
Under review as submission to TMLR

Representation Ensembling for Synergistic Lifelong Learning
with Quasilinear Complexity

Anonymous authors
Paper under double-blind review

Abstract

In biological learning, data are used to improve performance not only on the current task,
but also on previously encountered, and as yet unencountered tasks. In contrast, classical
machine learning which we define as starting from a blank slate, or tabula rasa, using data
only for the single task at hand. While typical transfer learning algorithms can improve
performance on future tasks, their performance on prior tasks degrades upon learning new
tasks (called forgetting). Many recent approaches for continual or lifelong learning have
attempted to maintain performance given new tasks. But striving to avoid forgetting sets
the goal unnecessarily low: the goal of lifelong learning, whether biological or artificial,
should be to improve performance on both past tasks (backward transfer) and future tasks
(forward transfer) with any new data. Our key insight is that even though learners trained
on other tasks often cannot make useful decisions on the current task (the two tasks may
have non-overlapping classes, for example), they may have learned representations that
are useful for this task. Thus, although ensembling decisions is not possible, ensembling
representations can be beneficial whenever the distributions across tasks are sufficiently
similar. Moreover, we can ensemble representations learned independently across tasks in
quasilinear space and time. We therefore propose two algorithms: representation ensembles
of (1) trees and (2) networks. Both algorithms demonstrate forward and backward transfer
in a variety of simulated and real data scenarios, including tabular, image, and spoken, and
adversarial tasks. This is in stark contrast to the reference algorithms we compared to, all
of which failed to transfer either forward or backward, or both, despite that many of them
require quadratic space or time complexity.

1 Introduction

Learning is the process by which an intelligent system improves performance on a given task by leveraging
data (Mitchell, 1999). In biological learning, learning is lifelong, with agents continually building on past
knowledge and experiences, improving on many tasks given data associated with any task. For example,
learning a second language often improves performance in an individual’s native language (Zhao et al., 2016).
In classical machine learning, the system often starts with essentially zero knowledge, a “tabula rasa”, and
is optimized for a single task (Vapnik & Chervonenkis, 1971; Valiant, 1984). While it is relatively easy
to simultaneously optimize for multiple tasks (multi-task learning) (Caruana, 1997), it has proven much
more difficult to sequentially optimize for multiple tasks (Thrun, 1996; Thrun & Pratt, 2012). Specifically,
classical machine learning systems, and natural extensions thereof, exhibit “catastrophic forgetting” when
trained sequentially, meaning their performance on the prior tasks drops precipitously upon training on new
tasks (McCloskey & Cohen, 1989; McClelland et al., 1995). This is in contrast to many biological learning
settings, such as the second language learning setting mentioned above.

In the past 30 years, a number of sequential task learning algorithms have attempted to overcome catas-
trophic forgetting. These approaches naturally fall into one of two camps. In one, the algorithm has fixed
resources, and so must reallocate resources (essentially compressing representations) in order to incorporate
new knowledge (Kirkpatrick et al., 2017; Zenke et al., 2017; Li & Hoiem, 2017; Schwarz et al., 2018; Finn
et al., 2019). Biologically, this corresponds to adulthood, where brains have a nearly fixed or decreasing

1

Under review as submission to TMLR

number of cells and synapses. In the other, the algorithm adds (or builds) resources as new data arrive (es-
sentially ensembling representations) (Ruvolo & Eaton, 2013; Rusu et al., 2016; Lee et al., 2019). Biologically,
this corresponds to development, where brains grow by adding cells, synapses, etc.

Approaches from both camps demonstrate some degree of continual (or lifelong) learning (Parisi et al., 2019).
In particular, they can sometimes learn new tasks while not catastrophically forgetting old tasks. However,
as we will show, many state of the art lifelong learning algorithms are unable to transfer knowledge forward,
and none are able to transfer knowledge backward with small sample sizes where it is particularly important.
This inability to synergistically learn has been identified as one of the key obstacles limiting the capabilities
of artificial intelligence (Pearl, 2019; Marcus & Davis, 2019).

Our work falls into the resource growing camp in which each new task is learned with additional represen-
tational capacity. Our key innovation is the introduction of ensembling independent representations, rather
than ensembling decisions (as in random forests (Breiman, 2001) or network ensembles (Pinto et al., 2009)).
This is in contrast to ensembling representations that are conditionally dependent on the past representations
(like gradient boosting trees (Chen & Guestrin, 2016) and ProgNN (Rusu et al., 2016)) or both past and
future representations (DF-CNN (Lee et al., 2019) and all of the fixed resource algorithms). By virtue of
learning them independently, we overcome interference from the past and the future representations to the
current representation, and thereby, mitigate catastrophic forgetting. Moreover, the representations interact
with each other through a channel layer which enables both forward and backward transfer. In doing so, we
also reduce computational time and space from quadratic to quasilinear (i.e., linear up to polylog terms).

In this paper, we consider a simplified learning environment similar to the ones used in (Kirkpatrick et al.,
2017; Schwarz et al., 2018; Zenke et al., 2017; Li & Hoiem, 2017; Rusu et al., 2016; Lee et al., 2019) where we
know the task identities and the data arrives in batches rather than in a streaming fashion. Moreover, we keep
the data from the previous tasks for achieving backward transfer between the tasks. Robins (1995); Shin et al.
(2017); van de Ven et al. (2020) showed if one algorithm is allowed to keep the old task data, one can mitigate
catastrophic forgetting. However, it is not obvious how one can improve from the future tasks, i.e., achieve
backward transfer. Again, the problem of data storage can be effectively solved by learning a generative
model simultaneously while learning the represenations for the tasks. Therefore, throughout the paper,
we mainly focus on how synergistic learning from past and future tasks can be achieved by synergistically
combining independent representations over the tasks in a simplified environment. In this work, we introduce
two complementary synergistic learning algorithms, one based on decision forests (Syngeristic Forests, SynF),
and another based on deep networks (Synergistic Networks, SynN). Both SynF and SynN demonstrate forward
and backward transfer, while maintaining computational efficiency. Simulations illustrate their learning
capabilities, including performance properties in the presence of adversarial tasks. We then demonstrate
their learning capabilities in vision and language benchmark applications. Although the algorithms presented
here are primarily resource building, we illustrate that they can effectively leverage prior representations.
This ability implies that the algorithm can convert from a “juvenile" resource building state to the “adult"
resource recruiting state – all while maintaining key synergistic learning capabilities and efficiencies.

2 Background

2.1 Classical Machine Learning

Classical supervised learning (Mohri et al., 2018) considers random variables (X,Y) ∼ PX,Y , where X is an
X -valued input, Y is a Y-valued label (or response), and PX,Y ∈ PX,Y is the joint distribution of (X,Y).
Given a loss function ` : Y ×Y → [0,∞), the goal is to find the hypothesis (also called predictor), h : X → Y
that minimizes expected loss, or risk, R(h) = EX,Y [`(h(X), Y)] . A learning algorithm is a function f that
maps data sets (n training samples) to a hypothesis, where a data set Sn = {Xi, Yi}ni=1 is a set of n
input/response pairs. Assume n samples of (X,Y) pairs are independently and identically distributed from
some true but unknown PX,Y (Mohri et al., 2018). A learning algorithm is evaluated on its generalization
error (or expected risk): E [R(f(Sn))] , where the expectation is taken with respect to the true but unknown
distribution governing the data, PX,Y . The goal is to choose a learner f that learns a hypothesis h that has
a small generalization error for the given task (Bickel & Doksum, 2015).

2

Under review as submission to TMLR

2.2 Lifelong Learning

Lifelong learning generalizes classical machine learning in a few ways: (i) instead of one task, there is an
environment T of (possibly infinitely) many tasks drawn according to some distribution Pt, (ii) data-label
pair (X,Y) for each task sampled from some distribution Pst arrive sequentially, rather than in batch mode,
and (iii) there are computational complexity constraints on the learning algorithm and hypotheses. The risk
considered in the lifelong learning setting can be summarized as:

R(hn) = Et∼Pt
[E(X,Y)∼Pst

[`(hn(X), Y)] (1)

The third requirement for lifelong learning is crucial, though often implicit. For example, the algorithm
that stores all the data, and then retrains everything from scratch each time a new sample arrives. Without
computational constraints, such an algorithm could be classified as a lifelong learner; we do not think such
a label is appropriate for that algorithm. Note that equation 1 says a significant improvement on one task
(or a set of tasks) should not come at a significant loss of performance on the other tasks. It allows to lose
performance on a subset of the tasks while gaining in performance on other tasks for the hypothesis hn.
But in general hypothesis with less loss of performance on the previous tasks would get preference. The
goal in lifelong learning therefore is, given new data and a new task, use all the existing data to achieve
lower generalization error (or expected risk) on this new task, while also using the new data to obtain a
lower generalization error on the previous tasks. This is distinct from classical online learning scenarios,
because the previously experienced tasks may recur, so we are concerned about maintaining and improving
performance on those tasks as well. In “task-aware” scenarios, the learner is aware of all task details for all
tasks, meaning that the hypotheses are of the form h : X×T → Y. In “task-unaware” (or task agnostic (Zeno
et al., 2018)) scenarios the learner may not know that the task has changed at all, which means that the
hypotheses are of the form h : X → Y. We only address task-aware scenarios here.

2.3 Reference algorithms

We compared our approaches to nine reference lifelong learning methods. These algorithms can be classified
into two groups based on whether they add capacity resources per task, or not. Among them, ProgNN (Rusu
et al., 2016) and Deconvolution-Factorized CNNs (DF-CNN) (Lee et al., 2019) learn new tasks by building
new resources. For ProgNN, for each new task a new “column” of network is introduced. In addition to
introducing this column, lateral connections from all previous columns to the new column are added. These
lateral connections are computationally costly, as explained below. DF-CNN (Lee et al., 2019) is a lifelong
learning algorithm that improves upon ProgNN by introducing a knowledge base with lateral connections to
each new column, thereby avoiding all pairwise connections, and dramatically reducing computational costs.
We also compare two variants of exact replay (Total Replay and Partial Replay) (Rolnick et al., 2019). Both
store all the data they have ever seen, but Total Replay replays all of it upon acquiring a new task, whereas
Partial Replay replays M samples, randomly sampled from the entire corpus, whenever we acquire a new
task with M samples.

The other five algorithms, Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017), Online-EWC
(O-EWC) (Schwarz et al., 2018), Synaptic Intelligence (SI) (Zenke et al., 2017), Learning without Forgetting
(LwF) (Li & Hoiem, 2017), and “None,” all have fixed capacity resources. For the baseline “None”, the
network was incrementally trained on all tasks in the standard way while always only using the data from
the current task. The implementations for all of the algorithms are adapted from open source codes (Lee
et al., 2019; van de Ven & Tolias, 2019); for implementation details, see Appendix D.

3 Evaluation Criteria

Others have previously introduced criteria to evaluate transfer, including forward and backward trans-
fer (Lopez-Paz & Ranzato, 2017; Benavides-Prado et al., 2018). These definitions typically compare the
difference, rather than the ratio, between learning with and without transfer. Pearl Judea (2018) introduced
the transfer benefit ratio, which builds directly off relative efficiency from classical statistics (Bickel & Dok-
sum, 2015). Our definitions are closely related to this. Learning efficiency is the ratio of the generalization

3

Under review as submission to TMLR

error of an algorithm that has learned on one dataset, as compared to the generalization error of that same
algorithm on a different dataset. Typically, we are interested in situations where the former dataset is a
subset of the latter dataset. Let Rt be the risk associated with task t, and Stn be the data from Sn that is
specifically associated with task t with sample size nt, so Rt(f(Stn)) is the risk on task t of the hypothesis
learned by f only on task t data, and Rt(f(Sn)) denotes the risk on task t of the hypothesis learned on all
the data. Note that,

∑T
t=1 nt = n.

Definition 1 (Learning Efficiency) The learning efficiency of algorithm f for given task t with sample
size n is LEtn(f) := E [Rt (f(Stn))] /E [Rt (f(Sn))]. We say that algorithm f has learned all the tasks up to t
with data Sn if and only if LEtn(f) > 1 for all the tasks up to t.

To evaluate a lifelong learning algorithm while respecting the streaming nature of the tasks, it is convenient
to consider two extensions of learning efficiency. Forward learning efficiency is the expected ratio of the risk
of the learning algorithm with (i) access only to task t data, to (ii) access to the data up to and including
the last observation from task t. This quantity measures the relative effect of previously seen out-of-task
data on the performance on task t. Formally, let N t = max{i : Ti = t}, be the index of the last occurrence
of task t in the data sequence. Let S≤tn = {(X1, Y1, T1), ..., (XNt , YNt , TNt)} be all data up to and including
that data point.

Definition 2 (Forward Learning Efficiency) The forward learning efficiency of f for task t given n
samples is FLEtn(f) := E [Rt (f(Stn))] /E

[
Rt
(
f(S≤tn)

)]
.

We say an algorithm (positive) forward transfers for task t if and only if FLEtn(f) > 1. In other words, if
FLEtn(f) > 1, then the algorithm has used data associated with past tasks to improve performance on task
t.

One can also determine the rate of backward transfer by comparing Rt
(
f(S≤tn)

)
to the risk of the hypothesis

learned having seen the entire training dataset. More formally, backward learning efficiency is the expected
ratio of the risk of the learned hypothesis with (i) access to the data up to and including the last observation
from task t, to (ii) access to the entire dataset. Thus, this quantity measures the relative effect of future
task data on the performance on task t.

Definition 3 (Backward Learning Efficiency) The backward learning efficiency of f for task t given n
samples is BLEtn(f) := E

[
Rt
(
f(S≤tn)

)]
/E [Rt (f(Sn))].

We say an algorithm (positive) backward learns task t if and only if BLEtn(f) > 1. In other words, if
BLEtn(f) > 1, then the algorithm has used data associated with future tasks to improve performance on
previous tasks.

After observing m tasks, the extent to which the LE for the jth task comes from forward transfer versus from
backward transfer depends on the order of the tasks. If we have a sequence in which tasks do not repeat,
learning efficiency for the first task is all backward transfer, for the last task it is all forward transfer, and
for the middle tasks it is a combination of the two. In general, LE factorizes into FLE and BLE:

LEtn(f) = E [Rt (f(Stn))]
E [Rt (f(Sn))] = E [Rt (f(Stn))]

E
[
Rt
(
f(S≤tn)

)] × E
[
Rt
(
f(S≤tn)

)]
E [Rt (f(Sn))] .

Note that the amount of transfer learning achieved is dependent on the accuracy level of the learning agent.
For example, improving accuracy on a particular task from 50% to 55% requires less resources (training
data, capacity, computation) and hence is easily achieved than that of those from 90% to 95%. However,
as we will show later in section 5.3, only accuracy cannot guarantee the agent has achieved any amount of
transfer learning. Therefore, accuracy should also be reported along with the learning efficiencies to get the
complete picture of the overall performance of the lifelong learning agent. Throughout, we will report log
LE so that positive learning corresponds to LE > 1. In a lifelong learning environment having T tasks drawn
with replacement from T , learner f w-lifelong learns tasks t ∈ T if the log of the convex combination of

4

Under review as submission to TMLR

w

v

u

w

v

u

v

u

1 B

B1

 A. Single
 Learner

B. Ensembling D. ProgNN

v

u2

2

. . .

. . .

w

v

u

v

u

1 B

B1

v

u2

2

. . .

. . .

Encoder

Decoder

 Decisions

Channel

 E. Ensembling
Representations

w

v

u

v

u

1 B

B1

v

u2

2

. . .

. . .

w w

 C. Multi-head

w

u

w w w w1 12 B B2
. 1 2 B

v v
1 Bv2

. . .

Figure 1: Schemas of composable hypotheses. Ensembling decisions (as output by the channels) is a well-
established practice, including random forests and gradient boosted trees. Ensembling representations
(learned by the encoders) was previously used in lifelong learning scenarios, but were not trained inde-
pendently, thereby causing interference or forgetting. Note that the new encoders interact with the previous
encoders through the channel layer (indicated by red arrows), thereby, enabling backward transfer. Again
the old encoders interact with the future encoders (indicated by black arrows), thereby, enabling forward
transfer.

learning efficiencies is greater than 0, that is,

log
∑
t∈T

wt · LEtn(f) > 0 . (2)

Note that the hardest performance to achieve is when wt puts equal weights on every task. We say an agent
has synergistically learned if the agent has positively learned for all tasks in all of the possible convex
combinations of w. Again, we say an agent has catastrophically forgotten, if it has negative backward
transfer for all the tasks.

4 Representation Ensembling Algorithms

Our approach to lifelong learning is based on decomposition of the hypothesis learned by a model into an
encoder, a channel, and a decoder (Cover & Thomas, 2012; Cho et al., 2014) (Figure 1A): h(·) = w ◦ v ◦u(·).
The encoder, u : X 7→ X̃ , maps an X -valued input into an internal representation space X̃ (Vaswani et al.,
2017; Devlin et al., 2018). The channel v : X̃ 7→ ∆Y maps the transformed data into a posterior distribution
(or, more generally, a score). For example, consider we have a dataset partitioned into a training and a
held-out set. Now we can learn a decision tree using the training data which will give us the encoder. Next,
by pushing the held-out dataset through the tree, we can learn the channel, i.e., posteriors in the leaf-nodes.
The channel thus gives scores for each data point denoting the probability of that data point belonging to
a specific class. Finally, a decoder w : ∆Y 7→ Y, produces a predicted label. See Appendix A for a detailed
and concrete example using a decision tree.

One can generalize the above decomposition by allowing for multiple encoders. Given B different encoders,
one can attach a single channel to each encoder, yielding B different channels (Figure 1B). Doing so requires
generalizing the definition of a decoder, which would operate on multiple channels. Such a decoder ensembles
the decisions, because here each channel provides the final output based on the encoder. This is the learn-
ing paradigm behind boosting (Freund, 1995) and bagging (Breiman, 1996)—indeed, decision forests are a
canonical example of a decision function operating on a collection of B outputs (Breiman, 2001). A decision
forest learns B different decision trees, each of which has a tree structure corresponding to an encoder. Each
tree is assigned a channel that outputs that single tree’s guess as to the class of any probability that an
observation is in any class. The decoder outputs the most likely class averaged over the trees.

Although the task specific structure in Figure 1B can provide useful decision on the corresponding task, they
can not, in general, provide meaningful decisions on other tasks because those tasks might have completely
different class labels, for example. Therefore, in the multi-head structure (Figure 1C) a single encoder is

5

Under review as submission to TMLR

used to learn a joint representation from all the tasks and a separate channel is learned for each task to
get the score or class conditional posteriors for each task which is followed by each task specific decider
(Kirkpatrick et al., 2017; Schwarz et al., 2018; Zenke et al., 2017). Again, further modification of the multi-
head structure allows ProgNN to learn separate encoder for each task with forward connections from the past
encoders to the current one (Figure 1D). This creates the possibility of having forward transfer while freezing
backward transfer. Note that if the encoders are learned independently across different tasks, they may have
learned useful representations that the tasks can mutually leverage. Thus, a further generalization of the
decomposition in Figure 1B allows for each channel to ensemble the encoders (Figure 1E). Doing so requires
generalizing the definition of the channel, so that it can operate on multiple distinct encoders. The result is
that the channels ensemble representations (learned by the encoders), rather than decisions (learned by the
channels). The channels ensemble all the existing representations, regardless of the order in which they were
learned. In this scenario, like with bagging and boosting, the ensemble of channels then feeds into the single
decoder. When each encoder has learned complementary representations, this latter approach has certain
appealing properties, particularly in multiple task scenarios, including lifelong learning. See Appendix B for
a concrete example. We developed two different representation ensembling algorithms.

The key to both of our algorithms is the realization that both forests and networks partition feature space
into a union of polytopes (Priebe et al., 2020). Thus, the internal representation learned by each can be
considered a sparse vector encoding which polytope a given sample resides in.

In either of the algorithms, as new data from a new task arrives, our algorithm first builds a new independent
encoder (using forests or networks), mapping each data point to a sparse vector encoding which polytope it
is in. Then, it builds the channel for this new task, which integrates information across all existing encoders,
thereby enabling forward transfer. If new data arrive from an old task, it can leverage the new encoders
to update the channels from the old tasks, thereby enabling backward transfer. In either case, new test
data are passed through all existing encoders and corresponding channels to make a prediction. Note that
while updating the previous task channels with the cross-task posteriors, we do not need to subsample the
previous task data (see Appendix C for implementation details and pseudocodes).

4.1 Synergistic Forests

Synergistic Forests (SynF) ensembles decision trees or forests. For each task, the encoder ut of a SynF is the
representation learned by a decision forest (Amit & Geman, 1997; Breiman, 2001). The leaf nodes of each
decision tree partition the input space X (Breiman et al., 1984). The representation of x ∈ X corresponding
to a single tree can be a one-hot encoded Lb-dimensional vector with a 1 in the location corresponding to the
leaf x falls into of tree b. The representation of x resulting from the collection of trees simply concatenates
the B one-hot vectors from the B trees. Thus, the encoder ut is the mapping from X to a B-sparse vector
of length

∑B
b=1 Lb. The channel then learns the class-conditional posteriors by populating the cells of the

partitions and taking class votes with out-of-bag samples, as in “honest trees” (Breiman et al., 1984; Denil
et al., 2014; Athey et al., 2019). Each channel outputs the average normalized class votes across the collection
of trees, adjusted for finite sample bias (Mehta et al., 2019). The decoder wt averages the posterior estimates
and outputs the argmax to produce a single prediction. Recall that honest decision forests are universally
consistent classifiers and regressors (Athey et al., 2019), meaning that with sufficiently large sample sizes,
under suitable though general assumptions, they will converge to minimum risk. Thus, the single task version
of this approaches simplifies to an approach called “Uncertainty Forests” (Mehta et al., 2019). Table 1 in
the appendix lists the hyperparameters used in the CIFAR experiments.

4.2 Synergistic Networks

A Synergistic Network (SynN) ensembles deep networks. For each task, the encoder ut in an SynN is the
“backbone” of a deep network (DN), including all but the final layer. Thus, each ut maps an element of X
to an element of Rd, where d is the number of neurons in the penultimate layer of the DN. The decoder is
the same as above.

SynN was motivated by ProgNN, but differs from ProgNN in two key ways. First, recall that ProgNN
builds a new neural network “column” for each new task, and also builds lateral connections between

6

Under review as submission to TMLR

the new column and all previous columns. In contrast, SynN excludes those lateral connections,
thereby greatly reducing the number of parameters and train time. Moreover, this makes each representation
independent, thereby potentially avoiding interference across representations. Second, for inference on task
j data, assuming we have observed tasks up to J > j, ProgNN only leverages representations learned from
tasks up to j, thereby excluding tasks j + 1, . . . , J . In contrast, SynN leverages representations from all J
tasks. This difference enables backward transfer. SynF adds yet another difference as compared to SynN
by replacing the deep network encoders with random forest encoders. This has the effect of making the
capacity, space complexity, and time complexity scale with the complexity and sample size of each task. In
contrast, both ProgNN and SynN have a fixed capacity for each task, even if the tasks have very different
sample sizes and complexities.

5 Results

5.1 A computational taxonomy of lifelong learning

Lifelong learning approaches can be divided into those with fixed computational space resources, and those
with growing space resources (which we refer to as ‘fixed resources’ hereafter). We therefore quantify the
computational space and time complexity of the internal representation of a number of algorithms, using
both theoretical analysis and empirical investigations. We also study the representation capacity of these
algorithms. We use the soft-O notation Õ to quantify complexity (van Rooij et al., 2019). Letting n be
the sample size and T be the number of tasks, we write that a lifelong learning algorithm is f(n, t) =
Õ(g(n, T)) when |f | is bounded above asymptotically by a function g of n and T up to a constant factor and
polylogarithmic terms. Again, while calculating the space complexity, we have ignored the space required
for a growing new head for the new task. Table 1 summarizes the capacity, space and time complexity of
several reference algorithms, as well as our SynN and SynF. For the deep learning methods, we assume that
the number of iterations is proportional to the number of samples. For space and time complexity, the table
shows results as a function of n and T , as well as the common scenario where sample size per task is fixed
and therefore proportional to the number of tasks, n ∝ T .

Table 1: Capacity, space, and time constraints of the representation learned by various lifelong learning
algorithms. We show soft-O notation (Õ(·, ·) defined in main text) as a function of n =

∑T
t nt and T , as well

as the common setting where n is proportional to T . Our algorithms and DF-CNN are the only algorithms
whose space and time both grow quasilinearly with capacity growing.

Parametric Capacity Space Time Examples
(n, T) (n, T) (n ∝ T) (n, T) (n ∝ T)

parametric 1 1 1 n n O-EWC, SI, LwF
parametric 1 T n nT n2 EWC
parametric 1 n n nT n2 Total Replay
semi-parametric T T 2 n2 nT n2 ProgNN
semi-parametric T T n n n DF-CNN
semi-parametric T T + n n n n SynN
non-parametric n n n n n SynF

Parametric lifelong learning methods have a representational capacity is invariant to sample size and task
number. Although the space complexity of some of these algorithms grow (because the size of the constraints
grows, or they continue to store more and more data), their capacity is fixed. Thus, given a sufficiently large
number of tasks, without placing constraints on the relationship between the tasks, eventually all parametric
methods will catastrophically forget at least some things. EWC, Online EWC, SI, and LwF are all examples
of parametric lifelong learning algorithms.

Semi-parametric algorithms’ representational capacity grows slower than sample size. For example, if T
is increasing slower than n (e.g., T ∝ logn), then algorithms whose capacity is proportional to T are
semi-parametric. ProgNN is semi-parametric, nonetheless, its space complexity Õ(T 2) due to the lateral

7

Under review as submission to TMLR

connections. Moreover, the time complexity for ProgNN also scales quadratically with n when n ∝ T .
Thus, an algorithm that literally stores all the data it has ever seen, and retrains a fixed size network on
all those data with the arrival of each new task, would have smaller space complexity and the same time
complexity as ProgNN. For comparison, we implement such an algorithm and refer to it as Total Replay.
DF-CNN improves upon ProgNN by introducing a “knowledge base” with lateral connections to each new
column, thereby avoiding all pairwise connections. Because these semi-parametric methods have a fixed
representational capacity per task, they will either lack the representation capacity to perform well given
sufficiently complex tasks, and/or will waste resources for very simple tasks. SynN eliminates the lateral
connections between columns of the network, thereby reducing space complexity down to Õ(T). SynN stores
all the data to enable backward transfer, but retains linear time complexity.

SynF is the only non-parametric lifelong learning algorithm to our knowledge. Its capacity, space and time
complexity are all Õ(n), meaning that its representational capacity naturally increases with the complexity
of each task.

5.2 Illustrating Synergistic Learning with SynF and SynN

In this paper, we have proposed two approaches of synergistic lifelong learning algorithm, namely- SynF and
SynN. They are based on the same representation ensembling method illustrated in Fig. 1. For SynN, we
have used the architecture described in van de Ven et al. (2020) as “5 convolutional layers followed by 2
fully-connected layers each containing 2,000 nodes with ReLU non-linearities and a softmax output layer”
as encoder. We trained this network using cross-entropy loss and the Adam optimizer (Kingma & Ba, 2014)
to learn the encoder. The channels are learned via k-Nearest Neighbors (k-NN) (Stone, 1977). Recall that a
k-NN, with k chosen such that as the number of samples goes to infinity, k also goes to infinity, while k

n → 0,
is a universally consistent classifier (Stone, 1977). We use k = 16 log2 n, which satisfies these conditions.
However, SynN requires training DNs as encoders which is computationally expensive to do it for many
Monte Carlo repetitions. Therefore, for SynN experiments we did 100 repetitions and reported the results
after smoothing it using moving average with a window size of 5. Again, for the SynF experiments we used
1000 repetitions and reported the mean of these repetitions.

5.2.1 Synergistic learning in a simple environment

Consider a very simple two-task environment: Gaussian XOR and Gaussian Exclusive NOR (XNOR) (Figure
2A, see Appendix E for details). The two tasks share the exact same discriminant boundaries: the coordinate
axes. Thus, transferring from one task to the other merely requires learning a bit flip. We sample a total
750 samples from XOR, followed by another 750 samples from XNOR.

SynF and random forests (RF) achieve the same generalization error on XOR when training with XOR
data (Figure 2Bi). But because RF does not account for a change in task, when XNOR data appear,
RF performance on XOR deteriorates (it catastrophically forgets). In contrast, SynF continues to improve
on XOR given XNOR data, demonstrating backward transfer. Now consider the generalization error on
XNOR (Figure 2Bii). Both SynF and RF are at chance levels for XNOR when only XOR data are available.
When XNOR data are available, RF must unlearn everything it learned from the XOR data, and thus its
performance on XNOR starts out nearly maximally inaccurate, and quickly improves. On the other hand,
because SynF can leverage the encoder learned using the XOR data, upon getting any XNOR data, it
immediately performs quite well, and then continues to improve with further XNOR data, demonstrating
forward transfer (Figure 2Biii). SynF demonstrates positive forward and backward transfer for all sample
sizes, whereas RF fails to demonstrate forward or backward transfer, and eventually catastrophically forgets
the previous tasks. Similar results are visible for SynN and DN in Figure 2.

5.2.2 Synergistic learning in adversarial environments

Statistics has a rich history of robust learning (Huber, 1996; Ramoni & Sebastiani, 2001), and machine
learning has recently focused on adversarial learning (Szegedy et al., 2014; Zhang et al., 2018; 2020; Lowd
& Meek, 2005). However, in both cases the focus is on adversarial examples, rather than adversarial tasks.
In the context of synergistic learning, we informally define a task t to be adversarial with respect to task

8

Under review as submission to TMLR

Ai. Gaussian XOR Aii. Gaussian XNOR Aiii. Gaussian R-XOR

50 750 1500
Total Sample Size

0.1

0.3

0.5

Ge
ne

ra
liz

at
io

n
Er

ro
r (

XO
R)

XOR XNOR

Bi. XOR
SynF
SynN
RF
DN

50 750 1500
Total Sample Size

0.1

0.5

0.9

Ge
ne

ra
liz

at
io

n
Er

ro
r (

XN
OR

)

XOR XNOR

Bii. XNOR

50 750 1500
Total Sample Size

-3.0

0.0

0.92

lo
g

Fo
rw

ar
d/

Ba
ck

wa
rd

 L

ea
rn

in
g

Ef
fic

ie
nc

y
(F

LE
/B

LE
)

XOR XNOR

Biii.
SynF BLE
SynN BLE
SynF FLE
SynN FLE
RF BLE
DN BLE
RF FLE
DN FLE

50 750 1500
Total Sample Size

-1.61

-0.51

0.0

0.18

lo
g

Fo
rw

ar
d/

Ba
ck

wa
rd

 L

ea
rn

in
g

Ef
fic

ie
nc

y
(F

LE
/B

LE
)

XOR R-XOR

Ci.

0 45 90
Angle of Rotation (Degrees)

-0.11

0.0

0.1

0.18

lo
g

Ba
ck

wa
rd

 L
E

(X
OR

)

Cii.

100 1000 10000
-0.05

0.0

0.1

0.22

lo
g

Ba
ck

wa
rd

 L
E

(X
OR

)

Number of 25 -RXOR Training Samples

Ciii.

Figure 2: Synergistic Forest and Synergistic Network demonstrate forward and backward trans-
fer. (A) 750 samples from: (Ai) Gaussian XOR, (Aii) XNOR, which has the same optimal discriminant
boundary as XOR, and (Aiii) R-XOR, which has a discriminant boundary that is uninformative, and there-
fore adversarial, to XOR. (Bi) Generalization error for XOR, and (Bii) XNOR of both SynF (red), RF (green),
SynN(blue), DN (dark orange). SynF outperforms RF on XOR when XNOR data is available, and on XNOR
when XOR data are available. The same result is true for SynN sand DN. (Biii) Forward and backward learn-
ing efficiency of SynF are positive for all sample sizes, and are negative for all sample sizes for RF. Again, FLE
and BLE is higher for SynNcompared to those of DN. (Ci) In an adversarial task setting (XOR followed by
R-XOR), SynFand SynN gracefully forgets XOR, whereas RFand DN demonstrate catastrophic forgetting and
interference. (Cii) log BLE with respect to XOR is positive when the optimal decision boundary of θ-XOR
is similar to that of XOR (e.g. angles near 0◦ and 90◦), and negative when the discriminant boundary is
uninformative, and therefore adversarial, to XOR (e.g. angles near 45◦) . (Ciii) BLE is a nonlinear function
of the source training sample size (right).

t′ if the true joint distribution of task t, without any domain adaptation, impedes performance on task t′.
In other words, training data from task t can only add noise, rather than signal, for task t′. An adversarial
task for Gaussian XOR is Gaussian XOR rotated by 45◦ (R-XOR) (Figure 2Aiii). Training on R-XOR
therefore impedes the performance of SynF and SynN on XOR, and thus backward transfer falls below one,
demonstrating graceful forgetting (Aljundi et al., 2018) (Figure 2Ci). Because R-XOR is more difficult
than XOR for SynF (because the discriminant boundaries are oblique (Tomita et al., 2020)), and because
the discriminant boundaries are learned imperfectly with finite data, data from XOR can actually improve
performance on R-XOR, and thus forward transfer is positive. In contrast, both forward and backward
transfer are negative for RF and DN.

9

Under review as submission to TMLR

To further investigate this relationship, we design a suite of R-XOR examples, generalizing R-XOR from
only 45◦ to any rotation angle between 0◦ and 90◦, sampling 100 points from XOR, and another 100 from
each R-XOR (Figure 2Cii). As the angle increases from 0◦ to 45◦, log BLE flips from positive (≈ 0.18)
to negative (≈ −0.11) for SynF. A similar trend is also visible for SynN. The 45◦-XOR is the maximally
adversarial R-XOR. Thus, as the angle further increases, log BLE increases back up to ≈ 0.18 at 90◦, which
has an identical discriminant boundary to XOR. Moreover, when θ is fixed at 25◦, BLE increases at different
rates for different sample sizes of the source task (Figure 2Ciii).

Together, these experiments indicate that the amount of transfer can be a complicated function of (i) the
difficulty of learning good representations for each task, (ii) the relationship between the two tasks, and (iii)
the sample size of each. Appendix E further investigates this phenomenon in a multi-spiral environment.

1 2 3 4 5 6 7 8 9 10
Number of tasks seen

-0.22

-0.11

0.0

0.1

0.18

0.26

lo
g

Fo
rw

ar
d

LE

1 2 3 4 5 6 7 8 9 10
Number of tasks seen

-0.22

-0.11

0.0

0.1

0.18

lo
g

Ba
ck

wa
rd

 L
E

1 2 3 4 5 6 7 8 9 10
Number of tasks seen

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

[±
 st

d
de

v.
]

1 2 3 4 5 6 7 8 9 10
Number of tasks seen

0.1

0.2

0.3

0.4

Si
ng

le
 ta

sk
 a

cc
ur

ac
y

1 2 3 4 5 6 7 8 9 10
Number of tasks seen

-0.16

0.0

0.05

Re
so

ur
ce

 C
on

st
ra

in
ed

 lo
g

FL
E

1 2 3 4 5 6 7 8 9 10
Number of tasks seen

-0.11

0.0

0.1

Re
so

ur
ce

 C
on

st
ra

in
ed

 lo
g

BL
E

1 2 3 4 5 6 7 8 9 10
Number of tasks seen

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

[±
 st

d
de

v.
]

1 2 3 4 5 6 7 8 9 10
Number of tasks seen

0.1

0.2

0.3

0.4

Si
ng

le
 ta

sk
 a

cc
ur

ac
y

0.45

0.55

0.65

0.75

Ge
ne

ra
liz

at
io

n
Er

ro
r

100 500 5000
Number of Task 10 Samples

Recruitment Experiment on Task 10

SynF (building)
UF (new)
recruiting
hybrid

Sy
nN

Sy
nF

Pr
og

NN
DF

-C
NN EW

C
To

ta
l R

ep
lay

Pa
rti

al
Re

pla
y

Sy
nF

 (c
on

str
ain

ed
)

Lw
F

O-
EW

C SI
No

ne

0.3

0.2

0.1

0.0

0.1

0.2

lo
g

LE
 a

fte
r 1

0
Ta

sk
s

Resource Growing
SynN
SynF
ProgNN
DF-CNN
EWC
Total Replay
Partial Replay
chance

Resource Constrained
SynF
LwF
O-EWC
SI
None
chance

Figure 3: Performance of different algorithms on the CIFAR 10x10 vision experiments. Top row:
Forward and backward transfer efficiency for various resource building algorithms. SynF and SynN consis-
tently demonstrate both forward and backward transfer for each task, whereas ProgNN and DF-CNN do
not. Rightmost two columns show the average global accuracy after each task for both the lifelong and
the single task learner. In all of the plots, the performance of the chance algorithm which chooses a label
at random is shown as a horizontal dashed line along 0. Middle row: Same as above but comparing each
algorithm with a fixed amount of resources. SynF is the only approach that demonstrate forward or backward
transfer. Bottom left: Transfer efficiencies of various algorithms for the 10 tasks after seeing the 10-th task.
Both SynN and SynF synergistically learn over all the 10 tasks whereas other algorithms (except ProgNN)
catastrophically forget. Bottom right: Building and recruiting ensembles are two boundaries of a continuum,
with hybrid models in the middle. SynF achieves lower (better) generalization error than other approaches
until 5,000 training samples on the new task are available, but eventually a hybrid approach wins.

5.3 Real data experiments

We consider two modalities for real data experiments: vision and language. Below we provide a detailed
analysis of the performance of lifelong learning algorithms in vision data; Appendix F provides details for our

10

Under review as submission to TMLR

language experiments, which have qualitatively similar results illustrating that SynF and SynN are modality
agnostic, sample and computationally efficient, lifelong learning algorithms.

The CIFAR 100 challenge (Krizhevsky, 2012), consists of 50,000 training and 10,000 test samples, each a
32x32 RGB image of a common object, from one of 100 possible classes, such as apples and bicycles. CIFAR
10x10 divides these data into 10 tasks, each with 10 classes (Lee et al., 2019) (see Appendix F for details).
We compare SynF and SynN to the deep lifelong learning algorithms discussed above. In the subsequent
experiments, we have reported the average accuracy over all the tasks as more tasks are seen as proposed in
(Lomonaco & Maltoni, 2017; Maltoni & Lomonaco, 2019) for both the lifelong and single task learners along
with our proposed learning efficiencies. Note that all of the lifelong learners start from more or less the same
accuracy level. As mentioned earlier, this is crucial for fair comparison of the learning agents. However,
only multitask accuracy cannot ascertain the superiority of an algorithm. For example, note that in Figure
3 middle row third column, LwF has better average global accuracy compared to that of SynF. However,
as shown in the rightmost column of the middle row of Figure 3, LwF has higher single task accuracy, i.e.,
accuracy when the learner has access to a single task data only. Therefore, LwF improves accuracy for
each task without doing meaningful transfer of information between the tasks. This is evident from the
forward and backward learning efficiency curves in middle row of Figure 3. For the FLE curves, we report
forward learning efficiency on the corresponding task as that task is introduced. Again for the backward
learning efficiency, we evaluate the backward learning efficiency on all of the tasks introduced so far as a new
task is introduced. Therefore, for each task the log BLE curve starts from 0 when the corresponding task
is introduced and goes upward (positive) or downward (negative) as more tasks are seen. Again,under the
lifelong learning framework, a learning agent, constrained by capacity and computational time, is sequentially
trained on multiple tasks. For each task, it has access to limited training samples (Chen & Liu, 2016; Lee
et al., 2019), and it improves on a particular task by leveraging knowledge from the other tasks. Therefore,
for our following experiments, we are particularly interested in the behavior of our representation ensembling
algorithms in the low training sample size regime. The below experiments use only 500 training samples
per task. For the corresponding experiments using higher training samples per task (5,000 samples), see
Appendix Figure 4.

5.3.1 Resource Growing Experiments

We first compare SynF and SynN to state-of-the-art resource growing algorithms: ProgNN and DF-CNN (Fig-
ure 3, top panels). Both SynF and SynN demonstrate positive forward transfer for every task (SynF increases
nearly monotonically), indicating they are robust to distributional shift in ways that ProgNN and DF-CNN
are not. SynN and SynF uniquely demonstrate positive backward transfer, SynN is actually monotonically
increasing, indicating that with each new task, performance on all prior tasks increases (and SynF nearly
monotonically increases BLE as well). In contrast, while neither ProgNN nor DF-CNN exhibit catastrophic
forgetting, they also do not exhibit any positive backward transfer. Final transfer efficiency per task is the
transfer efficiency associated with that task having seen all the data. SynF and SynN both demonstrate pos-
itive final transfer efficiency for all tasks (synergistic learning), whereas ProgNN and DF-CNN both exhibit
negative final transfer efficiency for at least one task.

5.3.2 Resource Constrained Experiments

It is possible that the above algorithms are leveraging additional resources to improve performance without
meaningfully transferring information between representations. To address this concern, we devised a “re-
source constrained” variant of SynF. In this constrained variant, we compare the lifelong learning algorithm
to its single task variant, but ensure that they both have the same amount of resources. For example, on
Task 2, we would compare SynF with 20 trees (10 trained on 500 samples from Task 1, and another 10
trained on 500 samples from Task 2) to RF with 20 trees (all trained on 500 samples Task 2). If SynF is
able to meaningfully transfer information across tasks, then its resource-constrained FLE and BLE will still
be positive. Indeed, FLE remains positive after enough tasks, and BLE is actually invariant to this change
(Figure 3, bottom left and center). In contrast, all of the reference algorithms that have fixed resources
exhibit negative forward and backward transfer. Moreover, the reference algorithms also all exhibit negative
final transfer efficiency on each task, whereas our resource constrained SynF maintains positive final trans-

11

Under review as submission to TMLR

fer on every task (Figure 3, top right). Interestingly, when using 5,000 samples per task, replay methods
are able to demonstrate positive forward and backward transfer (Supplementary Figure 4), although they
require quadratic time. Note that in this experiment, building the single task learners actually requires
substantially more resources, specifically, 10 + 20 + · · · + 100 = 550 trees, as compared with only 100 trees
in the prior experiments. In general, to ensure single task learners use the same amount of resources per
task as omnidirectional learners requires Õ(n2) resources, where as SynF only requires Õ(n), a polynomial
reduction in resources.

In both cases, resource growing or resource constrained, both SynF and SynN show synergistic learning over all
the 10 tasks (Figure 3, top right panel) whereas all other algorithms except ProgNN suffer from catastrophic
forgetting.

5.3.3 Resource Recruiting Experiments

The binary distinction we made above, algorithms either build resources or reallocate them, is a false
dichotomy, and biologically unnatural. In biological learning, systems develop from building (juvenile) to
constrained (adult) resources (which requires recruiting some resources for new tasks). We therefore train
SynF on the first nine CIFAR 10x10 tasks using 50 trees per task, with 500 samples per task. For the tenth
task, we could (i) select the 50 trees (out of the 450 existing trees) that perform best on task 10 (recruiting),
(ii) train 50 new trees, as SynF would normally do (building), (iii) build 25 and recruit 25 trees (hybrid),
or (iv) ignore all prior trees (RF). SynF outperforms other approaches except when 5,000 training samples
are available, but the recruiting approach is nearly as good as SynF (Figure 3, bottom right). This result
motivates future work to investigate optimal strategies for determining how to optimally leverage existing
resources given a new task, and task-unaware settings.

5.3.4 Adversarial Experiments

Consider the same CIFAR 10x10 experiment above, but, for tasks two through nine, randomly permute
the class labels within each task, rendering each of those tasks adversarial with regard to the first task
(because the labels are uninformative). Figure 4A indicates that BLE for both SynF and SynN is invariant
to such label shuffling (the other algorithms also seem invariant to label shuffling, but did not demonstrate
positive backward transfer). Now, consider a Rotated CIFAR experiment, which uses only data from the
first task, divided into two equally sized subsets (making two tasks), where the second subset is rotated by
different amounts (Figure 4, right). Learning efficiency of both SynF and SynN is nearly invariant to rotation
angle, whereas the other approaches are far more sensitive to rotation angle. Note that zero rotation angle
corresponds to the two tasks having identical distributions.

1 2 3 4 5 6 7 8 9 10
Number of tasks seen

-0.22

-0.11

0.0

0.1

0.18

lo
g

Ba
ck

wa
rd

 L
E

A. Label Shuffled CIFAR

0 30 60 90 120 150 180
Angle of Rotation (Degrees)

-0.16

-0.11

-0.05

0.0

0.05

0.1

lo
g

Ba
ck

wa
rd

 L
E

B. Rotation Experiment
SynN
SynF
LwF
EWC
O-EWC
SI
Total Replay
Partial Replay
None

Figure 4: Extended CIFAR 10x10 experiments. (A) Shuffling class labels within tasks two through
nine with 500 samples each demonstrates both SynF and SynN can still achieve positive backward transfer,
and that the other algorithms still fail to transfer. (B) SynF and SynN are nearly invariant to rotations,
whereas other approaches are more sensitive to rotation.

12

Under review as submission to TMLR

6 Discussion

We introduced quasilinear representation ensembling as an approach to synergistic lifelong learning. Two
specific algorithms, SynF and SynN, achieve both forward and backward transfer, due to leveraging resources
(encoders) learned for other tasks without undue computational burdens. Forest-based representation ensem-
bling approaches can easily add new resources when appropriate. This work therefore motivates additional
work on deep learning to enable dynamically adding resources when appropriate (Yoon et al., 2017).

To achieve backward transfer, SynF and SynN stored old data to vote on the newly learned transformers.
Because the representation space scales quasilinearly with sample size, storing the data does not increase the
space complexity of the algorithm, and it remains quasilinear. It could be argued that by keeping old data
and training a model with increasing capacity from scratch (a sequential multitask learning approach), it
would be straightforward to maintain performance (TE = 1) in a particular task. However, it is not obvious
how to achieve backward transfer with quasilinear time and space complexity even if we are allowed to store
all the past data, because computational time would naively become quadratic. For example, both ProgNN
and Total Replay have quadratic time complexity, unlike SynF and SynN. Thus, one natural extension of this
work would obviate the need to store all the data by using a generative model.

While we employed quasilinear representation ensembling to address catastrophic forgetting, the paradigm of
ensembling representations rather than learners can be readily applied more generally. For example, “batch
effects” (sources of variability unrelated to the scientific question of interest) have plagued many fields of
inquiry, including neuroscience (Bridgeford et al., 2020) and genomics (Johnson et al., 2007). Similarly, fed-
erated learning is becoming increasingly central in artificial intelligence, due to its importance in differential
privacy (Dwork, 2008). This may be particularly important in light of global pandemics such as COVID-
19, where combining small datasets across hospital systems could enable more rapid discoveries (Vogelstein
et al., 2020).

Finally, our quasilinear representation ensembling approach closely resembles the constructivist view of
brain development (Quartz, 1999; Karmiloff-Smith, 2017). According to this view, the brain goes through
progressive elaboration of neural circuits resulting in an augmented cognitive representation while maturing in
a certain skill. In a similar way, representation ensembling algorithms can mature in a particular skill such as
vision tasks by learning a rich encoder dictionary from different vision datasets and thereby, transfer forward
to future or yet unseen vision dataset (see CIFAR 10x10 recruitment experiment as a proof). However,
there is also substantial pruning during development and maturity in the brain circuitry which is important
for performance (Sakai, 2020). This motivates future work for pruning adversarial encoders to enhance
the transferability among tasks even more. Moreover, by carefully designing experiments in which both
behaviors and brain are observed while learning across sequences of tasks (possibly in multiple stages of
neural development or degeneration), we may be able to learn more about how biological agents are able
to synergistically learn so efficiently, and transfer that understanding to building more effective artificial
intelligences.

References
Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars. Memory
aware synapses: Learning what (not) to forget. In Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu,
and Yair Weiss (eds.), Computer Vision – ECCV 2018, pp. 144–161, Cham, 2018. Springer International
Publishing.

Yali Amit and Donald Geman. Shape Quantization and Recognition with Randomized Trees. Neural Com-
put., 9(7):1545–1588, October 1997.

S. Athey, J. Tibshirani, and S. Wager. Generalized random forests. Annals of Statistics, 47(2):1148–1178,
2019.

Diana Benavides-Prado, Yun Sing Koh, and Patricia Riddle. Measuring Cumulative Gain of Knowledgeable
Lifelong Learners. In NeurIPS Continual Learning Workshop, pp. 1–8, 2018.

13

Under review as submission to TMLR

Peter J Bickel and Kjell A Doksum. Mathematical statistics: basic ideas and selected topics, volumes I-II
package. Chapman and Hall/CRC, 2015.

Leo Breiman. Bagging predictors. Mach. Learn., 24(2):123–140, August 1996.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classification and regression trees.
CRC press, 1984.

E W Bridgeford, S Wang, Z Yang, Z Wang, T Xu, and others. Big Data Reproducibility: Applications in
Brain Imaging. bioRxiv, 2020.

Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pp.
785–794, New York, NY, USA, August 2016. Association for Computing Machinery.

Zhiyuan Chen and Bing Liu. Lifelong Machine Learning. Synthesis Lectures on Artificial In-
telligence and Machine Learning, 10(3):1–145, November 2016. URL https://doi.org/10.2200/
S00737ED1V01Y201610AIM033.

Kyunghyun Cho, B van Merrienboer, Caglar Gulcehre, F Bougares, H Schwenk, and Yoshua Bengio. Learning
phrase representations using rnn encoder-decoder for statistical machine translation. In Conference on
Empirical Methods in Natural Language Processing (EMNLP 2014), 2014.

Thomas M Cover and Joy A Thomas. Elements of Information Theory. John Wiley & Sons, New York,
November 2012.

M. Denil, D. Matheson, and N. De Freitas. Narrowing the gap: Random forests in theory and in practice.
In Eric P. Xing and Tony Jebara (eds.), Proceedings of the 31st International Conference on Machine
Learning, volume 32 of Proceedings of Machine Learning Research, pp. 665–673, 6 2014.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep bidirec-
tional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL http://arxiv.org/
abs/1810.04805.

Guneet Singh Dhillon, Pratik Chaudhari, Avinash Ravichandran, and Stefano Soatto. A baseline for few-
shot image classification. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=rylXBkrYDS.

Cynthia Dwork. Differential Privacy: A Survey of Results. In Theory and Applications of Models of Com-
putation, pp. 1–19. Springer Berlin Heidelberg, 2008.

Chelsea Finn, Aravind Rajeswaran, Sham Kakade, and Sergey Levine. Online meta-learning. In Kamalika
Chaudhuri and Ruslan Salakhutdinov (eds.), International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 1920–1930, Long Beach, California, USA, 06 2019. PMLR.
URL http://proceedings.mlr.press/v97/finn19a.html.

Y Freund. Boosting a Weak Learning Algorithm by Majority. Inform. and Comput., 121(2):256–285,
September 1995.

Peter J Huber. Robust statistical procedures, volume 68. Siam, 1996.

W Evan Johnson, Cheng Li, and Ariel Rabinovic. Adjusting batch effects in microarray expression data
using empirical Bayes methods. Biostatistics, 8(1):118–127, January 2007.

Pearl Judea. What is gained from past learning. Journal of Causal Inference, 6(1), 2018.

14

https://doi.org/10.2200/S00737ED1V01Y201610AIM033
https://doi.org/10.2200/S00737ED1V01Y201610AIM033
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://openreview.net/forum?id=rylXBkrYDS
https://openreview.net/forum?id=rylXBkrYDS
http://proceedings.mlr.press/v97/finn19a.html

Under review as submission to TMLR

Annette Karmiloff-Smith. From constructivism to neuroconstructivism: The activity-dependent structuring
of the human brain. In After Piaget, pp. 1–14. Routledge, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis, Claudia
Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images. University of Toronto, 05 2012.

Seungwon Lee, James Stokes, and Eric Eaton. Learning shared knowledge for deep lifelong learning us-
ing deconvolutional networks. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence, pp. 2837–2844, 2019.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis and
machine intelligence, 40(12):2935–2947, 2017.

Vincenzo Lomonaco and Davide Maltoni. Core50: a new dataset and benchmark for continuous object
recognition. In Conference on Robot Learning, pp. 17–26. PMLR, 2017.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In NIPS,
2017.

Daniel Lowd and Christopher Meek. Adversarial learning. In Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data mining, pp. 641–647, 2005.

Davide Maltoni and Vincenzo Lomonaco. Continuous learning in single-incremental-task scenarios. Neural
Networks, 116:56–73, 2019.

Gary Marcus and Ernest Davis. Rebooting AI: Building Artificial Intelligence We Can Trust. Pantheon,
September 2019.

James L McClelland, Bruce L McNaughton, and Randall C O’Reilly. Why there are complementary learning
systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models
of learning and memory. Psychological review, 102(3):419, 1995.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165. Elsevier, 1989.

Ronak Mehta, Richard Guo, Cencheng Shen, and Joshua Vogelstein. Estimating information-theoretic quan-
tities with random forests. arXiv preprint arXiv:1907.00325, 2019.

Tom M Mitchell. Machine learning and data mining. Communications of the ACM, 42(11):30–36, 1999.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning. MIT Press,
November 2018. URL https://market.android.com/details?id=book-dWB9DwAAQBAJ.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual lifelong
learning with neural networks: A review. Neural Networks, 2019.

Judea Pearl. The seven tools of causal inference, with reflections on machine learning. Commun. ACM,
February 2019.

Nicolas Pinto, David Doukhan, James J DiCarlo, and David D Cox. A high-throughput screening approach to
discovering good forms of biologically inspired visual representation. PLoS Comput. Biol., 5(11):e1000579,
November 2009.

15

https://market.android.com/details?id=book-dWB9DwAAQBAJ

Under review as submission to TMLR

Carey E Priebe, Joshua T Vogelstein, Florian Engert, and Christopher M White. Modern Machine Learning:
Partition & Vote. September 2020.

Steven R Quartz. The constructivist brain. Trends in cognitive sciences, 3(2):48–57, 1999.

Marco Ramoni and Paola Sebastiani. Robust learning with missing data. Machine Learning, 45(2):147–170,
2001.

Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 7(2):123–146,
1995.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience replay
for continual learning. In Advances in Neural Information Processing Systems, pp. 350–360, 2019.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Paul Ruvolo and Eric Eaton. ELLA: An Efficient Lifelong Learning Algorithm. In International Conference
on Machine Learning, volume 28, pp. 507–515, February 2013. URL http://proceedings.mlr.press/
v28/ruvolo13.html.

Jill Sakai. Core Concept: How synaptic pruning shapes neural wiring during development and, possibly, in
disease. Proc. Natl. Acad. Sci. U. S. A., 117(28):16096–16099, July 2020.

Jonathan Schwarz, Jelena Luketina, Wojciech M Czarnecki, Agnieszka Grabska-Barwinska, Yee Whye Teh,
Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for continual learning.
arXiv preprint arXiv:1805.06370, 2018.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative replay.
In Advances in Neural Information Processing Systems, pp. 2990–2999, 2017.

Charles J Stone. Consistent Nonparametric Regression. Ann. Stat., 5(4):595–620, July 1977.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. Intriguing properties of neural networks. In 2nd International Conference on Learning
Representations, ICLR 2014, 01 2014.

Sebastian Thrun. Is learning the n-th thing any easier than learning the first? In Advances in neural
information processing systems, pp. 640–646, 1996.

Sebastian Thrun and Lorien Pratt. Learning to Learn. Springer Science & Business Media, December 2012.
URL https://market.android.com/details?id=book-X_jpBwAAQBAJ.

Tyler M Tomita, James Browne, Cencheng Shen, Jaewon Chung, Jesse L Patsolic, Benjamin Falk, Jason
Yim, Carey E Priebe, Randal Burns, Mauro Maggioni, and Joshua T Vogelstein. Sparse Projection Oblique
Randomer Forests. J. Mach. Learn. Res., 2020.

L G Valiant. A Theory of the Learnable. Commun. ACM, 27(11):1134–1142, November 1984. URL http:
//doi.acm.org/10.1145/1968.1972.

Gido M. van de Ven and Andreas S. Tolias. Three scenarios for continual learning. CoRR, abs/1904.07734,
2019. URL http://arxiv.org/abs/1904.07734.

Gido M van de Ven, Hava T Siegelmann, and Andreas S Tolias. Brain-inspired replay for continual learning
with artificial neural networks. Nature communications, 11:4069, 2020.

Iris van Rooij, Mark Blokpoel, Johan Kwisthout, and Todd Wareham. Cognition and Intractability: A Guide
to Classical and Parameterized Complexity Analysis. Cambridge University Press, April 2019.

16

http://proceedings.mlr.press/v28/ruvolo13.html
http://proceedings.mlr.press/v28/ruvolo13.html
https://market.android.com/details?id=book-X_jpBwAAQBAJ
http://doi.acm.org/10.1145/1968.1972
http://doi.acm.org/10.1145/1968.1972
http://arxiv.org/abs/1904.07734

Under review as submission to TMLR

V Vapnik and A Chervonenkis. On the Uniform Convergence of Relative Frequencies of Events to Their
Probabilities. Theory Probab. Appl., 16(2):264–280, January 1971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł Ukasz
Kaiser, and Illia Polosukhin. Attention is All you Need. In I Guyon, U V Luxburg, S Bengio, H Wallach,
R Fergus, S Vishwanathan, and R Garnett (eds.), Advances in Neural Information Processing Systems 30,
pp. 5998–6008. Curran Associates, Inc., 2017.

Joshua T Vogelstein, Michael Powell, Allison Koenecke, Ruoxuan Xiong, Nicole Fischer, Sakibul Huq, Ad-
ham M Khalafallah, Brian Caffo, Elizabeth A Stuart, Nickolas Papadopoulos, Kenneth W Kinzler, Bert
Vogelstein, Shibin Zhou, Chetan Bettegowda, Maximilian F Konig, Brett Mensh, and Susan Athey. Alpha-
1 adrenergic receptor antagonists for preventing acute respiratory distress syndrome and death from cy-
tokine storm syndrome. ArXiv, April 2020.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong Learning with Dynamically
Expandable Networks. International Conference on Learning Representations, August 2017.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3987–3995. JMLR.
org, 2017.

Chen Zeno, Itay Golan, Elad Hoffer, and Daniel Soudry. Task Agnostic Continual Learning Using Online
Variational Bayes. arXiv, March 2018.

Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. Mitigating unwanted biases with adversarial
learning. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, pp. 335–340,
2018.

Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui, Masashi Sugiyama, and Mohan Kankanhalli.
Attacks which do not kill training make adversarial learning stronger. In International conference on
machine learning, pp. 11278–11287. PMLR, 2020.

Jing Zhao, Blanca Quiroz, L Quentin Dixon, and R Malatesha Joshi. Comparing Bilingual to Monolingual
Learners on English Spelling: A Meta-analytic Review. Dyslexia, 22(3):193–213, August 2016.

A Decision Tree as a Compositional Hypothesis

Consider learning a decision tree for a two class classification problem. The input to the decision tree is
a set of n feature-vector/response pairs, (xi, yi). The learned tree structure corresponds to the encoder u,
because the tree structure maps each input feature vector into an indicator encoding in which leaf node each
feature vector resides. Formally, u : X 7→ [L], where [L] = {1, 2, . . . , L} and L is the total number of leaf
nodes. In other words, u maps from the original data space, to a L-dimensional one-hot encoded sparse
binary vector, where the sole non-zero entry indicates in which leaf node a particular observation falls, that
is, x̃ := u(x) ∈ {0, 1}L where ‖x̃‖ = 1.

Learning the voter is simply a matter of counting the fraction of observations in each leaf per class. So, the
voter is trained using n pairs of transformed feature-vector/response pairs (x̃i, yi), and it assigns a probability
of each class in each leaf: {vl := P[yi = 1|x̃i = l],∀l ∈ [L]} and v(x̃) = vx̃. In other words, for two class
classification, v maps from the L-dimensional binary vector to the probability that x is in class 1. The
decider is simply w (v(x̃)) = 1{v(x̃)>0.5}, that is, it outputs the most likely class label of the leaf node that
x falls into.

For inference, the tree is given a single x, and it is passed down the tree until it reaches a leaf node, where
it is represented by its leaf identifier x̃. The voter takes x̃ as input, and outputs the estimated posterior
probability of being in class 1 for the leaf node in which x̃ resides: v(x̃) = P[y = 1|x̃]. If v(x̃) is bigger than
0.5, the decider decides that x is in class 1, and otherwise, it decides it is in class 0.

17

Under review as submission to TMLR

Algorithm 1 Add a new SynX representer for a task. OOB = out-of-bag.
Require:

(1) t . current task number
(2) Dtn = (xt,yt) ∈ Rn×p × {1, . . . ,K}n . training data for task t

Ensure:
(1) ut . a representer set
(2) ItOOB . a set of the indices of OOB data

1: function SynX.fit(t, (xt,yt))
2: ut, ItOOB ← X.fit(xt, yt) . train a representer X on bootstrapped data
3: return ut, ItOOB
4: end function

B Compositional Representation Ensembling

Consider a scenario in which we have two tasks, one following the other. Assume that we already learned a
single decomposable hypothesis for the first task: w1 ◦ v1 ◦ u1, and then we get new data associated with a
second task. Let n1 denote the sample size for the first task, and n2 denote the sample size for the second
task, and n = n1 + n2. The representation ensembling approach generally works as follows. First, since we
want to transfer forward to the second task, we push all the new data through the first encoder u1, which
yields x̃(1)

n1+1, . . . , x̃
(1)
n . Second, we learn a new encoder u2 using the new data, {(xi, yi)}ni=n1+1. We then

push the new data through the new encoder, yielding x̃(2)
n1+1, . . . , x̃

(2)
n . Third, we train a new channel, v2. To

do so, v2 is trained on the outputs from both encoders, that is, {(x̃(j)
i , yi)}ni=n1+1 for j = 1, 2. The output

of v2 for any new input x is the posterior probability (or score) for that point for each potential response in
task two (class label). Thus, by virtue of ensembling these representations, this approach enables forward
transfer (Rusu et al., 2016; Dhillon et al., 2020).

Now, we would also like to improve performance on the first task using the second task’s data. While many
lifelong methods have tried to achieve this kind of backward transfer, to date, they have mostly failed (Ruvolo
& Eaton, 2013). Recall that previously we had already pushed all the first task data through the first task
encoder, which had yielded x̃(1)

1 , . . . , x̃
(1)
n1 . Assuming we kept any of the first task’s data, or can adequately

simulate it, we can push those data through u2 to get a second representation of the first task’s data:
x̃

(2)
1 , . . . , x̃

(2)
n1 . Then, v1 would be trained on both representations of the first task’s data. This ‘replay-like’

procedure facilitates backward transfer, that is, improving performance on previous tasks by leveraging data
from newer tasks. Both the forward and backward transfer updates can be implemented every time we
obtain data associated with a new task. Enabling the channels to ensemble omnidirectionally between all
sets of tasks is the key innovation of our proposed synergistic learning approaches.

C Synergistic Algorithms

We propose two concrete synergistic algorithms, Synergistic Forests (SynF) and Synergistic Networks (SynN).
The two algorithms differ in their detais of how to update representers and voters, but abstracting a level up
they are both special cases of the same procedure. Let SynX refer to any possible synergistic algorithm. Algo-
rithms 1, 2, 3, and 4 provide pseudocode for adding representers, updating voters, and making predictions
for any SynX algorithm; the below sections provide SynF and SynN specific details.

D Reference Algorithm Implementation Details

The same network architecture was used for all compared deep learning methods. Following van de Ven et al.
(2020), the ‘base network architecture’ consisted of five convolutional layers followed by two-fully connected
layers each containing 2000 nodes with ReLU non-linearities and a softmax output layer. The convolutional
layers had 16, 32, 64, 128 and 254 channels, they used batch-norm and a ReLU non-linearity, they had a 3x3
kernel, a padding of 1 and a stride of 2 (except the first layer, which had a stride of 1). This architecture was

18

Under review as submission to TMLR

Algorithm 2 Add a new SynX voter for the current task.
Require:

(1) t . current task number
(2) ut = {ut}tt′=1 . the set of representers
(3) Dtn = (xt,yt) ∈ Rn×p × {1, . . . ,K}n . training data for task t
(4) ItOOB . a set of the indices of OOB data for the current task

Ensure: vt = {vt,t′}tt′=1 . in-task (t′ = t) and cross-task (t′ 6= t) voters for task t
1: function SynX.add_voter(t,ut, (xt,yt), ItOOB)
2: vtt ← ut.add_voter((xt,yt), ItOOB) . add the in-task voter using OOB data
3: for t′ = 1, . . . , t− 1 do . update the cross task voters for task t
4: vtt′ ← ut′ .add_voter(xt,yt)
5: end for
6: return vt
7: end function

Algorithm 3 Update SynX voter for the previous tasks.
Require:

(1) t . current task number
(2) ut . representer for the current task
(3) D = {Dt′}t−1

t′=1 . training data for tasks t′ = 1, · · · , t− 1
Ensure: v = {vt′}t−1

t′=1 . all previous task voters
1: function SynX.update_voter(t, ut,D)
2: for t′ = 1, . . . , t− 1 do . update the cross task voters
3: vt′t ← ut.get_voter(xt′ ,yt′)
4: end for
5: return v
6: end function

used with a multi-headed output layer (i.e., a different output layer for each task) for all algorithms using a
fixed-size network. For ProgNN and DF-CNN the same architecture was used for each column introduced
for each new task, and in our SynN this architecture was used for the transformers ut (see above). In these
implementations, ProgNN and DF-CNN have the same architecture for each column introduced for each
task. Each column has an input layer followed by 4 convolutional layer with size 3 × 3 × 32, 3 × 3 × 32,
3 × 3 × 64 and 3 × 3 × 64, respectively. It is followed by a fully-connected layer with 64 nodes and an
output layer with 10 nodes. ReLU activation was used after each layer. The other algorithms use a common
architecture with input layers defined by the size of the input data, two hidden layers with 400 nodes each
and a multi-headed output layer (different output layers for different tasks). Different algorithms only differ
in the way they penalize the update of network parameters for the current task based on the previous tasks.
Each of these algorithms has 1.4M parameters in total.

E Simulated Results

In each simulation, we constructed an environment with two tasks. For each, we sample 750 times from the
first task, followed by 750 times from the second task. These 1,500 samples comprise the training data. We
sample another 1,000 hold out samples to evaluate the algorithms. We fit a random forest (RF) (technically,
an uncertainty forest which is an honest forest with a finite-sample correction (Mehta et al., 2019)) and a
SynF. We repeat this process 30 times to obtain errorbars. Errorbars in all cases were negligible.

E.1 Gaussian XOR

Gaussian XOR is two class classification problem with equal class priors. Conditioned on being in class 0,
a sample is drawn from a mixture of two Gaussians with means ±

[
0.5, 0.5

]T, and variances proportional

19

Under review as submission to TMLR

Algorithm 4 Predicting a class label using SynX.
Require:

(1) x ∈ Rp . test datum
(2) t . task identity associated with x
(3) u . all T reperesenters
(4) vt . voter for task t

Ensure: ŷ . a predicted class label
1: function ŷ = SynX.predict(t, x, vt)
2: T ← SynX.get_task_number() . get the total number of tasks
3: p̂t = 0 . p̂t is a K-dimensional posterior vector
4: for t′ = 1, . . . , T do . update the posteriors calculated from T task voters
5: p̂t ← p̂t + vtt′ .predict_proba(ut′(x))
6: end for
7: p̂t ← p̂t/T
8: ŷ = arg maxi(p̂t) . find the index i of the elements in the vector p̂t with maximum probability
9: return ŷ

10: end function

Table 1: Hyperparameters for SynF in CIFAR experiments. n_estimators is denoted by B, the number of
trees, above.

Hyperparameters Value
n_estimators (500 training samples per task) 10
n_estimators (5000 training samples per task) 40
max_depth 30
max_samples (OOB split) 0.67
min_samples_leaf 1

to the identity matrix. Conditioned on being in class 1, a sample is drawn from a mixture of two Gaussians
with means ±

[
0.5, −0.5

]T, and variances proportional to the identity matrix. Gaussian XNOR is the
same distribution as Gaussian XOR with the class labels flipped. Rotated XOR (R-XOR) rotates XOR by
θ◦ degrees.

E.2 Spirals

A description of the distributions for the two tasks is as follows: let K be the number of classes and S ∼
multinomial(1

K
~1K , n). Conditioned on S, each feature vector is parameterized by two variables, the radius

r and an angle θ. For each sample, r is sampled uniformly in [0, 1]. Conditioned on a particular class, the
angles are evenly spaced between 4π(k−1)tK

K and 4π(k)tK
K where tK controls the number of turns in the spiral.

To inject noise along the spiral, we add Gaussian noise to the evenly spaced angles θ′ : θ = θ′ +N (0, σ2
K).

The observed feature vector is then (r cos(θ), r sin(θ)). In Figure 1 we set t3 = 2.5, t5 = 3.5, σ2
3 = 3 and

σ2
5 = 1.876.

Consider an environment with a three spiral and five spiral task (Figure 1). In this environment, axis-aligned
splits are inefficient, because the optimal partitions are better approximated by irregular polytopes than by
the orthotopes provided by axis-aligned splits. The three spiral data helps the five spiral performance because
the optimal partitioning for these two tasks is relatively similar to one another, as indicated by positive
forward transfer. This is despite the fact that the five spiral task requires more fine partitioning than the
three spiral task. Because SynF grows relatively deep trees, it over-partitions space, thereby rendering tasks
with more coarse optimal decision boundaries useful for tasks with more fine optimal decision boundaries.
The five spiral data also improves the three spiral performance.

20

Under review as submission to TMLR

50 750 1500
Total Sample Size

0.25

0.35

0.45

0.55

Ge
ne

ra
liz

at
io

n
Er

ro
r (

3
sp

ira
ls)

3 spirals 5 spirals

3 spirals
Synergistic Forest (SynF)
Random Forest (RF)

50 750 1500
Total Sample Size

0.2

0.5

0.8

Ge
ne

ra
liz

at
io

n
Er

ro
r (

5
sp

ira
ls)

3 spirals 5 spirals

5 spirals

50 750 1500
Total Sample Size

-0.92

-0.51

-0.22

0.0

0.18
lo

g
Fo

rw
ar

d/
Ba

ck
wa

rd

 L
ea

rn
in

g
Ef

fic
ie

nc
y

(F
LE

/B
LE

)

3 spirals 5 spirals

SynF BLE
SynF FLE
RF BLE
RF FLE

3 spirals 5 spirals

Figure 1: Top: 750 samples from 3 spirals (left) and 5 spirals (right). Bottom left: SynF outperforms RF
on 3 spirals when 5 spirals data is available, demonstrating backward transfer in SynF. Bottom center : SynF
outperforms RF on 5 spirals when 3 spirals data is available, demonstrating forward transfer in SynF. Bottom
right: Transfer Efficiency of SynF. The forward (solid) and backward (dashed) curves are the ratio of the
generalization error of SynF to RF in their respective figures. SynF demonstrates decreasing forward transfer
and increasing backward transfer in this environment.

21

Under review as submission to TMLR

sp
ea

ke
r G

sp
ea

ke
r J

sp
ea

ke
r L

sp
ea

ke
r N

sp
ea

ke
r T

sp
ea

ke
r Y

Short-Time Fourier Transform Spectrogram of Number 5

Figure 2: Spectrogram extracted from 8 different recordings of 6 speakers uttering the digit ‘5’.

F Real Data Extended Results

F.1 Spoken Digit Experiment

Table 2: Hyperparameters for SynF in spoken digit experiment.
Hyperparameters Value
n_estimators (275 training samples per task) 10
max_depth 30
max_samples (OOB split) 0.67
min_samples_leaf 1

In this experiment, we used the spoken digit dataset provided in https://github.com/Jakobovski/
free-spoken-digit-dataset. The dataset contains audio recordings from 6 different speakers with 50
recordings for each digit per speaker (3000 recordings in total). The experiment was set up with 6 tasks
where each task contains recordings from only one speaker. For each recording, a spectrogram was extracted
using Hanning windows of duration 16 ms with an overlap of 4 ms between the adjacent windows. The
spectrograms were resized down to 28 × 28. The extracted spectrograms from 8 random recordings of ‘5’
for 6 speakers are shown in Figure 2. For each Monte Carlo repetition of the experiment, spectrograms

22

https://github.com/Jakobovski/free-spoken-digit-dataset
https://github.com/Jakobovski/free-spoken-digit-dataset

Under review as submission to TMLR

1 2 3 4 5 6
Number of tasks seen

-0.69

0.0

0.69

1.1

lo
g

Fo
rw

ar
d

LE

1 2 3 4 5 6
Number of tasks seen

-1.61

0.0

0.69

1.1

lo
g

Ba
ck

wa
rd

 L
E

Sy
nN

Sy
nF Lw
F

EW
C

O-
EW

C SI
To

ta
l R

ep
lay

Pa
rti

al
Re

pla
y

No
ne

3

2

1

0

1

2

lo
g

LE
 a

fte
r 6

 Ta
sk

s

1 2 3 4 5 6
Number of tasks seen

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

[±
 st

d
de

v.
]

1 2 3 4 5 6
Number of tasks seen

0.1

0.2

0.3

0.4

0.5

0.6

Si
ng

le
 ta

sk
 a

cc
ur

ac
y

SynN
SynF
LwF
EWC
O-EWC
SI
Total Replay
Partial Replay
None
chance

Figure 3: Both SynF and SynN show positive forward and backward transfer as well as synergistic learning
for the spoken digit tasks, in contrast to other methods, some of which show only forward transfer, others
show only backward transfer, with none showing both, and some showing neither.

23

Under review as submission to TMLR

Table 3: Task splits for CIFAR 10x10.
Task # Image Classes
1 apple, aquarium fish, baby, bear, beaver, bed, bee, beetle, bicycle, bottle
2 bowl, boy, bridge, bus, butterfly, camel, can, castle, caterpillar
3 chair, chimpanzee, clock, cloud, cockroach, couch, crab, crocodile, cup, dinosaur
4 dolphin, elephant, flatfish, forest, fox, girl, hamster, house, kangaroo, keyboard
5 lamp, lawn mower, leopard, lion, lizard, lobster, man, maple tree, motor cycle, mountain
6 mouse, mushroom, oak tree, orange, orchid, otter, palm tree, pear, pickup truck, pine tree
7 plain, plate, poppy, porcupine, possum, rabbit, raccoon, ray, road, rocket
8 rose, sea, seal, shark, shrew, skunk, skyscraper, snail, snke, spider
9 squirrel, streetcar, sunflower, sweet pepper, table, tank, telephone, television, tiger, tractor
10 train, trout, tulip, turtle, wardrobe, whale, willow tree, wolf, woman, worm

extracted for each task were randomly divided into 55% train and 45% test set. As shown in Figure 3, both
SynF and SynN show positive transfer and synergistic learning between the spoken digit tasks, in contrast to
other methods, some of which show only forkward transfer, others show only backward transfer, with none
showing both, and some showing neither.

F.2 CIFAR 10x10

Supplementary Table 3 shows the image classes associated with each task number. Supplementary Figure 4
is the same as Figure 3 but with 5,000 training samples per task, rather than 500. Notably, with 5,000
samples, replay methods are able to transfer both forward and backward as well. However, note that
although total replay outperforms both SynF and SynN with large sample sizes, it is not a bona fide lifelong
learning algorithm, because it requires n2 time. Moreover, the replay methods will eventually forget as more
tasks are introduced because it will run out of capacity.

F.3 CIFAR Label Shuffling

Supplementary Figure 5 shows the same result as the label shuffling from Figure 4, but with 5,000 samples per
class. The results for SynN and SynF are qualitatively similar, in that they transfer backward. The replay
methods are also able to transfer when using this larger number of samples, although with considerably
higher computational cost.

F.4 CIFAR 10x10 Repeated Classes

We also considered the setting where each task is defined by a random sampling of 10 out of 100 classes with
replacement. This environment is designed to demonstrate the effect of tasks with shared subtasks, which is
a common property of real world lifelong learning tasks. Supplementary Figure 6 shows transfer efficiency
of SynF and SynN on Task 1.

You may include other additional sections here.

24

Under review as submission to TMLR

1 2 3 4 5 6 7 8 9 10
Number of tasks seen

-0.22

-0.11

0.0

0.1

0.18

0.26

lo
g

Fo
rw

ar
d

LE

1 2 3 4 5 6 7 8 9 10
Number of tasks seen

-0.22

-0.11

0.0

0.1

0.18

lo
g

Ba
ck

wa
rd

 L
E

1 2 3 4 5 6 7 8 9 10
Number of tasks seen

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

[±
 st

d
de

v.
]

1 2 3 4 5 6 7 8 9 10
Number of tasks seen

0.2

0.4

0.6

0.8

1.0

Si
ng

le
 ta

sk
 a

cc
ur

ac
y

Sy
nN

Sy
nF

Pr
og

NN
DF

-C
NN EW

C
To

ta
l R

ep
lay

Pa
rti

al
Re

pla
y

Sy
nF

 (c
on

str
ain

ed
)

Lw
F

O-
EW

C SI
No

ne

0.6

0.4

0.2

0.0

0.2

lo
g

LE
 a

fte
r 1

0
Ta

sk
s

1 2 3 4 5 6 7 8 9 10
Number of tasks seen

-0.36

0.0

0.22

Re
so

ur
ce

 C
on

st
ra

in
ed

 lo
g

FL
E

1 2 3 4 5 6 7 8 9 10
Number of tasks seen

-0.11

0.0

0.1

Re
so

ur
ce

 C
on

st
ra

in
ed

 lo
g

BL
E

1 2 3 4 5 6 7 8 9 10
Number of tasks seen

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

[±
 st

d
de

v.
]

1 2 3 4 5 6 7 8 9 10
Number of tasks seen

0.2

0.4

0.6

0.8

1.0

Si
ng

le
 ta

sk
 a

cc
ur

ac
y

0.45

0.55

0.65

0.75
Ge

ne
ra

liz
at

io
n

Er
ro

r

100 500 5000Number of Task 10 Samples

Recruitment Experiment on Task 10

SynF (building)
UF (new)
recruiting
hybrid

Resource Growing
SynN
SynF
ProgNN
DF-CNN
EWC
Total Replay
Partial Replay

Resource Constrained
SynF
LwF
O-EWC
SI
None

Figure 4: Performance of different algorithms on CIFAR 10x10 vision dataset for 5,000 training samples
per task. SynN maintains approximately the same forward transfer (top left and middle left) and backward
transfer (top and middle row second column) efficiency as those for 500 samples per task whereas other
algorithms show reduced or nearly unchanged transfer. SynF still demonstrates positive forward, backward,
and final transfer, unlike most of the state-of-the-art algorithms, which demonstrate forgetting. The replay
methods, however, do demonstrate transfer, albeit with significantly higher computational cost.

1 2 3 4 5 6 7 8 9 10
Number of tasks seen

-0.69

-0.36

-0.11

0.18

lo
g

Ba
ck

wa
rd

 L
E

Label Shuffled CIFAR
SynN
SynF
Prog_NN
DF_CNN
LwF
EWC
O-EWC
SI
Total Replay
Partial Replay
None

Figure 5: Label shuffle experiment on CIFAR 10x10 vision dataset for 5,000 training samples per task.
Shuffling class labels within tasks two through nine with 5000 samples each demonstrates both SynF and
SynN can still achieve positive backward transfer, and that the other algorithms that do not replay the
previous task data fail to transfer.

25

Under review as submission to TMLR

0 5 10 15
Number of Tasks Seen

0.0

0.1

0.18

lo
g

LE
 (T

as
k

1)

SynF
SynN

Figure 6: SynF and SynN transfer knowledge effectively when tasks share common classes. Each task is a
random selection of 10 out of the 100 CIFAR-100 classes. Both SynF and SynN demonstrate monotonically
increasing transfer efficiency for up to 20 tasks.

26

	Introduction
	Background
	Classical Machine Learning
	Lifelong Learning
	Reference algorithms

	Evaluation Criteria
	Representation Ensembling Algorithms
	Synergistic Forests
	Synergistic Networks

	Results
	A computational taxonomy of lifelong learning
	Illustrating Synergistic Learning with SynF and SynN
	Synergistic learning in a simple environment
	Synergistic learning in adversarial environments

	Real data experiments
	Resource Growing Experiments
	Resource Constrained Experiments
	Resource Recruiting Experiments
	Adversarial Experiments

	Discussion
	Decision Tree as a Compositional Hypothesis
	Compositional Representation Ensembling
	Synergistic Algorithms
	Reference Algorithm Implementation Details
	Simulated Results
	Gaussian XOR
	Spirals

	Real Data Extended Results
	Spoken Digit Experiment
	CIFAR 10x10
	CIFAR Label Shuffling
	CIFAR 10x10 Repeated Classes

