
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SABER: SMALL ACTIONS, BIG ERRORS — SAFE-
GUARDING MUTATING STEPS IN LLM AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite rapid progress in LLM agents, performance on long-horizon, tool-using
tasks remains fragile. To better understand this fragility, we ask a simple ques-
tion: do all actions contribute equally to failure? Analyzing execution traces
on τ -Bench (Airline/Retail) and SWE-Bench Verified, we decompose trajectories
into mutating (environment-changing) vs. non-mutating steps and formalize de-
cisive deviations—earliest action-level divergences that flip success to failure. A
logistic regression reveals that each additional deviation in a mutating action re-
duces the odds of success by upto 92% on Airline and upto 96% on Retail for
SoTA models. In contrast, deviations in non-mutating actions have little to no ef-
fect. Errors also grow with context length as agents drift from role and act on stale
constraints. Motivated by these observations, we introduce SABER, a model-
agnostic, gradient-free, test-time safeguard that (i) adds mutation-gated verifi-
cation, (ii) injects Targeted Reflection before mutating steps, and (iii) performs
block-based context cleaning. SABER delivers consistent gains—e.g., Qwen3-
Thinking: +28% relative on Airline, +11% on Retail, and +7% on SWE-Bench
Verified; Claude: +9%/+7%. We further identify ceiling effects in τ -Bench, where
annotation errors and underspecified tasks artificially cap model performance. To
address this, we release τ -Bench Verified, which restores benchmark headroom
through targeted revisions. Our results argue for action-level analysis, targeted
safeguards, and reliable evaluations as prerequisites for robust multi-turn agents.

1 INTRODUCTION

Real-world, long-horizon tasks—whether in enterprise operations, software engineering, scientific
analysis, or multi-step information retrieval—demand language agents that can plan, invoke tools,
and maintain coordinated behavior across many turns (Chen et al., 2025; Kanoulas et al., 2025;
Yang et al., 2024). Despite impressive single-step capabilities, today’s leading agents are brittle in
extended interactions: they misinterpret constraints, rely on stale context, and issue tool calls that
derail progress (Jimenez et al., 2024; Yao et al., 2024; Kwan et al., 2024; Wang et al., 2024b). Cur-
rent frameworks typically treat all decision steps uniformly—end-to-end prompting, generic scoring,
and whole-trajectory reruns all assume the same level of scrutiny across actions (Park et al., 2023;
Yuan et al., 2025; Chen et al., 2024b; Zhou et al., 2025; Chhikara et al., 2025; Han et al., 2025).
Recent analyses catalog broad behavioral failures (Zhang et al., 2025; Cemri et al., 2025), but rarely
pinpoint the specific decision steps where success flips to failure. Our study begins with a simple
question: Do all actions contribute equally to task failure?

We answer this by analyzing execution traces of strong open- and closed-weight models on τ -Bench
(Section 3). Partitioning the action space into mutating (state-changing such as cancelling a booking,
issuing a refund, deleting a file) and non-mutating (information-gathering) steps, we show by fitting
a regression model that deviations in mutating actions are the decisive predictors of failure, with
each additional deviation in the number of mutating actions reducing the odds of success by 55% ∼
92% on the Airline subset and 87% ∼ 96% on the Retail subset (all p < 0.001), respectively, for
three different models including Qwen3-Thinking-235B, GPT-5 and Claude-4-Sonnet. Meanwhile,
deviations in non-mutating steps have little effect: always below 10% success ratio reduction per
non-mutating deviation on both Airline and Retail subsets, with non-significant p-values on some
cases (details in Table 1). In short, failures cluster at a small slice of mutating steps, revealing a
disproportionately risky subset of the decision space.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

I want to change my flight

get_reservation_details[JK9OP]

{'cabin':'basic_economy', 'price', '71'}

update_reservation[JK9OP]

{'cabin':'basic_economy', 'price', '171'}

I have successfully updated your

reservation for only $100 more!

Oh! I only want to change it if its free

I want to change my flight

get_reservation_details[JK9OP]

{'cabin':'basic_economy', 'price', '71'}

cancel_reservation[JK9OP]

{..., 'status':'cancelled'}

Our policy doesn't allow changes, I

have cancelled the flight.

I didn't want to cancel it...

REMIND: according to the policy, basic

economy flights can't be changed.

I want to change my flight

get_reservation_details[JK9OP]

{'cabin':'basic_economy', 'price', '71'}

CONFIRM WITH USER

Oh! Then leave it as it is!

(a) Current agent frameworks (b) Targeted reflection (c) Mutation-Gated Human Verification

REMIND: according to the policy, basic

economy flights can't be changed.

cancel_reservation[JK9OP]

I am about to cancel your reservation as

changes are not allowed for basic economy.

Figure 1: Illustration of Targeted Reflection and Mutation-Gated User Verification

However, efficiency at the mutating gate alone is not enough, because errors grow more frequent as
context length increases. Agents progressively lose fidelity to their intended role and policies due to
“lost-in-the-middle” effects and the over-trust of stale tokens (Liu et al., 2023; Laban et al., 2025).
Even trajectories that begin correctly can drift, leading to misaligned or outdated tool calls at later
mutating steps (Kwan et al., 2024; Wang et al., 2024b; Cemri et al., 2025). To sustain reliability in
long-horizon settings, we propose two additional mechanisms: lightweight reminders that sharpen
constraints before risky steps, and context cleaning that keeps verification-critical history salient.
Together, these measures aim to preserve alignment while keeping intervention selective rather than
overwhelming.

Yet drawing such conclusions requires trust in the benchmark itself. We found that τ -Bench, though
widely adopted, embeds inconsistencies and underspecified instructions that cap attainable perfor-
mance and blur differences between models. For example, Airline tasks contain contradictory book-
ing policies, and Retail tasks often omit disambiguation (e.g., “pay with the credit card” despite
multiple cards on file). To support rigorous evaluation, we re-audit both domains, correcting annota-
tion errors and clarifying policies. We release the result as τ -Bench Verified, a cleaned version that
preserves task coverage while removing systemic flaws. On this stronger foundation, differences
between strong models re-emerge and the benefits of safeguards become clearer, as shown by the
consistent gains in Table 6.1.

Building on this foundation, we propose SABER, a model-agnostic, gradient-free safeguard that
combines three mechanisms: Mutation-Gated User Verification to place decisive steps under direct
scrutiny, Targeted Reflection to counter “lost-in-the-middle” drift, and Block-based Context Clean-
ing to prevent stale confirmations from crowding and to keep only verification-critical and goal-
salient history. We illustrate Mutation-Gated User Verification and Targeted Reflection in Figure 1,
while we detail Block-based Context Cleaning in Section 4.

We evaluate SABER across open and closed models, pairing main models with auxiliary mod-
els: the main model generates actions, while the auxiliary model provides reflection, verifica-
tion, and context cleaning. Across τ -Bench Verified and SWE-Bench Verified, SABER consis-
tently yields substantial improvements. For example, Qwen3-Thinking-235B paired with a
Qwen3-Instruct-235B auxiliary improves 19.7% on Airline Verified, 10.8% on Retail Veri-
fied and 7% on SWE-Bench Verified, while both GPT-5 and Claude 4 gain further headroom
once benchmark flaws are removed. These results highlight not only the importance of focusing
oversight on mutating steps but also the broader need for refined evaluation to reveal genuine differ-
ences in model robustness.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Agency in AI systems. While classical AI defined agents broadly as entities that perceive and act
on their environment (Russell & Norvig, 1995), recent work views agency as a spectrum of capa-
bilities (Zhang et al., 2024b; Kapoor et al., 2024), emphasizing autonomous goal pursuit, natural
language interaction, and structured tool use (OpenAI, 2025). This perspective has driven the devel-
opment of numerous benchmarks for evaluating LLM capabilities in real-world scenarios (Jimenez
et al., 2024; Yao et al., 2024; Wang et al., 2025a; Patil et al., 2025), as well as systems that combine
prompt engineering and context engineering techniques to improve agent reliability (AWS, 2024;
Liu et al., 2024; AWS / Kiro Team, 2025; Mei et al., 2025; Wang et al., 2025b; Yang et al., 2024;
Wang et al., 2024a). In contrast to prior work that focuses on building new systems to enhance per-
formance, we analyze execution trajectories of existing state-of-the-art models to ask a fundamental
question: Do all actions contribute equally to task failure? Our analysis shows that small flaws in
mutable actions (Section 3) disproportionately drive failures. Leveraging this insight, we develop
SABER, the first system that combines enhanced reflection and selective human-agent collaboration
to intervene only when supervision is truly necessary.

Multi-agent systems. Another line of research explores using LLMs as central controllers for
agents that interact with external environments beyond text-only domains (Deng et al., 2023; Xie
et al., 2024). Recent work investigates multi-agent systems where multiple specialized agents inter-
act concurrently (Hong et al., 2024; Li et al., 2023), enabling collaboration for complex tasks. Al-
though promising, such systems are often costly, prone to compounding errors, and have not demon-
strated consistent gains on standard benchmarks (Zhang et al., 2025; Cemri et al., 2025). By contrast,
our approach is gradient-free and single-agent, focusing on reducing critical mistakes. Specifically,
SABER integrates an enhanced reflection mechanism and explicitly identifies irreversible actions
that humans can approve before their execution.

User simulators for enhancing AI systems. A growing body of work explores LLMs as sim-
ulators of human characters, ranging from non-player characters in games to agents embedded in
human-like societies or collaborative task settings (Kim et al., 2022; Park et al., 2023; Wu et al.,
2023; Chen et al., 2024a; Zhang et al., 2024a; Yao et al., 2024; Barres et al., 2025). These efforts
demonstrate that LLMs can emulate realistic human interaction patterns, but they have primarily
been used for showcasing simulation rather than improving agent reliability. In our work, user
simulators play a different role: they provide a scalable way to approximate the human confirmation
step required by SABER. Instead of relying on human evaluators, benchmarks such as τ -Bench offer
simulated users that allow us to evaluate how SABER integrates human-in-the-loop feedback. This
enables us to systematically test how selective confirmation of irreversible actions reduces decisive
errors, while preserving efficiency in real-world scenarios.

Benchmarks for agent evaluation. A variety of benchmarks have been proposed to evaluate lan-
guage agents, yet important limitations remain. Stable ToolBench (Qin et al., 2023) mitigates insta-
bility from external APIs through a virtual server, but relies on large models for evaluation, leading
to high costs and limited scalability. BFCL (Patil et al., 2025) and HammerBench (Wang et al.,
2025a) extend evaluation to multi-turn dialogues, but their trajectories are constructed from pre-
defined content and fail to capture under-specified or evolving real-world user goals. τ -Bench (Yao
et al., 2024) and τ2-Bench (Barres et al., 2025) moves closer to realistic evaluation by embedding
agents in domain-specific environments with simulated users. However, as we show in Section 5,
annotation errors and under-specified instructions cap achievable performance, weakening its diag-
nostic reliability. We address this gap by releasing τ -Bench Verified, a fully revised version of
the Airline and Retail domains that corrects dataset inconsistencies and resolves ambiguities. This
benchmark provides a more faithful and trustworthy measure of agent capabilities, enabling robust
evaluation of SABER and future systems.

3 PROBLEM FORMULATION

We introduce a formal framework to analyze decisive errors in LLM-powered agentic systems, dis-
tinguishing between environment-mutating and non-mutating actions within a standard turn-based
protocol Hong et al. (2024); Li et al. (2023); Wu et al. (2023); Zhang et al. (2025).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Background. Consider an LLM-powered single-agent system M that operates at discrete time
steps. At each step, the agent observes the current state and performs exactly one action. Formally,

M = ⟨S,A, P ⟩. (1)

Here, S is the set of states, A the action set, and P (st+1 | st, at) the transition law. A trajectory is
τ = (s0, a0, s1, a1, . . . , sT ), and failure-indicator Z(τ) ∈ {0, 1} denotes failure (1) or success (0).

Decisive deviation (comparative). Let τ⋆ be a successful reference trajectory for a task (Z(τ⋆) =
0; see Section 5). Let τ ′ be a candidate trajectory for the same task, and let t be the earliest index at
which their action sequences diverge (prefixes up to t−1 match). Denote by ãt the additional action
appearing at position t in τ ′ (relative to τ⋆). Define the decisive-deviation indicator

∆+
t (τ

′, τ⋆) =

{
1, if Z(τ⋆) = 0 and Z(τ ′) = 1,

0, otherwise.
(2)

Thus, ∆+
t = 1 captures that introducing the ãt at step at t flips a success into a failure.

Mutating vs. non-mutating insertions. Partition the action set into mutating and non-mutating
subsets: Amut ⊆ A (actions that change the external environment or user-visible state) and Anon =
A\Amut. Our working hypothesis is that decisive flips arise predominantly from mutating insertions:

P(∆+
t = 1 | ãt∈Amut) ≫ P(∆+

t = 1 | ãt∈Anon) (3)

From local deviations to a dataset-level test. To connect Eq. 2 and Eq. 3 to corpus-level evidence,
we audit trajectories via deviations from the reference plan. Let

M(τ) =
∑
k

1[ak ∈ Amut], N(τ) =
∑
k

1[ak ∈ Anon],

and define absolute deviations

dmut(τ
′; τ⋆) =

∣∣M(τ ′)−M(τ⋆)
∣∣, dnon(τ

′; τ⋆) =
∣∣N(τ ′)−N(τ⋆)

∣∣.
Under Eq. equation 3, success should decrease primarily with dmut after controlling for dnon. For
example, overshooting by one extra file deletion (mutating) is far more likely to cause failure than
adding one redundant search query (non-mutating).

Model Dataset Mutating distance Non-mutating distance n
Coef. OR p Coef. OR p

GPT-5 (med) τ -Bench Retail -1.06 0.35 < 0.001 -0.01 0.99 0.781 690
GPT-5 (med) τ -Bench Airline -2.02 0.13 < 0.001 -0.04 0.96 0.163 297
Qwen3-Thinking τ -Bench Retail -0.80 0.45 < 0.001 -0.02 0.98 0.559 345
Qwen3-Thinking τ -Bench Airline -2.46 0.09 < 0.001 -0.12 0.89 0.004 297
Claude Sonnet 4.0 τ -Bench Retail -2.54 0.08 < 0.001 -0.09 0.91 0.008 690
Claude Sonnet 4.0 τ -Bench Airline -3.32 0.04 < 0.001 -0.21 0.81 < 0.001 297

Table 1: Logistic regression of task success on mutating and non-mutating distance across models
and datasets. Mutating deviations dominate task failure across models and datasets, while non-
mutating deviations have inconsistent or negligible effects. ”med” indicates medium reasoning ef-
fort.

A logistic regression shows that mutating deviations are the primary driver of failure, while non-
mutating deviations matter far less (Table 1). An odds ratio (OR) below 1 means each extra mismatch
reduces success; for instance, in τ -Bench Airline with Claude 4, a mutating mismatch cuts the odds
of success by 96% (OR = 0.04), compared to only 19% for a non-mutating mismatch (OR = 0.81).
Across models, mutating deviations consistently yield large, significant penalties, confirming our
hypothesis (Eq. 3) that failures stem mainly from errors in mutating steps. Our objective is therefore
to reduce decisive deviations, Pr[∆+

t = 1], by detecting when actions lie in Amut and checking them
against task constraints (system rules, tool schemas, and user requirements; Fig. 1 (a). Safeguards
applied only at these high-risk points minimize overhead while directly targeting the main source of
failure. The next section introduces SABER, which operationalizes this strategy.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 SABER: SAFEGUARDING AGAINST MUTATING ACTIONS

As shown by the unguarded failure in Fig. 1(a) and the dataset trends in Table 1, decisive deviations
cluster at mutating steps. These actions account for only 14–18% of total steps (e.g., Qwen3–Airline:
15.5%, Qwen3–Retail: 18.3%) yet dominate failure risk: a single mutating deviation reduces suc-
cess odds drastically, whereas non-mutating deviations are nearly harmless (Table 1). To safeguard
against this failure mode without overwhelming the user, we introduce SABER, a lightweight,
model-agnostic context management system that plugs into existing agent loops without retraining.

4.1 SAFEGUARDS FOR MUTATING ACTIONS

Mutation-gated human verification. SABER requires explicit user confirmation only before ex-
ecuting mutating actions, capping interruptions to roughly one in six turns. Non-mutating actions
proceed autonomously. This focused scrutiny concentrates scarce user attention on the steps most
likely to flip success into failure, reducing decisive errors while keeping verification burden low; cf.
Fig. 1 (c). In practice, this gating also prevents prompt-locking or stalling attacks, since the next
post-feedback action is executed directly.

Targeted reflection. In long trajectories, mutating actions at ∈ Amut often produce tool calls
that are syntactically valid but semantically inconsistent with system constraints, due to “lost in the
middle” effects (Liu et al., 2023; Laban et al., 2025). To counteract this, SABER injects a concise,
high-salience summary of key instructions at the point of mutation. This reduces miscalibrated tool
calls and improves alignment (illustrated in Fig. 1 (b)). When reasoning traces are unsupported, the
same summary is appended in a ReAct-style format to preserve guidance.

Block-based context filtering. Verification turns can inflate dialogue history and cause context
poisoning (Breunig, 2025), as shown by the growth of confirmation turns in Fig. 1 (c). SABER
therefore partitions trajectories into blocks, summarizes them, and retrieves only the most relevant
blocks for the current user query. This keeps the effective context compact and pertinent, mitigating
poisoning while preserving the benefits of verification. The retrieval budget N is user-configurable
to trade off recall and context-window pressure.

4.2 SABER SYSTEM IMPLEMENTATION

To operationalize these safeguards, SABER defines two cooperating models: a main model, re-
sponsible for generating actions, and an auxiliary model, responsible for verification, reflection, and
context management. This separation keeps the main policy unchanged while allowing the auxiliary
to enforce gates and maintain context cheaply.

For each candidate action at, the auxiliary model checks whether it is mutating. If so, it reformulates
the tool call into a concise natural-language summary with essential preconditions and intended
effects, and requests user confirmation. The user’s feedback is incorporated into the trajectory (τ ′),
after which the main model produces its next action—executing the tool call if confirmed or revising
if rejected. Non-mutating actions bypass verification entirely. To minimize semantically invalid
mutations, the auxiliary model injects a distilled reflection of constraints into a <think> block (or a
ReAct-style format (Yao et al., 2023) when reasoning traces are unsupported). Finally, to counteract
context poisoning, the auxiliary model stores block-level summaries (sk, ek) and retrieves the N
most relevant blocks by embedding similarity to the latest user query. This block-based filtering
retains only verification-critical history, mitigating drift without exceeding context limits. In our
implementation, embeddings are cached and summaries are short, so the added latency is marginal
relative to typical tool calls.

Taken together, mutation-gated verification, targeted reflection, and block-based filtering deliver a
narrow, high-yield intervention surface: most turns remain fully autonomous, while the few high-
risk mutating steps receive concise guidance and a single confirmation hop, enabling strong accuracy
gains with minimal overhead.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

What is my current balance?

auxiliary

Trajectory (τ)

System message

Tool descriptions

Block Storage

Internal Trajectory (τ')

. . .

System message

Tool descriptions

Nice! Now, I want to change my flight

According to the policy, basic

economy flights can't be changed.

{..., 'user_balance': '$234'}

get_user_balance[mia_kim_64]

Your current balance is $234

Nice! Now, I want to change my flight

cancel_reservation[JK9OP]

Candidate action (at)

auxiliary

Remind

Please confirm: I am about to cancel

your reservation as changes are not

allowed for basic economy. Yes
Mutable

action?
cancel_reservation[JK9OP]

No

SABER

Embed & Retrieve

Figure 2: Runtime workflow of SABER. The pipeline is anchored on mutation-gated human ver-
ification: the auxiliary model inspects whether a candidate action at is mutating and, if so, refor-
mulates the tool call into natural language and requests user confirmation. To support this gate in
long contexts, the auxiliary model (i) injects a distilled reflection of system instructions and tool
constraints into a <think> block to reduce invalid mutations, and (ii) applies block-based context
filtering to retain only verification-critical and goal-salient history.

5 TAU-BENCH VERIFIED

τ -Bench (Yao et al., 2024) is a recently introduced benchmark for evaluating LLM-based agents in
realistic interactive environments. It provides domain-specific scenarios (e.g., airline booking, retail
shopping) where an agent must complete tasks through multi-turn tool calls while interacting with
a simulated user. While valuable for assessing environment interaction, we identified systematic
issues in the released datasets that significantly limit achievable performance.

5.1 EXISTING ISSUES IN τ -BENCH

In the Airline domain, dataset inconsistencies capped performance at roughly 70%, while in the
Retail domain, annotation errors limited performance to around 92%. This is concerning given the
widespread use of τ -Bench to evaluate agentic capabilities of state-of-the-art models (Yang et al.,
2025; OpenAI, 2025; Anthropic, 2025; MoonshotAI, 2025; Hui et al., 2024). Moreover, these prob-
lems persist even in the recently released τ2-Bench as these domains haven’t been updated (Barres
et al., 2025). We showcase two representative examples from each domain in Figure 3, a complete
set of the ground truth problems can be found in the Appendix C.

5.2 UNDER-SPECIFIED USER INSTRUCTIONS.

Beyond ground truth errors, we found that many instructions in the original datasets are under-
specified. For instance, in the Airline and Retail domains, 31 out of 50 and 53 out of 115 instructions,
respectively, lacked sufficient detail (e.g., a user is asked to pay with “the credit card” despite having
two cards on file, but the benchmark accepts only one). Such ambiguities increase benchmark
variance and weaken its reliability as a diagnostic tool. While τ2-Bench acknowledges this issue
and introduces a new Telecom domain, it does not resolve the problems in the original Airline or
Retail domains.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) τ -Retail example (b) τ -Airline example

Wiki policy. Exchanges must involve a different
product option of the same item. Re-using the
exact same option is not allowed.

Wiki policy. If a flight is delayed, a certificate
can be issued only after the reservation is
changed or cancelled.

Ground truth (incorrect).
Exchange item ID 8069050545,
with SAME item 8069050545
Error: Both IDs are identical — violating the
rule that exchanges must select a different
option.

Ground truth (incorrect).

• get user details()

• send certificate(amount = $150)

Error: A certificate is issued directly, without
performing the required change/cancellation.

Correct solution.
Exchange item ID 8069050545,
with different item 3609437808
Fix: New product option must differ from the
old one.

Correct solution.

• get user details()

Fix: The user doesn’t want to change or cancel
the flight so no certificate is issued

Figure 3: Two examples of incorrect ground-truth annotations in τ -Bench. (a) In Retail, the solution
reuses the same product ID, violating the policy that exchanges require a different option. (b) In
Airline, the solution issues a certificate without first confirming and changing/cancelling the reser-
vation.

5.3 τ -BENCH VERIFIED.

To address these shortcomings, we manually reviewed every task, corrected errors, extended user
instructions and compiled the revised benchmark, which we term τ -Bench Verified. The full list
of corrections is included in the Appendix, and we highlight two representative cases in the main
text—one from Airline and one from Retail—where annotation issues directly prevented correct
model solutions. We release τ -Bench Verified publicly to provide a more faithful benchmark for
assessing LLM agent capabilities and to encourage more robust evaluation practices in future work.

6 EXPERIMENTS

This section is organized as follows. In Section 6.1, we demonstrate how SABER can enhance the
performance of existing models on agentic tasks, such as those in the SWE-bench Verified, Tau-
Bench Airline or Tau-Bench Retail benchmark. In Section 5, we conduct a detailed analysis of
Tau-Bench Airline and Retail test dataset correctness and propose Tau-Bench Verified.

6.1 SABER IMPROVES PERFORMANCE IN AGENTIC TASKS

We observe that every trajectory across benchmarks requires for success one or more mutating ac-
tions that can trigger a decisive error (as shown in Eq 2). These mutating actions are necessary for
task completion but present an inherent risk. To address this, we apply SABER to improve model
performance.

Models. SABER is gradient-free and prompt-only, so it applies directly to both closed- and
open-weight LLMs. We evaluate claude-sonnet-4-20250514 and gpt-5-2025-08-07
(medium reasoning) as closed-source models, and Qwen3-235B-A22B-Thinking-2507 as
an open-weight model. Unless otherwise noted, each model serves as both the main agent (ac-
tioning) and the auxiliary agent (judge/summarizer) within SABER. For Qwen3, we report two
auxiliary variants paired with the Thinking main: Qwen3-235B-A22B-Instruct-2507 and

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Benchmark Qwen3-Thinking-235B ChatGPT-5 (med) Claude Sonnet 4
No-SABER SABER No-SABER SABER No-SABER SABER

τ -Bench Airline 49.3% 63.3% 45.3% 62.6% 51.3% 56.0%
τ -Bench Retail 64.3% 71.6% 77.1% 76.5% 73.3% 78.3%
τ -Bench-V Air 58.5% 78.2% 78.9% 82.0% 72.1% 80.3%
τ -Bench-V Ret 66.9% 77.7% 81.4% 83.0% 82.3% 81.0%
SWE-Bench V 42.6% 45.1% – – – –

Table 2: Performance of different models on τ -Bench variants and SWE-Bench Verified, with and
without SABER. In the table, ”V” stands for verified. To reduce the variance present in τ -Bench,
we report the average score over three runs. All evaluations are limited to 30 turns.

Qwen3-235B-A22B-Thinking-2507. All models are evaluated on τ -Bench and τ -Bench-
Verified (Airline and Retail; see Section 5); additionally, due to the inherent cost of evaluating
closed-source models we only evaluate Qwen3-235B-A22B-Thinking-2507 on SWE-Bench
Verified. We use claude-sonnet-4-20250514 as a simulated user in τ -Bench.

Baselines and protocol. We compare each model (and pairing) with and without SABER. The
no-SABER baseline uses each benchmark’s standard native tool-calling setup, following prior
reports for τ -Bench (Yao et al., 2024; Anthropic, 2025; Yang et al., 2025; OpenAI, 2025).
For SWE-Bench Verified, we use OpenHands as the tool-calling framework (Wang et al.,
2025b; Jimenez et al., 2024). To keep budgets comparable, we cap each episode at 30 turns
on every benchmark. We also perform ablations on τ -Bench-Verified (Airline/Retail) using
Qwen3-235B-A22B-Thinking-2507 as the main model to isolate the contribution of each
SABER component: (i) remove reflection, (ii) remove mutation-gated verification, and (iii) remove
context control. We report both same-model pairings (main = auxiliary) and within-family mixed
pairings to assess sensitivity to the auxiliary model.

We make the following observations:

• Mutating actions are relatively rare. Across Airline and Retail, they account for only
≈ 14–18% of all steps (e.g., Qwen3–Airline: 15.5%, Claude-4–Retail: 18.1%). This skew
means that most of the trajectory proceeds through non-mutating actions, keeping the space
of potential interventions small.

• But when they occur, they carry outsized risk. A single mutating deviation reduces
success odds by 57–82%, while a comparable non-mutating deviation reduces odds by
only 7–15% (Table 1). SABER therefore targets verification precisely at these mutating
points, minimizing user burden—most steps remain autonomous—while still neutralizing
the majority of decisive errors.

• Large and consistent improvements. Across both Airline and Retail domains, SABER
delivers double-digit gains for the most failure-prone model: Qwen3-Thinking improves by
+14.0 pp on Airline (49.3% → 63.3%) and +7.3 pp on Retail (64.3% → 71.6%). Gains also
extend to verified settings, with +19.7 pp on τ -Bench-V Air (58.5% → 78.2%) and +10.8
pp on τ -Bench-V Ret (66.9% → 77.7%). More capable baselines still benefit: ChatGPT-5
rises by +17.3 pp on Airline and +3.1 pp on Retail, while Claude Sonnet 4 gains +4.7 pp
and +5.0 pp respectively. These consistent lifts across models and datasets (Table 6.1) show
that SABER improves weaker and stronger systems alike.

• Synergy of reflection and verification. Ablations (Table 6.1) show that reflection and ver-
ification each add ∼10 pp in Airline, but together yield the strongest gains (78.7%). This
supports our hypothesis: mutating steps require both constraint reminders and user over-
sight. In Retail, both mechanisms surpass 80% individually, and combined hover around
the same score, potentially due to benchmark saturation.

• Verified benchmarks expose hidden headroom. Gains are consistently larger on τ -Bench
Verified than on the original: for instance, Claude Sonnet 4 jumps +8.2 pp on τ -Bench-V
Air versus +4.7 pp on Airline (Table 6.1). Correcting dataset noise thus reveals genuine
capacity improvements that standard benchmarks understate.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

• SWE-Bench constraints. On SWE-Bench Verified, where only the enhanced reflection
can be applied, SABER still improves Qwen3-Thinking by about 4 pp, confirming that
even partial safeguards matter.

• Auxiliary–main pairing matters. The choice of auxiliary model significantly affects
outcomes. Using Qwen3-Thinking as the auxiliary yields only a +10 pp gain on τ -
Bench-Verified Airline, while pairing the reasoning-focused Qwen3-Thinking main with
the instruction-tuned Qwen3-Instruct auxiliary produces much larger improvements (Ta-
ble 6.1). Systematically exploring which models best complement each other is an open
direction that we leave for future work.

Benchmark No-SABER +Reflection +Verification Full SABER
τ -Bench Verified Airline 58.0% 68.0% 68.7% 78.7%
τ -Bench Verified Retail 66.9% 80.8% 80.5% 77.7%

Table 3: Ablation study of SABER on Qwen3-Thinking-235B for τ -Bench Verified Airline
and Retail. Columns activate different safeguards: Reflection, Mutation-gated user verification, and
their combination in Full SABER. In all settings, Block-based context cleaning is applied with the
number of blocks capped at 16 (see Section 4.2).

The improvements support our formal analysis: decisive deviations are driven primarily by mutating
actions (Eq. 3). By gating these actions through simulated user verification and reducing invalid
insertions via reflection, SABER lowers the probability that a deviation at step t flips a successful
trajectory τ⋆ into a failing one τ ′ (Eq. 2), thereby improving overall task success.

7 CONCLUSION

This work shows that not all actions are equally risky in long-horizon agent executions: a small slice
of mutating steps accounts for a disproportionate share of decisive failures. We formalized this with
a decisive-deviation test, validated the mutating-dominates hypothesis at the dataset level, and re-
audited τ -Bench to produce τ -Bench Verified, a cleaner yardstick that exposes genuine headroom.

Building on these findings, we introduced SABER, a model-agnostic, gradient-free safeguard that
focuses intervention where it pays off most: mutation-gated user verification at risky steps, tar-
geted reflection to keep tool calls semantically consistent with constraints, and block-based context
cleaning to keep verification-critical history salient.

Empirically, SABER delivers consistent gains across models and domains on τ -Bench and τ -Bench
Verified (Table 6.1). SABER demonstrates that not all actions need equal scrutiny: focusing safe-
guards on rare but decisive mutating steps yields outsized reliability improvements; gating only these
steps concentrates user attention while leaving most turns autonomous.

8 LIMITATIONS

SABER is introduced as an online safeguard rather than a training-time property. While mutation-
gated verification and targeted reflection reduce decisive errors at test time, they are externally im-
posed. Future training regimes could internalize these behaviors—for example, by shaping loss
functions around decisive deviations or teaching models to self-identify mutating actions—so that
models regulate risky steps without auxiliary intervention. This would reduce reliance on auxiliary
mechanisms and make the safeguards part of the model’s native reasoning process.

A second limitation is that SABER depends on access to a user or user simulator for confirming
irreversible actions. This assumption matches real-world deployments, but few benchmarks na-
tively support user-in-the-loop verification. Simulated users help approximate the setting, yet they
inevitably simplify the variability of human feedback. Expanding benchmark design to include
confirmation and reflection episodes is therefore essential for evaluating and advancing practical
safeguards, and for ensuring that improvements transfer reliably to real users.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Introducing claude 4, May 2025. URL https://www.anthropic.com/news/
claude-4. Accessed: 2025-09-11.

AWS. Reinventing the amazon q developer agent for soft-
ware development. https://aws.amazon.com/blogs/
devops/ reinventing-the-amazon-q-developer-agent-
for-software-development/, 2024. Accessed: 2024-11-21.

AWS / Kiro Team. Kiro: The ai ide for prototype to production. https://kiro.dev/, 2025.
Accessed: 2025-09-09.

Victor Barres, Honghua Dong, Soham Ray, Xujie Si, and Karthik Narasimhan. τ2-bench: Evaluating
conversational agents in a dual-control environment, 2025. URL https://arxiv.org/abs/
2506.07982.

David Breunig. How long contexts fail, June 22 2025. URL https://www.dbreunig.com/
2025/06/22/how-contexts-fail-and-how-to-fix-them.html. Accessed:
2025-09-22.

Mert Cemri, Melissa Z. Pan, Shuyi Yang, Lakshya A. Agrawal, Bhavya Chopra, Rishabh Tiwari,
Kurt Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, Matei Zaharia, Joseph E.
Gonzalez, and Ion Stoica. Why do multi-agent llm systems fail?, 2025. URL https://arxiv.
org/abs/2503.13657.

Sanxing Chen, Sam Wiseman, and Bhuwan Dhingra. Chatshop: Interactive information seeking
with language agents, 2024a. URL https://arxiv.org/abs/2404.09911.

Shuaihang Chen, Yuanxing Liu, Wei Han, Weinan Zhang, and Ting Liu. A survey on llm-based
multi-agent system: Recent advances and new frontiers in application, 2025. URL https:
//arxiv.org/abs/2412.17481.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and
Feng Zhao. Agent-flan: Designing data and methods of effective agent tuning for large language
models, 2024b. URL https://arxiv.org/abs/2403.12881.

Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0: Building
production-ready ai agents with scalable long-term memory, 2025. URL https://arxiv.
org/abs/2504.19413.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web, 2023. URL https://arxiv.
org/abs/2306.06070.

Ai Han, Junxing Hu, Pu Wei, Zhiqian Zhang, Yuhang Guo, Jiawei Lu, and Zicheng Zhang.
Joyagents-r1: Joint evolution dynamics for versatile multi-llm agents with reinforcement learning,
2025. URL https://arxiv.org/abs/2506.19846.

Sirui Hong, Mingchen Zhuge, Jiaqi Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin
Wu, and Jürgen Schmidhuber. Metagpt: Meta programming for a multi-agent collaborative frame-
work, 2024. URL https://arxiv.org/abs/2308.00352.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

10

https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://aws.amazon.com/blogs/devops/
https://aws.amazon.com/blogs/devops/
reinventing-the-amazon-q-developer-agent-
for-software-development/
https://kiro.dev/
https://arxiv.org/abs/2506.07982
https://arxiv.org/abs/2506.07982
https://www.dbreunig.com/2025/06/22/how-contexts-fail-and-how-to-fix-them.html
https://www.dbreunig.com/2025/06/22/how-contexts-fail-and-how-to-fix-them.html
https://arxiv.org/abs/2503.13657
https://arxiv.org/abs/2503.13657
https://arxiv.org/abs/2404.09911
https://arxiv.org/abs/2412.17481
https://arxiv.org/abs/2412.17481
https://arxiv.org/abs/2403.12881
https://arxiv.org/abs/2504.19413
https://arxiv.org/abs/2504.19413
https://arxiv.org/abs/2306.06070
https://arxiv.org/abs/2306.06070
https://arxiv.org/abs/2506.19846
https://arxiv.org/abs/2308.00352
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Evangelos Kanoulas, Panagiotis Eustratiadis, Yongkang Li, Yougang Lyu, Vaishali Pal, Gabrielle
Poerwawinata, Jingfen Qiao, and Zihan Wang. Agent-centric information access, 2025. URL
https://arxiv.org/abs/2502.19298.

Sayash Kapoor, Benedikt Stroebl, Zachary S. Siegel, Nitya Nadgir, and Arvind Narayanan. Ai
agents that matter, 2024. URL https://arxiv.org/abs/2407.01502.

Minsoo Kim, Yeonjoon Jung, Dohyeon Lee, and Seung-won Hwang. PLM-based world models for
text-based games. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 1324–1341,
Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.emnlp-main.86. URL https://aclanthology.org/2022.
emnlp-main.86/.

Wai-Chung Kwan, Xingshan Zeng, Yuxin Jiang, Yufei Wang, Liangyou Li, Lifeng Shang, Xin Jiang,
Qun Liu, and Kam-Fai Wong. Mt-eval: A multi-turn capabilities evaluation benchmark for large
language models, 2024. URL https://arxiv.org/abs/2401.16745.

Philippe Laban, Hiroaki Hayashi, Yingbo Zhou, and Jennifer Neville. Llms get lost in multi-turn
conversation, 2025. URL https://arxiv.org/abs/2505.06120.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
Camel: Communicative agents for ”mind” exploration of large language model society, 2023.
URL https://arxiv.org/abs/2303.17760.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts, 2023. URL
https://arxiv.org/abs/2307.03172.

Yizhou Liu, Pengfei Gao, Xinchen Wang, Jie Liu, Yexuan Shi, Zhao Zhang, and Chao Peng.
Marscode agent: Ai-native automated bug fixing, 2024. URL https://arxiv.org/abs/
2409.00899.

Lingrui Mei, Jiayu Yao, Yuyao Ge, Yiwei Wang, Baolong Bi, Yujun Cai, Jiazhi Liu, Mingyu Li,
Zhong-Zhi Li, Duzhen Zhang, Chenlin Zhou, Jiayi Mao, Tianze Xia, Jiafeng Guo, and Shenghua
Liu. A survey of context engineering for large language models, 2025. URL https://arxiv.
org/abs/2507.13334.

MoonshotAI. Kimi k2: Open agentic intelligence. https://moonshotai.github.io/
Kimi-K2/, 2025. Accessed: 2025-09-11.

OpenAI. Introducing gpt-5. Online, August 2025. URL https://openai.com/index/
introducing-gpt-5/. Accessed: YYYY-MM-DD.

OpenAI. Function Calling — OpenAI platform guide. https://platform.openai.com/
docs/guides/function-calling, 2025. Accessed: 2025-09-14.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior, 2023. URL
https://arxiv.org/abs/2304.03442.

Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Vishnu Suresh, Ion Stoica, and
Joseph E. Gonzalez. The berkeley function calling leaderboard (bfcl): From tool use to agen-
tic evaluation of large language models. In Forty-second International Conference on Machine
Learning, 2025.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master
16000+ real-world apis, 2023. URL https://arxiv.org/abs/2307.16789.

Stuart Jonathan Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 1 edition, 1995. ISBN 978-0-13-103805-9. Google-Books-ID: CUVeMwAACAAJ.

11

https://arxiv.org/abs/2502.19298
https://arxiv.org/abs/2407.01502
https://aclanthology.org/2022.emnlp-main.86/
https://aclanthology.org/2022.emnlp-main.86/
https://arxiv.org/abs/2401.16745
https://arxiv.org/abs/2505.06120
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2409.00899
https://arxiv.org/abs/2409.00899
https://arxiv.org/abs/2507.13334
https://arxiv.org/abs/2507.13334
https://moonshotai.github.io/Kimi-K2/
https://moonshotai.github.io/Kimi-K2/
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://arxiv.org/abs/2304.03442
https://arxiv.org/abs/2307.16789


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jun Wang, Jiamu Zhou, Muning Wen, Xiaoyun Mo, Haoyu Zhang, Qiqiang Lin, Cheng Jin, Xihuai
Wang, Weinan Zhang, Qiuying Peng, and Jun Wang. Hammerbench: Fine-grained function-
calling evaluation in real mobile device scenarios, 2025a. URL https://arxiv.org/abs/
2412.16516.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Exe-
cutable code actions elicit better llm agents, 2024a. URL https://arxiv.org/abs/2402.
01030.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji. MINT:
Evaluating LLMs in multi-turn interaction with tools and language feedback. In The Twelfth
International Conference on Learning Representations, 2024b. URL https://openreview.
net/forum?id=jp3gWrMuIZ.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for ai software
developers as generalist agents, 2025b. URL https://arxiv.org/abs/2407.16741.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation, 2023.
URL https://arxiv.org/abs/2308.08155.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Sil-
vio Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments, 2024. URL https://arxiv.
org/abs/2404.07972.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024. URL https://arxiv.org/abs/2405.15793.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.03629.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
tool-agent-user interaction in real-world domains, 2024. URL https://arxiv.org/abs/
2406.12045.

Siyu Yuan, Zehui Chen, Zhiheng Xi, Junjie Ye, Zhengyin Du, and Jiecao Chen. Agent-r: Training
language model agents to reflect via iterative self-training, 2025. URL https://arxiv.org/
abs/2501.11425.

Erhan Zhang, Xingzhu Wang, Peiyuan Gong, Yankai Lin, and Jiaxin Mao. Usimagent: Large lan-
guage models for simulating search users, 2024a. URL https://arxiv.org/abs/2403.
09142.

12

https://arxiv.org/abs/2412.16516
https://arxiv.org/abs/2412.16516
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2402.01030
https://openreview.net/forum?id=jp3gWrMuIZ
https://openreview.net/forum?id=jp3gWrMuIZ
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2501.11425
https://arxiv.org/abs/2501.11425
https://arxiv.org/abs/2403.09142
https://arxiv.org/abs/2403.09142


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shaokun Zhang, Ming Yin, Jieyu Zhang, Jiale Liu, Zhiguang Han, Jingyang Zhang, Beibin Li,
Chi Wang, Huazheng Wang, Yiran Chen, and Qingyun Wu. Which agent causes task failures
and when? on automated failure attribution of llm multi-agent systems, 2025. URL https:
//arxiv.org/abs/2505.00212.

Weinan Zhang, Junwei Liao, Ning Li, and Kounianhua Du. Agentic information retrieval, 2024b.
URL https://arxiv.org/abs/2410.09713.

Zijian Zhou, Ao Qu, Zhaoxuan Wu, Sunghwan Kim, Alok Prakash, Daniela Rus, Jinhua Zhao,
Bryan Kian Hsiang Low, and Paul Pu Liang. Mem1: Learning to synergize memory and reasoning
for efficient long-horizon agents, 2025. URL https://arxiv.org/abs/2506.15841.

13

https://arxiv.org/abs/2505.00212
https://arxiv.org/abs/2505.00212
https://arxiv.org/abs/2410.09713
https://arxiv.org/abs/2506.15841


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A BROADER IMPACTS

This work advances the reliability of LLM-powered agents by identifying and mitigating errors
concentrated at mutating actions. By introducing lightweight safeguards that require human con-
firmation only at high-risk points, our approach reduces failure rates without imposing excessive
user burden. This makes agentic systems safer and more predictable for deployment in real-world
domains such as software engineering, operations, and customer support. More broadly, selective
oversight helps prevent costly or harmful unintended changes, thereby supporting responsible adop-
tion of LLM agents while keeping human involvement efficient and focused.

B REPRODUCIBILITY STATEMENT.

We release an anonymous repository with code, data, and instructions to fully reproduce our re-
sults: https://anonymous.4open.science/r/SABER-1E54/. The repository contains
(i) the SABER implementation and configuration used in all experiments (Section 4); (ii) the cor-
rected τ -Bench Verified datasets (Airline/Retail), along with scripts and diffs documenting each fix
(Section 5, Appendix A); (iii) experiment drivers, prompts, and evaluation pipelines for all mod-
els and settings reported (Section 6.1); (iv) scripts to regenerate figures and tables, including the
logistic-regression analyses in Table 1.

C APPENDIX: CORRECTIONS TO τ -BENCH–AIRLINE

We audited the Airline split and found several tasks whose action traces (or their parameters /
allowed paths) violated the official Wiki policy. For each task below, we (i) restate the governing
rule, (ii) show the previous (incorrect) ground truth action(s) from the original dataset, (iii) show the
correct action(s) after our fix (only actions are shown; instruction-only edits are excluded), and (iv)
explain the error and the fix in detail.

Legend. We reference the Airline Wiki sections: Book flight, Modify flight, Cancel flight, Refund,
baggage allowances, and single-call constraints (one tool call or a user reply at a time).

TASK 1 — PAYMENT METHOD ALIGNMENT (GIFT CARD CHOICE)

Wiki policy. Payment ordering and limits: at most one certificate, one credit card, and up to three gift
cards; use user-specified method/order when feasible.

Ground truth (incorrect).
update reservation baggages(OBUT9V, total baggages=2, nonfree baggages=0,
payment id=gift card 6276644)

Correct solution.
update reservation baggages(OBUT9V, total baggages=2, nonfree baggages=0,
payment id=gift card 7480005)

Why it is wrong. The chosen gift card ID did not reflect the user’s stated order (use the smallest-
balance card first), violating payment preferences under the policy.

Fix explanation. Swap to the correct gift card consistent with the instruction and payment con-
straints; keep add-only baggage semantics unchanged.

TASK 2 — ENCODE MULTIPLE COMPLIANT SEQUENCES (VALID ACTION PATHS)

Wiki policy. Flight & passenger edits may be done in different valid orders; annotate only
policy-compliant sequences. Baggage is add-only; keep one payment method per modification.

14

https://anonymous.4open.science/r/SABER-1E54/


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Ground truth (incorrect).
A single hard-coded sequence:
update reservation flights(FQ8APE, cabin=economy,
flights=[HAT056@2024-05-25, HAT138@2024-05-25],
payment=gift card 8190333)
update reservation passengers(FQ8APE, passengers=[Omar Rossi
(1970-06-06)])
update reservation baggages(FQ8APE, total baggages=3, nonfree baggages=0,
payment=gift card 8190333)

Correct solution.
valid action paths={ three policy-equivalent orders over update reservation flights,
update reservation passengers, update reservation baggages (all with the same
arguments as above) }; actions=[].

Why it is wrong. Only one sequence was accepted even though multiple policy-compliant orders
exist; this unfairly penalizes correct agent behavior that follows a different but valid order.

Fix explanation. Replace the single sequence with valid action paths enumerating all
compliant permutations that (i) upgrade to economy if needed, (ii) set passenger to self, (iii) add
3 bags, and (iv) use the specified gift card.

TASK 3 — FLIGHT NUMBERS/DAY-AFTER RULE

Wiki policy. On modifications, keep endpoints and trip type; honor date constraints precisely; if the user
requests “same numbers next day”, preserve the numbers and shift dates only.

Ground truth (incorrect).
Drifted from the “day-after” constraint and/or altered flight numbers in the action payload.

Correct solution.
update reservation flights(M05KNL, cabin=economy,

flights=[HAT227@2024-05-24, HAT139@2024-05-24],
payment=gift card 8887175)

Why it is wrong. Any deviation in flight numbers or an incorrect date shift breaks the user’s
explicit “next-day” directive.

Fix explanation. Lock numbers; move them exactly one day later; keep cabin unchanged and a
single refund/payment method per policy.

TASK 4 — CANCEL+REBOOK PATH AND BAGGAGE ENUMERATION

Wiki policy. If basic economy cannot be modified or payment constraints prevent combining methods, use
cancel + book with explicit payment ordering (certificates → gift cards → credit card). Baggage is
add-only.

Ground truth (incorrect).
A single linear path:
cancel reservation(K1NW8N)
book reservation(JFK→SFO, round trip, cabin=business,

flights=[HAT023@05-26, HAT204@05-28, HAT100@05-28],
passengers=[Mohamed, Raj, Liam],
payment methods=[certificate 3765853:500, gc 8020792:198,

gc 6136092:129, cc 2198526:1786],
total baggages=0, nonfree baggages=0, insurance=no)

Correct solution.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

valid action paths={ all begin with cancel reservation(K1NW8N) then
book reservation(...) with enumerated total baggages in {0,3,6,9}, identical
flights/passengers/payments as above, insurance=no }; actions=[].

Why it is wrong. Only one baggage outcome was hard-coded. The Wiki allows add-only baggage
and real agents may result in different (still valid) totals. Penalizing those paths is incorrect.

Fix explanation. Encode the shared cancel+book logic but enumerate the allowed baggage totals
via valid action paths, preserving payment order and limits.

TASK 5 — PASSENGER MAPPING FOR MULTI-CERTIFICATE WORKAROUND

Wiki policy. One certificate per reservation; to use multiple certificates, split into multiple bookings with
correct passenger identities.

Ground truth (incorrect).
After cancel reservation(K1NW8N) three bookings mis-assign passengers:
book reservation(..., passengers=[Aarav Sanchez])
book reservation(..., passengers=[Evelyn Wilson])

Correct solution.
book reservation(..., passengers=[Raj Sanchez])
book reservation(..., passengers=[Liam Wilson])
(Other fields unchanged; 0 checked bags enforced.)

Why it is wrong. The split-reservation trick must preserve correct passenger identities per instruc-
tion; mislabeling breaks both user intent and safety checks.

Fix explanation. Rename affected passengers to Raj and Liam to match the instruction while
keeping single-certificate-per-PNR semantics.

TASK 6 — AVOID PREMATURE CANCELLATION

Wiki policy. Only cancel after confirming eligibility (within 24h, insurance, etc.) and after the user agrees;
avoid auto-cancel when a modification might suffice.

Ground truth (incorrect).
cancel reservation(H9ZU1C) followed by book reservation(...)

Correct solution.
(No auto-cancel.) Keep only the booking flow once the user confirms the search outcome; cancellation
remains conditional and user-driven.

Why it is wrong. Auto-cancel violates the Wiki’s cancellation prerequisites and removes the user’s
chance to accept a modification-first solution.

Fix explanation. Remove auto-cancel from the gold trace; agents must first attempt removal or
present options, then cancel only with eligibility and explicit confirmation.

TASK 7 — ENCODE ACCEPTABLE OUTCOMES (BAGS 0 VS 3)

Wiki policy. For new bookings, passenger list must match intent; baggage add-only; payment limits must
be respected. Accept multiple valid bag totals if both comply.

Ground truth (incorrect).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Single outcome: book reservation(..., passengers=[Ivan Smith],
payments=[gc 8516878:128, cc 3563913:247], total baggages=0,
nonfree baggages=0, insurance=no)

Correct solution.
valid action paths={ same booking with either total baggages=0 or total baggages=3
(nonfree=0), payments unchanged }; actions=[].

Why it is wrong. The dataset disallowed another equally valid end-state (3 free bags), unfairly
penalizing compliant agents.

Fix explanation. Adopt valid action paths to encode both allowed baggage totals without
changing passenger/payment correctness.

TASK 8 — REMOVE UNRELATED SEARCHES/CALCULATIONS

Wiki policy. Tool calls must be necessary and policy-aligned; baggage is add-only and may leverage tier
benefits even if upgrades fail.

Ground truth (incorrect).
get reservation details(YAX4DR); search direct flight(BOS→MCO);
search direct flight(MCO→MSP); calculate(...); then
update reservation baggages(...)

Correct solution.
update reservation baggages(YAX4DR, total baggages=2, nonfree baggages=0,
payment id=...)

Why it is wrong. The search/calculation calls are unrelated to the asked change and introduce
spurious side-effects.

Fix explanation. Retain only the necessary baggage update leveraging Gold benefits; drop unre-
lated tool calls.

TASK 9 — VERIFY THEN CANCEL (EXPLICIT PNR FLOW)

Wiki policy. On cancellation, first fetch reservation details (PNR), then proceed with
refund-to-original-payment if eligible.

Ground truth (incorrect).
actions=[] (no explicit verification/cancellation calls)

Correct solution.
get reservation details(GV1N64); cancel reservation(GV1N64)

Why it is wrong. The gold trace lacked the required verify-then-cancel sequence, obscuring the
correct policy flow.

Fix explanation. Add explicit detail retrieval before cancellation and ensure refund routing to the
original payment method.

TASK 10 — NO PROACTIVE COMPENSATION ON DELAYS

Wiki policy. Delay compensation is a gesture only after confirming facts and when the user changes or
cancels the reservation. Do not issue certificates otherwise.

Ground truth (incorrect).
send certificate(user=ethan martin 2396, amount=$150)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Correct solution.
get user details(ethan martin 2396); get reservation details(M61CQM)

Why it is wrong. A certificate was issued without the required change/cancel step.

Fix explanation. Remove compensation; only confirm user and PNR. (The user did not want to
change/cancel.)

TASK 11 — CHARGE THE SPECIFIED CARD ON DATE PUSH

Wiki policy. For changes, collect payment/refund method; reflect user-specified payment instrument.

Ground truth (incorrect).
actions=[]

Correct solution.
update reservation flights(4NQLHD, cabin=economy,

flights=[HAT190@05-24, HAT047@05-24, HAT021@05-26, HAT279@05-27],
payment id=credit card 7434610)

Why it is wrong. The gold trace omitted the concrete change and the requested card.

Fix explanation. Include the multi-segment date push and the specified card for the fare differ-
ence, subject to user’s ¡1000confirmation.

TASK 12 — CANCEL+REBOOK FOR AIRPORT CHANGE (PLUS FREE BAG)

Wiki policy. Changing airports is often safer as cancel+rebook; baggage charging must respect allowances.

Ground truth (incorrect).
update reservation flights(VA5SGQ, cabin=economy, flights=[HAT169@05-17,
HAT033@05-19], payment=cc 8003957)
update reservation baggages(VA5SGQ, total baggages=1, nonfree baggages=1,
payment=cc 8003957)

Correct solution.
get reservation details(VA5SGQ); cancel reservation(VA5SGQ);
book reservation(user=raj brown 5782, DTW↔JFK, round trip,
cabin=economy,

flights=[HAT169@05-17, HAT033@05-19], passengers=[Raj Brown],
payment methods=[cc 8003957:311], total baggages=1, nonfree baggages=0,

insurance=no)

Why it is wrong. Applying a JFK switch as a direct modify is brittle; also, charging a non-free
bag contradicts the allowance in this context.

Fix explanation. Move to cancel+book and ensure the bag is free (nonfree baggages=0);
keep explicit payment and PNR verification.

TASK 13 — CAPPED-CHANGE FALLBACK TO NEW BE BOOKING

Wiki policy. If change fee exceeds the user cap, book a new basic economy ticket using the specified
payment order; no insurance or bags added post hoc.

Ground truth (incorrect).
actions=[]

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Correct solution.
book reservation(user=daiki lee 6144, JFK→DTW, one way,
cabin=basic economy,

flights=[HAT092@2024-05-17], passengers=[Daiki Lee (1976-10-08)],
payment methods=[gc 3112961:51, cc 6198952:3], total baggages=0,

nonfree baggages=0, insurance=no)

Why it is wrong. The gold trace lacked the required fallback path that respects the user’s $100
cap.

Fix explanation. Emit the explicit BE booking with the correct payment ordering and zero add-
ons.

TASK 14 — ENCODE TWO COMPLIANT NONSTOP-CHANGE PATHS

Wiki policy. For BE tickets, upgrade to economy before changing; reflect user fee cap; resist unnecessary
human transfer.

Ground truth (incorrect).
A single fixed flow mixing search + update sequences, without recognizing alternative valid orders.

Correct solution.
valid action paths={ two sequences beginning with
get user details(ivan rossi 8555); get reservation details(OWZ4XL);
search direct flight(EWR→LAX@05-21);
then either update reservation flights(... flights=[HAT202,HAT232],
payment=cc 9659780) then update reservation flights(... flights=[HAT041],
payment=cc 9659780)
or directly update reservation flights(... flights=[HAT041],
payment=cc 9659780) }.

Why it is wrong. Only one rigid path was accepted, penalizing agents that chose another compli-
ant order.

Fix explanation. Capture both valid orders as valid action paths with the same policy-
compliant parameters.

TASK 15 — FREE VS NON-FREE BAG CORRECTION

Wiki policy. Baggage charges must reflect cabin/tier allowances; do not charge when eligible for free bags.

Ground truth (incorrect).
update reservation baggages(HXDUBJ, total baggages=2, nonfree baggages=2,
payment=gift card 6941833)

Correct solution.
update reservation baggages(HXDUBJ, total baggages=2, nonfree baggages=0,
payment=gift card 6941833)

Why it is wrong. It billed for bags that should have been free under the chosen path.

Fix explanation. Set nonfree baggages=0, preserving the rest of the payload.

TASK 16 — OFFER MULTIPLE SECOND-CHEAPEST OPTIONS (VALID ACTION PATHS)

Wiki policy. When the user requests “second-cheapest”, it may admit multiple equivalent flight pairs;
encode compliant options; keep card-only payment.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Ground truth (incorrect).
Single path: book reservation(JFK→SFO, one way, cabin=economy,
flights=[HAT235,HAT268], passengers=[Aarav Ahmed(1981-05-26)],
payment methods=[cc 9074831:260], total baggages=2, nonfree baggages=0,
insurance=no)

Correct solution.
valid action paths={ two book reservation variants (the above and another with
flights=[HAT069,HAT258], same passenger/DOB/card]; different baggage totals {0,2} allowed) };
actions=[].

Why it is wrong. Only one acceptable second-cheapest option was encoded.

Fix explanation. Permit multiple policy-identical choices via valid action paths, keeping
card-only payment and other constraints.

TASK 17 — REMOVE PREMATURE CANCELLATION (MULTI-RESERVATION EDIT)

Wiki policy. Do not cancel before confirming eligibility; when editing multiple PNRs, fetch details and
then apply modifications with explicit payment flow.

Ground truth (incorrect).
cancel reservation(NQNU5R) present by default alongside other search/update calls.

Correct solution.
get reservation details(M20IZO); search direct flight(...);
update reservation flights(...) (no auto-cancel)

Why it is wrong. The trace cancelled without verifying the window/insurance or confirming with
the user.

Fix explanation. Drop the eager cancel call; retain targeted search/update only.

TASK 18 — SAME (REMOVE EAGER CANCEL & STRAY ARITHMETIC)

Wiki policy. Keep action traces minimal and necessary; no stray calculate calls in gold traces unless
required by the API.

Ground truth (incorrect).
cancel reservation(NQNU5R) and calculate(430+412-(136+109))

Correct solution.
Only the relevant
get reservation details/search direct flight/update reservation flights calls.

Why it is wrong. Spurious cancellation and arithmetic are not part of the required modify flow.

Fix explanation. Remove both; keep only policy-relevant actions.

TASK 19 — DON’T PICK A RESERVATION TO CANCEL IN ADVANCE

Wiki policy. When duplicate-day flights exist, the agent must confirm which one to cancel; no preselected
PNR.

Ground truth (incorrect).
cancel reservation(9HBUV8) present by default.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Correct solution.
Only the detail lookups: get user details, get reservation details(...) (no auto-cancel).

Why it is wrong. It assumes the target PNR without agent confirmation.

Fix explanation. Remove the cancellation; let the conversation identify the correct PNR first.

TASK 20 — ONE FREE CHECKED BAG HONORED

Wiki policy. Respect free-bag allowance; do not charge when a bag is free.

Ground truth (incorrect).
book reservation(..., payment methods=[certificate 8045380:348],
total baggages=0, nonfree baggages=0)

Correct solution.
book reservation(..., payment methods=[certificate 8045380:348],
total baggages=1, nonfree baggages=0)

Why it is wrong. The user explicitly wanted one free checked bag (allowance permits it).

Fix explanation. Set total baggages=1 and keep nonfree baggages=0.

TASK 21 — REQUIRE DURATIONS BEFORE CANCEL/UPGRADE

Wiki policy. The agent must present flight durations (including layovers) before cancellation/upgrade
choices; do not cancel/upgrade preemptively.

Ground truth (incorrect).
Contains cancel reservation(S61CZX) and an extra update reservation flights(...)
for KC18K6 before the user decides.

Correct solution.
Keep only the detail and search calls necessary to present options; defer any
cancel reservation/update reservation flights until after the user chooses (per
durations).

Why it is wrong. It executes irreversible actions before the user can review durations, violating
the decision loop.

Fix explanation. Strip premature actions; require an explicit user pick after durations are shown.

TASK 22 — UPGRADE-TO-BUSINESS-FIRST RULE (THEN CANCEL)

Wiki policy. If a reservation has BE segments and the user insists on canceling but policy requires
upgrade-first, upgrade cabin to business before cancellation (with specified card).

Ground truth (incorrect).
update reservation flights(XEHM4B, cabin=economy, ...); stray
calculate(...) calls.

Correct solution.
update reservation flights(XEHM4B, cabin=business,
flights=[HAT005@05-20, HAT178@05-30])
(Use CC ending 2135 for cabin-difference per policy; remove calculate calls.)

Why it is wrong. It applied the wrong cabin for the upgrade-first requirement and included irrel-
evant arithmetic calls.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Fix explanation. Upgrade to business before cancellation, charge the stated card, and remove
non-essential calculations.

TASK 23 — NO COMPENSATION WHILE KEEPING THE FLIGHT

Wiki policy. For delay complaints without a change/cancel, do not issue a certificate; confirm facts only.

Ground truth (incorrect).
get user details(noah muller 9847); get reservation details(SDZQKO);
get reservation details(4OG6T3); send certificate($50)

Correct solution.
actions=[] (the conversation tests the agent’s ability to confirm facts; no compensation nor changes
requested)

Why it is wrong. It offers compensation where policy forbids it.

Fix explanation. Remove certificate issuance; keep to fact confirmation in dialogue.

TASK 24 — APPLY THE PHONE APPROVAL (VERIFY THEN CANCEL)

Wiki policy. If the user asserts prior phone approval, still verify PNR and then attempt cancellation; avoid
human transfer unless strictly required.

Ground truth (incorrect).
get user details(raj sanchez 7340); get reservation details(MZDDS4) (no
cancellation step)

Correct solution.
get user details(raj sanchez 7340); get reservation details(MZDDS4);
cancel reservation(MZDDS4)

Why it is wrong. The trace never attempted the cancellation even after verification.

Fix explanation. Add the explicit cancel call to reflect the user’s prior approval and the Wiki’s
scoped authority.

D APPENDIX: CORRECTIONS TO τ -BENCH—RETAIL (ACTION-LEVEL
ANNOTATIONS)

We audited the Retail split and found several tasks whose action traces (or allowed paths) violated
the Wiki policy. For each task below, we (i) restate the governing rule, (ii) show the previous
(incorrect) ground-truth actions from the original dataset, (iii) show the current (correct) actions
after our fix (only actions are shown; instruction-only edits are excluded), and (iv) explain the error
and the fix in detail.

Legend. We reference Retail Wiki sections: order lookup, address edits (user vs order), ex-
change/return/cancel tools, refund/payment routing, and valid action paths when multiple
policy-compliant sequences exist. One tool call or a user reply per step.

TASK 1 — REMOVE PREMATURE RETURN BEFORE TRANSFER

Wiki policy. Do not execute irreversible actions (returns/cancellations) once the user escalates to a human;
transfer should end the bot’s action flow.

Ground truth (incorrect).

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

... get user details; get order details #W5490111; get order details
#W7387996;
return delivered order items(#W5490111, item ids=[4579334072, 6117189161,
4947717507], payment method id=paypal 9497703)
transfer to human agents(reason=refund not paypal, priority=high)

Correct solution.
... get user details; get order details #W5490111; get order details
#W7387996;
transfer to human agents(reason=refund not paypal, priority=high)

Why it is wrong. A full return was executed before escalation, contradicting the handoff boundary.

Fix explanation. Remove the return call; once the conversation escalates, no further irreversible
actions should occur in the gold trace.

TASK 2 — SAME AS TASK 1 IN ALTERNATE TEMPLATE

Wiki policy. Same as Task 1; no irreversible actions after handoff.

Ground truth (incorrect).
... get user details; get order details #W5490111; get order details
#W7387996;
return delivered order items(#W5490111, item ids=[4579334072, 6117189161,
4947717507], payment method id=paypal 9497703)
...

Correct solution.
... get user details; get order details #W5490111; get order details
#W7387996;
(no early return call kept)

Why it is wrong. Same violation as Task 1.

Fix explanation. Drop the premature return so the escalation path is clean.

TASK 3 — EXCHANGE TO cheapest VERSION (CORRECT TARGET)

Wiki policy. When user requests the cheapest replacement, target the correct SKU; do not ‘exchange‘ to
the same item.

Ground truth (incorrect).
exchange delivered order items(#W2890441, item ids=[8069050545],
new item ids=[8069050545], payment method id=credit card 1061405)

Correct solution.
exchange delivered order items(#W2890441, item ids=[8069050545],
new item ids=[3609437808], payment method id=credit card 1061405)

Why it is wrong. The “exchange” kept the same SKU, failing to honor “cheapest available” con-
straint.

Fix explanation. Point the exchange to the cheapest valid SKU (3609437808).

TASK 4 — USE THE CORRECT GET ITEM DETAILS TOOL

Wiki policy. Use item-level detail tool for cart SKUs; product-level tool is for catalog browsing.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Ground truth (incorrect).
get product details(4107812777); get product details(1421289881);
get product details(4107812777)

Correct solution.
get item details(4107812777); get item details(1421289881);
get item details(4107812777)

Why it is wrong. The wrong introspection tool risks mismatched pricing/specs versus the order
line items.

Fix explanation. Swap to get item details for order-linked SKUs.

TASK 5 — ADDRESS EDITS REQUIRE ORDER CONFIRMATION PATHS

Wiki policy. When both user default and pending order addresses change, encode valid sequences; revert
only after confirming order-level updates.

Ground truth (incorrect).
find user id by name zip(...); modify user address(to=NY); get order details
#W4967593, #W9911714, #W5733668;
modify pending order address(#W9911714, to=NY);
modify user address(back=CO)

Correct solution.
valid action paths=

[
[find user..., modify user address(to=NY),

modify pending order address(#W9911714,to=NY),
modify user address(back=CO)],
[find user..., modify user address(to=NY),

modify user address(back=CO),
modify pending order address(#W9911714,to=NY)]]
; actions=[]

Why it is wrong. A single rigid order of operations over-constrains compliant agent behavior.

Fix explanation. Enumerate both acceptable sequences via valid action paths; clear the
strict actions list.

TASK 6 — “CANCEL ONLY THE HOSE” + RETURNS ACROSS ORDERS

Wiki policy. Encode the user’s constraints precisely (cancel one pending item only; return specified
delivered items); allow equivalent call orders via valid action paths.

Ground truth (incorrect).
actions=[find user id by name zip; get user details; get order details
#W3792453,#W7181492,#W5565470,#W2575533;
return delivered order items(... #W3792453: [4293355847]);
return delivered order items(... #W7181492: [5753502325,9851293632]);
return delivered order items(... #W5565470: [9570044148,6857426243]);
get order details #W2575533; calculate("200.8 + 96.35 + 193.38 + 231.37
+ 196.53")]

Correct solution.
valid action paths=[ five permutations of the three return calls above,
each preceded by lookups and followed by the same calculate call;
(the pending hose is checked but not cancelled if it would require
whole-order cancel)
]; actions=[]; outputs=["918.43"]

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Why it is wrong. Only one rigid sequence was allowed and the “cancel just the hose” constraint
wasn’t structurally enforced.

Fix explanation. Use valid action paths to accept any policy-equivalent ordering of the
returns while preserving the single-item cancel restriction.

TASK 7 — TWO-WAY EXCHANGE PLAN (BAMBOO SKATEBOARD + HOSE SKU)

Wiki policy. When multiple exchanges must both occur, encode either order as valid; target the exact
SKUs.

Ground truth (incorrect).
actions=[find user; get user details; get order details #W3792453; ...;
return delivered order items(...);...] (returns instead of exchanges)

Correct solution.
valid action paths=[
[find user; get user details; get order details #W3792453;

get product details(1968349452);
exchange delivered order items(#W3792453, [4293355847]→[8176740019]);
exchange delivered order items(#W7181492, [5753502325]→[5206946487])

],
[find user; get user details; ...; exchange #W7181492; exchange

#W3792453 ]
]; actions=[]; outputs=["180.1","189.57","208.6"]

Why it is wrong. Returns were used instead of the requested SKU-for-SKU exchanges; only one
ordering was accepted.

Fix explanation. Replace with exchanges and allow both execution orders via
valid action paths.

TASK 8 — REMOVE STRAY ARITHMETIC IN CANCEL FLOW

Wiki policy. Gold traces must avoid unrelated calculate calls; show only necessary cancellation steps.

Ground truth (incorrect).
... get order details #W2702727; get order details #W8268610;
calculate("164.28"); cancel pending order(#W8268610,
reason=no longer needed)

Correct solution.
... get order details #W2702727; get order details #W8268610;
cancel pending order(#W8268610, reason=no longer needed)

Why it is wrong. The arithmetic call is extraneous and not required by the API.

Fix explanation. Drop calculate; keep minimal lookup → cancel sequence.

TASK 9 — ENCODE ALTERNATIVE CANCEL REASONS

Wiki policy. When multiple policy-acceptable reasons exist, allow them via valid action paths.

Ground truth (incorrect).
actions=[find user; get user details; get order details #W2417020;
cancel pending order(#W2417020, reason=no longer needed)]

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Correct solution.
valid action paths=[
[find user; get user details; get order details #W2417020;

cancel pending order(reason=ordered by mistake)],
[find user; get user details; get order details #W2417020;

cancel pending order(reason=no longer needed)]
]; actions=[]

Why it is wrong. Only one acceptable reason was encoded.

Fix explanation. Permit either reason through valid action paths.

TASK 10 — ORDER CANCEL AND LAPTOP EXCHANGE: TWO VALID ORDERS

Wiki policy. Multiple compliant sequences (cancel first vs exchange first) must be accepted when
independent.

Ground truth (incorrect).
actions=[cancel pending order(#W3189752);
modify pending order items(#W5166363, [3334537816]→[3265035808],
payment=credit card 4466831)]

Correct solution.
valid action paths=[
[cancel pending order(#W3189752); modify pending order items(#W5166363,

[3334537816]→[3265035808], cc 4466831)],
[modify pending order items(#W5166363, ...);

cancel pending order(#W3189752)]
]; actions=[]

Why it is wrong. Only one action order was accepted, penalizing otherwise-correct paths.

Fix explanation. Encode both compliant orders in valid action paths.

TASK 11 — WATER BOTTLE: CORRECT REPLACEMENT SKU

Wiki policy. Exchanges must target the precise requested variant (capacity/color/material constraints).

Ground truth (incorrect).
modify pending order items(#W8661412, item ids=[3453331371],
new item ids=[2439754078], payment=credit card 7239357)

Correct solution.
modify pending order items(#W8661412, item ids=[3453331371],
new item ids=[7661609223], payment=credit card 7239357)

Why it is wrong. The target SKU didn’t match the intended 1000ml variant (with color constraint).

Fix explanation. Point to the correct 1000ml SKU 7661609223.

TASK 12 — CANCEL “ANY ORDER CONTAINING X” (TWO ORDERS)

Wiki policy. When the user allows canceling any order that includes certain items, either order of per-order
cancellations is fine.

Ground truth (incorrect).
actions=[cancel pending order(#W3289292);
cancel pending order(#W9722559)]

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Correct solution.
valid action paths=[ [cancel(#W3289292); cancel(#W9722559)],
[cancel(#W9722559); cancel(#W3289292)] ]; actions=[]

Why it is wrong. One rigid order only.

Fix explanation. Allow both orders as valid permutations.

TASK 13 — CAMERA ZOOM: ENCODE BOTH CANCEL REASONS

Wiki policy. If price threshold and availability gates lead to cancellation, multiple policy-approved reasons
should be permitted.

Ground truth (incorrect).
actions=[cancel pending order(#W9284598, reason=ordered by mistake)]

Correct solution.
valid action paths=[ [cancel(#W9284598, reason=ordered by mistake)],
[cancel(#W9284598, reason=no longer needed)] ]; actions=[]

Why it is wrong. Only one cancellation reason was allowed.

Fix explanation. Enumerate both acceptable reasons.

TASK 14 — E-READER: EXCHANGE TO SPECIFIC 7” MODEL + RETURNS

Wiki policy. Respect user’s conditional: return two skateboards + watch to card; exchange e-reader to
same type with 7” if available, else return.

Ground truth (incorrect).
return delivered order items(#W7553978,
[4545791457,3098764622,1631806422], cc 5902940);
exchange delivered order items(#W3239882, [9494281769]→[9494281769],
cc 5902940)

Correct solution.
valid action paths=[
[return(#W7553978, [4545791457,3098764622,1631806422], cc 5902940);

exchange(#W3239882, [9494281769]→[6268080249], cc 5902940)],
[exchange(#W3239882, [9494281769]→[6268080249], cc 5902940);

return(#W7553978, [...], cc 5902940)]
]; actions=[]

Why it is wrong. The exchange targeted the same SKU; it must move to the 7” same-type SKU
when available.

Fix explanation. Use 6268080249 for the 7” e-reader and accept either operation order.

TASK 15 — MULTI-EXCHANGE + CANCEL WITH FIXED PAYMENT METHOD

Wiki policy. Where multiple exchanges plus a cancellation are requested, accept policy-equivalent
permutations; enforce the specified payment method consistently.

Ground truth (incorrect).
actions=[exchange(#W4689314, [5996159312]→[8363011723], cc 3951670);
...; cancel(#W8855135)]

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Correct solution.
valid action paths={ several sequences combining:
exchange(#W4689314, [5996159312]→[8363011723], cc 8105988);
exchange(#W3916020, [7758198585,4068787148]→[5606522780,6245746168],

cc 8105988);
cancel pending order(#W8855135, reason=no longer needed) }; actions=[]

Why it is wrong. Payment instrument inconsistency and a single rigid order of operations.

Fix explanation. Normalize to the specified card (credit card 8105988) and enumerate ac-
ceptable permutations.

TASK 16 — PENDING MODIFICATIONS + DELIVERED RETURN (BOTH ORDERS ALLOWED)

Wiki policy. When a pending modification and an unrelated delivered return both occur, allow either order.

Ground truth (incorrect).
actions=[modify pending order items(#W3295833, ...);
return delivered order items(#W8488728, ...)]

Correct solution.
valid action paths=[ [modify pending order items(#W3295833);
return(#W8488728)], [return(#W8488728);
modify pending order items(#W3295833)] ]; actions=[]

Why it is wrong. Single ordering only.

Fix explanation. Accept both orderings via valid action paths.

TASK 17 — BOOTS EXCHANGE: CORRECT SKU SUBSTITUTION

Wiki policy. For quality/size-driven exchanges, move to the target size/spec per user fallback rules.

Ground truth (incorrect).
exchange delivered order items(#W1304208, [1615379700]→[1615379700],
payment=paypal 1679017)

Correct solution.
exchange delivered order items(#W1304208, [1615379700]→[8106223139],
payment=paypal 1679017)

Why it is wrong. Exchange pointed to the same SKU; it must reflect size/material fallback.

Fix explanation. Target the correct replacement SKU 8106223139.

TASK 18 — LAPTOP & WATCH EDITS: TWO ACCEPTABLE SEQUENCES

Wiki policy. Allow either “items-first” or “address-first” when both edits are requested for different orders.

Ground truth (incorrect).
actions=[modify pending order items(#W3730488,...);
modify pending order items(#W9810810,...);
modify pending order address(#W3730488,...)]

Correct solution.
valid action paths=[

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

[modify pending order items(#W3730488);
modify pending order items(#W9810810);
modify pending order address(#W3730488)],
[modify pending order address(#W3730488);

modify pending order items(#W3730488);
modify pending order items(#W9810810)]
]; actions=[]

Why it is wrong. Only a single execution order was accepted.

Fix explanation. Enumerate both viable paths via valid action paths.

29


	Introduction
	Related Work
	Problem Formulation
	SABER: Safeguarding Against Mutating Actions
	Safeguards for Mutating Actions
	SABER System Implementation

	Tau-Bench Verified
	Existing Issues in -Bench
	Under-specified user instructions.
	-Bench Verified.

	Experiments
	SABER improves performance in agentic tasks

	Conclusion
	Limitations
	Broader Impacts
	Reproducibility Statement.
	Appendix: Corrections to -Bench–Airline
	Appendix: Corrections to -Bench—Retail (Action-Level Annotations)

