivial and
one is interested in the conditional trajectories. For the sampling problem, the trajectories are not
(directly) relevant and one is interested in samples from a general target distribution.

Remark A.2 (Higher order Langevin equations). We note that our general framework from Sec-
tion 2 can readily be used for higher order dynamics and in particular higher order Langevin equa-
tions, where next to a position and velocity variable one considers acceleration. As argued by Shi
& Liu (2024), corresponding trajectories become smoother the higher the order, which can lead
to improved performance of (uncontrolled) Langevin dynamics. Also, Mou et al. (2021) observed
improved convergence of third-order Langevin dynamics for convex potentials. We leave related
extensions to diffusion bridges for future work.

A.4 AUXILIARY RESULTS

Theorem A.3 (Girsanov theorem). For P⃗u,π-almost every Z ∈ C([0, T ],RD) it holds that

log
dP⃗u,π

dP⃗w,π
(Z) = −

∫ T

0

(
1

2
∥u− w∥2 + (η+f + w) · (u− w)

)
(Zs, s) ds+ S (27)

=
1

2

∫ T

0

(
∥η+f + w∥2 − ∥η+f + u∥2

)
(Zs, s) ds+ S, (28)

where

S =

∫ T

0

(u− w)(Zs, s) · η+(s) d⃗Zs. (29)

10In the context of generative modeling, also more general settings, referred to as mean-field games or gen-
eralized Schrödinger bridges, have been explored; see, e.g., Liu et al. (2022); Koshizuka & Sato (2023); Liu
et al. (2023).
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In particular, for Z ∼ P⃗u,π we obtain that

log
dP⃗u,π

dP⃗w,π
(Z) = −1

2

∫ T

0

∥u− w∥2(Zs, s) ds+

∫ T

0

(u− w)(Zs, s) · d⃗Bs. (30)

Proof. See Sottinen & Särkkä (2008); Chen et al. (2022); Üstünel & Zakai (2013).

Theorem A.4 (Reverse-time Girsanov theorem). For P⃗u,π-almost every Z ∈ C([0, T ],RD) holds
that

log
d ⃗Pu,π

d ⃗Pw,π
(Z) = log

dP⃗u,π

dP⃗w,π
(Z)−

∫ T

0

(u− w)(Zs, s) · η+(s) d⃗Zs (31)

+

∫ T

0

(u− w)(Zs, s) · η+(s) ⃗dZs. (32)

Proof. Using Thm. A.3 and the definitions in (22) and (23), we observe that d ⃗Pu,π

d ⃗Pw,π
(Z) equals the

Radon-Nikodym derivative between the path spaces measures corresponding to forward SDEs as
in (5) with initial conditions π and all functions f , u, w, and η reversed in time, evaluated at t 7→
ZT−t. We can now substitute t 7→ T − t to proof the claim; see also Vargas et al. (2024, Proof of
Proposition 2.2).

Lemma A.5 (Conversion formula). For Z ∼ Pw,π and suitable g ∈ C(RD × [0, T ],RD) it holds
that ∫ t

t

g(Zs, s) · ⃗dZs =

∫ t

t

g(Zs, s) · d⃗Zs +

∫ t

t

∇ · (ηη⊤g)(Zs, s) ds. (33)

Proof. Similar to the conversion formula in Vargas et al. (2024, Remark 3), the result follows from
combining (22) and (23). First, we rewrite the problem by observing that∫ t

t

g(Zs, s) · ⃗dZs =

∫ t

t

g(Zs, s) · d⃗Zs +

∫ t

t

g̃(Zs, s) · ⃗dWs −
∫ t

t

g̃(Zs, s) · d⃗Ws,

where g̃ = η⊤g. Then we can compute∫ t

t

g̃(Zs, s) · ⃗dWs = lim
n→∞

kn∑
i=0

(g̃(Ztni+1
, tni+1) + g̃(Ztni

, tni )) · (Wtni+1
−Wtni

)−
∫ t

t

g̃(Zs, s) · d⃗Ws

= 2

∫ t

t

g̃(Zs, s) ◦ dWs −
∫ t

t

g̃(Zs, s) · d⃗Ws,

where ◦ denotes Stratonovich integration. The result now follows from the relationship between Itô
and Stratonovich stochastic integrals, i.e.,∫ t

t

g̃(Zs, s) ◦ dWs =

∫ t

t

g̃(Zs, s) · d⃗Ws +
1

2

∫ t

t

∇ · (ηg̃)(Zs, s) ds, (34)

see, e.g., Kloeden & Platen (1992, Section 4.9).

A.5 PROOFS

Proof of Prop. 2.3. The proof follows the one by Vargas et al. (2024, proof of Proposition 2.2).
Using disintegration (Léonard, 2014), we first observe that d ⃗Pw,τ

dP⃗w,π
(Z) = τ(ZT )

π(Z0)
for w = −η+f .

Thus, it holds that

log
dP⃗u,π

d ⃗Pv,τ
(Z) = log

dP⃗u,π

dP⃗w,π
(Z) + log

d ⃗Pw,τ

d ⃗Pv,τ
(Z) + log

π(Z0)

τ(ZT )
. (35)

The result now follows by applying the Girsanov theorem; see Thm. A.3 and Thm. A.4.
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Proof of Lemma 2.4. Using Lemma 2.2 and the chain rule for the KL divergence, we observe that

DKL(P⃗
v,τ | ⃗Pu,π) = DKL(P⃗

v,τ |P⃗ṽ,τ̃ ) = DKL(P⃗
v,τ |P⃗ṽ,τ ) +DKL(τ | ⃗Pu,π

0 ), (36)

where τ̃ = ⃗Pu,π
0 . We note that the Girsanov theorem (see Thm. A.3) implies that the variational gap

can equivalently be written as

DKL(P⃗
v,τ |P⃗ṽ,τ ) = EZ∼P⃗v,τ

[
1

2

∫ T

0

∥∥v(Zs, s)− u(Zs, s) + η⊤(s)∇ log ⃗Pu,π
s (Zs)

∥∥2 ds] ,
see also Vargas et al. (2024, Appendix C).

Proof of Prop. 2.5. The proof extends the ones by Huang et al. (2021, Appendix A), Berner et al.
(2024, Lemma A.11), and (Vargas et al., 2024, Appendix C.2) to the case of degenerate diffusion
coefficients η. Using Prop. A.6 and a Monte Carlo approximation, we first observe that, for the case
v = 0, the ELBO can be represented as

ELBO = EZ∼P⃗0,τ

[
log π(ZT )−

∫ T

0

(
1

2
∥u∥2 −∇ · (ηu+ ηη+f)

)
(Zs, s) ds

]
(37)

= −T EZ∼P⃗0,τ , s∼Unif([0,T ])

[(
1

2
∥u∥2 −∇ · (ηu)

)
(Zs, s)

]
+ const., (38)

where the last expression can be viewed as an extension of the implicit score matching (Hyvärinen
& Dayan, 2005) to degenerate η.

Completing the square and using the tower property in (37), it remains to show that

E[r(Zs)|Z0] = −E [∇ · (ηu)(Zs, s)|Z0] (39)

for fixed s ∈ [0, T ], where we used the abbreviations

p(z) := P0,τ
s|0 (z|Z0) and r(z) = u(z, s) ·

(
η⊤(s)∇ log p(z)

)
=
(
η(s)u(z, s)

)
· ∇p(z)

p(z)
. (40)

Under suitable assumptions, the statement in (39) follows from the computation

E[r(Zs)|Z0] =

∫
Rd

r(z)p(z) dz =

∫
Rd

∇ · (ηup)(z, s) dz︸ ︷︷ ︸
=0

−
∫
Rd

∇ ·
(
ηu
)
(z, s)p(z) dz (41)

= −E [∇ · (ηu)(Zs, s)|Z0] , (42)

where we used identities for divergences and Stokes’ theorem.

A.6 ADDITIONAL STATEMENTS ON DIFFUSION MODELS

Proposition A.6 (Radon-Nikodym derivative). For a process Z ∼ P⃗w,π as defined in (5) it holds

log
dP⃗u,π

d ⃗Pv,τ
(Z) = log

π(Z0)

τ(ZT )
+

∫ T

0

(
(u− v) ·

(
w − u+ v

2

)
−∇ · (ηη+f + ηv)

)
(Zw

s , s) ds

+

∫ T

0

(u− v)(Zs, s) · d⃗Ws,

where we note that ηη+ =

(
0d 0d

0d Idd×d

)
.
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Proof. This follows from combining Prop. 2.3 with Lemma A.5. Note that for Z ∼ P⃗w,π it holds
that

log
dP⃗u,π

d ⃗Pv,τ
(Z) = log

π(Z0)

τ(ZT )
− 1

2

∫ T

0

∥(η+f + u)∥2(Zs, s) ds+
1

2

∫ T

0

∥(η+f + v)∥2(Zs, s) ds

+

∫ T

0

(η+f + u)(Zs, s) · η+(s) d⃗Zs −
∫ T

0

(η+f + v)(Zs, s) · η+(s) ⃗dZs

= log
π(Z0)

τ(ZT )
− 1

2

∫ T

0

∥(η+f + u)∥2(Zs, s) ds+
1

2

∫ T

0

∥(η+f + v)∥2(Zs, s) ds

+

∫ T

0

(u− v)(Zs, s) · η+(s) d⃗Zs −
∫ T

0

∇ · (ηη+f + ηv)(Zs, s) ds

= log
π(Z0)

τ(ZT )
+

∫ T

0

(
(u− v) ·

(
w − u+ v

2

)
−∇ · (ηη+f + ηv)

)
(Zw

s , s) ds

+

∫ T

0

(u− v)(Zs, s) · d⃗Ws.

A.7 INCLUDING A MASS MATRIX

In Section 3, we omitted the mass matrix M for simplicity. Here, give further details on the SDEs
when the mass matrix is incorporated. It can be incorporated in the framework presented in Section 2
by making the choices D = 2d, Z = (X,Y )⊤ and

f(x, y, s) = (y, f̃(x, y, s)− 1
2σσ

⊤(s)y)⊤, η = (0d, σM
1/2)⊤ (43)

in (5) and (6), where 0d ∈ Rd×d, and σ,M ∈ C([0, T ],Rd×d). For the terminal conditions, the
standard normal for the last d components of the initial and terminal distributions is replaced by a
Gaussian whose covariance matrix is given by the mass, i.e.,

π(x, y) = pprior(x)N (y; 0,M) and τ(x, y) = ptarget(x)N (y; 0,M). (44)

We, therefore, get the forward and reverse-time processes

dXs = M−1Ys ds, X0 ∼ pprior, (45a)

dYs =
(
f̃(Zs, s)− 1

2σσ
⊤(s)Ys + σM1/2u(Zs, s)

)
ds+ σ(s)M1/2 d⃗Ws, Y0 ∼ N (0,M),

(45b)

and

dXs = M−1Ys ds, XT ∼ ptarget,

(46a)

dYs =
(
f̃(Zs, s)− 1

2σσ
⊤(s)Ys − σM1/2v(Zs, s)

)
ds+ σ(s)M1/2 ⃗dWs, YT ∼ N (0,M).

(46b)

In a similar spirit to the diffusion matrix σ, one can also learn the mass matrix. However, our
experiments (Section 4) showed little improvements.

A.8 NUMERICAL DISCRETIZATION SCHEMES

Here, we provide further details on the numerical integration schemes discussed in this work, i.e.,
OBAB, BAOAB, and OBABO. In particular, we derive the transition kernels p⃗ and ⃗p for computing
the discrete-time approximation of the Radon-Nikodym derivative as

dP⃗u,π

d ⃗Pv,τ
(Z) ≈ π(Ẑ0)

∏N−1
n=0 p⃗n+1(Ẑn+1

∣∣Ẑn)

τ(ẐN )
∏N−1

n=0 ⃗pn(Ẑn

∣∣Ẑn+1)
. (47)
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For convenience, we recall the following split for the generative SDE that is used throughout this
section, i.e.,[

dXs

dYs

]
=

[
Ys

0

]
︸︷︷︸

A⃗

ds+

[
0

f̃(Xs, s)

]
︸ ︷︷ ︸

B⃗

ds+

[
0(

− 1
2σσ

⊤(s)Ys + σu(Zs, s)
)
ds+ σ(s)d⃗Ws

]
︸ ︷︷ ︸

O⃗

, (48)

and use the following split for the inference SDE[
dXs

dYs

]
=

[
Ys

0

]
︸︷︷ ︸⃗

A

ds+

[
0

f̃(Xs, s)

]
︸ ︷︷ ︸

⃗B

ds+

[
0(

− 1
2σσ

⊤(s)Ys − σv(Zs, s)
)
ds+ σ(s) ⃗dWs

]
︸ ︷︷ ︸

⃗O

. (49)

Here, we use arrows to indicate whether the corresponding split belongs to the generative or infer-
ence SDE. To simplify the notation, we define σs := σ(s) and f̃s := f̃(Xs, s).

A.8.1 OBAB

Composing the splitting terms as O⃗B⃗A⃗B⃗ yields the integrator

Ŷ
′

n = Ŷn(1 +
1
2σnδσ

⊤
nδδ) + σnδu(Ẑn, nδ)δ + σnδ

√
δξn, ξn ∼ N (0, I) (50a)

Ŷ
′′

n = Ŷ
′

n + f̃n
δ
2

X̂n+1 = X̂n + Ŷ
′′

n δ

Ŷn+1 = Ŷ
′′

n + f̃n+1
δ
2

Φ (50b)

(50c)

with Ẑn+1 = Φ(X̂n, Ŷ
′

n). The resulting forward transition is given by

p⃗n+1(Ẑn+1|Ẑn) = δΦ(X̂n,Ŷ
′
n)
(Ẑn+1)N

(
Ŷ

′

n|Ŷn(1 +
1
2σnδσ

⊤
nδδ) + σnδu(Ẑn, nδ)δ, σnδσ

⊤
nδδ
)
.

The inference SDE, i.e., ⃗O ⃗B ⃗A ⃗B is integrated as

Ŷ
′′

n = Ŷn+1 − f̃n+1
δ
2

X̂n = X̂n+1 − Ŷ
′′

n δ

Ŷ
′

n = Ŷ
′′

n − f̃n
δ
2

Φ−1 (51)

Ŷn = Ŷ
′

n(1− 1
2σnδσ

⊤
nδδ) + σnδv(Ẑ

′

n, nδ)δ + σnδ

√
δξn, ξn ∼ N (0, I) , (52)

with (X̂n, Ŷ
′

n) = Φ−1(Ẑn+1), giving the following backward transitions

⃗pn(Ẑn|Ẑn+1) = δΦ−1(Ẑn+1)
(X̂n, Ŷ

′

n)N
(
Ŷn|Ŷ

′

n

(
1− 1

2σnδσ
⊤
nδδ
)
+ σnδv(Ẑ

′

n, nδ)δ, σnδσ
⊤
nδδ
)
,

resulting in the following ratio between forward and backward transitions

p⃗n+1(Ẑn+1|Ẑn)

⃗pn(Ẑn|Ẑn+1)
=

N
(
Ŷ

′

n|Ŷn(1 +
1
2σnδσ

⊤
nδδ) + σnδu(Ẑn, nδ)δ, σnδσ

⊤
nδδ
)

N
(
Ŷn|Ŷ ′

n

(
1− 1

2σnδσ⊤
nδδ
)
+ σnδv(Ẑ

′
n, nδ)δ, σnδσ⊤

nδδ
) . (53)
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A.8.2 BAOAB

Composing the splitting terms as B⃗A⃗O⃗A⃗B⃗ yields the integrator

Ŷ
′

n = Ŷn + f̃n
δ
2

X̂
′

n = X̂n + Ŷ
′

n
δ
2

}
Φ1 (54)

Ŷ
′′

n = Ŷ
′

n(1 +
1
2σnδσ

⊤
nδδ) + σnδu(X̂

′

n, Ŷ
′

n, nδ)δ + σnδ

√
δξn (55)

X̂n+1 = X̂
′

n + Ŷ
′′

n
δ
2

Ŷn+1 = Ŷ
′′

n + f̃n+1
δ
2

}
Φ2 (56)

with ξn ∼ N (0, I), (X̂
′

n, Ŷ
′

n) = Φ1(Ẑn), and Ẑn+1 = Φ2(X̂
′

n, Ŷ
′′

n ). Hence, we obtain the forward
transitions

p⃗n+1(Ẑn+1|Ẑn) =δΦ2(X̂
′
n,Ŷ

′′
n )(Ẑn+1) (57)

×N
(
Ŷ

′′

n |Ŷ ′

n(1 +
1
2σnδσ

⊤
nδδ) + σnδu(X̂

′

n, Ŷ
′

n, nδ)δ, σnδσ
⊤
nδδ
)

(58)

× δΦ1(Ẑn)
(X̂

′

n, Ŷ
′

n). (59)

For ⃗B ⃗A ⃗O ⃗A ⃗B we obtain

Ŷ
′′

n = Ŷn+1 − f̃n+1
δ
2

X̂
′

n = X̂n+1 − Ŷ
′′

n
δ
2

}
Φ−1

2 (60)

Ŷ
′

n = Ŷ
′′

n (1− 1
2σnδσ

⊤
nδδ) + σnδv(X̂

′

n, Ŷ
′′

n , nδ)δ + σnδ

√
δξn (61)

X̂n = X̂
′

n − Ŷ
′

n
δ
2

Ŷn = Ŷ
′

n − f̃n
δ
2

}
Φ−1

1 (62)

with (X̂
′

n, Ŷ
′′

n ) = Φ−1
2 (Ẑn+1) and Ẑn = Φ−1

1 (X̂
′

n, Ŷ
′

n). Moreover, we have

⃗pn(Ẑn|Ẑn+1) =δΦ−1
1 (X̂′

n,Ŷ
′
n)
(Ẑn) (63)

×N
(
Ŷ

′

n|Ŷ
′′

n (1− 1
2σnδσ

⊤
nδδ) + σnδv(X̂

′

n, Ŷ
′′

n , nδ)δ, σnδσ
⊤
nδδ
)

(64)

× δΦ−1
2 (Ẑn+1)

(X̂
′

n, Ŷ
′′

n ). (65)

We, therefore, obtain the following ratio between forward and backward transitions:

p⃗n+1(Ẑn+1|Ẑn)

⃗pn(Ẑn|Ẑn+1)
=

N
(
Ŷ

′′

n |Ŷ ′

n(1 +
1
2σnδσ

⊤
nδδ) + σnδu(X̂

′

n, Ŷ
′

n, nδ)δ, σnδσ
⊤
nδδ
)

N
(
Ŷ ′
n|Ŷ ′′

n (1− 1
2σnδσ⊤

nδδ) + σnδv(X̂
′
n, Ŷ

′′
n , nδ)δ, σnδσ⊤

nδδ
) . (66)

A.8.3 OBABO

Composing the splitting terms as O⃗B⃗A⃗B⃗O⃗ yields the integrator

Ŷ
′

n = Ŷn(1 +
1
4σnδσ

⊤
nδδ) + σnδu(Ẑn, nδ)

δ
2 + σnδ

√
δ
2ξ

(1)
n (67)

Ŷ
′′

n = Ŷ
′

n + f̃n
δ
2

X̂n+1 = X̂n + Ŷ
′′

n δ

Ŷ
′′′

n = Ŷ
′′

n + f̃n+1
δ
2

Φ (68)

Ŷn+1 = Ŷ
′′′

n (1 + 1
4σnδσ

⊤
nδδ) + σnδu(X̂n+1, Ŷ

′′′

n , (n+ 1
2 )δ)

δ
2 + σnδ

√
δ
2ξ

(2)
n (69)
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with ξ
(1)
n , ξ

(2)
n ∼ N (0, I) and (X̂n+1, Ŷ

′′′

n ) = Φ(X̂n, Ŷ
′

n). The resulting forward transition is given
by

p⃗n+1(Ẑn+1|Ẑn) =N
(
Ŷn+1|Ŷ

′′′

n (1 + 1
4σnδσ

⊤
nδδ) + σnδu(X̂n+1, Ŷ

′′′

n , (n+ 1
2 )δ)

δ
2 ,

1
2σnδσ

⊤
nδδ
)

× δΦ(X̂n,Ŷ
′
n)
(X̂n+1, Ŷ

′′′

n )

×N
(
Ŷ

′

n|Ŷn(1 +
1
4σnδσ

⊤
nδδ) + σnδu(Ẑn, nδ)

δ
2 ,

1
2σnδσ

⊤
nδδ
)
.

The inference SDE, i.e., ⃗O ⃗B ⃗A ⃗B ⃗O is integrated as

Ŷ
′′′

n = Ŷn+1(1− 1
4σnδσ

⊤
nδδ) + σnδv(Ẑn+1, (n+ 1)δ) δ2 + σnδ

√
δ
2ξ

(2)
n (70)

Ŷ
′′

n = Ŷ
′′′

n − f̃n+1
δ
2

X̂n = X̂n+1 − Ŷ
′′

n δ

Ŷ
′

n = Ŷ
′′

n − f̃n
δ
2

Φ−1 (71)

Ŷn = Ŷ
′

n(1− 1
4σnδσ

⊤
nδδ) + σnδv(X̂n, Ŷ

′

n, (n+ 1
2 )δ)

δ
2 + σnδ

√
δ
2ξ

(1)
n , (72)

with (X̂n, Ŷ
′

n) = Φ−1(X̂n+1, Ŷ
′′′

n ), giving the following backward transitions

⃗pn(Ẑn|Ẑn+1) =N
(
Ŷn|Ŷ

′

n(1− 1
4σnδσ

⊤
nδδ) + σnδv(X̂n, Ŷ

′

n, (n+ 1
2 )δ)

δ
2 ,

1
2σnδσ

⊤
nδδ
)

(73)

× δΦ−1(X̂n+1,Ŷ
′′′
n )(X̂n, Ŷ

′

n) (74)

×N
(
Ŷ

′′′

n |Ŷn+1(1− 1
4σnδσ

⊤
nδδ) + σnδv(Ẑn+1, (n+ 1)δ) δ2 ,

1
2σnδσ

⊤
nδδ
)
, (75)

resulting in the following ratio between forward and backward transitions

p⃗n+1(Ẑn+1|Ẑn)

⃗pn(Ẑn|Ẑn+1)
=
N
(
Ŷn+1|Ŷ

′′′

n (1 + 1
4σnδσ

⊤
nδδ) + σnδu(X̂n+1, Ŷ

′′′

n , (n+ 1
2 )δ)

δ
2 ,

1
2σnδσ

⊤
nδδ
)

N
(
Ŷ ′′′
n |Ŷn+1(1− 1

4σnδσ⊤
nδδ) + σnδv(Ẑn+1, (n+ 1)δ) δ2 ,

1
2σnδσ⊤

nδδ
)

×
N
(
Ŷ

′

n|Ŷn(1 +
1
4σnδσ

⊤
nδδ) + σnδu(Ẑn, nδ)

δ
2 ,

1
2σnδσ

⊤
nδδ
)

N
(
Ŷn|Ŷ ′

n(1− 1
4σnδσ⊤

nδδ) + σnδv(X̂n, Ŷ
′
n, (n+ 1

2 )δ)
δ
2 ,

1
2σnδσ⊤

nδδ
) .

A.9 UNDERDAMPED VERSION OF PREVIOUS DIFFUSION-BASED SAMPLING METHODS

In this section we outline how our framework in Section 2 includes previous diffusion-based sam-
pling methods. First, we note that setting the drift f̃ and controls u and v in (15) to specific values
recovers underdamped methods of ULA, MCD, and CMCD, see Tab. 2. Moreover, we can also
introduce reference processes with controls ũ and ṽ satisfying that

dP⃗ũ,π̃

d ⃗Pṽ,τ̃
≡ 1, (76)

where π̃ and τ̃ are known reference distributions. In other words, we have knowledge of a perfect
time-reversal for specific controls ũ, ṽ and marginals π̃, τ̃ . We remark that these processes take a role
similar to the Brownian motion used in the proof of Prop. 2.3. In particular, by applying Prop. 2.3
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twice, we obtain that

log
dP⃗u,π

d ⃗Pv,τ
(Z) = log

dP⃗u,π

d ⃗Pv,τ
(Z)− log

dP⃗ũ,π̃

d ⃗Pṽ,τ̃
(Z)

= log
π(Z0)

π̃(Z0)
− log

τ(ZT )

τ̃(ZT )

+
1

2

∫ T

0

(
(v − ṽ) · (2η+f + v + ṽ)− (u− ũ) · (2η+f + u+ ũ)

)
(Zs, s) ds

+

∫ T

0

(u− ũ)(Zs, s) · η+(s) d⃗Zs −
∫ T

0

(v − ṽ)(Zs, s) · η+(s) ⃗dZs.

Several previous methods, such as versions of PIS and DDS, can be recovered by fixing v and using
the choices ṽ = v as well as π̃, which significantly simplifies the above expression (Vargas et al.,
2024; Richter & Berner, 2024).

A.10 FURTHER COMPUTATIONAL DETAILS

A.10.1 EXPERIMENTAL SETUP

Here, we provide further details on our experimental setup. Moreover, we provide an algorithmic
description of for training of an underdamped diffusion sampler in Algorithm 1.

General setting: All experiments are conducted using the Jax library (Bradbury et al., 2021). Our
default experimental setup, unless specified otherwise, is as follows: We use a batch size of 2000
(halved if memory-constrained) and train for 140k gradient steps to ensure approximate conver-
gence. We use the Adam optimizer (Kingma & Ba, 2014), gradient clipping with a value of 1, and a
learning rate scheduler that starts at 5× 10−3 and uses a cosine decay starting at 60k gradient steps.
We utilized 128 discretization steps and the EM and OBABO schemes to integrate the overdamped
and underdamped Langevin equations, respectively. The control functions uθ and vγ with param-
eters θ and γ, respectively, were parameterized as two-layer neural networks with 128 neurons.
Unlike Zhang & Chen (2021), we did not include the score of the target density as part of the param-
eterized control functions uθ and vγ . Inspired by Nichol & Dhariwal (2021), we applied a cosine-
square scheduler for the discretization step size: δ = a cos2

(
π
2

n
N

)
, where a : [0,∞) → (0,∞) is

learned. The diffusion matrix σ and the mass matrix M were parameterized as diagonal matrices,
and we learned the parameters µ and Σ for the prior distribution pprior = N (µ,Σ), with Σ also set
as a diagonal matrix. We enforced non-negativity of a and made σ, M , and Σ positive semidefinite
via an element-wise softplus transformation.

For the methods that use geometric annealing (see Tab. 2), that is, ν(x, s) ∝ p
1−β(s)
prior (x)p

β(s)
target(x),

where β : [0, T ] → [0, 1] is a monotonically increasing function satisfying β(0) = 0 and β(T ) = 1,
we additionally learn the annealing schedule β. Similar to prior works (Doucet et al., 2022b), we
parameterize an increasing sequence of N steps using unconstrained parameters b(s). We map these
to our annealing schedule with

β(nδ) =

∑
z softplus(b(n

′δ))∑
n′δ≤nδ softplus(b(n

′δ))
, (77)

where softplus ensures non-negativity. Further, we fix β(0) = 0 and β(T ) = 1. which ensures
β(n′δ) ≤ β(nδ) when n′ ≤ n. We initialized b such that β is a linear interpolation between 0 and
1. Note that if not otherwise specified, we use ∇x log ν as x-component for the drift f̃ .

Moreover, we initialized σ = M = Σ = Id and µ = 0 for all experiments. In the case of
the Brownian, LGCP, and ManyWell tasks, we set a = 0.1, while for the remaining benchmark
problems, we chose a = 0.01 to avoid numerical instabilities encountered with a = 0.1.

Evaluation protocol and model selection. We follow the evaluation protocol of prior work
(Blessing et al., 2024) and evaluate all performance criteria 100 times during training, using 2000
samples for each evaluation. To smooth out short-term fluctuations and obtain more robust results
within a single run, we apply a running average with a window of 5 evaluations. We conduct each
experiment using four different random seeds and average the best results of each run.
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Table 2: Comparison of different diffusion-based sampling methods based on f̃ , u, v, ν as defined in the text.

METHOD f̃ u v

ULA σσ⊤∇x log ν 0 0

MCD σσ⊤∇x log ν 0 LEARNED

CMCD 1
2
σσ⊤∇x log ν LEARNED σ⊤∇x log ν − u

DIS σσ⊤∇x log pprior LEARNED 0

DBS ARBITRARY LEARNED LEARNED

Benchmark problem details. All benchmark problems, with the exception of ManyWell, were
taken from the benchmark suite of Blessing et al. (2024). In their work, the authors used an uninfor-
mative prior for the parameters in the Bayesian logistic regression models for the Credit and Cancer
tasks, which frequently caused numerical instabilities. To maintain the challenge of the tasks while
ensuring stability, we opted for a Gaussian prior with zero mean and variance of 100. For more
detailed descriptions of the tasks, we refer readers to Blessing et al. (2024).

The ManyWell target involves a d-dimensional double well potential, corresponding to the (unnor-
malized) density

ρtarget(x) = exp

(
−

m∑
i=1

(x2
i − δ)2 − 1

2

d∑
i=m+1

x2
i

)
,

with m ∈ N representing the number of combined double wells (resulting in 2m modes), and a
separation parameter δ ∈ (0,∞) (see also Wu et al. (2020)). In our experiments, we set d = 50,
m = 5 and δ = 2. Since ρtarget factorizes across dimensions, we can compute a reference solution
for logZ via numerical integration, as described in Midgley et al. (2022).

A.10.2 EVALUATION CRITERIA

Here, we provide further information on how our evaluation criteria are computed. To evaluate our
metrics, we consider n = 2× 103 samples (x(i))ni=1.

Effective sample size (ESS). We further compute the (normalized) ESS as

ESS :=

(∑n
i=1 w

(i)
)2

n
∑n

i=1

(
w(i)

)2 , (78)

where (w(i))ni=1 are the importance weights of the samples (x(i))ni=1 in path space.

Sinkhorn distance. We estimate the Sinkhorn distance W2
γ (Cuturi, 2013), i.e., an entropy regu-

larized optimal transport distance between a set of samples from the model and target using the Jax
ott library (Cuturi et al., 2022).

Log-normalizing constant. For the computation of the log-normalizing constant logZ in the gen-
eral diffusion bridge setting, we note that for any u, v ∈ U it holds that

EZ∼P⃗u,π

[
log

dP⃗u,π

d ⃗Pv,τ
(Z)

]
= 1. (79)

Together with Prop. 2.3, this shows that

logZ = EZ∼P⃗u,π

[
log

dP⃗u,π
·|0

d ⃗Pv,τ
·|T

(Z) +
π(Z0)

τ̃(ZT )

]
, (80)

where τ̃(ZT ) = ρtarget(XT )N (0, Id) and P⃗u,π
·|0 denotes the path space measure of the process Z

with initial condition Z0 = Ẑ0 ∈ R2d (analogously for ⃗Pv,τ
·|T ), see e.g. Léonard (2013).
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Table 3: Results for lower bounds on logZ for various real-world benchmark problems. Higher values indicate
better performance. The best results are highlighted in bold. Blue shading indicates that the method uses
underdamped Langevin dynamics. Red shading indicate competing state-of-the-art methods.

METHOD CREDIT SEEDS CANCER BROWNIAN IONOSPHERE SONAR

DBS
−585.524±0.414 −73.437±0.001 −83.395±4.184 1.081±0.004 −111.673±0.002 −108.595±0.006

−585.112±0.001 −73.423±0.001 −77.881±0.014 1.136±0.001 −111.636±0.001 −108.458±0.004

GMMVI −585.098±0.000 −73.415±0.002 −77.988±0.054 1.092±0.006 −111.832±0.007 −108.726±0.007

SMC −698.403±4.146 −74.699±0.100 −194.059±0.613 −1.874±0.622 −114.751±0.238 −111.355±1.177

CRAFT −594.795±0.411 −73.793±0.015 −95.737±1.067 0.886±0.053 −112.386±0.182 −115.618±1.316

FAB −585.102±0.001 −73.418±0.002 −78.287±0.835 1.031±0.010 −111.678±0.003 −108.593±0.008

If u = u∗ and v = v∗, the expression in the expectation is almost surely constant, which implies

logZ = log
dP⃗u∗,π

·|0

d ⃗Pv∗,τ
·|T

(Z) +
π(Z0)

τ̃(ZT )
(81)

If we only have approximations of u∗ and v∗, Jensen’s inequality shows that the right-hand side
in (81) yields a lower bound to logZ . For other methods, the log-normalizing constants can be
computed analogously, by replacing u, v accordingly, see e.g. Berner et al. (2024) for DIS. Our
experiments use the lower bound as an estimator for logZ when labeled with (LB).

A.10.3 FURTHER EXPERIMENTS AND COMPARISONS

Comparison with Competing Methods. We extend our evaluation by comparing DBS against
several state-of-the-art techniques, including Gaussian Mixture Model Variational Inference (GM-
MVI) (Arenz et al., 2022), Sequential Monte Carlo (SMC) (Del Moral et al., 2006), Continual
Repeated Annealed Flow Transport (CRAFT) (Arbel et al., 2021; Matthews et al., 2022), and Flow
Annealed Importance Sampling Bootstrap (FAB) (Midgley et al., 2022). The results, presented in
Table 3, are primarily drawn from Blessing et al. (2024), where hyperparameters were carefully
optimized. Since our experimental setup differs for the Credit and Cancer tasks (detailed in Section
A.10), we adhered to the tuning recommendations provided by Blessing et al. (2024). Across most
tasks, we observe that the underdamped variants of DBS and CMCD consistently yield similar or
tighter bounds on logZ compared to the competing methods, without the necessity for hyperparam-
eter tuning. Notably, the underdamped version of DBS consistently performs well across all tasks
and demonstrates robustness, as evidenced by the low variance between different random seeds.

Choice of Integrator. To complement the results from Section 4, we conducted an ablation study
evaluating the performance and runtime of different integrators for ULA, MCD, CMCD, and DIS.
The results are presented in Fig. 6 and Fig. 7. Consistent with previous findings, the OBABO
integrator delivers the best overall performance, with the exception of ULA. We hypothesize that in
the case of ULA, simulating the controlled part (O) twice offers little advantage, as both the forward
and backward processes are uncontrolled for this method.

Additional Results for DBS. We present further details regarding the results discussed in Sec-
tion 4. Specifically, we provide a breakdown of the performance of different integration schemes
across all tasks in Fig. 8 (ESS values) and Tab. 6 (logZ (LB) values). Overall, we observe a notable
improvement in performance with (symmetric) splitting schemes compared to Euler-Maruyama dis-
cretization. However, as the number of discretization steps increases, the performance differences
between OBAB, BAOAB, and OBABO become less pronounced. Interestingly, OBABO tends to
yield substantial performance gains when the number of discretization steps is small. Furthermore,
we examine the impact of parameter learning for N = 8 discretization steps, with the results shown
in Fig. 9. Surprisingly, while learning either the terminal time T or the parameters of the prior distri-
bution yields modest improvements, learning both leads to a remarkable 5× performance increase.

Choice of Drift for DBS. The drift term f̃ in the diffusion bridge sampler (DBS) can be freely
chosen. To explore the impact of different drift choices, we conducted an ablation study. We tested
several options: no drift, ∇x log pprior, ∇x log ptarget, and a geometric annealing path, represented
by ∇x log ν, where ν(x, s) ∝ p

1−β(s)
prior (x)p

β(s)
target(x). We also tested using a learned function for β.
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Figure 6: Effective sample size (ESS) for various methods (ULA, MCD, CMCD, DIS) and different integration
schemes, averaged across multiple benchmark problems and four seeds. Integration schemes include Euler-
Maruyama (EM) for over (OD) - and underdamped (OD) Langevin and various splitting schemes (OBAB,
BAOAB, OBABO).
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Figure 7: Effective sample size (ESS) over wallclock time of the diffusion bridge sampler (DBS) with 128
diffusion steps for different integration schemes, multiple benchmark problems, and four seeds. Integration
schemes include Euler-Maruyama (EM) for over (OD) – and underdamped (UD) Langevin and various splitting
schemes (OBAB, BAOAB, OBABO).

The results of these experiments are presented in Tab. 4 and Figure Fig. 10. The findings suggest
that the most consistent performance is achieved when using the learned geometric annealing path
as the drift f̃ . Interestingly, using the score of the target distribution (∇x log ptarget) resulted in
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Figure 8: Effective sample size (ESS) of the diffusion bridge sampler (DBS) for different integration schemes,
multiple benchmark problems, and four seeds. Integration schemes include Euler-Maruyama (EM) for over
(OD) - and underdamped (UD) Langevin and various splitting schemes (OBAB, BAOAB, OBABO).
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discretization steps. Parameters include mass matrix M , diffusion matrix σ, terminal time T , and extended
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overdamped diffusion bridge sampler, averaged across multiple benchmark problems and four seeds. Here,
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prior (x)p
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worse performance compared to no drift for overdamped DBS and only marginal improvements for
underdamped DBS.
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Table 4: Lower bounds on logZ for different drift function f̃ for DBS on various benchmark problems.
Higher values indicate better performance. The best results are highlighted in bold. Here, ν(x, s) ∝
p
1−β(s)
prior (x)p

β(s)
target(x), where ‘(learned)’ indicates the β is learned (end-to-end). Blue shading indicates that

the method uses underdamped Langevin dynamics.

f̃ FUNNEL CREDIT SEEDS CANCER BROWNIAN IONOSPHERE MANYWELL SONAR

0
−0.212±0.001 −585.208±0.008 −73.501±0.001 −81.712±0.151 0.466±0.096 −111.778±0.005 38.609±0.829 −108.936±0.014

−0.155±0.004 −585.155±0.007 −73.505±0.009 −81.307±0.114 0.449±0.042 −111.845±0.007 42.771±0.002 −109.718±0.013

∇x log pPRIOR
−0.216±0.001 −585.173±0.005 −73.483±0.001 −81.792±0.142 0.787±0.011 −111.741±0.002 42.772±0.000 −108.893±0.050

−0.145±0.005 −585.146±0.004 −73.460±0.000 −81.080±0.520 0.972±0.004 −111.760±0.003 42.787±0.001 −109.035±0.025

∇x log pTARGET
−0.186±0.001 −685.852±2.400 −73.467±0.000 −126.194±15.528 0.901±0.004 −111.979±0.018 N/A −109.463±0.010

−0.096±0.004 −585.271±0.022 −73.445±0.006 −81.250±0.219 1.061±0.004 −111.826±0.005 42.782±0.000 −109.264±0.025

∇x log ν
−0.183±0.002 −4990.364±4405.152 −73.442±0.000 −83.981±2.105 1.055±0.010 −111.678±0.000 42.772±0.003 −108.616±0.005

−0.110±0.000 −585.127±0.000 −73.432±0.000 −78.086±0.015 1.106±0.001 −111.661±0.001 42.756±0.013 −108.530±0.002

∇x log ν −0.175±0.003 −585.166±0.017 −73.438±0.000 −78.853±0.168 1.074±0.005 −111.673±0.001 42.769±0.002 −108.593±0.008

(LEARNED) −0.102±0.003 −585.112±0.000 −73.422±0.001 −77.866±0.007 1.137±0.001 −111.636±0.000 42.765±0.005 −108.454±0.003

Table 5: Results for Funnel and ManyWell using the Kullback-Leibler LKL and log-variance loss LLV, averaged
across four seeds. Evaluation criteria include importance-weighted errors for estimating the log-normalizing
constant ∆logZ, effective sample size ESS, and Sinkhorn distance Wγ

2 . The best results are highlighted in
bold. Arrows (↑, ↓) indicate whether higher or lower values are preferable, respectively. Blue shading indicates
that the method uses the underdamped Langevin equation.

FUNNEL (d = 10) MANYWELL (d = 50)

LOSS ∆logZ ↓ ESS ↑ Wγ
2 ↓ ∆logZ ↓ ESS ↑

LKL
0.021±0.003 0.603±0.014 102.653±0.586 0.005±0.001 0.887±0.004

0.010±0.001 0.779±0.009 101.418±0.425 0.005±0.000 0.898±0.002

LLV
0.504±0.003 0.618±0.025 117.679±0.156 0.006±0.001 0.866±0.003

0.593±0.003 0.565±0.393 123.587±0.183 0.005±0.000 0.942±0.002

Log-Variance Loss. As an alternative to the KL divergence in (8), we can consider the log-
variance (LV) loss:

LLV(u, v) := DLV

(
P⃗

u,π, ⃗Pv,τ
)
= VarZ∼P⃗w,π

[
log

dP⃗u,π

d ⃗Pv,τ
(Z)

]
, (82)

where the expectation is taken with respect to a path space measure corresponding to a forward
process of the form (5), but with the control replaced by an arbitrary control w ∈ U . This allows for
off-policy training and avoids the need to differentiate through the simulation of the SDE. Moreover,
the estimator achieves zero variance at the optimum (u∗, v∗) (Richter & Berner, 2024).

We conducted a preliminary comparison between the KL and LV losses, with results shown in
Tab. 5. The findings are mixed: while the LV loss achieves superior performance on the multimodal
ManyWell target, it falls behind the KL loss on the Funnel target. We plan to explore this further
in future work, including investigating the impact of end-to-end learned parameters and degenerate
diffusion matrices.
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Table 6: Results for lower bounds on logZ for various benchmark problems, integration methods, and dis-
cretization steps N for DBS. Higher values indicate better performance. The best results are highlighted in
bold. Blue shading indicates that the method uses underdamped Langevin dynamics.

INTEGRATOR FUNNEL (d = 10) CREDIT (d = 25) SEEDS (d = 26) CANCER (d = 31) BROWNIAN (d = 32) IONOSPHERE (d = 35) MANYWELL (d = 50) SONAR (d = 61)

N = 8

EM (OD) −0.860±0.010 −585.400±0.054 −73.643±0.003 −80.960±0.169 0.198±0.074 −111.858±0.003 42.162±0.002 −109.046±0.017

EM (UD) −0.725±0.001 −590.417±0.859 −73.852±0.036 −96.286±2.349 −3.185±1.159 −123.426±0.022 42.002±0.018 −137.601±0.025

OBAB −0.670±0.003 −585.168±0.004 −73.607±0.005 −79.167±0.176 0.801±0.004 −111.822±0.005 42.502±0.008 −108.937±0.015

BAOAB −0.674±0.008 −585.164±0.010 −73.603±0.011 −79.252±0.183 0.807±0.003 −111.811±0.007 42.497±0.004 −108.906±0.019

OBABO −0.557±0.004 −585.179±0.005 −73.560±0.008 −78.951±0.050 0.835±0.017 −111.818±0.009 42.625±0.002 −108.933±0.007

N = 16

EM (OD) −0.645±0.002 −585.792±0.243 −73.561±0.003 −81.628±0.345 0.683±0.010 −111.780±0.005 42.460±0.004 −108.902±0.009

EM (UD) −0.568±0.007 −587.429±0.323 −73.752±0.018 −82.696±2.850 0.421±0.036 −123.426±0.022 42.354±0.013 −137.601±0.025

OBAB −0.491±0.004 −585.153±0.004 −73.520±0.004 −79.118±0.723 0.943±0.004 −111.735±0.006 42.546±0.048 −108.766±0.010

BAOAB −0.490±0.003 −585.149±0.003 −73.516±0.003 −78.685±0.261 0.944±0.004 −111.726±0.007 42.548±0.037 −108.754±0.009

OBABO −0.381±0.007 −585.149±0.002 −73.491±0.003 −78.454±0.027 0.977±0.003 −111.725±0.002 42.685±0.009 −108.760±0.010

N = 32

EM (OD) −0.452±0.002 −585.941±0.778 −73.503±0.001 −84.032±2.197 0.898±0.008 −111.730±0.005 42.626±0.004 −108.758±0.005

EM (UD) −0.425±0.006 −585.388±0.120 −73.627±0.003 −80.207±0.338 0.595±0.014 −111.973±0.009 42.552±0.009 −109.378±0.026

OBAB −0.346±0.003 −585.126±0.002 −73.465±0.005 −78.224±0.014 1.024±0.004 −111.680±0.002 42.665±0.005 −108.612±0.006

BAOAB −0.347±0.003 −585.127±0.002 −73.463±0.003 −78.206±0.008 1.035±0.004 −111.677±0.003 42.661±0.006 −108.602±0.006

OBABO −0.249±0.003 −585.129±0.004 −73.448±0.002 −78.189±0.069 1.048±0.005 −111.673±0.004 42.729±0.002 −108.601±0.008

N = 64

EM (OD) −0.295±0.002 −586.567±1.871 −73.463±0.002 −80.890±1.226 1.027±0.001 −111.692±0.004 42.718±0.004 −108.661±0.005

EM (UD) −0.328±0.009 −585.231±0.012 −73.554±0.003 −79.747±0.382 0.702±0.017 −111.837±0.009 42.661±0.006 −109.410±0.019

OBAB −0.228±0.002 −585.116±0.001 −73.441±0.002 −77.968±0.005 1.082±0.002 −111.652±0.002 42.683±0.003 −108.517±0.005

BAOAB −0.606±0.643 −585.116±0.001 −73.441±0.001 −77.979±0.011 1.091±0.002 −111.650±0.002 42.684±0.004 −108.509±0.003

OBABO −0.164±0.005 −585.113±0.002 −73.431±0.003 −77.945±0.010 1.104±0.003 −111.648±0.002 42.730±0.004 −108.501±0.003

N = 128

EM (OD) −0.187±0.003 −585.524±0.414 −73.437±0.001 −83.395±4.184 1.081±0.004 −111.673±0.002 42.760±0.003 −108.595±0.006

EM (UD) −0.249±0.003 −585.235±0.009 −73.508±0.005 −79.704±0.177 0.684±0.038 −111.786±0.006 42.731±0.002 −109.351±0.075

OBAB −0.151±0.003 −585.112±0.001 −73.428±0.001 −77.856±0.007 1.121±0.004 −111.637±0.001 42.731±0.002 −108.459±0.001

BAOAB −0.159±0.005 −585.112±0.001 −73.428±0.001 −77.874±0.010 1.131±0.002 −111.637±0.002 42.733±0.006 −108.457±0.004

OBABO −0.103±0.003 −585.112±0.001 −73.423±0.001 −77.881±0.014 1.136±0.001 −111.636±0.001 42.763±0.002 −108.458±0.004
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