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Abstract

Traditional saliency map methods, popularized in computer vision, highlight indi-
vidual points (pixels) of the input that contribute the most to the model’s output.
However, in time-series they offer limited insights as semantically meaningful
features are often found in other domains. We introduce Cross-domain Integrated
Gradients, a generalization of Integrated Gradients. Our method enables feature
attributions on any domain that can be formulated as an invertible, differentiable
transformation of the time domain. Crucially, our derivation extends the original In-
tegrated Gradients into the complex domain, enabling frequency-based attributions.
We provide the necessary theoretical guarantees, namely, path independence and
completeness. Our approach reveals interpretable, problem-specific attributions
that time-domain methods cannot capture, on three real-world tasks: wearable
sensor heart rate extraction, electroencephalography-based seizure detection, and
zero-shot time-series forecasting. We release an open-source Tensorflow/PyTorch
library to enable plug-and-play cross-domain explainability for time-series mod-
els. These results demonstrate the ability of cross-domain integrated gradients to
provide semantically meaningful insights in time series models that are impossible
with traditional time-domain saliency.

1 Introduction

Saliency maps are visual tools to explain deep learning models. Popularized in computer vision, they
highlight input points that contribute the most to the model’s output. For images, the original input
domain, pixels, aligns naturally with human perception, since neighboring pixels form coherent ob-
jects that are understood by human vision. This makes pixel-level saliency intuitive and semantically
meaningful. Similarly, in natural language processing, word-level attributions can be informative, as
words inherently bear semantic meaning.

In contrast, in time-series this intuition breaks down. In the time domain, groups of temporally
adjacent points - the equivalent of the pixel - do not necessarily form intuitive concepts. Rather, such
concepts are found in intricate interactions between points, linking them to higher-level abstractions
such as oscillating frequency patterns or statistically independent formations. As a consequence,
highlighting individual time points does not provide meaningful insight into the behavior of the
model.
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Signal processing practice has long faced this challenge, where signal interpretation generally relies
on the decomposition of the original signal into structured components. Through transformations, the
original time domain is mapped to the component domain, capturing the higher-level interaction, and
linking the input to semantically meaningful concepts. The choice of decomposition and component
domain depends on the nature of the signals and the task. For example, the Fourier transform
decomposes the original signal into sinusoid oscillations, while the Independent Component Analysis
(ICA) decomposes the signal into statistically independent components. Such transformations map
the time signals into structured, semantically rich domains, providing more intuitive interpretations
of the signal’s contents.

Building on this insight, we argue that visual explanations of time-series models should be expressed
in interpretable domains, even when the model processes time points. We empirically demonstrate
that the explainability power of available saliency-based methods is limited in the time domain.
This motivates the need for saliency map tools that can visualize feature importance across multiple
domains.

To address this, we develop Cross-domain Integrated Gradients, a novel method to visualize feature
importance across multiple domains. We apply our method to real-world time-series models and
applications, demonstrating that descriptive domains can be very powerful in understanding model
behavior.

In this work, we introduce the following novel contributions:

• We propose a generalization of the Integrated Gradients that enables cross-domain explain-
ability for any invertible transformation, including non-linear ones.

• We derive a generalization of the Integrated Gradients for real-valued functions with a
complex domain, enabling the generation of frequency-domain saliency maps.

• We demonstrate how different domains allow for better understanding of model behavior on
time-series data.

• We release an open-source Python library, compatible with tensorflow and
pytorch, for cross-domain time series explainability: https://github.com/
esl-epfl/cross-domain-saliency-maps. The code for reproducing the
results of this paper is available here: https://github.com/esl-epfl/
cross-domain-saliency-maps-paper.

2 Related works

Saliency map interpretation. Saliency maps as a means of interpreting the behavior of the model
have been popularized in computer vision. These methods generate an output mapping each individual
input pixel to a significance score. Several methods have been proposed for this mapping. Activation-
based methods, such as GradCAM Selvaraju et al. [2017] and later variations Chattopadhay et al.
[2018], generate saliency based on deep layer activations. Gradient-based methods such as Integrated
Gradients (IG) Sundararajan et al. [2017], Kapishnikov et al. [2021] generate significance scores
by using the model’s output gradients with respect to its inputs. Similarly, Layer-wise Relevance
Propagation (LRP) methods Bach et al. [2015] propose rules to propagate the model output backwards
by splitting the overall output among individual input features.

Time domain explainability. Saliency map methods have been applied to time series applications,
either by direct application of computer vision-derived methods Jahmunah et al. [2022], Tao et al.
[2024] or by developing dedicated time series saliency approaches Queen et al. [2023], Liu et al.
[2024]. In all cases, these approaches focus on identifying significant regions of the time domain
input which contribute the most in the model’s output. Such regions of interest are events that trigger
the model’s output.

Cross domain interpretability. The current time domain saliency methods have limitations, as
highlighted parts of the signal may not be directly understood Theissler et al. [2022]. Additionally,
Chung et al. [2024] demonstrate that such methods will highlight the same temporal region of interest,
even when the underlying structures, e.g. frequency content, in those regions are different. These
limitations diminish the explanatory power of the generated saliency map. To address this issue
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they proposed a perturbation method in the time-frequency domain, attributing model output to
time-frequency components. However, frequency perturbations could be unnatural and model output
could decrease due to out-of-distribution effects Sundararajan et al. [2017]. In a similar pattern,
Vielhaben et al. Vielhaben et al. [2024] proposed the virtual inspection layer placed after the model
input to transform the saliency map of the time domain to the frequency and time frequency domains,
proposing dedicated relevance propagation rules for the frequency transform.

Despite progress in time-series saliency, existing methods (i) operate solely in the time domain,
(ii) rely on perturbation-based attributions only in the frequency domain, or (iii) require transfor-
m-specific hand-crafted relevance-propagation rules. In contrast, our work provides a principled
generalization of Integrated Gradients that supports any invertible, differentiable transform, in-
cluding complex-valued domains, while preserving axiomatic properties and enabling semantically
meaningful attributions across diverse time series applications.

3 Preliminaries

3.1 Problem statement and motivation

We consider a function f : Ds → R representing a deep learning model. The input x ∈ Ds is
constructed from a continuous-time signal x(t) ∈ R after discretizing it at a sampling frequency
fs [Hz] and considering a window of length L seconds: x = [x0, ..., xn−1], n = fs ·L. Now consider
a transform T : DS → DT that maps the original time domain to a semantically rich explanation
target domain DT . Our task is to construct an informative saliency map that assigns a significance
score to each characteristic zi = T (x)i in the explanation domain.

Saliency maps developed in computer vision applications, and in partigular IG, provide explanations
in the same domain as the model’s inputs, i.e. DT = DS . Applying these methods to time-series
models results in maps expressed in the time domain.
Proposition 1. The time domain is not always informative in explaining f .

We motivate Proposition 1 through a synthetic example. We provide additional real-world examples
in Section 5 after formally defining our method.

3.2 Time domain explanation limitations

Consider that the input x is sampled from signals x(t) = cos(2πξt+ ϕ). In this setup there are two
classes of samples depending on the oscillating frequency ξ:

y =

{
1, ξ ∼ N (1.0, 0.5)

2, ξ ∼ N (4.0, 0.5)
(1)

We design a classifier f to distinguish between these two classes. We opt to manually construct f such
that we have full mechanistic understanding of its inner workings. We choose a CNN architecture
composed of a single convolutional layer with two channels followed by a ReLU activation and global
average pooling f(x) = AvgPool (ReLU(w ∗ x)). The kernel of the first channel is a lowhigh-pass
filter (cutoff at 2.5Hz), while the second channel kernel is a highlow-pass filter with the same cutoff
(see Figure 1).

Ideally, the model should be fully explained by describing its inner mechanism. In this particular
scenario, we have designed f for this purpose, and hence a formal detailed explanation is available.
Mechanistic Interpretation 1. Convolutional channel i allows only frequencies of class i to pass
through the output; otherwise, the channel’s output is almost zero, not activating. The ReLU and
Average Pooling mechanism extract the amplitude of the signal Kechris et al. [2024a]. Hence, channel
i of the model’s output is only active when samples from class i are processed, leading to the correct
classification of the input.

That depth in model understanding is not easily available in bigger models which have been learned
from samples. Hence, saliency maps are often used as a proxy. We provide IG explanations of the
model f for samples from both classes expressed in the time and frequency domains (Figure 1).
Although time points are periodically highlighted as more important, it is not exactly clear how this
input tilts the model towards producing its output.
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Figure 1: Mechanistic interpretation along with Time and Frequency domain saliency maps. (a)
Distributions of the main frequency, ξ, for classes one and two. For producing the saliency maps,
we sample one input for each class (vertical dashed lines). (b) The sampled inputs presented in the
time and (c) frequency domains. (d) Illustration of the Mechanistic Interpretation1. We plot the
frequency response for the first and second channels of the CNN. The sample distributions (a) are
also overlayed. (e) Saliency maps expressed in the time and (f) frequency domains.

In contrast, a saliency map expressed in the frequency domain, which we introduce in Section 4,
highlights the frequency structures that contributed to the final output: for the samples of class 1 only
the 1Hz component contributes to the model’s output, and accordingly for class 2 the 4Hz component.
This saliency map is much more intuitive, provides useful information, and better aligns with the
introduced mechanistic understanding (Mechanistic Interpretation 1) of this model. In Section 4
we show analytically that the frequency-sexpressed IG, as in this example, is directly linked to this
detailed mechanistic explanation.

3.3 Integrated Gradients

To explain the output of a model f on an input x with a baseline x̂ ∈ Rn, IG generates a saliency
map as Sundararajan et al. [2017]:

IGi(x) = (xi − x̂i)

∫ 1

0

∂f

∂xi

∣∣∣∣
x′+t·(x−x̂)

dt (2)

with each element IGi(x) of the map corresponding to the significance of the input feature xi:
saliencys is expressed in the same domain as the input. The IG definition relies on two key points
from the theory of integrals over differential forms: the line integral definition and Stoke’s theorem.

Line integral definition. The IG can be derived from the definition of the integral of the differential
form df along the line γ(t) = x̂+ t(x− x̂):∫

γ

df =

∫
γ∗df =

∫ 1

0

N∑
i=0

∂f

∂xi
γ′
i(t)dt =

N∑
i=0

∫ 1

0

∂f

∂xi
γ′
i(t)dt =

N∑
i=0

(xi − x̂i)

∫ 1

0

∂f

∂xi
dt (3)

where γ∗df is the pullback of df by γ: γ∗df =
∑N

i=0
∂f
∂xi

γ′
i(t)dt Do Carmo [1998]. Each individual

element of the IG map IGi(x) corresponds to each element of the last sum of eq. 3.

Stoke’s Theorem. The Completeness axiom of the IG Sundararajan et al. [2017]: f(x)− f(x̂) =∑
IGi is a consequence of the Stokes’ Theorem for the case of integral of 1-form:

∫
γ
df =

∫
∂γ

f =

f(x)− f(x̂), which guarantees path independence: the value of the integral is only dependent on the
first and last points of the path, not the path itself.
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4 Methods

We now formally introduce the Cross-domain Integrated Gradients. Let f : Ds → R a deep neural
network, operating on a domain Ds ⊆ Rn. Also, denote x, x̂ ∈ Ds the input and baseline samples,
respectively, as defined by the IG method. We introduce an invertible, differentiable transformation
T : DS → DT and its inverse T−1, also differentiable, with z = T (x) and x = T−1(z) and
DT ⊆ Cm. The cross-domain IG generates the saliency map for f , attributing the difference
f(x)− f(x̂) to the features z, expressed in DT . To define Cross-domain Integrated Gradients, we
consider the path integral of model gradients over the transformed feature space:

Definition 4.1 (Cross-domain Integrated Gradients). Given a model f : Ds → R, a transform
T : DS → DT and its inverse T−1, input and baseline samples x, x̂ ∈ Ds and γ(t) the line from
z = T (x) to ẑ = T (x̂) the Cross-Domain IG is defined as:

IGDT
i (z) = 2

∫ 1

0

Re

{
∂(f ◦ T−1)

∂zi

∣∣∣∣
γ(t)

· (zi − ẑi)

}
dt (4)

Note that the original IG, eq. 2, and IGDT explain the exact same functionality since f(x) and
(f ◦ T−1)(z) are equivalent. However, their output saliency maps are expressed in different domains.
We now derive Definition 4.1 from first principles of the original Integrated Gradients method, Section
3.3.

Derivation sketch. The original IG is only defined for real inputs. To enable complex-valued
transformations, such as the Fourier transform, we extend IG for real-valued functions g with complex
inputs z, referred to in this paper as Complex IG. Our derivation is based on the two key points
introduced in Section 3.1:

1. Line integral definition. We begin our derivation by defining a function u that is equivalent
to g(z). Just like in the case of real inputs, eq. 2, we elaborate on the line integral

∫
γ
du.

The end goal is to end up with a sum of integrals
∑

i

∫
...dt similar to eq. 3. In the final

step, each IG element is defined as the corresponding integral term of the final sum,
∫
...dt.

2. Stokes’ Theorem. We carefully define u and derive the complex IG such that path inde-
pendence holds, satisfying the Completeness axiom, which is not always guaranteed for
functions of several complex variables Lebl [2019].

Lemma 4.1. Let g : Cn → R, z = p + jq, with p, q ∈ RN , γ(t) = ẑ + t(z − ẑ), t ∈ [0, 1] the
line from the baseline point ẑ to the input point z and n(t) = Re{γ(t)} and m(t) = Im{γ(t)},
n(t),m(t) ∈ Rn. Then the IG of g in z is given by:

IGCn

i (z) =

∫ 1

0

(
∂g

∂pi
n′
i(t) +

∂g

∂qi
m′

i(t)

)
dt (5)

Proof. Let u : R2n → R such that g(z) = u(w),∀z = p+ jq,w = [p, q]. For the differential form
of u:

du :=

2N∑
i=0

∂u

∂wi
dwi (6)

Similarly to the g(z)–u(w) equivalence, we consider the equivalence between γ(t) and a(t) =
[n(t),m(t)] ∈ R2n. Then the pullback of du by a is :

a∗du :=

2N∑
i=0

∂u

∂wi
a′i(t)dt (7)

Denoting with a′i the i-th element of da/dt. The line integral of u along the line defined by a is:∫
γ

du =

∫
γ

a∗du =

∫ 1

0

2N∑
i=0

∂u

∂wi
a′i(t)dt =

2N∑
i=0

∫ 1

0

∂u

∂wi
a′i(t)dt (8)
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Due to the equivalence between w and p, q and u and g the latter sum can be formulated as :∫
γ

du =

N∑
i=0

(∫ 1

0

∂g

∂pi
n′
i(t)dt+

∫ 1

0

∂g

∂qi
m′

i(t)dt

)
=

N∑
i=0

∫ 1

0

(
∂g

∂pi
n′
i(t) +

∂g

∂qi
m′

i(t)

)
dt (9)

which concludes the derivation.

From Lemma 4.1 we conclude to Definition 4.1 by considering g(z) = f
(
T−1(z)

)
and the complex

differential form Range [1998]:

dg = ∂g + ∂g (10)

with ∂g =
∑

∂g/∂zidzi, ∂g =
∑

∂f/∂zidzi and the complex partial derivatives are defined as
Range [1998] ∂/∂zi = 1/2(∂/∂p− j∂/∂q) and ∂/∂zi = 1/2(∂/∂p+ j∂/∂q). Then the pullback
of dg by γ is :

γ∗dg =
∑ ∂g

∂zi
γ′
i(t)dt+

∑ ∂g

∂zi
γ′
i(t)dt (11)

Since g ∈ R, ∂g/∂z = (∂g/∂z), thus:

γ∗dg = 2Re

{∑ ∂g

∂zi
γ′
i(t)dt

}
(12)

Expanding the product into its real and imaginary parts produces the same form as eq. 9:

γ∗dg = 2Re

{∑ 1

2

(
∂g

∂pi
− j

∂g

∂qi

)
(n′

i + jm′
i(t)) dt

}
=

∑(
∂g

∂pi
n′
i(t) +

∂g

∂qi
m′

i(t)

)
(13)

Thus the complex integrated gradient definition can be rewritten as:

IGCn

i = 2

∫ 1

0

Re

{
∂g

∂zi
γ′
i(t)

}
dt (14)

Notice that: ∫
γ

du = u(a(1))− u(a(0)) = g(z)− g(ẑ) = f(x)− f(x̂) (15)

maintaining the Completeness property.

If g processes real-valued inputs, then eq. 14 is equivalent to eq. 2: since g(z) = g(p + j0),
∂g/∂q = 0, ∂g/∂z = (1/2)∂g/∂p. Thus if DT ⊆ Rn the cross-domain IG can equivalently be
expressed as:

IGDT
i (z) = (zi − ẑi)

∫ 1

0

∂(f ◦ T−1)

∂zi

∣∣∣∣
z′+t·(z−ẑ)

dt (16)

Complex IG on a single-layer single-channel CNN. Adebayo et al. [2018] analytically study a
minimal single-layer convolutional network, demonstrating that IG can collapse into an edge detector,
producing misleading saliency maps. Although this exposes a failure mode of the IG in the input
domain, we show that Complex-IG faithfully reflects the inner mechanisms of a simple convolutional
network in the frequency domain. In direct parallel, we derive a closed-form link between the
complex IG saliency map of a CNN and the frequency response of its filters. Building on the example
in Section 3.2, we work on a simple CNN and prove that Complex-IG highlights each filter’s gain at
its corresponding input frequency.

Let f be a convolutional neural network composed of a single convolutional layer (1 channel)
followed by a ReLU operation and Global Average Pooling: f(x) = AvgPool (ReLU(w ∗ x)). We
begin with the case in which f processes windows sampled from single-component sinusoidal signals
x(t) = aj · cos(2πξjt+ ϕ), aj > 0. Then, the output f(x) is Kechris et al. [2024a]:

f(x) =
ajbj
π

(17)
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with bi the amplification of the filter w at frequency ξiHz: bi = ∥
∑

n wne
−2πξin∥. We employ the

Complex IG method on f with baseline input x̂ = 0, f(0) = 0. This yields IGCn

i = 0, ∀i ̸= j and∑
i IG

Cn

i = f(x)− f(x̂).Thus,

IGCn

j = f(x) =
ajbj
π

(18)

This links IGCn

j to the output’s frequency content ajbj and by extension to the convolutional filter’s
frequency response. An example for the model introduced in Section 3.2 is presented in Figure 2.

Frequency (Hz) Frequency (Hz)
0.0 2.5 5.0 0.0 2.5 5.0

Figure 2: Frequency response (blue - orange) and frequency integrated gradients (black) for the two
channels of the model of Section 3.2. We probe the model, performing frequency IG on samples with
varying base frequencies.

Implementation. Autograd (pytorch / tensorflow) allows for automatic differentiation with complex
variables using Wirtinger calculus Kreutz-Delgado [2009]. Thus, the complex IG can be directly
approximated by autograd, using Definition 4.1 or Lemma 4.1, with the detail that Autograd (in both
libraries) calculates the conjugate of the complex partial derivative. For the integral calculation, we
use a summation approximation similar to Sundararajan et al. [2017]. The algorithms for estimating
cross-domain IG for the case of DT ⊆ Rn and the two implementations on DT ⊆ Cn (Lemma 4.1
and Definition 4.1) are presented in Algorithms 1 and 2, 3 in the appendix, respectively.

5 Applications

We deploy cross-domain IG in a range of time series applications and models. For each application,
we select an appropriate explanation space, based on domain knowledge.

5.1 Heart rate extraction from physiological signals

We use the KID-PPG Kechris et al. [2024b] model to extract heart rate (HR) from photoplethys-
mography (PPG) signals collected from a wrist-worn wearable device. We use signals from
the PPGDalia dataset Reiss et al. [2019]. For a time window small enough for the HR fre-
quency, ξhr, to be considered constant, a clean PPG signal can be modeled as Kechris et al.
[2024b]:x(t) = a1cos(2π · ξhr · t + ϕ) + a2cos(2 · π(2ξhr) · t + ϕ), with a1 > a2. However,
due to sensor limitations, external interference signals are also usually present in PPG recordings
Reiss et al. [2019], Kechris et al. [2024b].

Since our understanding in this application is mostly frequency-based, we have selected the frequency
domain using the Fourier transform as the explanation target domain. This allows us to investigate
whether the HR inference is produced from heart-related components or external interference. An
illustration of two PPG inputs and the corresponding frequency-domain IGs are presented in Figure 3.
The IG saliency maps allow us to identify samples in which the model infers heart rate from external
interference, hence limiting the reliability of the model’s output.

5.2 Electroencephalography-based epileptic seizure detection

We use the zhu-transformer Zhu and Wang [2023] which performs seizure detection on scalp-
electroencephalography (EEG). We analyze a recording from the Physionet Siena Scalp EEG Database
v1.0.0 Detti [2020], Detti et al. [2020], Goldberger et al. [2000]. We chose Independent Component
Analysis Lee and Lee [1998] (ICA) as the transform to transform the time domain into a basis
of statistically independent components. In EEG, different electric components, e.g., epileptic
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Figure 3: Frequency-domain IG on heart rate inference model. The PPG signal includes
components from the heart rate and other components attributed to external interference (→), e.g.
motion. Left: Sample with a small inference error 0.93 beats-per-minute (BPM). The IG highlights
the two heart components located at hr and 2 · hr, with more weight given to the actual heart rate
frequency. Right: PPG sample with high inference error (26.78 BPM). IG coefficients highlight
frequency components which are not related to the heart.

activity or muscle interference, are spread across multiple channels. ICA isolates each individual
activity/component to an activity-specific channel, assuming statistical independence between the
components.

The ICA decomposition, along with the corresponding IG map, is presented in Figure 4.

0 5 10 15 20 25 -0.1 0.4
Time (s) ICA IG

Figure 4: ICA-domain IG on seizure detection model. The ICA components are sorted from the
component with the highest IG significance (top) to the lowest (bottom). Left: 19 output channels
calculated from ICA on the original EEG channels. The first channel contains the majority of the
epileptic activity, which is visible as an evolving pattern of spike-and-wave discharges at ∼ 4.5 Hz.
Some epileptic activity can also be found in the second channel. Significant muscle artifacts are
isolated in the 9th-19th channels between 4 and 10 seconds. Right: IG saliency map calculated
on the channel components. The map identifies the first channel as the most significant channel in
detecting this sample as epileptic. Some significance, although much less, is also given to the next
four channels. The channels corresponding to interference components do not get any significance in
the output of the classifier. Finally, the last channel tends to tilt the classifier towards a non-epileptic
output.

5.3 Foundation model time series forecasting

We use TimesFM Das et al. [2024] time-series foundation model to explain forecasting outputs. To
isolate the relevant concepts we chose Seasonal-Trend decomposition using LOESS (STL) Cleveland
et al. [1990] to decompose the input time series into trend and seasonality components.

We perform zero-shot forecasting, without any fine-tuning, on a time series with exponential trend
and seasonal components(Figure 5). This attribution domain allows us to study the model’s behavior
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for long-term forecasting horizons where the forecast error increases: the model underestimates the
overall trend, while the seasonal component estimation presents a smaller error.

Forecast Forecast

Figure 5: Seasonal-Trend IG on time series foundation model. Left: The input time series
decomposed into trend and seasonality using STL. Right: Zero-shot forecasting using Timesfm
along with Seasonal-Trend IG. For a small horizon, one step ahead prediction (first circle), TimesFM
forecast error is small. Out of the overall output, 7.5 units are attributed to the trend components (⇕)
which agrees with the ground truth trend (dashed orange line) and similarly the seasonal component
(⇕) correctly contributes −1.96 units. For a larger forecast horizon (second circle) the forecast
absolute error increases from 0.2 to 2.14. The majority of the error can be attributed to the model’s
underestimation of the trend (21% relative error), while the seasonal effect is correctly captured by
the model (5.1% relative error).

6 Conclusions

We introduced a novel generalization of the Integrated Gradients method which enables saliency map
generation in any invertible differentiable transform domain, including complex spaces. As transforms
capture high-level interactions between input points, our methods enhances model explainability,
especially in time-series data where individual time-point features are often uninformative. We
demonstrated versatility of Cross-domain Integrated Gradients, applying it on a diverse set of time-
series tasks, model architectures and explanation target domains. We release an open-source library
to enable broader adoption of cross-domain time-series explainability.

Limitations. Our method requires an invertible, differentiable transform and a carefully selected
baseline point. Consequently, we excluded non-invertible transforms and further investigation is
needed for approximate-invertible cases. Baseline selection also plays a role in the final saliency
map. We focused on the zero-signal as the baseline point - future work should include extensive
investigation on the effects of the baseline selection. The current implementation also focuses on a
linear integration path, reflecting the original IG. However, other non-linear paths, e.g. Guided IG
Kapishnikov et al. [2021], should be explored.

Broader Impact. This work enables time-series model interpretability by generating saliency maps
in meaningful domains, such as frequency or independent component bases. Fields where time
signals are extensively used, such as healthcare, finance and environmental monitoring, could benefit
from domain-specific saliency maps. In particular, with the recent rise of time-series foundation
models, our method provides a strong investigation tool for inspecting model behavior.

However, risks may arise if the selected explanation target domain is not appropriate or saliency
maps are over-interpreted. It is important to note that the saliency map solely provides feature
significance scores. The interpretation of these scores requires domain expertise. We encourage a
holistic interpretation approach of integrating domain knowledge with cross-domain saliency maps.
We also caution that this method alone cannot function as definitive proof of the model’s behavior.
Responsible usage of the method should take into consideration model, data and transformation
limitations, especially in high-stakes settings, such as in healthcare.
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A Cross-domain IG Algorithms

Algorithm 1 Real Target Domain IG

Input: f(·), x, x̂, niter

Output: IG
1: i← 1
2: sum← 0
3: tape← tensorflow.GradientTape()
4: X ′ ← T (x̂)
5: for i ≤ niter do
6: z ← T (x)
7: z ← ẑ + (z − ẑ) · i/niter

8: tape.watch(z)
9: xrec ← T−1(z)

10: y ← f(xrec)
11: dy ← tape.gradient(y, z)
12: sum← sum+ dy
13: i← i+ 1
14: end for
15: sum← sum/niter

16: IG = (z − ẑ) · sum

Algorithm 2 Complex Target Domain IG

Input: f(·), x, x̂, niter

Output: IG
1: i← 1
2: sum_real← 0
3: sum_imag ← 0
4: tape_real← tensorflow.GradientTape()
5: tape_imag ← tensorflow.GradientTape()
6: ẑ ← T (x̂)
7: for i ≤ niter do
8: X ← T (x)
9: z ← ẑ + (z − ẑ) · i/niter

10: re_z ← Re{z}
11: im_z ← Im{z}
12: tape_real.watch(re_z)
13: tape_imag.watch(im_z)
14: ẑ ← re_z + j · im_z
15: xrec ← T−1(ẑ)
16: y ← f(xrec)

17: re_dy ← tape_real.gradient(y, re_z) ▷ Calculate ∂g
∂pi

18: im_dy ← tape_imag.gradient(y, im_z) ▷ Calculate ∂g
∂qi

19: sum_real← sum_real + re_dy
20: sum_imag ← sum_imag + im_dy
21: i← i+ 1
22: end for
23: sum_real← sum_real/niter

24: sum_imag ← sum_imag/niter

25: IG = Re{z − ẑ} · sum_real + Im{z − ẑ} · sum_imag

B EEG and ICA

The raw EEG input is presented in Figure 6.
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Algorithm 3 Complex Target Domain IG with complex differential

Input: f(·), x, x̂, niter

Output: IG
1: i← 1
2: sum← 0
3: tape← tensorflow.GradientTape()
4: ẑ ← T (x̂)
5: for i ≤ niter do
6: z ← T (z)
7: z ← ẑ + (z − ẑ) · i/niter

8: tape.watch(z)
9: xrec ← T−1(z)

10: y ← f(xrec)
11: dy ← tape.gradient(y,X)
12: sum← sum+ dy
13: i← i+ 1
14: end for
15: sum← sum/niter

16: IG = 2Re{(z − ẑ) · sum}

The implementation of the zhu-transformer we used can be found here https://github.com/
esl-epfl/zhu_2023.

The application of ICA in EEG signals is based on the general assumption that the EEG data matrix
X ∈ RN×M is a linear mixture of different sources (activities) S ∈ RN×M with a mixing matrix
A ∈ RN×N such that X = AS, where N is both the number of sources and EEG channels, and
M is the number of samples in the dataset. Sources are assumed to be statistically independent and
stationary. These assumptions can be leveraged to compute an inverse unmixing matrix W = A−1(∈
RN×N ), such that S = WX . Finding W is an ill-posed problem without an analytical solution
which can be estimated by means of different ICA algorithms Hyvärinen et al. [2001], Klug and
Gramann [2021]. ICA is used in EEG to decompose the signal into independent components that
separate the signal of interest from various sources of artifacts Winkler et al. [2011]. In this work,
for ICA we selected the FastICA algorithm implemented in sklearn (max_iter = 3 · 104, tol =
1 · 10−8).

The independent channels estimated using ICA are presented in Figure 7.

C Generated time series for TimesFM forecasting

We generate a synthetic time series signal, x(t), composed of an exponential trend, xtrend(t), and a
seasonal component, xseasonal(t):

xtrend(t) = e
t
4

xseasonal(t) = sin(2π · 2 · t+ ϕ) + sin(2π · 4 · t+ ϕ)

x(t) = xtrend(t) + xseasonal(t)

A window of 512 time points, starting at t = 0, are given as input to TimesFM which generates fore-
casts up to 128 time points in the future from t = 512. The input time series and STL decomposition
are presented in more detail in Figure 8.

D Experiments compute resources

All experiments were run on an NVIDIA Tesla V100 with 32GB memory.
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Figure 8: Input time series for forecasting and successful STL decomposition. Left: time series
with a trend and a seasonal component. Center: The decomposed trend component and ground
truth trend (white dashed line). Right: The decomposed seasonal component and ground truth
seasonality (white dashed line).
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