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Abstract

In real-world applications, the distribution of the data, and our goals, evolve
over time. The prevailing theoretical framework for studying machine learning,
namely probably approximately correct (PAC) learning, largely ignores time. As a
consequence, existing strategies to address the dynamic nature of data and goals
exhibit poor real-world performance. This paper develops a theoretical framework
called “Prospective Learning” that is tailored for situations when the optimal
hypothesis changes over time. In PAC learning, empirical risk minimization (ERM)
is known to be consistent. We develop a learner called Prospective ERM, which
returns a sequence of predictors that make predictions on future data. We prove that
the risk of prospective ERM converges to the Bayes risk under certain assumptions
on the stochastic process generating the data. Prospective ERM, roughly speaking,
incorporates time as an input in addition to the data. We show that standard ERM
as done in PAC learning, without incorporating time, can result in failure to learn
when distributions are dynamic. Numerical experiments illustrate that prospective
ERM can learn synthetic and visual recognition problems constructed from MNIST
and CIFAR-10. Code at https://github.com/neurodata/prolearn.

1 Introduction

All learning is for the future. Learning involves updating decision rules or policies, based on past
experiences, to improve future performance. Probably approximately correct (PAC) learning has been
extremely useful to develop algorithms that minimize the risk—typically defined as the expected
loss—on unseen samples under certain assumptions. The assumption, that samples are independent
and identically distributed (IID) within the training dataset and at test time, has served us well. But it
is neither testable nor believed to be true in practice. The future is always different from the past:
both distributions of data and goals of the learner may change over time. Moreover, those changes
may cause the optimal hypothesis to change over time as well. There are numerous mathematical
and empirical approaches that have been developed to address this issue, e.g., techniques for being
invariant to [1], or adapting to, distribution shift [2], modeling the future as a different task, etc. But
we lack a first-principles framework to address problems where data distributions and goals may
change over time in such a way that the optimal hypothesis is time-dependent. And as a consequence,
machine learning-based AI today is brittle to changes in distribution and goals.

This paper develops a theoretical framework called “Prospective Learning” (PL). Instead of data
arising from an unknown probability distribution like in PAC learning, prospective learning assumes
that data comes from an unknown stochastic process, that the loss considers the future, and that
the optimal hypothesis may change over time. A prospective learner uses samples received up to
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some time t ∈ N to output an infinite sequence of predictors, which it uses for making predictions on
data at all future times t′ > t. We discuss how prospective learning is related to existing problem
formulations in the literature in Appendices D and E.

Why should one care about prospective learning? Imagine a deployed machine learning system.
The designer of this system desires to optimize—not the risk upon the past training data, or the risk
on the immediate future data—but the risk on all data that the model will make predictions upon in
the future. As data evolves, e.g., due to changing trends and preferences of the users, the optimal
hypothesis to make predictions also changes. Time is the critical piece of information if the system
designer is to achieve their goals. Both in the sense of how far back in time a particular datum was
recorded, and in the sense of how far ahead in the future this system will be used to make predictions.
The designer must take time into account to avoid retraining the model periodically, ad infinitum.

Biology is also rich with examples where systems seem to behave prospectively. The principle of
allostasis, for example, states that regulatory processes of living things anticipate the needs of the
organism and prepare to satisfy these needs before, rather than after, they arise [3]. For example,
mitochondria increase their energy production to anticipate the demands of muscles [4], neural
circuits anticipate changes in sensory stimuli and the task (i.e., predictive coding [5]), and individual
organisms optimize their actions with respect to anticipated changes in their environments [6, 7].
These regulatory principles were learned early in evolutionary time so they must be important. In
short, the world—including our internal drives—changes all the time, and learning systems must
anticipate (that is, prospect) these changes to thrive.

2 A definition of prospective learning

A prospective learner minimizes the expected cumulative risk of the future using past data. Such a
learner is defined by the following key ingredients (see Fig. 1 (left) for schematic illustration).

Data. Let the input and output at time t be denoted by xt ∈ X and yt ∈ Y respectively. Let
zt = (xt, yt). We will model the data as a stochastic process Z ≡ (Zt)t∈N defined on an appropriate
probability space (Ω,F ,P). At time t ∈ N, denote past data by z≤t ≡ (z1, . . . , zt) and future data by
z>t ≡ (zt+1, . . . ). We will find it useful to distinguish between the realization of the data, denoted by
z≤t, and the corresponding random variable, Z≤t.

Hypothesis class. At each time t, a prospective learner selects an infinite sequence h ≡
(h1, . . . , ht, ht+1, . . . ) which it uses to make predictions on data at any time in the future. Each
element of this sequence ht : X 7→ Y and therefore ht ∈ YX .1 The hypothesis class H is the space
of such hypotheses, h ∈ H ⊆ (YX )N.2 We will again use the shorthand h≤t ≡ (h1, . . . , ht). We will
sometimes talk about a “time-agnostic hypothesis” which will refer to a hypothesis such that ht = ht′
for all t, t′ ∈ N. Observe that this makes our setup different from the standard setup in PAC learning
where the learner selects a single hypothesis in YX . One could also think of prospective learning as
using a single time-varying hypothesis h : N×X 7→ Y, i.e., the hypothesis takes both time and the
datum as input to make a prediction.

Learner. A prospective learner is a map from the data received up to time t, to a hypothesis that
makes predictions on the data over all time (past and future): (X × Y)t → (YX )N. The learner gives
as output a hypothesis h(z≤t) ∈ H. Unlike a PAC learner, a prospective learner can make different
kinds of predictions at different times. This is a crucial property of prospective learning. In other
words, after receiving data up to time t, the hypothesis selected by the prospective learner can predict
on samples at any future time t′ > t.

Prospective loss and risk. The future loss incurred by a hypothesis h is

ℓ̄t(h, Z) = lim sup
τ→∞

1

τ

t+τ∑
s=t+1

ℓ(s, hs(Xs), Ys), (1)

1We will use some non-standard notation in this paper. In particular, a hypothesis h will always refer to
sequence of predictors h ≡ (h1, . . . , ht, ht+1, . . . ). This helps us avoid excessively verbose mathematical
expressions.

2When we say that “learner selects a hypothesis” in the sequel, it will always mean that the learner selects an
infinite sequence from within the hypothesis class H.
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where ℓ : N× Y × Y 7→ [0, 1] is a bounded loss function.3 Prospective risk at time t is the expected
future loss 4

Rt(h) = E
[
ℓ̄t(h, Z) | z≤t

]
=

∫
ℓ̄t(h, Z) dPZ|z≤t

, (2)

where we assume that h is a random variable and h ∈ σ(Z≤t) where σ(·) denotes the filtration (an
increasing sequence of sigma algebras) of the stochastic process Z. We have used the shorthand
E[Y | x] for E[Y | X = x]. Observe that we have conditioned the prospective risk of the hypothesis h
upon the realized data z≤t. We can take an expectation over the realized data, to obtain the expected
prospective risk

E [Rt(h)] =

∫
Rt(h) dPZ≤t

.

Prospective Bayes risk is the minimum risk achievable by any hypothesis. In PAC learning, it
is a constant that depends upon the (fixed) true distribution of the data and the risk function. In
prospective learning, the optimal hypothesis can predict differently at different times. We therefore
define the prospective Bayes risk at a time t as

R∗
t = inf

h∈σ(Z≤t)
Rt(h), (3)

which is the minimum achievable prospective risk by any learner that observes data z≤t. We define
the Bayes optimal learner as any learner that achieves a Bayes optimal risk at every time t ∈ N. In
certain contexts, one might be interested in the limiting prospective Bayes risk as t → ∞.

2.1 Different prospective learning scenarios with illustrative examples

We next discuss four prospective learning scenarios that are relevant to increasingly more general
classes of stochastic processes. Our goal is to illustrate, using examples, how the definitions developed
in the previous section capture these scenarios. We will assume that for all times t we have Xt = 1,
Yt ∈ {0, 1}. We will also focus on the time-invariant zero-one loss ℓ(t, ŷ, y) = δ(ŷ ̸= y) for all t, here
δ is the Dirac delta function. Fig. 1 shows example realizations of the data for each scenario.
Scenario 1 (Data is independent and identically distributed). Formally, this consists of stochastic
processes where PZt′ |Z≤t

= PZt
for all t, t′ ∈ N. As an example, consider Yt ∼ Bernoulli(p) for

some unknown parameter p ∈ [0, 1]. Prospective Bayes risk is equal to min(p, 1− p) in this case. A
time-agnostic hypothesis, for example one that thresholds the maximum likelihood estimator (MLE)
of the Bernoulli probability, converges to the limiting prospective Bayes risk.5

Scenario 2 (Data is independent but not identically distributed). This consists of stochastic
processes where PZt|Z≤t

= PZt
for all t ∈ N. Consider Yt ∼ Bernoulli(p) if t is odd, and Yt ∼

Bernoulli(1 − p) if t is even, i.e., data is drawn from two different distributions at alternate times.
Prospective Bayes risk is again equal to min(1− p, p) in this case. A time-agnostic hypothesis can
only perform at chance level. But a prospective learner, for example one that selects a hypothesis that
alternates between two predictors at even and odd times, can converge to prospective Bayes optimal
risk. We can also construct variants, e.g., when the relationship between the Bernoulli probabilities
are not known (Variant 1 in Fig. 1), or when the learner does not know that the data distribution
changes at every time step (Variant 2 in Fig. 1 where we implemented a generalized likelihood ratio
test to determine whether the distribution changes). The risk of these variants also converges to
prospective Bayes risk, but they need more samples because they use more generic models of the
stochastic process. This scenario is closely related to (online) multitask/meta-learning [8].
Scenario 3 (Data is neither independent nor identically distributed). Formally, this scenario
consists of general stochastic processes. As an example, consider a Markov process P(Yt+1 = k |
Yt = k) = θ with two states k ∈ {0, 1} and Y1 ∼ Bernoulli(θ). The invariant distribution of this
Markov process is P(0) = P(1) = 1/2. Prospective Bayes risk is also equal to 1/2. For stochastic
processes that have a invariant distribution, it is impossible to predict the next state infinitely far into

3The limsup is guaranteed to exist if ℓ is bounded. If the series converges, we can use lim instead.
4There are many real world scenarios where expected future loss may not be sufficient for good performance,

e.g., for portfolio managements or inference by biological learners who optimize for a balance between value
and risk. Moreover, the risk functional could, in general, also change over time. In this paper, we will focus only
on the expected future loss.

5We show an interesting observation in Appendix F.1: if the prior of a Bayesian learner is different from the
true Bernoulli probability, then prospective learning can improve upon the maximum a posteriori estimator.

3



z1 z2 zt zt+1 zt+2 zt+3

Realized Past (z≤t)

zt+1 zt+2 zt+3

zt+1 zt+2 zt+3

. . .

... ... ...

... ... ...

. . .

. . .

. . .

Potential Futures (z>t)

ht+1 ht+2 ht+3

Learner (L)

. . .

Time0 t

0 t
Time

Tr
ia

ls

Realized
Past

Potential
Futures

Scenario 1

0 t
Time

Realized
Past

Potential
Futures

Scenario 2

0 t
Time

Realized
Past

Potential
Futures

Scenario 3

0 t
Time

Realized
Past

Potential
Futures

Scenario 4

5 10 15
Time (t)

0.2

0.3

0.4

0.5

Pr
os

pe
ct

iv
e 

ris
k

Independent and identically
distributed data

5 10 15
Time (t)

0.2

0.3

0.4

0.5

Pr
os

pe
ct

iv
e 

ris
k

Independent but not identically
distributed data

5 10 15
Time (t)

0.2

0.3

0.4

0.5

Pr
os

pe
ct

iv
e 

ris
k

Data from a
two-state Markov chain

10 20 30 40
Time (t)

0.2

0.3

0.4

0.5

Pr
os

pe
ct

iv
e 

ris
k

Data from a two-state
Markov decision process

MLE Prospective learner Variant 2 Variant 3 Bayes Risk

Figure 1: A schematic for prospective learning (left) and realizations of the examples for the four scenarios
(top right); dots denote 1s and empty spaces denote 0s for Yt ∈ {0, 1} with Xt = 1 for all times t. Prospective
risk of learners at different times is shown in the bottom panels and discussed in Section 2.1. Scenario 1: For
Bernoulli probability p = 0.2, the maximum-likelihood estimator (MLE) in blue uses a time-agnostic hypothesis
ht(Xt) = 1(p̂t > 0.5) where p̂t = t−1∑t

s=1 ys, ties at p̂t = 0.5 are broken randomly. The risk of this learner
converges to the Bayes risk. Scenario 2: For Bernoulli probability p = 0.2, the MLE estimator (blue) performs
at chance levels. A prospective learner (orange) that alternates between two predictors at even and odd times
converges to Bayes risk. Variants of this learner that use less information from the stochastic process (green does
not know that the data distributions at even and odd times are tied, red does not know that the distribution shifts
at every time-step) also converge to Bayes risk, but more slowly. Scenario 3: For θ = 0.1 and γ = 0.9 in the
discounted prospective risk, the MLE estimator (blue) again performs at chance levels. A prospective learner
that computes an estimate of the transition probability of the two-state Markov chain to estimate P(Yt′ | yt) for
future times t′ > t converges to Bayes risk. Scenario 4: For θ0 = θ1 = 0.1, the MLE estimator (blue) performs
at chance levels. A prospective learner that uses a variant of Q-learning (described in the text and Appendix F.3)
converges to the prospective Bayes risk.

the future and therefore it is impossible to prospect. The prospective Bayes risk is trivially chance
levels. In such situations, the learner could consider losses that are discounted over time. For example,
one could use a slightly different loss than the one in Eq. (1) to write

ℓ̄t(h, Z) = (1− γ)
∑∞

s=t+1 γ
s−t−1ℓ(hs(Xs), Ys) (4)

for some γ ∈ [0, 1). In this example, we can calculate the prospective Bayes risk analytically;
see Appendix F.2. For γ = 0.9, θ = 0.1 and the zero-one loss, limiting prospective Bayes risk is
0.357. Now consider a learner which computes the MLE of the transition matrix Γt′−t

t . It calculates
P(Yt′ | yt) = p̂t′ where [1−p̂t′ , p̂t′ ] = Γt′−t

t [1−yt, yt]
⊤ and uses the hypothesis ht′(Xt′) = 1(p̂t′ > 0.5)

(ties broken randomly). We can see in Fig. 1 that this learner converges to the prospective Bayes
risk. This example shows that if we model the changes in the data, then we can perform prospective
learning. This scenario is closely related to certain continual learning problems [9, 10].
Scenario 4 (Future depends upon the current prediction). Problems where predictions of the
learner affect future data are an interesting special case of Scenario 3. Prospective learning can
also be used to address such scenarios. For θ0, θ1 ∈ [0, 1], consider a Markov decision process
(MDP) P(Yt+1 = j | Yt = j′, ht+1(1) = k) = θk if j = j′ and 1 − θk otherwise. I.e., the prediction
ht+1(Xt+1) = k (recall that Xt = 1 for all times) is the decision and the MDP remains in the same
state with probability θk. Prospective Bayes risk for this example is the same as that of the example
in Scenario 3. We can construct a prospective learner using a variant of Q-learning to first estimate
the hypothesis and then estimate the probability P(Yt′ | yt) like Scenario 3 above to predict on future
data at time t′. See Appendix F.3. Prospective risk of this learner converges to Bayes risk in Fig. 1.
This scenario is closely related to reinforcement learning [11].

3 Main Results

Because of space constraints, we relegate all the main results into the appendices.

Appendix A takes steps towards a theoretical foundation for prospective learning. We define strongly
learnability (i.e., there exists a prospective learner whose risk is arbitrarily close to the Bayes optimal
learner) and weakly learnability (i.e., there exists a prospective learner whose risk is better than
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chance) [12]. We prove that in contrast to PAC learning, empirical risk minimization (ERM) without
incorporating time, can result in failure to strongly, or even weakly, learn prospectively [13].

Appendix B introduces prospective empirical risk minimization (ERM), and proves that it can learn
prospectively under certain assumptions on the stochastic process and loss.

Appendix C demonstrates that prospective ERM can prospectively learn several canonical problems
constructed using synthetic, MNIST [14] and CIFAR-10 [15] data. In contrast, a number of existing
algorithms, including ERM, online and continual learning algorithms, fail. Appendix L demonstrates
that current large language models, which use Transformer-based architectures trained using auto-
regressive losses, fail to learn prospectively. In part, this is because they cannot prospect accurately,
which requires sampling according to a given distribution.

Appendices D and E put prospective learning in context relative to existing ideas in the literature to
address changes in the data distribution. Other appendices collect the proofs and experimental details.

4 Discussion

Prospective learning, as we see it, is a paradigm of learning that characterizes many real-world
scenarios which are currently modeled using much stronger (and less accurate) assumptions. These
simplifying assumptions have certainly enabled progress in machine learning. But systems deployed
built upon these approaches have proven to be extremely fragile in certain real-world settings. Today’s
AI systems fail to track realistic changes in the data. They certainly do not model how biological
organisms learn robustly and effectively over time.
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A Theoretical foundations of prospective learning

Definition 1 (Strong Prospective Learnability). A family of stochastic processes is strongly
prospectively learnable, if there exists a learner with the following property: there exists a time t′(ϵ, δ)
such that for any ϵ, δ > 0 and for any stochastic process Z from this family, the learner outputs a
hypothesis h such that P [Rt(h)−R∗

t < ϵ] ≥ 1− δ, for any t > t′.

This definition is similar to the definition of strong learnability in PAC learning with one key difference.
Prospective Bayes risk R∗

t depends upon the realization of the stochastic process z≤t up to time t.
In PAC learning, it would only depend upon the true distribution of the data. Not all families of
stochastic processes are strongly prospectively learnable. We therefore also define weak learnability
with respect to a “chance” learner that predicts E[Y ] and achieves a prospective risk R0

t .6

Definition 2 (Weak Prospective Learnability). A family of stochastic processes is weakly prospec-
tively learnable, if there exists a learner with the following property: there exists an ϵ > 0 such that
for any δ > 0, there exists a time t′(ϵ, δ) such that for any stochastic process Z from this family,
P
[
R0
t −Rt(h) > ϵ

]
≥ 1− δ, for any t > t′.

In PAC learning for binary classification, strong and weak learnability are equivalent [16] in the
distribution agnostic setting, i.e., when strong and weak learnability is defined as the ability of a
learner to learn any data distribution. But even in PAC learning, if there are restrictions on the data
distribution, strong and weak learnability are not equivalent [17]. This motivates Proposition 1 below.
Before that, we define a time-agnostic empirical risk minimization (ERM)-based learner. In PAC
learning, ERM selects a hypothesis that minimizes the empirical loss on the training data. It outputs a
time-agnostic hypothesis, i.e., using data, say, z≤t standard ERM returns the same predictor for future
data from any time t′ > t. There is a natural application of ERM to prospective learning problems,
defined below.
Definition 3 (Time-agnostic ERM). Let H be a hypothesis class that consists of time-agnostic
predictors, i.e., ht = ht′ for any t, t′ ∈ N for all predictors h ∈ H. Given data z≤t, a learner that
returns

ĥ = argmin
h∈H

1

t

t∑
s=1

ℓ(s, hs(xs), ys) (5)

is called a time-agnostic empirical risk minimization (ERM)-based learner.

Time-agnostic ERM in prospective learning may use a time-dependent loss ℓ(s, hs(xs), ys) upon the
training data. This ERM is not very different from standard ERM in PAC learning (when instantiated
with the hypothesis class that consists of sequences of predictors, that we are interested here). If
data is IID (Scenario 1), then there is no information provided by time in the training samples. But
if there are temporal patterns in the data, take Scenarios 2 and 3 or Scenario 4 as examples, then
time-agnostic ERM as defined here will return predictors that are different than those of standard
ERM that uses a time-invariant loss.
Proposition 1. There exist stochastic processes for which time-agnostic ERM is not a weak prospec-
tive learner. There also exist stochastic processes for which time-agnostic ERM is a weak prospective
learner but not a strong one.

See Appendix I for the proof. We do not know yet whether (or when) strong and weak learnability
are equivalent for prospective learning.

B Prospective Empirical Risk Minimization (ERM)

In PAC learning, the hypothesis returned by ERM using the training data can predict arbitrarily well
(approximate the Bayes risk arbitrarily well with arbitrarily high probability), with a sufficiently large
sample size. This statement holds if (a) there exists a hypothesis in the hypothesis class whose risk
matches the Bayes risk asymptotically, and (b) if risk on training data converges to that on the test
data sufficiently quickly and uniformly over the hypothesis class [18, 19]. Theorem 1 is an analogous
result for prospective learning.

6We can also define weak learnability with respect to the prospective risk of a particular learner, even one
that is not prospective. This may be useful to characterize learning for stochastic processes which do not admit
strong learnability.
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Theorem 1 (Prospective ERM is a strong prospective learner). Consider a finite family of
stochastic processes Z. If we have (a) consistency, i.e., there exists an increasing sequence of
hypothesis classes H1 ⊆ H2 ⊆ . . . with each Ht ⊆ (YX )N such that ∀Z ∈ Z,

lim
t→∞

E
[

inf
h∈Ht

Rt(h)−R∗
t

]
= 0, (6)

where h ∈ Ht is a random variable in σ(Z≤t), and (b) uniform concentration of the limsup, i.e.,
∀Z ∈ Z,

E

[
max
h∈Ht

∣∣∣∣∣ℓ̄t(h, Z)− max
ut≤m≤t

1

m

m∑
s=1

ℓ(s, hs(xs), ys)

∣∣∣∣∣
]
≤ γt, (7)

for some γt → 0 and ut → ∞ with ut ≤ t (all uniform over the family of stochastic processes), then
there exists a sequence it that depends only on γt such that a learner that returns

ĥ = argmin
h∈Hit

max
uit≤m≤t

1

m

m∑
s=1

ℓ(s, hs(xs), ys), (8)

is a strong prospective learner for this family. We define prospective ERM as the learner that
implements Eq. (8) given train data z≤t.

Appendix I.2 provides a proof, it builds upon the work of Hanneke [20]. The first condition, Eq. (6),
is analogous to the consistency condition in PAC learning. In simpler words, it states that the Bayes
risk can be approximated well using the chosen sequence of hypothesis classes {Ht}∞t=1. The second
condition, Eq. (7), is analogous to concentration of measure in PAC learning, it requires that the
limsup in Eq. (1) is close to an empirical estimate of the limsup (the second term inside the absolute
value in Eq. (7)). At each time t, prospective ERM in Eq. (8) selects the best hypothesis ĥ ∈ Ht

7 for
future times t′ > t, that minimizes an empirical estimate of the limsup using the training data z≤t.
Prospective ERM can exploit the difference between the latest datum in the training set with time t
and the time for which it makes predictions t′ by selecting specific sequences inside the hypothesis
class Ht. For example, in Scenario 2 it can select sequences where alternating elements can be used
to predict on data from even and odd times.

Remark 1 (How to implement prospective ERM?). An implementation of prospective ERM is
therefore not much different than an implementation of standard ERM, except that there are two
inputs: time s and the datum xs. Suppose we use a hypothesis class where each predictor is a neural
network, this could be a multi-layer perceptron or a convolutional neural network. The training set
z≤t consists of inputs xs along with corresponding time instants s and outputs ys. To implement
prospective ERM, we modify the network to take (s, xs) as input (using any encoding of time, we
discuss one in Appendix C) and train the network to predict the label ys. In Eq. (8) we can set uit ≡ t,
doing so only changes the sample complexity. At inference time, this network is given the input
(t′, xt′) to obtain the prediction yt′ . Note that if prospective ERM is implemented in this fashion, the
learner need not explicitly calculate the infinite sequence of predictors.8

Corollary 1. There exist stochastic processes for which time-agnostic ERM is not a strong prospective
learner, but prospective ERM is a strong learner.

Remark 2 (Why we need an increasing sequence of hypothesis classes H1 ⊆ H2 . . . ). We could
have chosen Ht = Ht′ for all t, t′ ∈ N to set up Theorem 1. But since the learner does not have a lot of
data at early times, it should use a small hypothesis class. Just like PAC learning, the sequence (γt)t∈N
in Eq. (7) determines the convergence rate of a prospective learner. Therefore, using a monotonically
increasing sequence of hypothesis classes is useful to ensure a good sample complexity.

Theorem 2. Consider a finite family of stochastic processes Z. If there exists a countable hypothesis
class H such that

lim
t→∞

E
[
inf
h∈H

Rt(h)−R∗
t

]
= 0, (9)

for any stochastic process Z ∈ Z, where h ∈ H is a random variable in σ(Z≤t), then there exist Ht,
ut, and γt such that the two conditions of Theorem 1 are satisfied for this family.

7Note that this hypothesis class has infinite sequences, Ht ⊆
(
YX )N.

8Hereafter, when we write ERM in empirical studies, we will mean a learner that approximates ERM via
stochastic gradient descent.
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Appendix I.3 provides a proof. This theorem provides a concrete example for which the assumptions
of Theorem 1 are satisfied. In PAC learning, one first proves uniform convergence for a finite
hypothesis class. This can then be used to, say, calculate the sample complexity of ERM, or extended
to infinite hypothesis classes using constructions such as VC-dimension and covering numbers [21].
The above theorem should be understood in the same spirit. It is a step towards characterizing the
sample complexity of prospective learning.

Appendix G proves an analogue of Theorem 1 for prospective learning problems with discounted
losses. Appendix H provides illustrative examples of prospective ERM for periodic processes and
hidden Markov processes. For periodic processes, we can also calculate the sample complexity.

C Experimental Validation

This section demonstrates that we can implement prospective ERM on prospective learning prob-
lems constructed on synthetic data, MNIST and CIFAR-10. In practice, prospective ERM may
approximately achieve the guarantees of Theorem 1. We will focus on the distribution changing,
independently or not (Scenarios 2 and 3). Recall that Scenario 1 is the same as the IID setting used in
standard supervised learning problems. Scenario 4 is more involved (see an example in Appendix F.3)
and, therefore, we leave more elaborate experiments for future work. We discuss experiments that
check whether large language models can do prospective learning in Appendix L.

Learners and hypothesis classes. Task-agnostic online continual learning methods are the closest
algorithms in the literature that can address situations when data evolves over time. We use the
following three methods.

(i) Follow-the-Leader minimizes the empirical risk calculated on all past data and is a no-regret
algorithm [22]. We note that while this is a popular online learning algorithm, we do not
implement the algorithm in an online fashion.

(ii) Online SGD fine-tunes the network using new data in an online fashion. At every time-step,
weights of the network are updated once using the last eight samples.

(iii) Bayesian gradient descent [23] is an online continual learning algorithm designed to
address situations where the identity of the task is not known during both training and
testing, i.e., it implements continual learning without knowledge of task boundaries.

These three methods are not explicitly designed for prospective learning but they are designed to
address the changing data distribution t.9 We calculate the prospective risk of the predictor returned
by these methods; note that they do not output a time-varying predictor and consequently, these
methods output a time-agnostic hypothesis. As a result, when we evaluate the prospective risk of
these methods, we use the same hypothesis for all future time. For all three methods, we use a
multi-layer perceptron (MLP) for synthetic data and MNIST, and a convolutional neural network
(CNN) for CIFAR-10.

For prospective ERM the sequence of predictors is built by incorporating time as an additional input
to an MLP or CNN as follows. For frequencies ωi = π/i for i = 1, . . . , d/2, we obtain a d-dimensional
embedding of time t as φ(t) = (sin(ω1t), . . . , sin(ωd/2t), cos(ω1t), . . . , cos(ωd/2t)). This is similar to
the position encoding in Vaswani et al. [25]. A predictor ht(·) uses a neural network that takes as
input, an embedding of time φ(s), and the input xs to predict the output ys for any time s ∈ N. Using
such an embedding of time is useful in prospective learning because, then, one need not explicitly
maintain the infinite sequence of predictors h ≡ (h1, . . . , ).

Training setup. We use the zero-one error 1{ŷ ̸= y} to calculate prospective risk for all problems;
all learners are trained using a standard surrogate of this objective, the cross-entropy loss. For all
experiments, for each time t, we calculate the prospective risk Rt(h) in Eq. (2) of the hypothesis
created by these learners for a particular realization of the stochastic process z≤t. For each prospective
learning problem, we generate a sequence of 50,000 samples. Learners are trained on data from the
first t time steps (z≤t) and prospective risk is computed using samples from the remaining time steps.

9There are many algorithms in the existing literature that the reader may think of as reasonable baselines. We
have chosen a representative and relevant set here, rather than an exhaustive one. For example, online meta-
learning approaches are close to online-SGD; since the learner fine-tunes on the most recent data. Algorithms
in the literature on time-series (i) focus on predicting future data, say, Yt′ given past data y≤t without taking
covariates Xt′ or some exogenous variables X≤t into account, (ii) can usually only make predictions for a
pre-specified future context window [24], and (iii) work for low-dimensional signals (unlike images).
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Except for online SGD and Bayesian gradient descent, learners corresponding to different times are
trained completely independently. See Appendix J for more details.
Remark 3 (Why we do not use existing benchmark continual learning scenarios). The tasks
constructed below resemble continual learning benchmark scenarios such as Split-MNIST or Split-
CIFAR10 [26] where data from different distributions are shown sequentially to the learner. However,
there are three major differences. First, in these existing benchmark scenarios, data distributions
do not evolve in a predictable fashion, and prospective learning would not be meaningful. Second,
existing scenarios consider a fixed time horizon. We are keen on calculating the prospective risk for
much longer horizons whereby the differences between different learners are easier to discern; our
experiments go for as large as 30,000 time steps. Third, our tasks have the property that the Bayes
optimal predictor changes over time.

C.1 Prospective learners for independent but not identically distributed data (Scenario 2)

We create tasks using synthetic data, MNIST and CIFAR-10 datasets to design prospective learning
problems when data are independent but not identically distributed across time (Scenario 2).

Dataset and Tasks. For the synthetic data, we consider two binary classification problems (“tasks”)
where the input is one-dimensional. Inputs for both tasks are drawn from a uniform distribution
on the set [−2,−1] ∪ [1, 2]. Ground-truth labels correspond to the sign of the input for Task 1, and
the negative of the sign of the input for Task 2. For MNIST and CIFAR-10 we consider 4 tasks
corresponding to data from classes 1-5, 4-7, 6-9 and 8-10 in the original dataset, i.e., the first task
considers classes 1-5 labelled 1-5 respectively, the second task considers classes 4-7 labelled 1-4, the
third task considers classes 6-9 labeled 1-4 and the last task considers labels 8-10 labelled 1-3. In
other words, images from class 1 in task 1, class 4 from task 2 and class 6 from task 3 are all assigned
the label 1. For the prospective learning problem based on synthetic data, the task switches every
20 time steps. For MNIST and CIFAR-10, the data distribution cycles through the 4 tasks, and the
distribution of data changes every 10 time-steps. For more details, see Appendix J.
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Figure 2: Prospective ERM can achieve good instantaneous and prospective risk in Scenario 2. Left:
Instantaneous and prospective risks for problems constructed using synthetic data (see text) across 5 random
seeds (which govern the sequence of samples and the weight initializations of neural networks). Instantaneous
risk spikes when the task switches for many online learning baseline algorithms. In contrast, prospective ERM
has minimal spikes at later times and both instantaneous and prospective risks eventually converge to zero.
Right: Prospective risk for different baseline algorithms and prospective ERM for tasks constructed using
MNIST and CIFAR-10 for Scenario 2. In all three cases, the risk of prospective ERM approaches Bayes risk
while online learning baselines considered here do not achieve a low prospective risk. For comparison, the
chance prospective risk is 0.5 for synthetic data and 0.742 for MNIST and CIFAR-10 tasks.

Fig. 2 shows that prospective ERM can learn problems when data are independent but not
identically distributed (Scenario 2). For prospective learning problems constructed from synthetic
data, the risk of prospective ERM converges to prospective Bayes risk over time. For the MNIST and
CIFAR-10 prospective problems, the prospective learning risk drops precipitously. In contrast, online
learning baselines discussed above achieve a far worse prospective risk. Observe that Follow-the-
Leader (blue) performs as well, or better, as online SGD and Bayesian GD. This is not surprising,
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while ERM models corresponding to each time t were trained independently, networks corresponding
to online SGD and Bayesian GD were training in an online fashion; in practice it is often difficult to
tune online learning methods effectively [27].10

C.2 Prospective learners when data are neither independent nor identically distributed
(Scenario 3)
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Figure 3: Left: For MNIST and CIFAR-10, we consider 4 tasks corresponding to the classes 1-5, 4-7, 6-9
and 8-10. Using these tasks, we construct Scenario 3 problems corresponding to a stochastic process which is
a hierarchical hidden Markov model. After every 10 time-steps, a different Markov chain governs transitions
among tasks (one Markov chain for tasks 1 and 2, and another for tasks 3 and 4). This ensures that the
stochastic process does not have a stationary distribution. Right: For synthetic data, the 4 tasks are created
using two-dimensional input data as shown pictorially above. The four parts of the input domain are {(x1, x2) :
1 ≤ x1, x2 ≤ 2}, {(x1, x2) : 1 ≤ x1 ≤ 2, and − 2 ≤ x2 ≤ −1}, {(x1, x2) : −2 ≤ x1, x2 ≤ −1} and
{(x1, x2) : −2 ≤ x1 ≤ −1 and 1 ≤ x2 ≤ 2}. Colors indicate classes. The hierarchical hidden Markov model
for transitions among the tasks is identical to the MNSIT and CIFAR-10 setting shown on the left.
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Figure 4: Prospective ERM can achieve good prospective risk in Scenario 3. Prospective risk across 5
random seeds (which govern the sequence of samples and the weight initializations of neural networks). In
all three cases, the risk of prospective ERM approaches Bayes risk while a number of baseline algorithms do
not achieve a low prospective risk. Stochastic processes in these problems corresponding to Scenario 3 do not
have an invariant distribution. This is why a time-agnostic hypothesis (ERM) that is constructed by the baseline
algorithms does not achieve a good prospective risk.

Dataset and Tasks. For synthetic data, we construct 4 binary classification problems with two-
dimensional input data (see Fig. 3 and caption for details). For CIFAR-10 and MNIST, we consider
four tasks corresponding to the classes 1-5, 4-7, 6-9 and 8-10. Using these tasks, we construct
problems where the data distribution is governed by a stochastic process which is a hierarchical
hidden Markov model (Scenario 3). After every 10 time-steps, a different Markov chain governs
transitions among tasks (one Markov chain for tasks 1 and 2, and another for tasks 3 and 4, as shown
in Fig. 3). These choices ensure that the stochastic process does not have a stationary distribution.11

As Fig. 4 shows, prospective ERM can prospectively learn problems when data is both in-
dependent and not identically distributed (Scenario 3. Stochastic processes in these problems
corresponding to Scenario 3 do not have a stationary distribution. This is why a time-agnostic

10For CNNs on CIFAR-10, if one concatenates the time embedding directly to the input images as opposed
to concatenating to a layer before softmax, like it is done here, the prospective risk in Fig. 2 (right) is much
higher (worse by almost 0.2. See Fig. A.6). The implementation details of time embedding do matter when
implementing prospective learners in practice, even if Theorem 1 is true in general.

11As we discussed in Scenario 3, prospective Bayes risk can be trivial in situations when the stochastic process
has a stationary distribution.
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hypothesis (Follow-the-Leader) does not achieve a good prospective risk, unlike prospective ERM.
Appendix K discusses additional experiments for Scenario 3 for different kinds of Markov chains.

D How is prospective learning related to other learning paradigms? 12

Distribution shift. Prospective learning [28] is equivalent to PAC learning [29] in Scenario 1 when
data is IID. Situations when this assumption may not be valid are often modeled as a distribution
shift between train and test data [2]. Techniques such as propensity scoring [30, 31] or domain
adaptation [32, 33] reweigh or map the train/test data to get back to the IID setting; techniques like
domain invariance [34, 1] build a statistic that is invariant to the shift. Typically, the loss is unchanged
across train and test data. If the set of marginals {P(Zt)} of the stochastic process only has two
elements, then PL is equivalent to the classical distribution shift setting. But otherwise, in PL, data is
correlated across time, distributions (marginals) can shift multiple times, and risk changes with time.

Multi-task, meta-, continual, and lifelong learning. A changing data distribution could be modeled
as a sequence of tasks. Depending upon the stochastic process, different concepts are relevant,
e.g., multi-task learning [35] is useful for Scenario 2 and Appendix H when there are a finite
number of tasks. Much of continual or lifelong learning [10, 9] focuses on “task-incremental” and
“class-incremental" settings [36], in which the learner knows when the task switches. PL does not
make this assumption, and therefore, the problem is substantially more difficult. “Data-incremental”
(or task-agnostic) setting [37], is similar to PL. But the main difference is the goal: continual or
lifelong learning seeks to minimize past error. As a consequence, continual learning methods are
poor prospective learners; see Appendix C. Online meta-learning [38–41] is close to task-agnostic
continual learning, except that the former models tasks as being sampled IID from some distribution
of tasks. Due to this, one cannot predict which task is next, and therefore cannot prospect.

Sequential decision making and online learning. PL builds upon works on learning from streaming
data. But our goals are different. For example, Gama et al. [42] minimize the error on samples from
a stationary process; Hayes et al. [43] minimize the error on a fixed held-out dataset or on all past
data—neither of these emphasizes prospection. There is a rich body of work on sequential decision
making, e.g., predicting a finite-state, stationary ergodic process from past data [44]. Even in this
simple case, there does not exist a consistent estimator using the finite past Z1:t [45–47]. This is
also true for regression [48, 49], when the true hypothesis f∗ s.t. Yt = f∗(Xt) is fixed. In other
words, Bayes risk R∗

t in Theorem 1 may be non-zero in PL even for finite-state, stationary ergodic
processes. Hanneke [20] lifts the restriction on stationarity and ergodicity. They obtain conditions on
the input process X for consistent inductive (predict at time t′ > t using data up to t), self-adaptive
(predict at time t′ using Z≤t and Xt+1:t′ ) and online learning [50, 51] (predict at t′ using Z≤t′ ). They
prove the existence of a learning rule that is consistent for every X that admits self-adaptive learning.
If X is “smooth”, i.e., input marginals have a similar support over time, then ERM has a similar
sample complexity as that of the IID setting [52]. Haghtalab et al. [53] give algorithmic guarantees
for several online estimation problems in this setting.

The true hypothesis in PL can change over time. This is different from the continual learning setting
where we can find a common hypothesis for tasks at all time [54], and this is why our proofs work
quite differently from existing ones in the literature. Instead of a hypothesis class H ⊆ YX , we define
the notion of a hypothesis class that consists of sequences of predictors, i.e., subset of (YX )N; we
can do ERM in this new space. Instead of consistency of prediction as in Hanneke [20], we give
guarantees for strong learnability, i.e., convergence of the ERM risk to the Bayes risk.

Information theory. There are also works that have sought to characterize classes of stochastic
processes that can be predicted fruitfully. Bialek et al. [55] defined a notion called predictive
information (closely related to the information bottleneck principle [56]) and showed how it is related
to the degrees of freedom of the stochastic process. Shalizi and Crutchfield [57] showed that a
causal-state representation called an ϵ-machine is the minimal sufficient statistic for prediction.

E Isn’t this just. . .

When we describe prospective learning to people the first time, they often wonder how it is different—
both conceptually and formally—from other previously established learning frameworks. In fact, for
many of them, the English language descriptions are seemingly identical to those which describe

12Also see Appendix E for a more elaborate discussion.

16



prospective learning. However, the English language is often imprecise and this has created a lot of
confusion among both theoreticians and practitioners as to the precise differences, potential benefits
and pitfalls, between different learning frameworks. Here, we provide detailed formal distinctions
between prospective learning and other related learning frameworks. Table A.1 summarizes the key
distinctions between several machine learning frameworks, with further details provided below. The
key difference between prospective learning and all other learning frameworks mentioned below is
that in prospective learning, the hypothesis can make an inference (or take an action) arbitrarily far in
the future. Certain versions of forecasting also have that property (probabilistic forecasting [58]), but
forecasting has several other distinctions.

Table A.1: Comparison of different machine learning frameworks in terms of the distributional assumptions
on the data. Task IID indicates that data within a task are IID, and that tasks are IID from some meta-distribution.
Loss characterizes whether the assumed loss function is instantaneous or time-varying. Optimal hypothesis
indicates the total possible number of different optimal hypotheses (assuming each hypothesis has a unique risk).
Data availability indicates whether the data are available all at once (in batch), or after each task arrives (task
sequential), or one data sample at a time (sequential). The answers are given for typical settings, further details
are available in the paragraphs below.

Framework Data Distribution Loss # Optimal hypotheses Data Availability

PAC Learning IID Instantaneous 1 Batch

Transfer Learning Change Point Instantaneous 1-2 Batch

Meta Learning Task IID Instantaneous # Tasks Batch/Sequential

Lifelong Learning Task IID Instantaneous # Tasks Task Sequential

Online Learning None Instantaneous 1 Sequential

Forecasting Stochastic Process Fixed horizon # Time steps Batch/Sequential

Reinforcement Learning Markov Decision Process Time-varying 1 Sequential

Prospective Learning Stochastic (Decision) Process Instant./Time-varying # Time steps Any

E.1 . . . PAC learning?

PAC learning [59] is a special case of prospective learning when the stochastic process is time-
invariant (meaning the data are IID) and the loss is fixed. Also, it is only concerned with batch data.
It is an interesting question as to whether prospective learning as we have defined here is useful for
IID data. We do not know yet in general. In Appendix F.1, we provide a simple example where
prospection turns out to be beneficial, even in the IID setting. More broadly, we wonder whether the
viewpoint proposed in this paper might lead to novel algorithms for solving learning problems on IID
data that do not have closed form solutions.

E.2 . . . transfer learning?

In transfer learning [33], including domain (covariate) shift (adaptation) [32, 60], and out-of-
distribution (OOD) [61] learning, there are two distributions, a source and a target distribution;
thus, the distribution changes only once, rather than potentially once per time step. Depending on
whether the goal is to perform well only on the target, or both the source and the target, there are
one or two optimal hypotheses. Also, that the distribution has changed is often known (though not
always, as in OOD learning).

E.3 . . . meta-learning?

Meta-learning [62, 63] is similar to multi-task learning [64], and includes as special cases zero-
shot [65] and few-shot learning [66]. Here, the data are Task IID, meaning that the distribution
within a task is IID, and the distribution of tasks themselves is also IID, rendering it impossible to
predict future distributions very well (the best one could do is guess the next task is whichever task
is most likely). Typically, that the task/distribution changes is known, but not always. In classical
meta-learning, data are available in one batch, but in online meta-learning, data are sequentially
available [67]. The goal is to perform well on the next (unknown) distribution, as opposed to all
future (unknown) distributions as in prospective learning.
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E.4 . . . lifelong learning?

Lifelong (continual) learning [10, 9, 68] is nearly identical to online meta-learning [67]. However,
the data are typically available in one batch per task. The goal is also a bit different, rather than
performing well on the next distribution, in lifelong learning, the goal is also to continue performing
well on previous distributions. Often, the learner is aware that the distribution shifted [36], but not
always [37].

E.5 . . . online learning?

A key property of online learning [69] is that there are no distributional assumptions [70], and
therefore, the goal is not about generalization error. Instead, performance is evaluated relative to the
best a fixed hypothesis could have done up until now. Also, in online learning, the environment is
often adversarial.

E.6 . . . forecasting?

Forecasting [71], time-series or sequential analysis [72, 73] assume the data follow a stochastic
process, much like prospective learning often does (e.g., Scenarios 2 and 3), and therefore, the
number of optimal hypothesis can be equal to the number of time steps. However, in forecasting, the
loss is associated with a fixed (pre-specified) horizon, or several horizons [24]. Forecasting also often
assumes a parametric model, but not always [74, 75]. Probabilistic forecasting [58] can also predict
arbitrarily far in the future by iteratively updating its probabilistic forecasts. However, this is prone to
numerical errors, as evidenced in sequential Monte Carlo.

E.7 . . . reinforcement learning?

Reinforcement learning (RL) [11] is only concerned with situations where there is a control el-
ement, that is, the hypothesis chooses an action (which potentially impacts future distributions),
rather than merely an inference (which does not). Thus, it excludes Scenarios 2 and 3. Moreover,
RL theory focuses on Markov Decision Processes [76], whereas PL operates on larger classes of
stochastic decision processes, including non-Markov processes (e.g., see examples of non-Markov
stochastic processes in Scenario 3). Depending on context, PL also considers loss functions that
are instantaneous. Classical RL assumes data are sequentially available, yet offline RL operates in
batch mode [77]. Perhaps most importantly, in classical RL, the optimal hypothesis (policy) is not
time-varying, though recent generalizations are forthcoming [78]. Also, in RL, there are typically
many episodes, whereas in prospective learning there is only a single episode (though single-episode
RL is also forthcoming [79]).

To elaborate on the first point above, assume that our decisions do not impact the future, but the
optimal hypothesis is time-dependent, that is h∗t ̸= h∗t′ for some t ̸= t′. Why would we care about the
risk for any t′ > t (like RL, but not like online/continual learning), given that our decision at time t
does not impact Zt′ at all? We only ever incur the current loss, that is, ℓ(t, ht(xt), yt). So, it would
seem that as long as we minimize this current loss, there is no reason to care about any future loss.
First note that minimizing the expected cumulative future loss is sufficient for minimizing the loss
averaged over a finite future horizon, this is formally shown in Corollary 2. But more importantly,
these two problem settings are rather different. Minimizing the prospective risk (expected cumulative
future loss) forces the learner to learn/model all the different modes of variation in the data. Missing
even a small (low energy) mode of variation can lead to large prospective risk. If the learner only
seeks to minimize the current loss, it need not have any representation of how data evolves over time.
It will not be a good prospective learner. Recall that online learners (which minimize the current loss)
have large worst case regret. Prospective learning effectively evaluates the regret over the infinite
future horizon. The two settings are closely related if data evolves slowly, as argued in Fakoor et al.
[31].

E.8 . . . recurrent neural networks?

Recurrent neural networks (RNNs), including Long Short Term Memory (LSTM) networks [80], as
well as echo state machines and liquid state machines (and other reservoir computing techniques [81]),
and Gaussian Processes [82] seem like they are solving prospective learning problems. Indeed, they
are all reasonable architectures for satisfying the conditions of Theorem 1. Insofar as they do satisfy
those conditions, then they are indeed prospective learners.
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F Calculations for scenarios in Section 2.1

F.1 Can learning benefit from prospection in the IID scenario?

Consider Scenario 1 where the learner returns the hypothesis ht′ = ht = threshold(p̂t > 0.5) for
all t′ > t, where p̂t = 1

t

∑t
s=1 ys is the maximum likelihood estimator (MLE). Alternatively, if

we assume a prior distribution Beta(α, β) over p, then the resulting maximum a posteriori (MAP)
estimate is p̂t =

α+
∑t

s=1 zs−1
α+β+t−2 . We define a second prospective learner based on MAP that returns

the sequence ĥ≥t = (ĥt, ĥt, · · · ), where ĥt = threshold(p̂t > 0.5) for all future times beyond t. If
the prior distribution has a small divergence with respect to the true posterior distribution, then the
second learner converges faster to the Bayes optimal risk; for a poor choice of prior, the convergence
is slower. However, in such situations, we show that we can modify the MAP-based learner to use
prospection and incorporate “time” to result in faster convergence to the Bayes risk.

Let y1, . . . , yt be the IID sample sequence observed up to time t. The idea here is to compute the rate
of change ∆p(t) of the MAP estimate at time t which is given by,

∆p(t) = MAP(y1, . . . , yt)− MAP(y1, . . . , yt−1) (10)

Taking expectation on both sides of Equation (10), and plugging in p̂t = MAP(y1, . . . , yt) for the true
parameter p, we construct the following estimate for ∆p(t).

∆̂p(t) =
(α− 1) + tp

(α− 1) + (β − 1) + t
− (α− 1) + (t− 1)p

(α− 1) + (β − 1) + t− 1

Using this rate of change, we may forecast the estimate pt′ at time t′ > t as follows.

p̂t′ = p̂t +

t′−1∑
s=t

∆̂p(s)

5 10 15
Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
os

pe
ct

iv
e 

ris
k

Scenario 1
Independent and identically distributed data

MLE
MAP (prior  = 12,  = 16)
proMAP (prior  = 12,  = 16)
Bayes risk

Figure A.1: Prospective risk of MLE (blue), MAP (purple), and prospective MAP (red) based learners with
respect to time. Both MAP and prospective MAP estimators assume a prior distribution of Beta(12, 16) over p.

We refer to this as the prospective MAP estimate. Based on it, we set the hypothesis to be ht′ =
threshold(p̂t′ > 0.5) for all future times beyond t. In Figure A.1, we plot the prospective risk the MLE,
MAP, and prospective MAP-based learners. Due to an unfavorable prior, the MAP-based learner
converges slowly. However, prospective MAP-based learner manages to leverage its forecasting to
achieve a faster convergence rate despite having the same prior as the MAP. This shows that we can
indeed benefit from prospection even in the IID case.
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F.2 Bayes risk for a Markov chain

We would like to compute the prospective Bayes risk, when the evolution of the samples is governed
by a Markov transition matrix where P (Yt+1 = 0 | Yt = 0) = θ0 and P (Yt+1 = 1 | Yt = 1) = θ1, i.e.,
the transition matrix is

Γ =

[
θ0 1− θ0

1− θ1 θ1

]
.

The probability distribution at time t′ is given by Γt′−t(zt, 1− zt)
T . The eigenvalues of the transition

Y0 Y1

θ0 1 − θ0
θ1

1 − θ1

Figure A.2: Markov chain describing the evolution of data

matrix are λ1 = 1 and λ2 = θ0 + θ1 − 1 with the corresponding eigenvectors being (1, 1)⊤ and
(θ0 − 1, 1− θ1)

⊤. Diagonalizing Γ we get

Γt′−t =

[
1 θ0 − 1
1 1− θ1

] [
λt

′−t
1 0

0 λt
′−t
2

][
1 θ0 − 1
1 1− θ1

]−1

=
1

(2− θ0 − θ1)

[
1− θ1 + (1− θ0)λ

t′−t
2 (1− θ0)− λn2

1 + θ1 + (1− θ0)λ
t′−t
2 (1− θ0) + λn2 .

]

which implies that the probability distribution of the state at time t′ is

πt′ =
1

(2− θ0 − θ1)

[
1− θ1
1− θ0

]
+

λt
′−t
2 ((1− θ0)(1− zt)− (1− θ1)zt)

(2− θ0 − θ1)

[
1
−1

]
.

Hence, the optimal sequence of hypotheses is h∗≥t+1 = (h∗t+1, h
∗
t+2, . . . ), where

h∗t′ = argmax
i∈{0,1}

πt′(i)

with Bayes risk equal to R∗
t = limT→∞

1
T

∑T
s=t mini∈{0,1} π

′
t(i). This reduces to

R∗
t =

1

(2− θ0 − θ1)
min(1− θ0, 1− θ1);

the second term in the expression of πt′ vanishes as T → ∞. If θ0 = 0.9 and θ1 = 0.5, then R∗
t = 1/6.

If we restrict our attention to the case where θ0 = θ1, the discounted Bayes risk reduces to

(1− γ)

∞∑
s=t+1

γs−t−1ℓ(h∗s) = (1− γ)
∞∑

s=t+1

γs−t−1

2
−

γs−t−1
∣∣∣λs−t

2

∣∣∣
2

 = (1− γ)

(
1

2(1− γ)
− |λ2|

2(1− |λ2|γ)

)
Substituting θ0 = θ1 = 0.1, the discount risk for γ = 0.9 is 0.357.

F.3 Prospective learning in Scenario 4 when the future depends upon the current prediction

There are two types of prospective learners—one that passively observes the environment and makes
inferences and another that acts on the environment and influences it. Scenario 1, Scenario 2,
Scenario 3 fall into the first category which is the primary emphasis of our paper. Scenario 4 presents
a prospective learning problem where the learner can influence the future realizations of the stochastic
process through its decisions.

Our prospective learner is inspired from reinforcement learning, where the current state is Yt−1, the ac-
tion is ht and the next state is Yt. The reward at the tth time-step is r(t, ht+1, yt+1) = 1 {ht+1 = yt+1}
as a result of selecting action ht+1 given that the previous output was yt, and next output
yt+1. The learner estimates the transition matrix corresponding to the MDP for each decision
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ht+1(Xt+1) ∈ {0, 1} using a similar procedure as that of Scenario 3,

∀k ∈ {0, 1} : Γ̂t(k) =

[
θ̂k 1− θ̂k

1− θ̂k θ̂k

]
where θ̂ ≡ θ̂t ∈ [0, 1]2 after t time steps. Using this estimate of Γ̂t, the learner solves for the value
function (corresponding to the discounted prospective risk) that satisfies

Q̂t(yt, ht+1) =
∑

y∈{0,1}
P(Yt+1 = y | Yt = yt, ht+1 = h)︸ ︷︷ ︸

=Γ̂t(ht+1)yt,y

(
r(t, ht+1, y) + γmax

h̄
Q̂t(y, h̄)

)

The value function can be solved using value iteration, iteratively until convergence. For a given Γ̂,
Banach’s fixed point theorem guarantees this procedure will converge to the optimal value function
in the tabular setting [83]. Once we have the Q-values Q̂t, we can use it to take actions. The optimal
action at time t′ is argmaxh Q(yt′ , h). However, unlike reinforcement learning, we do not know yt′
for t′ > t and we must instead make a sequence of decisions using state yt. The sequence of decision
made by the learner is ĥ>t = (ĥt+1, . . . ) where

π̂⊤
t′ = π⊤

t

t′∏
s=t+1

Γ̂t(ĥs−1),

πt = (1− yt, yt)
⊤, i.e., πt′ is the estimated distribution over the state at time t′, and

ĥt′+1 = argmax
h

π⊤
t′ Q̂t(·, h).

In Fig. 1, we have used θ0 = θ1 = 0.1 and a discount factor γ = 0.9. We find that this learner
approaches the Bayes risk (0.357 which we calculate in Appendix F.2).

G Prospective ERM for discounted losses

Like we discussed in Scenario 3, in order to prospect meaningfully for some stochastic processes, we
might need to consider a discounted future loss, e.g., the one in Eq. (4). Theorem 1 was proved only
for the averaged future loss in Eq. (1). Here, we sketch out the proof of an analogous theorem for the
discounted loss. Let

ℓ
(τ)
t (h, Z; γ) =

(
1− γ

1− γτ+1

) t+τ∑
s=t+1

γs−t−1ℓ(hs(xs), ys),

where ℓ : Y × Y 7→ [0, 1] is a bounded loss function and 0 < γ < 1 is a constant. In general, we can
use a probability measure µ(τ) supported on integers {1, . . . , τ} to write the loss as

ℓ
(τ)
t (h, Z;µ(τ)) =

t+τ∑
s=t+1

µ
(τ)
s−tℓ(hs(xs), ys). (11)

The averaged loss in Eq. (1) corresponds to µ
(τ)
s = 1/τ for all s. The discounted loss above

corresponds to µ
(τ)
s =

(
1−γ

1−γτ+1

)
γs−1.

In prospective learning, we are interested in the case when τ → ∞ and therefore let us define

ℓ̄t(h, Z;µ) = lim sup
τ→∞

ℓ
(τ)
t (h, Z;µ(τ)).

where µ denotes the collection {µ(τ)}∞τ=1. We can define Rt(h;µ) and R∗
t (µ) for this discounted loss

using similar expressions as those in Eqs. (2) and (3). For clarity, let us use the notation Rt(h, 1/τ) ≡
Rt(h) and R∗

t (1/τ) ≡ R∗
t for the prospective risk and prospective Bayes risks corresponding to the

averaged loss corresponding to µ
(τ)
s = 1/τ .

Corollary 2 (Prospective ERM is a strong learner with discounted losses). Let the assumptions
of Theorem 1 hold. If there exists a constant c > 0 such that ∀Z ∈ Z,

Rt(h;µ)−R∗
t (µ) ≤ c

(
Rt(h, 1/τ)−R∗

t (1/τ)
)

∀t ∈ N, h ∈ Ht (12)
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i.e., if gap in the risk for the discounted loss is dominated uniformly by the gap in the risks for the
averaged loss (over all realizations of the stochastic process), then prospective ERM implemented
in Eq. (8) (implemented with the averaged loss) is a strong prospective learner, i.e., its discounted
risk Rt(ĥ, µ) converges to the discounted Bayes risk R∗

t (µ).

Proof. The assumption in Eq. (12) ensures that

P
(∣∣∣Rt(ĥ, µ)−R∗

t (µ)
∣∣∣ ≥ cϵ

)
≤ P

(∣∣∣Rt(ĥ, 1/τ)−R∗
t (1/τ)

∣∣∣ ≥ ϵ
)

for any ϵ and t. The right hand-side is shown to converge to zero in the proof of Theorem 1 and
therefore the left-hand side also converges to zero.

A corresponding Theorem 2 also holds for the discounted future loss. Note that Theorems 1 and 2
also hold in a slightly general setting when the measure µ(τ)(ω) is a random variable that depends
upon the realization of the stochastic process ω ∈ Ω.

H An illustrative example of prospective ERM

Suppose we have a stochastic process such that Zt ∼ p(t mod T ) for some known period T , i.e.,
data is independent across time but not identically distributed, and the loss function ℓ(t, ·, ·) is time-
invariant. Scenario 2 is a special case with T = 2. Assume that we can find a countable hypothesis
class G that contains the Bayes plug-in estimator for each pt with t ∈ {1, . . . , T}. Then HT =
{h : ht+T = ht and ht ∈ G ∀t} satisfies Eq. (9), and it is also countable. This implies consistency and
uniform concentration of the limsup for sequences in some sub-classes {Ht}∞t=1 that expands to HT .
Note that even if we do not know the period, we can still implement prospective ERM using the
hypothesis class ∪T∈NHT ; this is a countable set. Prospective ERM is therefore a strong prospective
learner if the period T is bounded.
Remark 4 (Implementing prospective ERM for periodic processes). If G has a finite VC-
dimension, choosing Ht = HT for any t > T as the increasing sequence of hypothesis classes
in Theorem 1 guarantees the existence of limm→∞ 1

m

∑m
s=1 ℓ(s, hs(xs), ys). We can therefore choose

ut = t in Eq. (7) and thereby select

ĥ = argmin
h∈Ht

1

t

t∑
s=1

ℓ(s, hs(xs), ys)

in Eq. (8). For Ht = HT selected above for the periodic process, this is identical to Eq. (5). In
other words, implementing prospective ERM for a periodic process boils down to solving T different
time-agnostic ERM problems, each using data {zsT+k}∞s=0, k ∈ {1, ..., T}. Observe that this is
precisely the prospective learner we used for the example in Scenario 2 and Fig. 1.
Remark 5 (Sample complexity of prospective ERM for a periodic process). We can calculate the
sample complexity by exploiting the relatedness of the different distributions in the periodic process.
First assume t > T , i.e., at least one sample from each distribution is available. We again pick
Ht = HT for all t > T . Let us assume that ĥt ∈ G for all times t. Let C ≡ C(ϵ/16,GT ) denote the
covering number of a hypothesis class of T -length sequences of hypotheses GT = {(h, . . . , h) : h ∈ G}
using balls of radius ϵ/16 with respect to loss ℓ. Then, using Baxter [84, Theorem 4] we can show
that, if

t ≥ max

{
64

ϵ2
log

4C(ϵ,GT )

δ
,
16T

ϵ2

}
, (13)

then for prospective ERM in Eq. (8) we have

E
[
Rt(ĥ)

]
≤ lim

t→∞
E
[

inf
h∈HT

Rt(h)

]
+ 2ϵ,

with probability at least 1− δ. The sample complexity in Eq. (13) is dominated by the first term in
the curly brackets; Baxter [84, Lemma 5] shows that C(ϵ,GT ) ≤ (C(ϵ,G))T . Sample complexity of
prospective ERM grows at most linearly with the period T , as one would expect.
Remark 6 (Exact sample complexity for a periodic binary classification with one-dimensional
Gaussian inputs). Let the period of the stochastic process be T = 2 with inputs Xt ∈ R and outputs
Yt ∈ {−1, 1}. Suppose Yt ∼ Bernoulli(0.5). The distribution P(Xt | Yt = y) is a Gaussian with
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mean yµ+∆(t mod T ) and variance σ2. In words, for even times t, the mean of the Gaussians are
shifted to the right by ∆. Consider the time-invariant squared error loss ℓ(s, ŷ, y) = (ŷ − y)2. Choose
G = {1A : A ∈ {(−∞, c), (c,∞) : c ∈ R}} to be the set of predictors for Fisher’s linear discriminant
(FLD); the prospective learner selects each element of its hypothesis from G. The calculations in
De Silva et al. [61] for FLD can be used to show that if Ht = {(h, h, . . . ) : h ∈ G} for all times t, then
a time-agnostic ERM has risk

E
[
Rt(ĥ)

]
→ 1/2 [Φ (∆/(2σ)− µ/σ) + Φ (−∆/(2σ)− µ/σ)] ,

where Φ is the Gauss error function. But if Ht = {(h1, h2, h1, h2, . . . ) : h1, h2 ∈ G} for all times t,
then prospective ERM can achieve Bayes risk

E
[
Rt(ĥ)

]
= Φ

(
−tµ/(2σ)(t/2(t/2 + 1))−1/2

)
→ Φ(−µ/σ) = E

[
R∗
t

]
.

Remark 7 (Hidden Markov Models (HMMs)). Suppose Z is sampled from an HMM whose hidden
states evolve according to a kth-order time-homogeneous Markov process with a finite state space.
Select a hypothesis class Hk that consists of sequences h ∈ Hk such that each h satisfies

∀t ∈ N : ht ∈ G and,
∀t1, t2 ∈ N : if ht1+s = ht2+s ∀s ∈ {1 . . . , k} , then ht1+k+1 = ht2+k+1.

This is the hypothesis class that contains sequences of predictors that depend only on the past k
predictors. If we assume, as above, that G is countable, then so is Hk. And it also satisfies Eq. (9)
because of the kth-order Markov property. We can therefore implement prospective ERM using Hk

as the hypothesis class. Observe that in the case when the Markov process underlying the HMM
is deterministic, our example models the output from an auto-regressive language model that uses
greedy decoding. The length of the context window is k, the hidden state of the HMM is the logit at
each step (the next hidden state is a deterministic function of the previous k ones), and the output
of the HMM Zt is the next token. Our theory therefore shows that the output of such a model is
prospectively learnable if the learner has access to the sequence of tokens.

I Proofs

I.1 Proof of Proposition 1

Let X = {−1, 1} and Y = {0, 1}. Consider two distributions P1 and P2 (Fig. A.3):

P1(X = x) = P2(X = x) =
1

2
∀x,

P1(Y = 1 | X = x) =

{
θ if x = 1

1− θ if x = −1,

P2(Y = 1 | X = x) =

{
1− θ if x = 1

θ if x = −1,

In other words, the inputs have the same marginals but the labels are flipped between P1 and P2.
Consider a stochastic process Z such that Z2t+1 ∼ P1 and Z2t ∼ P2 where t ∈ N.

Let G be any hypothesis class and let ℓ(s, ŷ, y) = 1(ŷ ̸= y) be the time-invariant zero-one loss. The
time-agnostic learner uses a sequence of hypotheses h ≡ (ht) where ht = ht′ ∀ t, t′ ∈ N to make

y = 0y = 1 y = 0 y = 1

−1 1 1−1

P1 P2

Figure A.3: A simple stochastic process that is not weakly prospectively learnable.
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predictions at all times. The future loss is

ℓ̄t(h, Z) = lim
τ→∞

1

2τ

t+2τ∑
s=t+1

ℓ(s, hs(Xs), Ys) = R1(h) +R2(h) =
1

2
,

almost surely; here R1(h) and R2(h) are risks on data from distributions P1 and P2 at odd and even
times, respectively. The last equation follows from the fact that R1(h) = 1 − R2(h) because the
labels are flipped. Prospective Bayes risk is zero if the hypothesis class G contains the Bayes optimal
hypotheses for each of the two distributions. The future loss evaluates to 1/2 for all realizations
and so does the prospective risk. The prospective risk of a hypothesis sequence that makes random
predictions (zero or one with equal probability at each instant) is also 1/2. This stochastic process is
not weakly prospective learnable.

−1 1 1−1

P1 P2

00

y = 0
y = 1

Figure A.4: A simple stochastic process that is weakly but not strongly prospectively learnable.

Now consider the two distributions shown in Fig. A.4,

P1(X = x) = P2(X = x) =
1

3
∀x,

P1(Y = 1 | X = x) =

{
θ if x ≤ 0

1− θ if x = 1,

P2(Y = 1 | X = x) =

{
1− θ if x ≥ 0

θ if x = −1.

Inputs are supported on the set {−1, 0, 1} this time. Again consider a stochastic process Z such that
Z2t+1 ∼ P1 and Z2t ∼ P2 for t ∈ N. For a time-agnostic learner, since its hypothesis h at each time
step has to predict incorrectly at x = 0, we have R1(h) +R2(h) ≥ 1

3 . The future loss is

ℓ̄t(h, Z) = lim
τ→∞

1

2τ

t+2τ∑
s=t+1

ℓ(s, h(Xs), Ys) = R1(h) +R2(h) ≥
1

3
.

almost surely. It follows that the prospective risk Rt(h) ≥ 1
3 for any hypothesis. Prospective Bayes

risk is again zero and therefore this stochastic process is not strongly prospectively learnable. It is
however weakly learnable.

A hypothesis that predicts ŷ = ±1 with equal probability has R0
t = 0.5. If the data contains samples

for x ∈ {−1, 1}, ERM will select a hypothesis that minimizes the empirical risk which necessitates
that h(1) = 0 and h(−1) = 1. Therefore R1(h) +R2(h) ≤ 1

3 + ϵ, since h predicts correctly at x = ±1,
and incorrectly at x = 0 exactly one of the two distributions. The constant ϵ can be chosen to be
∝ t−1/2 after receiving data from t timesteps. The probability with which we do not get samples
at x = 1 or at x = −1, is 2 × 3−t. Therefore the probability that R1(h) + R2(h) ≤ 1

3 + ϵ is at least
1− 3−t+1 after t time steps. This learner is therefore better than the chance learner whose risk is R0

t
and it is a weak prospective learner. This shows that there exist stochastic processes that are weakly
prospective learnable using time-agnostic ERM but not strongly.

I.2 Proof of Theorem 1

We first show that for each Z ∈ Z, if Eqs. (6) and (7) holds, then the risk of estimator in Eq. (8)
converges in probability to the Bayes optimal, i.e.

P
(∣∣∣Rt(ĥ

(t))−R∗
t

∣∣∣ < ϵ
)
→ 1.
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By taking
t = max

{
t : P

(∣∣∣Rt(ĥ
(t))−R∗

t

∣∣∣ < ϵ
)
≥ 1− δ ∀t′ ≥ t, Z ∈ Z

}
we can trivally show that the strong prospecitve learnability of estimator in Eq. (8) holds over the
family Z.

We first state a lemma that gives a choice of a random hypothesis h(t) ∈ σ(Z≤t) converging to the
Bayes optimal risk under the consistency assumption. First we define the shorthand

em(h) ≡ 1

m

m∑
s=1

ℓ(s, hs(Xs), Ys).

Lemma 3. For a stochastic process Z, for an increasing sequence of hypothesis H1 ⊆ H2 ⊆ . . . such
that the consistency condition in Eq. (6) is satisfied, for any ut satisfying ut ≤ t, ut → ∞, there exists
h(t) ∈ σ(Z≤t), a Ht-valued random variable, such that

E

[
sup

ut≤m≤∞
em(h(t)) | Z≤t

]
−R∗

t → 0 (14)

almost surely.

Proof. By Eq. (6), there exists h(t) ∈ σ(Z≤t), a Ht-valued random variable such that

lim
t→∞

E
[
Rt(h

(t))−R∗
t

]
= 0

Here, h(t) ∈ σ(Z≤t) means that h(t) is constant on the set {Z≤t = z≤t}. By the assumption on h(t),
we have

Rt(h
(t)) ≥ inf

h∈Ht

Rt(h) ≥ R∗
t

almost surely. We can choose a sub-sequence {jk}, such that E
[
Rjk (h

(jk))−R∗
jk

]
≤ 4−k. For all

random variables h(t) satisfying the above assumption, the bounded convergence theorem implies
that

E[Rt(h
(t))−R∗

t ] = E
[
E
[
lim sup
m→∞

em(h(t)) | Z≤t

]
−R∗

t

]
= E

[
E

[
lim
i→∞

sup
ui≤m≤∞

em(h(t)) | Z≤t

]]
− E

[
R∗
t

]
= lim

i→∞
E

[
E

[
sup

ui≤m≤∞
em(h(t)) | Z≤t

]
−R∗

t

]
In particular, this implies that for any integer k there exists an integer ik such that

E

[
E

[
sup

uik
≤m≤∞

em(h(jk)) | Z≤jk

]
−R∗

jk

]
≤ E

[
Rjk (h

(jk))−R∗
jk

]
+ 4−k ≤ 2× 4−k.

By the definition of limsup, we have

E

[
sup

ui≤m≤∞
em(h(t)) | Z≤t

]
≥ E

[
ℓ̄t(h

(t), Z) | Z≤t

]
≥ R∗

t
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and therefore we can use Markov’s inequality to get
∞∑
k=0

P

(
E

[
sup

uik
≤m≤∞

em(h(jk)) | Z≤jk

]
−R∗

jk > 2(1/2)−k

)

≤
∞∑
k=0

1

2(1/2)−k
E

[
E

[
sup

uik
≤m≤∞

em(h(jk)) | Z≤jk

]
−R∗

jk

]

≤
∞∑
k=0

2

2(1/2)−k
4−k < ∞.

Therefore, by Borel-Cantelli lemma, with probability one, there exists a (random) integer k0 such
that for all k ≥ k0,

E

[
sup

uik
≤m≤∞

em(h(jk)) | Z≤jk

]
−R∗

jk ≤ 2(1/2)−k

We will now scale ik, jk by some integer kt such that ikt
, jkt

≤ t. This ensures that uikt
≤ ut and

Hikt
⊆ Ht. This scaling is necessary to relate the “empirical estimate” of the lim sup of ĥ to the

actual lim sup of h(t). To that end, define

kt = max{k ∈ N ∪ {0} : max{ik, jk} ≤ t}.

Since ik ≤ ∞ and jk ≤ ∞, we also have limt→∞ kt = ∞. Let αt = 2(1/2)−kt and notice that αt → 0.
We can construct an integer-valued random variable t0 such that for all t ≥ t0, we have kt ≥ k0, and
therefore

E

 sup
uikt

≤m≤∞
em(h(jkt )) | Z≤jkt

−R∗
jkt

≤ αt.

Now choose h(t) = h(jkt ) for every t ∈ N. Since jkt
≤ t, we have Hjkt

⊆ Ht and σ(Z≤jkt
) ⊆ σ(Z≤t).

This implies that h(jkt ) is an Ht-valued random variable and h(jkt ) ∈ σ(Z≤t). Also, since ikt
≤ t and

{ut}∞t=1 is non-decreasing, we have uikt
≤ ut for all t ∈ N. Hence, with probability one, ∀t ≥ t0,

E

[
sup

ut≤m≤∞
em(h(t)) | Z≤jkt

]
−R∗

jkt
≤ E

 sup
uikt

≤m≤∞
em(h(t)) | Z≤jkt

−R∗
jkt

≤ αt

Since αt → 0, we have

E

[
sup

ut≤m≤∞
em(h(t)) | Z≤jkt

]
−R∗

jkt
→ 0 a.s.

Again using the bounded convergence theorem,

E

[
sup

ut≤m≤∞
em(h(t)) | Z≤t

]
−R∗

t → 0 a.s.

Now we continue the proof of Theorem 1 by exploiting the convergence of the empirical lim sup to the
true lim sup. We construct a sub-sequence of integers it such that γit in Eq. (7) decays exponentially.
Markov’s inequality implies that

∞∑
t=0

P
(

max
h∈Hit

∣∣∣∣ℓ̄t(h, Z)− max
uit≤m≤it

em(h)

∣∣∣∣ > √
γit

)

≤
∞∑
t=0

1
√
γit

E
[
max
h∈Hit

∣∣∣∣ℓ̄t(h, Z)− max
uit≤m≤it

em(h)

∣∣∣∣] ≤ ∞∑
t=0

√
γit < ∞.
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By the Borel-Cantelli lemma, with probability one, there exists t1 ∈ N, random, and t1 ∈ F , such that
∀t ≥ t1,

max
h∈Hit

∣∣∣∣ℓ̄t(h, Z)− max
uit≤m≤it

em(h)

∣∣∣∣ ≤ √
γit .

Let jt = max{t′ : it′ ≤ t}, then we have ijt → ∞. Since ijt ≤ t, we have

ℓ̄t(h, Z)− max
uijt

≤m≤t
em(h) ≤ ℓ̄t(h, Z)− max

uijt
≤m≤ijt

em(h).

Construct a random variable t2 such that ∀t ≥ t2, we have jt ≥ t1. Hence, we have for all t ≥ t2,

max
h∈Hijt

{
ℓ̄t(h, Z)− max

uijt
≤m≤t

em(h)

}

≤ max
h∈Hijt

∣∣∣∣∣ℓ̄t(h, Z)− max
uijt

≤m≤ijt
em(h)

∣∣∣∣∣
≤√γijt .

Let it = ijt and notice that since we have it → ∞ we also have it ≤ t. This gives a sub-sequence that
depends only on γt. Then, with probability one, ∀t ≥ t2

max
h∈Hit

{
ℓ̄t(h, Z)− max

uit≤m≤t
em(h)

}
≤ √

γit .

Let {h(t)}∞t=1, where h(t) ∈ σ(Z≤t) is a Hit -valued random variable chosen as in Lemma 3 with Ht

chosen to be Hit and ut chosen to be uit . Since ĥ(t) ∈ σ(Z≤t), with probability one, for t ≥ t2,

ℓ̄t(ĥ
(t), Z) ≤ max

uit≤m≤t
em(ĥ(t)) +

√
γit

≤ max
uit≤m≤t

em(h(t)) +
√
γit

≤ sup
uit≤m≤∞

em(h(t)) +
√
γit .

Hence,

E
[
ℓ̄t(ĥ

(t), Z) | Z≤t

]
− E

[
sup

uit≤m≤∞
em(h(t)) | Z≤t

]
→ 0

almost surely. By Lemma 3, we have,

E
[
ℓ̄(ĥ(t), Z) | Z≤t

]
−R∗

t → 0

almost surely. Hence, by the bounded convergence theorem,

0 = E
[
lim
t→∞

(
E
[
ℓ̄(ĥ(t), Z) | Z≤t

]
−R∗

t

)]
= lim

t→∞
E
[
E
[
ℓ̄(ĥ(t), Z) | Z≤t

]
−R∗

t

]
which implies that

P
(∣∣∣Rt(ĥ

(t))−R∗
t

∣∣∣ ≥ δ
)
≤ 1

δ
E
[
E
[
ℓ̄(ĥ(t), Z) | Z≤t

]
−R∗

t

]
→ 0.

We have therefore proved that ĥ(t) is a strong prospective learner.

I.3 Proof of Theorem 2

This construction follows closely with Hanneke [85, Section 4], and we omit some details here. For
finite class H of sequence of hypothesis, we give a possible choice of ut with

lim
t→∞

E

[
sup
t′≥t

max
h∈H

∣∣∣∣ℓ̄t(h, Z)− max
ut≤m≤t

em(h)

∣∣∣∣
]
= 0. (15)
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for all process Z in the finite family Z. For a data sequence z = {zs = (xs, ys)}∞s=0 and a hypothesis
sequence h ∈ H, we define

thu(z) = min

{
t ∈ N : t ≥ u,∀t′ ≥ t sup

u≤m≤∞
em(h) ≤ max

u≤m≤t′
em(h) + 2−u

}
,

and

uht (z) = max{u ∈ {1, . . . , t} : t ≥ thu(z)},

uHt (z) = min
h∈H

uht (z);

note that H is finite and therefore the minimum exists. For the stochastic process Z, let

uHt (δ, Z) = max
{
u ∈ {1, . . . , t} : Pz∼Z(u

H
t (z) ≥ u) = 1− δ

}
,

ut(Z) = max
{
s ∈ N ∪ {0} : uHt (2−u, Z) ≥ u

}
,

ut = min {ut(Z) : Z ∈ Z}

Since Z is finite, we have ut → ∞. And we also have ∀Z ∈ Z,

P
(
uHt (Z) ≥ ut

)
≥ 1− 2−ut ,

By Borel-Cantelli Lemma, this construction gives a sequence ut s.t. Eq. (15) holds, i.e. ∀Z ∈ Z,

Suppose {Ht}∞t=1 is a sequence of non-empty finite sets of hypothesis sequences, and {γt}∞t=1 is a
sequence in (0,∞) with γ1 ≥ 1. Then for any finite family Z, we can extend this construction to get a
choice of ut, Ht and γt such that Eq. (7) holds

E
[
max
h∈Ht

∣∣∣∣ℓ̄t(h, Z)− max
ut≤m≤t

em(h)

∣∣∣∣] ≤ γt.

Since we have a ut for a given hypothesis class H, for each i ∈ N, we can construct a sequence
{ui,t}∞t=1 such that limt→∞ ui,t = ∞, ui,t < t and ∀Z ∈ Z,

lim
t→∞

E

[
sup
t′≥t

max
h∈Hi

∣∣∣∣ℓ̄t(h, Z)− max
ui,t≤m<n′

em(h)

∣∣∣∣
]
= 0.

Now let

jt = max

{
i ∈ {1, . . . , t} : ∀i′ ≤ i, sup

t′′≥t
E

[
sup
t′≥t′′

max
h∈Hi′

∣∣∣∣∣ℓ̄t(h, Z)− max
ui′,t′′≤m≤t′

em(h)

∣∣∣∣∣
]
≤ γi′∀Z ∈ Z

}
and

ti = min
{
t : jt ≥ i, ui,t > ui−1,ni−1

}
.

If it = max {i : ti < t}, then we have it → ∞, and for ui = ui,ti we have

E
[
max
h∈Hit

∣∣∣∣ℓ̄t(h, Z)− max
uit≤m≤t

em(h)

∣∣∣∣] ≤ γit .

Since H is countable, we can choose a sequence of finite hypothesis classes Ht such that ∪t∈NHt = H.
By choosing ut = uit , with Ht = Hit , and γt = γit , we now have a possible choice for ut, Ht and γt
in Theorem 1.

J Experimental Setup

J.1 Training and evaluation

Training setup. Each learner receives a t-length sequence of samples z≤t drawn from the stochastic
process, as the training data. Upon training, the learner is expected to make predictions on future
samples that correspond to times t′ > t up to a fixed horizon T . At each future time t′, we do not
train (modify the weights) using samples after time t (because we do not have them, but we will
make predictions on these samples). Given samples z≤t, a time-aware hypothesis class minimizes the
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empirical prospective risk

ℓ̂t(h, Z) =
1

t

t∑
s=1

ℓ(s, hs(xs), ys);

For an MLP or CNN, hs corresponds to a network that takes time s as input.

Hyper-parameters All the networks are trained using stochastic gradient descent (SGD) with
Nesterov’s momentum and cosine-annealed learning rate. The networks are trained at a learning rate
of 0.1 for the synthetic tasks, and learning rate of 0.01 for MNIST and CIFAR. The weight-decay is set
to 1× 10−5. The images from MNIST and CIFAR-10 are normalized to have mean 0.5 and standard
deviation 0.25. The models were trained for 100 epochs, which is many epochs after achieving a
training accuracy of 1.

Evaluation We estimate the prospective risk of each learner using a Monte Carlo estimate. For
a given training dataset z≤t, we estimate a sequence predictors h ≡ (ht) which we use to make
predictions on future samples. We wish to approximate the prospective risk (Equation (2)) for the
estimated sequence of predictors. We do so, for a single future realization z>t of this process, which
yields the estimate

R̂t(h) =
1

(T − t)

T∑
s=t+1

ℓ
(
s, hs(x

j
s), y

j
s)
)
.

In our experiments, T = 50,000 for CIFAR-10 and MNIST while T = 10,000 for the synthetic data
experiments. For a single learning algorithm, we compute the empirical prospective risk at 15-40
different time steps which results in a significant number of GPU hours in order to plot the learning
curves. For every time step, we compute the mean and standard deviation of the empirical prospective
risk using 5 random seeds.

J.2 Architectural Details

FC + ReLU

Inputs

Softmax

Prospective-MLP Prospective-CNN

FC

Conv + ReLU

Max pool

Conv + ReLU

Batch Norm

Max pool

N layers

Softmax

Inputs Time encoding

Time

Time encoding

FC + ReLU

Time

FC + ReLU

+

FC + ReLU

FC + ReLU

FC

Figure A.5: Schematic illustration prospective-MLP and prospective-CNN.

We considered the following architecture choices for the time-agnostic restropective algorithms like
ERM that ignore time and the ordering associated with the samples in z≤t.

Retrospective-MLP/CNN. A multi-layer perceptron (MLP) with two hidden layers with 256 units
is used for the synthetic tasks and the MNIST task. For CIFAR-10, we use a a small convolutional
network with 0.12M parameters. It comprises of 3 convolution layers (kernel size 3 and 80 filters)
interleaved with max-pooling, ReLU, batch-norm layers, with a fully-connected classifier layer.

Prospective ERM with MLP and CNNs. In order to incorporate time into the hypothesis class,
we consider an embedding function φ : R → Rd that takes raw time as an input and returns a
d-dimensional vector denoted as the time-embedding. In our experiments, we define φ : R → Rd as a
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function that maps

t 7→ (sin(ω1t), . . . , sin(ωd/2t), cos(ω1t), . . . , cos(ωd/2t)),

where, ωi = π/i, i = 1, . . . , d/2 to the be the collection of angular frequencies. We briefly discuss the
rationale for this choice in Figure A.7. In our experiments, we use d = 50.

We make our classifiers a function of time by including time t as an input the neural network. This
allows the network to vary its hypothesis over time. For MLPs, we concatenate the input with its
corresponding time-embedding φ(t) which is fed as input. For the CNN (see Figure A.5), we add the
time-embedding to the output of the convolutional layers instead of concatenating it to the inputs.
We also tried concatenating the time-encoding to the inputs of the CNN but found that it performed
poorly in both scenarios 2 and 3 (see Figure A.6).
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Figure A.6: Prospective risk of the CNN architecture on CIFAR-10 for scenarios 2 and 3. The performance of
the CNN architecture is significantly worse when the time-embedding is concatenated to the input (variant 2).

Frequencies for embedding time In the original Transformer architecture, Vaswani et al. [25] use
a position-embedding using the frequencies ωi = 1/100002i/d i = 1, . . . , d/2. There are two key
differences: (1) We use the absolute time t instead of the relative position, (2) We use the angular
frequencies 2π/i. In Figure A.7 (right), we illustrate the time-embeddings when we use the two
different choices for angular frequencies. For d = 128, we find that the frequencies from Vaswani
et al. [25] result in slowly changing features which makes it less suitable for our task, i.e., many of
the dimensions are constant over time which makes many of the dimensions uniformative for the task.
In our experiments, we found out that MLPs and CNNs that use the frequencies from Vaswani et al.
[25] perform poorly on the MNIST task for Scenario 2 and 3.
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Figure A.7: The time-embeddings computed using (1) frequencies from Vaswani et al. [25] (left), and (2) the
frequencies from proposed in our work (right).

K Additional experiments for Scenario 3

We conduct more experiments on prospective learning problems in addition to the ones in Ap-
pendix C.2.

K.1 Markov chain with periodic resets

Dataset and Tasks. For synthetic data, we consider the 2 binary classification problems described
in Appendix C.1. For CIFAR-10 and MNIST, we consider 2 tasks corresponding to the classes 1-5,
and the classes 1-5 but with each class y relabeled to (y+1) (mod 5). Using these tasks, we construct
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Scenario 3 problems corresponding to a stochastic process which is a hidden Markov model on two
states. The tasks are governed by a Markov process with transition matrix P (St+1 = k | St = k) = 0.1,
where St is the task at time t. Additionally after every 10 time-steps, the state of the Markov chain is
reset to the first task. This ensures that the stochastic process does not have a stationary distribution.
Similar to the previous experiments, for each problem, we generate a sequence of 50,000 samples.
Learners are trained on data from the first t time steps (z≤t) and prospective risk is computed using
samples from the remaining time steps.

Learners and hypothesis classes. For this scenario, we conduct experiments using follow-the-
leader and prospective ERM. Both methods use MLPs for synthetic and MNIST tasks, and a CNN
for the CIFAR-10 task. Note that prospective ERM uses an embedding of time as input in addition to
the datum. Training and evaluation setup is identical to that of Scenario 2.
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Figure A.8: Prospective ERM can achieve good prospective risk in Scenario 3. We plot the prospective
risk across 5 random seeds (which govern the sequence of samples and the weight initialization of the neural
networks). In all three cases, the risk of prospective ERM approaches Bayes risk while Follow-the-Leader does
not achieve a low prospective risk. Bayes risk for MNIST and CIFAR-10 problems is calculated by assuming
that Bayes risk on individual tasks is zero.

As Figure A.8 shows, prospective ERM can also prospectively learn problems in Scenario 3
when data is neither independent nor identically distributed.

K.2 Stationary Markov chain

Dataset and Tasks. For synthetic data, we consider the 2 binary classification problems described
in Appendix C.1. For CIFAR-10 and MNIST, we consider 2 tasks corresponding to the classes 1-5,
and the classes 1-5 but with each class y relabeled to (y + 1) mod 5. Using these tasks, we construct
Scenario 3 problems corresponding to a stochastic process which is a hidden Markov model on 2
states. The tasks are governed by a Markov process with transition matrix P (St+1 = k | St = k) = 0.1,
where St is the task at time t. Unlike the previous subsection (Figure A.8), in this experiment, the
Markov chain equilibriates to the stationary distribution. Similar to the previous experiments, for
each problem, we generate a sequence of 50,000 samples. Learners are trained on data from the first
t time steps (z≤t) and prospective risk is computed using samples from the remaining time steps.

Learners and hypothesis classes. For this scenario, we conduct experiments using follow-the-
leader and prospective ERM. Both methods use MLPs for the synthetic and MNIST tasks, and a CNN
for the CIFAR-10 task. Note that prospective ERM uses an embedding of time as input in addition
to the datum. Training is identical to that of Scenario 2. For evaluation, we compute the empirical
prospective risk in Fig. A.9 and empirical discounted prospective risk in Fig. A.10.

L Large language models may not be good prospective learners

It is an interesting question whether LLMs which are trained using auto-regressive likelihoods with
Transformer-based architectures can do prospective learning. To study this, we used LLama-7B [86]
and Gemma-7B [87] to evaluate the prospective risk for Scenarios 1 to 3. The prompt contains a few
samples from the stochastic process (sub-sequences of (Yt) consisting of 0s and 1s) and an English
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Figure A.9: For a task defined on a stationary Markov process, the Bayes risk is trivial and can be
achieved by a hypothesis that doesn’t change over time. We plot the prospective risk across 5 random seeds
(which govern the sequence of samples and the weight initialization of the neural networks). In all three cases,
both follow-the-leader and prospective ERM approach the Bayes risk. The stationary distribution has an equal
probability of seeing either task and a fixed hypothesis can achieve Bayes risk on this problem.
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Figure A.10: Both prospective ERM and follow-the-leader achieve similar discounted prospective risks
(with discount factor 0.95). We plot the discounted prospective risk across 5 random seeds. Both follow-the-
leader and prospective ERM achieve similar discounted risks. Note that the error bars are larger since the risk is
computed over fewer samples, i.e., the discount factor reduces the effective number of test data points.

language description of the family of stochastic processes that generated the samples. The LLM is
tasked with completing the prompt with the next 20 most likely sequence of samples.
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Figure A.11: The prospective risk of LLMs when evaluated on the three scenarios, when averaged over draws
of the training data. The LLM does not improve with more data unlike a prospective MLE-learner. This suggests
that LLMs are incapable of prospection.
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Figure A.12: We prompt LLMs to generate the outcomes of 10 Bernoulli trials with p = 0.75. We plot the
probability of generating token 1 over all possible sequences of 10 Bernoulli trials and find that the outcomes are
generated with probabilities that range from 0 to 1 with an average of 0.5. Ideally, the token 1 should should
always be generated with p = 0.75, i.e., the LLMs cannot simulate outcomes of a Bernoulli distribution.

Selecting the appropriate prompt LLMs can be brittle and are known to generate different com-
pletions depending on if the prompt was in English, Thai or Swahili [88]. This makes it difficult to
evaluate prospective learning in LLMs. Therefore, in our experiments, we do not describe prospective
risk or other details about prospective learnability in the prompt. We simply describe the data generat-
ing process and some samples from this process in the prompt and prompt the model to generate the
most likely completion. The prompts are described in detail in Appendix L.1; we also experimented
with a few variants of these prompts.

We use greedy decoding to generate a sequence of tokens, i.e., the token with the highest probability
is sampled at every step. We vary the number of time-steps in the prompt from 1 to 100 which
corresponds to the amount of training data. For a particular value of time t, we generate 20 more
tokens and compute (an estimate of) the prospective risk of this completion; this is the test data. We
report the prospective risk computed on 100 different realizations of the stochastic process, i.e., each
point in Fig. A.11 is the prospective risk on the next 20 samples, averaged over 100 realizations of
the training data. In Fig. A.11, we find that LLMs do not obtain better prospective risk with more
samples, i.e., Llama-7B and Gemma-7B do not seem to be doing prospective learning. It is quite
surprising that they do not achieve Bayes risk even on independent and identically distributed data.
We note that these experiments do not definitively answer whether LLMs can learn prospectively.

Can LLMs even generate outcomes of a sequence of Bernoulli trials? We prompted an LLM to
generate a sequence of 0s and 1s sampled from a Bernoulli distribution with probability p = 0.75. We
then plot the probability of generating each 0 or 1, for all sequences of length 10 in Fig. A.12. Ideally,
the strip plot would be concentrated around 0.25 for 0 and 0.75 for 1, i.e., 0s should be generated
with frequency close to 0.25. However, we find this is not the case and LLMs seem incapable of even
generating a sequence of Bernoulli trials. This provides some context to the results discussed above.
LLMs do not seem to be doing prospective learning, but they cannot even sample from a Bernoulli
distribution under these experimental conditions.13

L.1 Prompts for testing prospective learning in LLMs

We use the following 3 prompts to generate a sequence of predictions using in LLama-7B and
Gemma-7B. We found that the LLMs always generated a sequence of 0s and 1s and we did not need
to post-process the response or change how the tokens were sampled. We generate 20 samples using
greedy decoding; the language models are executed with the weights in 16-bit precision. We tried a
few different variants for providing prompts to the LLM, e.g., by adding spaces between the 1s and
0s, the results are qualitatively similar.

13Responses of ChatGPT-turbo and GPT-4o were more verbose compared to those of Llama-7B and Gemma-
7B. ChatGPT responded correctly to Scenario 1, perhaps as a result of using a scratchpad [89, 90] for generating
the results of intermediate steps of the algorithm. But it did not achieve a small prospective risk for Scenarios 2
and 3. Gemini and GPT-4o refused to give a complete response to Scenario 3 and only outlined the sequence of
steps, albeit correctly.
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Scenario 1

Consider the following sequence of outcomes generated from a single Bernoulli distribution.

11110101111110111111111111

The next 20 most likely outcomes are:

Scenario 2

Consider the following sequence of outcomes generated by two Bernoulli distributions, where
all even outcomes are generated by a Bernoulli distribution with parameter ’p’ and odd
outcomes are generated from a Bernoulli distribution with parameter ’1-p’.

10101010101010101010101000101010101010101

The next 20 most likely sequence of outcomes are:

Scenario 3

Consider the following sequence of states generated by a Markov process with 2 states (0, 1):

10101101010100101010

The next 20 most likely outcomes are:

To make the LLM generate a sequence of Bernoulli trials with probability 0.75, we used the following
prompt.

Bernoulli trials

Generate outcomes of 10 Bernoulli trials where 0 is generated with probability 0.25 and 1
with probability 0.75
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