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Abstract

Recent rapid progress in large language models (LLMs) leads to high performance
conversational AI system. To extend the system to expert fields, such as biomed-
ical or legal domains, it becomes standard to combine LLMs with information
retrieval (IR) system and generate answer based on retrieved information (doc-
uments) for given queries. Thus, it is essential that the IR system should “un-
derstand” various intents included in the queries including but not limited to se-
mantic similarity, causal relationship etc. However, existing IR systems primarily
focuse on retrieving related information based only on semantic similarities be-
tween sentences or documents. Here, we develop CAWAI that can understand
causal relation between queries and documents . By training dense retriever with
dual constraints, causal loss and semantic loss, CAWAI shows strong generaliza-
tion capability achieving up to +7.8% Hit@1 compared to DPR baseline in causal
retrieval task where a target sentence is buried in 20m Wikipedia sentences.

1 Introduction

With recent advancement large language models (LLMs), it has become standard practice to enhance
the performance of LLMs via retrieval-augmented generation (RAG). In RAG system, a document
retriever plays a critical role, as it is essential to provide relevant documents for given queries to
generate correct answers. Indeed, recent study analyzing the performance of RAG systems in legal
domains shows that around 40–50% of hallucinations originate from the failure in document retrieval
step [Magesh et al., 2024].

The performance of information retrieval (IR) systems can be roughly defined as providing “rele-
vant” information (documents) for given queries. However, the notion of “relevant” often encom-
passes various aspects [van Opijnen and Santos, 2017]. For instance, if users want to find similar
legal cases, “relevance” may indicate “semantic similarity”. On the other hand, if users want to in-
vestigate the consequences of specific events, the retriever may need to find documents that include
causal consequences of the “cause” mentioned in the queries. For instance, [Ye et al., 2024] catego-
rizes queries based on structure and intent, emphasizing the importance of context for understanding
user intent.

However, many existing IR systems primarily focus on semantic similarity between texts to retrieve
information. This approach can limit the ability to find relevant information, such as causal relation-
ships. The failure to capture these complex relationships often results in incomplete or misleading
information, ultimately affecting decision-making processes for users who rely on accurate data.

Here, we propose CAWAI2, a new method for training causal dense retriever. By training a dense
retriever with dual constraints, causal loss and semantic loss, CAWAI can retrieve either the cause or
the effect sentences that has causal relation with the input query. The evaluation result shows that,
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CAWAI achieves significantly higher scores compared to existing baselines such as BM25, and DPR
upto +7.8 Hit@1, +7.9 Hit@10, and +7.9 MRR@10 demonstrating its effectiveness in modeling
and retrieving causal relationships.

In summary our contributions are as follow.

• We propose a CAWAI, a dense retriever specialized in causal retrieval tasks.

• CAWAI achieve significantly better performance compared to existing dense retriever base-
lines.

We will open source our model to encourage further research in developing causal retriever.

2 Related Work

2.1 Information Retrieval

Traditional keyword-based information retrieval methods like BM25 [Robertson and Zaragoza,
2009] rely heavily on lexical overlap between queries and documents, which limits their ability
to capture deeper semantic relationships.

Karpukhin et al. [2020] address this limitation by proposing dense passage retrieval (DPR) that
leverages powerful neural language model to convert queries and documents into dense vector rep-
resentations allowing them to incorporate semantic information beyond simple keyword matching.

Recent studies on dense retrievers shows leveraging LLMs can improve retrieval accuracy. Lee
et al. [2024] show the potential of distilling knowledge from LLMs to create compact yet versatile
text embedding models. Luo et al. [2024] demonstrate that LLM-based dense retriever significantly
outperforms traditional models through comprehensive experiments.

Erker et al. [2024] introduce a Triple-Encoders to compute distributed utterance. The method en-
codes each sentence independently, and creates contextualized embeddings by linearly combining
representations from multiple subspaces. Smilarily, our method also uses three encoders, each spe-
cializing in capturing different aspects of causal relationships between sentences.

2.2 Causal Relationship Identification

Recent works in causal discovery with LLMs focus on identifying cause-effect relationships by
leveraging causal graphs. Zečević et al. [2023] introduce a framework for causal discovery, where
LLMs can return causal graphs through conditional independence statements. Similarly, Zhang
et al. [2024] introduce a RAG-based approach for causal graph recovery, dynamically retrieving
domain-specific text chunks and inferring relationships between factors using LLMs. While these
methods offer insights for post-hoc causal analysis, they apply causal reasoning only after retrieval.
In contrast, our work aims to incorporate causal cues at the retrieval stage itself, allowing the model
to identify causal relationships from the beginning of the retrieval process.

3 Methods

In this section, we provide the details of CAWAI.

3.1 Model architecture

CAWAI utilizes three encoders: Cause Encoder, Effect Encoder, and Semantic Encoder. The archi-
tecture is illustrated in Figure 1.

Cause Encoder processes a text for cause event (e.g. Tom really has no energy to run.), denoted
as e1, generating an vector representation e′1. Similarly, Effect Encoder processes a text for effect
event (e.g. He takes a rest before running again.), e2, corresponding to e1, producing an encoded
representation e′2. Semantic Encoder, whose weights are fixed during training, takes both the original
cause event e1 and effect event e2 as inputs (e1 and e2 are encoded separately) and outputs vector
representations e′′1 and e′′2 .
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Figure 1: Architecture of CAWAI. CAWAI comprises three encoders: the Cause Encoder, the Se-
mantic Encoder, and the Effect Encoder. Cause Encoder maps the texts corresponding to the causes
of some effects into the effect vectors (e1), Effect Encoder maps the texts corresponding to the ef-
fects of some causes into the cause vectors (e2). Semantic Encoder ensures semantic preservation
by minimizing the difference between its own semantic representations and those produced by the
Cause and Effect encoders. The red line means lossc, the blue line means losse and the green line
means losssem.

.

3.2 Training

In line with retrieval-based learning, Cause Encoder is trained to map an input cause event e1 (text)
to its corresponding effect event e′′2 (vector), thereby learning the cause-to-effect relationship. Con-
versely, Effect Encoder is trained to map the effect event e2 (text) back to the cause event e′′1 (vector),
learning the effect-to-cause relationship.

The weights of Semantic Encoder remain fixed during training, but a semantic preservation loss
(losssem,c in Figure 1), ensures that the encoded representation e′1 from Cause Encoder remains
semantically close to the original cause event e1, and similarly, the encoded representation e′2 from
Effect Encoder remains close to the original effect event e2. This process of semantic alignment
facilitates the preservation of contextual nuances and intricate interactions between cause and effect
events and helps in maintaining the semantic consistency of both events during training.

In-batch Negative Sampling We use in-batch negative sampling across all three encoders (Cause
encoder, Effect encoder, and Semantic encoder)In Cause Encoder, for a given cause event e1(i)) and
its corresponding effect event e2(i)), we define a set of negative effects N(e2(j))) that are sampled
from {e2(j)|j ̸= i} for all pairs in the batch, where i indicates a batch index and e2(i) represents
the effect events for other cause-effect pairs in the batch. The resulting loss function can be written
as

lossc(e1(i), e2(i)) = − log
exp(sim(e′1(i), e

′′
2(i)))∑Nbatch

j ̸=i exp(sim(e′1(i), e
′′
2(j)))

(1)

Here, sim(e′1(i), e
′′
2(i)) denotes the similarity between the outputs of Cause Encoder (e′1(i)) and

the output of Semantic Encoder (e′′2(i)), where e2(j)
′′ represents the encoded output of other effect

events within the same batch.

Similarly, in Effect Encoder, for a given effect event e2, we define negative causes N(e1) sampled
from {e1(i)|i ̸= j}, forcing the model to map effect-to-cause more accurately by distinguishing
from irrelevant cause events.
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losse(e1(i), e2(i)) = − log
exp(sim(e′2(i), e

′′
1(i)))∑Nbatch

j ̸=i exp(sim(e′2(i), e
′′
1(j)))

(2)

In addition to two losses above, we introduce semantic losses where the output of Cause Encoder
(e′1) is contrasted with the output of Semantic Encoder (e′′1 ). Likewise, Effect Encoder’s output e′2 is
compared against its original effect sentence (e′′2 ) from Semantic Encoder ensuring the outputs stay
semantically close to their respective inputs.

losssem,c(e1(i), e1(i)) = − log
exp(sim(e′1(i), e

′′
1(i)))∑N

j ̸=i exp(sim(e′1(i), e
′′
1(j)))

(3)

We apply the same negative sampling technique for the effect events in Semantic encoder.

The total loss is then computed as:

losstotal = β(losssem,c + losssem,e) + lossc + losse (4)

This final loss ensures that the cause-to-effect and effect-to-cause mappings are learned effectively,
while also preserving the semantic consistency of the original inputs.

The semantic loss terms imposes dual constraints to the vector representation, which helps regularize
the model. For instance, e′1 should include the information about the corresponding effect text (e′′2 )
while preserving their own representation (cause text, e′′1 ). We also assume preserving semantic
similarity may help as a keyword-based retrieval algorithm, such as BM25, can sometimes retrieve
answer for given question.

4 Experiments

4.1 Datasets

We utilize the e-CARE [Du et al., 2022] and BCOPA-CE [Han and Wang, 2021] datasets. The e-CARE
dataset is split into training, validation, and test sets in a ratio of 6:1:1. BCOPA-CE were used only
for the training and validation of models The BCOPA-CE dataset consists of 500 triplets of <cause,
premise, effect>, where the premise simultaneously acts as the effect of the cause sentence
and the cause of the effect sentence. We transform the dataset into causal retrieval tasks. The
resulting dataset comprises 1,000 cause-effect pairs, which are further separated into the training
and validation set at ratio 9:1. To prevent data leakage, pairs generated from the same <cause,
premise, effect> triplet are always included in the same dataset (either training or validation).

The resulting dataset consists of 13,692 training examples, 2,232 validation examples, and 2,136 test
examples where each example consists of a pair of cause and effect texts. We use several datasets
to evaluate performance of retrieval. We evaluate CAWAI with e-CARE test set while varying the
domain and the size of the retrieval pool. The pool comprises the CoLA dataset(Wang et al. [2023]),
which includes 1700 sentences, consisting of pairs of events in their temporal order from the Roc-
Stories corpus. The CoLA dataset closely resembles the domain in training dataset, although they
differ in format. To simulate a real-world scenario, we augment the retrieval pool ranging from 2k
sentences (wikiS), 20k sentences (wikiM ), 200k sentences (wikiL), 2m sentences (wikiXL), to 20m
sentences (wikiXXL) from Wikipedia3. We also prepared another retrieval pool augmented similarly
using the English corpus from RedPajama-Data-v2 [Computer, 2023]4.

4.2 Model

We used BM25(Robertson and Zaragoza [2009]), and DPR(Karpukhin et al. [2020]) as baseline
models. We trained the BERT-base-uncased model as encoders for each model and selected the one
with the highest accuracy on the validation dataset after running 500 epochs. The batch size was

3https://huggingface.co/datasets/wikimedia/wikipedia
4https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2
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set to 64, and the learning to 1e-5 with AdamW optimizer. The experiments were conducted using
either on NVIDIA A6000 GPUs or 3090 GPUs.

5 Results

5.1 Retrieval Accuracy

Table 1: Comparison of various models In Task 1, a model needs to retrieve the corresponding
effect sentence for given cause text as a query whereas in Task 2, the model receive effect sentence
and retrieve corresponding cause sentence.

Model e-CARE e-CARE + CoLA e-CARE + wikiS e-CARE + wikiM e-CARE + wikiL e-CARE + wikiXL e-CARE + wikiXXL

Hit@1 Hit@10 MRR@10 Hit@1 Hit@10 MRR@10 Hit@1 Hit@10 MRR@10 Hit@1 Hit@10 MRR@10 Hit@1 Hit@10 MRR@10 Hit@1 Hit@10 MRR@10 Hit@1 Hit@10 MRR@10

Task 1. Cause to Effect

BM25 0.089 0.218 0.127 0.086 0.202 0.120 0.096 0.211 0.132 0.089 0.197 0.119 0.074 0.146 0.096 0.046 0.085 0.058 0.031 0.052 0.036
DPR 0.379 0.660 0.468 0.359 0.634 0.445 0.362 0.634 0.448 0.321 0.561 0.397 0.257 0.458 0.318 0.151 0.287 0.189 0.088 0.169 0.111
CAWAI 0.373 0.641 0.452 0.354 0.603 0.428 0.364 0.629 0.443 0.346 0.591 0.417 0.303 0.503 0.362 0.220 0.337 0.256 0.166 0.248 0.190

Task 2. Effect to Cause

BM25 0.094 0.206 0.126 0.088 0.190 0.118 0.096 0.211 0.130 0.091 0.189 0.120 0.079 0.145 0.098 0.049 0.089 0.060 0.028 0.055 0.036
DPR 0.381 0.660 0.466 0.361 0.630 0.443 0.371 0.639 0.453 0.342 0.573 0.415 0.282 0.474 0.343 0.178 0.320 0.219 0.102 0.202 0.130
CAWAI 0.378 0.641 0.458 0.352 0.608 0.434 0.374 0.631 0.451 0.344 0.584 0.418 0.301 0.495 0.359 0.219 0.337 0.254 0.161 0.249 0.188

Model e-CARE + RedPajamaS e-CARE + RedPajamaM e-CARE + RedPajamaL e-CARE + RedPajamaXL e-CARE + RedPajamaXXL

Hit@1 Hit@10 MRR@10 Hit@1 Hit@10 MRR@10 Hit@1 Hit@10 MRR@10 Hit@1 Hit@10 MRR@10 Hit@1 Hit@10 MRR@10

Task 1. Cause to Effect

BM25 0.102 0.227 0.137 0.089 0.192 0.120 0.070 0.138 0.091 0.049 0.093 0.061 0.036 0.057 0.042
DPR 0.355 0.627 0.442 0.304 0.544 0.379 0.219 0.416 0.277 0.129 0.262 0.167 0.071 0.156 0.096
CAWAI 0.354 0.615 0.432 0.320 0.544 0.387 0.256 0.419 0.306 0.207 0.312 0.236 0.154 0.233 0.176

Task 2. Effect to Cause

BM25 0.101 0.212 0.133 0.094 0.182 0.120 0.074 0.134 0.092 0.046 0.092 0.059 0.032 0.056 0.039
DPR 0.362 0.631 0.444 0.317 0.547 0.380 0.240 0.427 0.297 0.161 0.293 0.198 0.095 0.183 0.119
CAWAI 0.365 0.618 0.442 0.333 0.551 0.396 0.275 0.431 0.321 0.207 0.320 0.240 0.161 0.231 0.182

CAWAI achieves comparable performance to DPR We first measure the accuracy in causal re-
trieval tasks when the size of the pool is 2,136. (Table 1). The models are initialized with the same
weights: bert-base-uncased 5.

In various tasks, CAWAI shows comparable performance to DPR when the retrieval pool is small.
In e-CARE, e-CARE + CoLA, and e-CARE + WikiS (with retrieval pool sizes of 2,136, 3,836, and
4,136, respectively), CAWAI consistently achieves similar Hit@1 and MRR@10 performance to
DPR. Across these smaller retrieval pools, CAWAI performs on par with DPR.

CAWAI shows superior generalization performance compared to DPR Next, we increase the
size and diversity of the retrieval pool. As shown in Table 1, CAWAI demonstrates superior per-
formance compared to DPR, particularly in Hit@1 scores, where the differences range from 0.105
to 0.126 as the dataset size increase. The model’s capability to identify causal cues across diverse
contexts also suggests its robustness in handling complex queries that go beyond simple semantic
similarity, highlighting its potential for applications where understanding deeper relationships be-
tween events is essential. The experiments with RedPajama corpus also shows similar results (Table
1, second panel).

5.2 Ablation study

Next, we examine whether the results depend on the presence of semantic loss. Table 2 presents
how the performance changes on different configurations under varying weights (β) of the semantic
loss (Eq. 4) Upon integration of the semantic loss, there is a noticeable improvement in accuracy
compared (row 1 vs row 2) indicating that a emphasis on semantic loss correlates positively with
model performance. The best results is obtained with we set β = 2. The examples corresponding to
each model can be found in Appendix Table 5.
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Table 2: The Accuracy comparison on varying hyperparameter of semantic loss This table
shows the accuracy results based on a difference parameters of semnatic loss. Task 1 involves
retrieving the corresponding effect sentence given a query (cause), while Task 2 is the reverse,
retrieving the corresponding cause sentence given the effect.

Loss e-CARE e-CARE + CoLA e-CARE + wikiS e-CARE + wikiM e-CARE + wikiL e-CARE + wikiXL

Hit@1 Hit@10 MRR@10 Hit@1 Hit@10 MRR@10 Hit@1 Hit@10 MRR@10 Hit@1 Hit@10 MRR@10 Hit@1 Hit@10 MRR@10 Hit@1 Hit@10 MRR@10

Task 1. Cause to Effect

lossc + losse 0.320 0.604 0.405 0.300 0.561 0.378 0.312 0.586 0.395 0.279 0.544 0.360 0.228 0.436 0.290 0.125 0.245 0.159
lossc + losse + 0.1 losss 0.376 0.632 0.453 0.360 0.593 0.431 0.368 0.622 0.444 0.346 0.576 0.417 0.298 0.489 0.358 0.241 0.330 0.206
lossc + losse + 2 losss 0.390 0.646 0.468 0.372 0.609 0.444 0.384 0.635 0.459 0.360 0.592 0.430 0.307 0.505 0.368 0.227 0.341 0.261
lossc + losse + 5 losss 0.385 0.644 0.464 0.372 0.609 0.443 0.381 0.635 0.457 0.360 0.593 0.431 0.317 0.507 0.374 0.221 0.345 0.258

Task 2. Effect to Cause

lossc + losse 0.319 0.594 0.404 0.298 0.556 0.377 0.308 0.308 0.392 0.282 0.519 0.356 0.232 0.426 0.292 0.132 0.266 0.171
lossc + losse + 0.1 losss 0.373 0.632 0.453 0.353 0.601 0.429 0.366 0.622 0.445 0.349 0.583 0.421 0.310 0.508 0.371 0.220 0.357 0.262
lossc + losse + 2 losss 0.382 0.649 0.462 0.365 0.608 0.439 0.380 0.634 0.456 0.362 0.600 0.432 0.324 0.519 0.382 0.232 0.366 0.273
lossc + losse + 5 losss 0.392 0.646 0.466 0.371 0.610 0.441 0.385 0.636 0.458 0.360 0.594 0.431 0.315 0.513 0.374 0.237 0.365 0.277

(a) Bert base-uncased (b) DPR (c) CAWAI

Figure 2: t-SNE visualization of BCOPA-CE validation set. In each figure, red represents the cause
embeddings, and blue represents the premise embeddings, which are the effect of the cause embed-
dings. Each gradation indicates that pairs of cause-effect relationships share the same gradation.

6 Analysis

6.1 t-SNE Visualization

To further demonstrate the effectiveness of our approach, we conducted an embedding visualization
using the BCOPA-CE validation set. The case where the cause sentences are used as queries are
shown in Figure 2. The reverse scenario is depicted in Figure 3 in Appendix. When querying with
the cause, in CAWAI we input the cause in to Cause Encoder while premise into Effect Encoder. Prior
to fine-tuning, the embeddings appear randomly scattered ((a)). As the original structure of DPR is
optimized for question-passage retrieval pairs, the space is separated with no additional semantic
meaning shared between cause and effect ((b)). This separation suggests that DPR may not fully
capture the semantic relationships required for effective causal mapping. Unlike general question-
answering tasks, where the context provides a direct passage for retrieval, causal tasks require a
wide understanding of temporal and logical dependencies between events. In CAWAI, we observe
that each cause and its corresponding effect are mapped closely in a similar space ((c)), indicating
that the model has learned to associate causes and effects more effectively after fine-tuning. This
demonstrates that CAWAI effectively learns an embedding space that captures causal relationships.

7 Conclusion

We proposed a novel retrieval, CAWAI that incorporates cause-effect relationships into the retrieval
process. Our experiments demonstrate that this approach outperforms traditional DPR models in
causal tasks under real-world setting, confirming the effectiveness of modeling causal dependencies
for retrieval.

5https://huggingface.co/google-bert/bert-base-uncased
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M. Zečević, M. Willig, D. S. Dhami, and K. Kersting. Causal parrots: Large language models may
talk causality but are not causal, 2023. URL https://arxiv.org/abs/2308.13067.

Y. Zhang, Y. Zhang, Y. Gan, L. Yao, and C. Wang. Causal graph discovery with retrieval-augmented
generation based large language models. arXiv preprint arXiv:2402.15301, 2024.

8



Appendix

Table 3: The Accuracy comparison on Semantic encoder backbone models This table shows
the Hit@accuracy results based on a Semantic encoder backbone. Task 1 involves retrieving the
corresponding effect sentence given a query (cause), while Task 2 is the reverse, retrieving the
corresponding cause sentence given the effect.

Backbone e-CARE e-CARE + CoLA e-CARE + wikiS e-CARE + wikiM e-CARE + wikiL e-CARE + wikiXL

Hit@1 Hit@10 MRR@10 Hit@1 Hit@10 MRR@10 Hit@1 Hit@10 MRR@10 Hit@1 Hit@10 MRR@10 Hit@1 Hit@10 MRR@10 Hit@1 Hit@10 MRR@10

Task 1. Cause to Effect

Sentence Bert 0.313 0.585 0.393 0.296 0.541 0.368 0.299 0.556 0.375 0.268 0.478 0.330 0.217 0.368 0.261 0.150 0.235 0.176

Task 2. Effect to Cause

Sentence Bert 0.306 0.581 0.388 0.282 0.546 0.360 0.294 0.553 0.371 0.267 0.486 0.332 0.218 0.385 0.267 0.156 0.247 0.181

Table 4: The Accuracy using Semantic encoder as passage encoder. Task 1 involves retrieving
the corresponding effect sentence given a query (cause), while Task 2 is the reverse, retrieving the
corresponding cause sentence given the effect.

Passage encoder e-CARE e-CARE + CoLA e-CARE + wikiS e-CARE + wikiM e-CARE + wikiL
Hit@1 Hit@10 MRR@10 Hit@1 Hit@10 MRR@10 Hit@1 Hit@10 MRR@10 Hit@1 Hit@10 MRR@10 Hit@1 Hit@10 MRR@10

Task 1. Cause to Effect

Semantic encoder 0.283 0.550 0.362 0.261 0.512 0.335 0.233 0.457 0.300 0.177 0.349 0.226 0.124 0.234 0.157

Task 2. Effect to Cause

Semantic encoder 0.293 0.570 0.372 0.272 0.524 0.346 0.238 0.484 0.310 0.180 0.363 0.233 0.125 0.241 0.157

(a) DPR (b) CAWAI

Figure 3: t-SNE visualization of BCOPA-CE validation set. In each figure, red represents the
premise embeddings, and blue represents the effect embeddings, which are the effect of the premise
embeddings.

Table 5: Example of Model Responses comparison on dataset e-CARE+wikiS
Input Cause "Tom had a kidney transplant."

DPR
Top 1: "He received a liver transplant in 2012." (Wrong)
Top 2: "Doctors suggested transplanting his kidney as soon as possible but at first there was a lack of potential compatible donor." (Wrong)
Top 3: "His parents elected to donate his organs for transplant, a decision which was credited with saving five lives." (Wrong)

CAWAI
Top 1: "The doctor gave him a lot of medicine to fight allergy rejection." (Correct)
Top 2: "The transplant would not save his life, but it might give him better breathing." (Wrong)
Top 3: "The transplant revitalized his immune system." (Wrong)

Input Cause "John suffered from indigestion."

CAWAI with no semantic loss
Top 1: "He had a serious stomachache after eating it." (Wrong)
Top 2: "His stomach mucos membrane was damaged." (Wrong)
Top 3: "He choked because of the blockage." (Wrong)

CAWAI
Top 1: "He needed to start water fasting to rest his digestive tract." (Correct)
Top 2: "The doctor advised him to drink green tea." (Wrong)
Top 3: "He had indigestion." (Wrong)
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