Under review as a conference paper at ICLR 2026

LITA: LIGHT AGENT UNCOVERS THE AGENTIC COD-
ING CAPABILITIES OF LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) are increasingly being applied to programming
tasks, ranging from single-turn code completion to autonomous agents. Current
code agent designs frequently depend on complex, hand-crafted workflows and
tool sets. However, this reliance on elaborate scaffolding presents several chal-
lenges: agent performance becomes overly dependent on prompt tuning and cus-
tom design choices, heavy human intervention obscures a model’s true underlying
capabilities, and intricate pipelines are costly to build and maintain. Furthermore,
optimizing complex task prompts increases the risk of data leakage. Currently,
when introducing new models, LLM providers like OpenAl and Anthropic often
publish benchmark scores to demonstrate their models’ coding proficiency, but
keep their proprietary evaluation frameworks confidential. To address these limi-
tations, we introduce Lita (Lite Agent), which operationalizes liteness, a principle
of minimizing manual design while retaining the essential elements of a fully au-
tonomous agent. Lita enables a more faithful and unified evaluation without elab-
orate scaffolding. Experiments on the Aider Polyglot and SWE-Bench with fron-
tier models demonstrate that Lita achieves competitive or superior performance
compared to workflow-based and agentic baselines. Crucially, Lita also consumes
fewer tokens and requires significantly less design effort. Our results suggest that
Lita is sufficient to reveal the underlying coding competence of modern LLMs.
Finally, we propose the Agent Complexity Law: the performance gap between
agents of varying complexity, from simple to sophisticated designs, will shrink as
the core model improves, ultimately converging to a negligible difference.

1 INTRODUCTION

Large language models (LLMs) have rapidly transformed the way people work, study, and conduct
research. Beyond their role in natural language understanding, recent advances have demonstrated
their capacity to assist in highly specialized domains, ranging from mathematics to scientific dis-
covery (OpenAll b; [Wang et al.|[2023). Among these domains, programming has emerged as one of
the most impactful frontiers. Models from Anthropic, Gemini, OpenAl, DeepSeek, and Qwen have
shown strong performance in software engineering tasks, while their recent releases consistently
emphasize coding ability as a core benchmark of progress. For example, Claude Opus 4 attains
72.5% on SWE-Bench (Anthropic, |2025a), a benchmark that measures performance in real-world
software engineering tasks (Jimenez et al.,|2024). The increasing integration of LLMs into software
development workflows has also been seen as a step toward artificial general intelligence (AGI),
since coding requires precise reasoning, planning, and interaction with complex systems.

Within the broader field of LLMs for code, researchers and practitioners have explored a range of
system designs to leverage these models effectively. Besides generating the solution in a single-turn
completion usually seen in simple tasks like HumanEval (Chen et al., |2021a)), current designs can
be categorized into two paradigms. First, to incorporate richer feedback, the workflow paradigm
including Agentless (Xia et al.,|[2024) and Aider (Aider-Al), introduces predefined, human-designed
procedures, allowing the model to iteratively refine solutions within controlled steps. Second, more
recently, the agentic paradigm has gained traction, where fully autonomous agents interact with ex-
ternal environments, execute code, and adjust their responses through trial and error. Early systems
such as SWE-Agent (Yang et al., 2024) pioneered this approach by parsing model outputs into rule-

Under review as a conference paper at ICLR 2026

based tool invocations, while newer frameworks such as OpenHands (Wang et al., [2025) leverage
function calling abilities to streamline interaction between the model and coding environments.

Parser

/
/
/
Issue L
—_— Edit — Linter Localize Repair
Codebase’

“~<> parser

Solution
Reflect <—No—— Validate <] Rank Validate
s

Ye:
'

v

Solution

Memory
Tools

Env W Reasoning

Editor

Terninal ﬁ H

Search \l/

Tool Call?
Finish

No

v

Done

[ojo[c)

Figure 1: The upper left sub-diagram shows the workflow agent for Aider’s polyglotAider-Al bench-
mark. The upper right sub-diagram shows the workflow for Agentless Xia et al.| (2024)) testing of
SWE-bench. The lower sub-diagram represents our Lita autonomous agent framework, with key
modules including LLM, Memory, Tools, Reasoning and Environment.

Despite these advances, current approaches to coding with LLMs still face several fundamental
challenges, which hinder robust evaluation of models’ true capabilities and recognition of their lim-
itations.

CHALLENGE 1: Fairness. Many existing frameworks are tightly coupled with particular models,
making fair comparison difficult. Prompts and tools are often optimized for specific architectures.
For example, both CodeX and OpenHands prompts are particularly well suited to GPT-series mod-
els, creating hidden advantages (OpenAl, ja; |(OpenHands, |a)).

In workflow-based systems, such as Agentless, some stages are especially prone to failure depending
on the underlying model. A weaker model may struggle with tasks like autonomous bug localization
or program repair, but predefined workflows can mask its weakness by constraining the space of
possible errors (e.g. GPT-40 compared with Claude-3.5-Sonnet, see Xia et al.| (2024)).

Even on the same dataset, discrepancies in prompts, toolkits, or scoring protocols across compa-
nies lead to a misalignment of different models’ evaluation (Gao et al.| [2024; [Zhuo et al., 2024a;
OpenHands| |b).

CHALLENGE 2: Truthfulness. Workflows introduce extensive human guidance, making it diffi-
cult to assess the intrinsic capabilities of models. This gap leads to inflated benchmark scores that
may not translate to practical performance in real use (Liu et al., 2023} [Mozannar et al.| [2024).

Agent systems can still fall into similar traps: many benchmarks introduce over-engineered tool sets
tailored to specific tasks, effectively “teaching to the test”. Tool descriptions in some frameworks
often encode workflow-like instructions, which implicitly steer models toward particular solutions
(e.g. OpenHands’ prompts tell how to solve SWE-Bench problems (OpenHands, b))). Such practices

Under review as a conference paper at ICLR 2026

risk undermining core abilities like autonomous planning and memory management, precisely the
capabilities that stronger models ought to demonstrate.

CHALLENGE 3: Overhead. The complexity of heavily engineered workflows imposes high costs
on both developers and users. Each new benchmark often requires significant prompt and tool
re-tuning, thus may lead to poor portability across tasks. This distracts them from improving the
intrinsic model capabilities and designing environments that genuinely test agent autonomy.

Elaborate workflows used for raising benchmark scores also introduce overhead on the user’s end:
increased token usage, longer interaction traces, and more complex context management. Ulti-
mately, these bills will be paid by the users.

Based on these challenges, we argue that simplified agent designs can better expose the strengths
and weaknesses of LLMs for coding, while reducing opportunities for hidden biases or benchmark-
specific optimizations. By minimizing scaffolding, such designs maximize the space for autonomous
exploration and provide a more faithful evaluation of model competence, especially when recent
work has highlighted that evaluation is as critical as model development itself (We1 et al.l 2025}
Yao). Therefore, in this paper, we present Lita (Lite Agent), a lightweight agentic framework for
evaluating and extending LLMs in coding tasks. Our key contributions are as follows.

* We introduce the concept of Lite Agent and implement a prototype system, Lita, which
offers more authentic evaluation and strong adaptability across tasks and datasets.

* We propose a method for converting widely used coding benchmarks into multi-turn, agen-
tic settings, enabling agents to autonomously complete tasks in a unified format.

* We empirically demonstrate the feasibility of Lita, comparing it against existing frame-
works and conduct ablations to identify how minimal the design can be while still support-
ing effective performance.

* We propose the Agent Complexity Law: the performance gap between agents of varying
complexity, from simple to sophisticated designs, will shrink as the core model improves,
ultimately converging to a negligible difference.

We also conducted an extensive survey of prior work on LLMs for code, agent design philosophies,
and corresponding benchmarks; for readability, we present this discussion in Appendix[A.T] Itis also
worth noting that simplifying design for evaluation does not contradict practical prompt engineering.
While minimal scaffolding is essential for revealing a model’s intrinsic capabilities, in real-world
applications prompt engineering remains valuable to maximize user experience.

2 METHOD

2.1 PRINCIPLES OF LITE AGENT

* Decoupling the agent from specific LLMs and Tasks
* Simplicity over complexity
o Workflow-free, prioritizing autonomy

* Minimize prompt engineering; trust and harness the evolving capabilities of
models

— Lita Design Philosophy

To address the challenges identified above, we introduce the concept of Lite Agent. Our principle
is that an LLM-based coding system should minimize manual scaffolding by keeping three core
dimensions, i.e. the underlying LLM, the agent framework, and the environment (e.g. benchmarks),
as decoupled as possible. To this end, we have summarized the four philosophies of lita design.

An agent system typically consists of three elements: the LLM, tools, and the environment. It calls
tools to execute critical procedures for a task. In Lita, these will be invoked through function calls,
which most modern models now support for autonomous interaction.

Under review as a conference paper at ICLR 2026

At the same time, a lite agent is designed to be minimal. It should contain only those tools strictly
necessary to complete software engineering (SWE) tasks, while avoiding over-engineered or redun-
dant toolkits. For Lita, its tool schema (the descriptions and argument specifications for each tool)
should be compact and unambiguous, reducing opportunities for benchmark overfitting. This design
philosophy ensures that agent performance reflects the model’s own reasoning and decision-making
ability, rather than intentional human optimizations.

2.2 COMPONENT DESIGN OF LITA

Except the environment, Lita consists of three key components: tools, reasoning, and memory,
similar to Claude (Anthropic| [2025a). To collect information from environment, we first define a
small set of tools:

Editor - for creating, viewing or modifying files
* Terminal - for executing commands or running tests
* Search - for searching a code snippet in files under a directory

* Finish - for signaling task completion

The reasoning module is designed to support structured thinking, we implement Think and Plan
tools to interact with this module. These allow the model to record self-reflection or outline next
steps explicitly, without embedding workflow-like instructions into the environment.

The memory module manages context, for which we implement two strategies:

* Linear memory - accumulating the entire interaction history

* Summarized memory - letting the LLM decide when to condense parts of the history into
shorter summaries, which can be invoked through Summary tool calls

To best reveal a model’s capacity for long-context management, we adopt linear memory by default,
with summarized memory provided as an option.

Tool schemas are human-designed only to the extent of clarifying function semantics and parame-
ters. We then let the LLM itself refine the wording only to ensure they are easy to understand for the
model, avoiding the pitfalls of heavy prompt engineering.

Our survey of existing code agents suggests that these components are sufficient to cover typical
SWE tasks such as editing, terminal interaction, and testing. Moreover, we verify that tools in other
agent systems can be decomposed into them. For their necessity, we will conduct ablation studies in
Section[3.3] Features such as retrieval or web search are left for future research.

2.3 BENCHMARK TRANSFORMATION

One of our contributions is the transformation of widely used code benchmarks into agentic form.
Our goal is to enable multi-turn, autonomous evaluation while adhering to two design principles:
(i) prompts and interactions should remain simple, avoiding model-specific optimizations; and (ii)
agents should be evaluated in a unified format, ensuring fairness and portability.

Each benchmark instance is first reformulated into an initial user prompt with four following parts
(see Figure [2). Imitial state specifies the working directory and available files. Task description
describes the objective of task instance, such as fixing a bug or completing a function. In some
cases, detailed task statement may be provided in an external file for the agent to read. Output
state indicates the final expected directory structure and which files contain the solution. Validation
steps describe how the agent could verify its solution, such as executing commands or generating
unit tests.

We apply this template to three frequently-used code benchmarks - HumanEval, Aider’s Polyglot,
and SWE-Bench Verified, harmonizing their file structures and task descriptions so that agents can
be assessed under the same evaluation protocol. This conversion allows benchmarks to shift from
static completion or editing tasks into dynamic, interactive environments.

Under review as a conference paper at ICLR 2026

) (

Lita Prompt You are a powerful AT agent.

N name: bash
description: execute a command in the terminal and return the output.
parameters:

command:
description: command to execute in
s the bash shell.
name: thinking
‘ System ‘ Tools Task description: used for self-think about something.
) parameters:
thought :
J/ l description: the thinking content
f E— (\ The issue description for a Python repository is available in

Iworkspacefissue_description.txt. The repository is in the /testbed/ directory.
Schema Template

@ Please fix the issue with minimal changes to non-test files.
N — " .
@ Modify the codebase directly.
Task . .
Validate your fix by running the relevant tests and ensure they all pass.
N) Keep iterating until the validation passes.

External file: the task is recorded in /workspace/issure_description.txt.

.

Figure 2: This figure presents an agent’s prompt design. The left diagram shows the general compo-
nents of an agent system prompt, while the right provides a specific example of Lita on SWE-bench.
Specifically, the task template requires four essential components: Initial State, Task Description,
Output State, and Validation Steps.

2.4 MEASURING LITENESS

Finally, we propose a quantitative measure of liteness to capture the complexity of an agent design,
which is called Agent Intrinsic Complexity. This measure considers two factors:

* Action count - the number of supported tools

» System preloaded tokens - the token cost of system-level content, including the system
prompt, the initial user prompt (Section 2.3, and the tool schema

By combining these metrics, we provide a principled way to assess how lightweight a given agent
framework is. This allows us to systematically compare Lita with existing workflow-heavy and
agent-rich baselines, and to analyze how design complexity impacts both fair and truthful evaluation
and model performance.

3 EXPERIMENT AND RESULT

We evaluate Lita across a range of benchmarks, models, and scaffolding paradigms. For better
comparison, we implement two editing formats - one based on git-diff blocks and the other on
string replacement, illustrated in Appendix Figure[d] The string-replace version serves as the default
implementation of Lita, while the diff-based variant is denoted as Lita-diff. We also include a
Terminal-only variant, Lita-mini, to study the minimal agent design.

Datasets. Following Section[2.3] we convert three widely used coding benchmarks into our unified
agentic format: HumanEval (function-level completion, low difficulty; results shown in Appendix
Table @), Aider’s Polyglot (multi-programming language code generation, intermediate difficulty),
and SWE-Bench Verified (real-world bug fixing, high difficulty).

Models. Our experiments span both proprietary and open-source models, covering a spectrum of
capability. We include models from GPT and Claude families as well as the Qwen series, allowing
us to examine performance trends from weaker to stronger models.

Scaffoldings. We compare:

* Workflow systems - Aider on Polyglot. On SWE-Bench, workflow baselines are omitted
since recent evaluations only focus on agentic setups, which have already matched the
performance of workflows.

* Agentic systems - OpenHands, open-sourced, as well as broadly validated in both academia
and industry. To ensure fairness, we keep its system prompt but replace task prompts with

Under review as a conference paper at ICLR 2026

Table 1: Main results across models and scaffolds. Bold marks the best value within each LLM for
the In 50 Turns budget and the lowest cost.

LLM Scaffold Pass Rate (%) Edit (%) oken CountW) ¢, g
In 2 Tests In 50 Turns Input Output
Lita 38.2 96.4 99.2 20.7 0.9 376.2
Claude Opus 4 OpenHands 523 95.4 98.8 342 1.0 587.9
Aider 70.7 - 98.7 - - -
Lita 139 97.8 86.9 47.4 1.4 163.6
Claude Sonnet 4 OpenHands 15.1 96.0 96.8 66.7 1.5 222.0
Aider 56.4 - 98.2 - - -
Lita 554 98.7 94.4 244 1.0 88.4
Claude 3.7 Sonnet OpenHands 56.3 98.2 90.6 51.1 1.9 181.5
Aider 60.4 - 93.3 - - -
Lita 85.1 96.0 98.5 7.0 0.7 154
GPT-5 OpenHands 88.5 96.8 99.2 15.6 0.8 27.8
Aider 86.0 - 88.0 - - -
Lita 47.7 81.1 81.8 443 0.9 95.6
GPT-4.1 OpenHands 432 81.1 88.5 69.7 0.8 145.7
Aider 52.4 - 98.2 - - -
Lita 259 67.8 74.8 100.7 1.3 424
GPT-4.1-mini OpenHands 26.8 67.3 73.6 86.6 1.1 36.4
Aider 32.4 - 92.4 - - -
Lita 17.6 45.8 56.5 104.5 1.5 276.3
GPT-40 OpenHands 15.2 41.2 66.4 108.3 1.2 283.2
Aider 23.1 - 94.2 - - -
Lita 2.8 6.6 73 107.8 22 17.5
GPT-40-mini OpenHands 23 4.2 31.0 149.3 1.5 23.3
Aider 3.6 - 100.0 - - -

Lita’s on Polyglot since its original ones are tightly coupled with SWE-Bench. We also
include mini-SWE-agent, a rule-based terminal-only baseline, on SWE-Bench.

* Our framework (Lita) - lightweight design with minimal tools and action schema, with
variants (Lita-diff, Lita-mini) for ablation and better comparison with both Aider and mini-
SWE-agent.

Metrics. We measure task success rate (pass@1 against external test cases or resolution rate),
token consumption, and per-tool call counts. On Polyglot, we additionally track the success rate of
adhering to the diff-format edits as they reported on Aider’s leaderboard. Its pass@]1 after the first 2
unit tests and 50 interaction turns are both recorded. Detailed hyperparameter and runtime settings
are provided in the Appendix [A.4]

3.1 RESULTS ON AIDER’S POLYGLOT

Table[T]reports the results. We highlight three key observations:

(1) Lita vs. OpenHands. Across nearly all models, Lita achieves higher pass rates while consuming
fewer tokens. This contrast suggests that OpenHands’ heavy optimization for SWE-Bench has led
to overfitting. When applied to Polyglot, a mid-difficulty benchmark, its performance lags behind
Lita instead. Analysis of tool call logs (Appendix Figure 5| and Table [5) shows that Lita allocates
more function calls to Think and Plan, indicating that its token budget is spent on reasoning rather
than repetitive wasted edits.

(2) Lita vs. Aider. Workflow guidance in Aider reduces early-stage mistakes, yielding higher
pass rates in the first two tests. However, agentic methods allow LLMs to autonomously gather
information and recover from errors through trial and error. Stronger models can recover from
early failure to achieve a higher score later and nearly solve Polyglot entirely. We argue that final

Under review as a conference paper at ICLR 2026

Table 2: Solved rate (%) on SWE-bench across models (rows) and agents (columns). The data in
the official column is provided by the model providers.

Model Official OpenHands mini-SWE-agent Lita Lita-min
Qwen3-Coder 30B 51.6 47.6 - - -
Qwen3-Coder 480B 67.0 64.6 55.4 - -
GPT-4.1-mini 22.8 22.0 23.94 26.4 11.8
GPT-4.1 52.0 48.6 39.58 35.6 19.6
Claude 3.7 Sonnet 61.0 58.0 52.8 53.0 48.6
Claude Sonnet 4 69.4 68.0 64.8 62.0 57.8
Claude Opus 4 69.2 67.8 67.6 62.6 55.2

resolution, rather than initial attempts, better reflects real-world usage, where agents may iterate
until success.

(3) File editing success rates. For all frameworks, adherence to the diff format improves with
model strength, reflecting better instruction-following ability. This trend reinforces that editing style
interacts closely with model capability.

3.2 RESULTS ON SWE-BENCH VERIFIED

Performance Gaps on Aider's Polyglot

Agent Intrinsic Complexit
9 P v 2.5% A
SWE-bench
10000 - Polyglot 0.0%
0 o
© _5 50,
< sooof o T25%
S 3 o
f= g —5.0%
_@ 6000 ©
X £ -7.5%1
o I
S 4000F]
£ E -10.0% A
o
Y 20001 & 12.5%/ s
—8— Lita-mini vs Lita
\ \ y © « - -15.0% Lita-mini vs OpenHands
e . W AN e \ ant
wde ot eﬁ‘“‘ccode*c _code?‘cwe""e“ W e \:\U"“‘“‘ " N " " " " "
\a! G 457 i ant A -5 a o o
< e e P1.A° oo - 6?1 X3 et 1S
ov®! [y g [\4 o€t T gon® ov
Agent g s
Model (increasing capability -)
Performance Gaps on SWE-Bench (Group 1) Performance Gaps on SWE-Bench (Group 2)
=®— Lita vs Openhands 0%
10% OpenHands vs Official
=- Lita vs Official -10% A
-} a 10%
8 8
e 9% o —20%
g g
]]
£ —10% - £ —30%
S S
t t o
S —20% 5 0%
=@ Lita-mini vs Lita
-50% A Lita-mini vs mini-swe
—-30% A ./ =8— mini-swe vs OpenHands
! 209 A 3 208 et S ot 209 A 3] 30® ot & s &
A en? ev Cr: o ooV A 3 eV et 3 o ooV
@™ que G' o0t PR A qwe® GF " gon® qwe® 59
Model (increasing capability -) Model (increasing capability =)

Figure 3: Agent Intrinsic Complexity and Performance gap between simple and complex agent.

Resolution rates are reported in Table [2] with cost statistics in the Appendix Table [6] To compare
frameworks more systematically, we compute relative performance gaps between simple and com-
plex designs (let P to be performance, then Pt = (Puimple — Promplex)/ Peomplex)s and plot these
against model strength in Figure|3] We make three observations:

(1) General vs. task-specific optimization. Lita trails OpenHands slightly because Lita is a general
framework, while OpenHands includes task-specific hints in its SWE-Bench prompts. Such hints
risk data leakage and overfitting, as also reflected by OpenHands’ weaker performance on Poly-

Under review as a conference paper at ICLR 2026

Table 3: Ablation study of different Lita variants across models.

LLM Variant Pass rate in 2 tests Pass rate in 50 turns Edit (%)
Lita-diff 8.5 19.8 16.1
GPT-40 Lita-mini 13.2 38.7 -
Lita 17.6 45.8 56.5
Lita-reason 11.2 41.4 -
Lita-diff 25.8 62.9 63.2
GPT-4.1-mini Lita-mini 31.8 61.0 -
Lita 25.9 67.8 74.8
Lita-reason 23.7 51.8 -
Lita-diff 47.7 81.1 81.8
GPT-4.1 Lita-mini 39.1 73.3 -
Lita 48.1 80.6 86.5
Lita-reason 31.7 68.8 -
Lita-diff 85.7 94.9 77.4
GPT-5 Lita-mini 34.2 89.5 -
Lita 85.1 96.0 98.5
Lita-reason 32.1 87.3 -
Lita-diff 51.9 97.2 87.0
Claude 3.7 Sonnet Lita-mini 554 98.7 -
Lita 57.5 96.4 94 .4
Lita-reason 47.8 97.8 -
Lita-diff 13.9 97.8 86.9
Claude Sonnet 4 Lita-mini 17.3 97.8 -
Lita 15.6 95.5 96.7
Lita-reason 14.9 95.0 -
Lita-diff 34.7 94.2 88.2
Claude Opus 4 Lita-mini 382 96.4 -
Lita 48.4 94.0 99.2

glot. Similarly, mini-SWE-agent, though minimal, embeds handcrafted rules that partially encode
solutions.

(2) Paradigm shift, not system error. The performance gap between Lita and OpenHands remains
within a reasonable range (around 10%) across all models, showing that differences are attributable
to paradigm choice rather than implementation flaws in Lita. Moreover, the similar performance
curves of Lita and OpenHands on Polyglot further support this interpretation.

(3) Agent Complexity Law. We observe a consistent trend: as model capability increases, the
performance gap between frameworks of varying complexity shrinks. This holds across different
baselines (OpenHands, mini-SWE-agent) as well as among Lita variants. On simpler tasks such
as Polyglot, lightweight agents can even outperform more complex systems. Occasional outliers
occur between adjacent models of the same generation, whose overall capabilities are similar but
may fluctuate on specific tasks (e.g. Sonnet 4 vs Opus 4 in right-lower part of Figure [3). The initial
dip of the curves in left-lower part of Figure [3|is due to outdated official results - both Lita and
mini-SWE-agent surpass the reported GPT-4.1-mini baseline (OpenAlL |2025b).

These findings suggest that elaborate agent designs provide diminishing returns as model capac-
ities scale. For robust evaluation, these designs may soon be unnecessary, allowing the intrinsic
capabilities of models to be more clearly revealed and better guiding their future improvement.

3.3 ABLATION STUDIES

To assess which tools are necessary for Lita and how minimal an agent can be, we conduct ablations
on Polyglot, which balances task difficulty with manageable evaluation cost. Besides the terminal-
only Lita-mini and diff-based Lita-diff, we include Lita-reason with Terminal, Think and Plan tools
for explicit reasoning.

Under review as a conference paper at ICLR 2026

Results are shown in Table 3] Two main patterns emerge:

(1) File editing strategy matters. Replacing diff-based editing with string replacement significantly
improves edit success, especially for smaller models with weaker instruction-following ability. This
aligns with observations in Section @] and OpenAlT’s releases (OpenAl}|2025b).

(2) Minimal tools suffice, but with trade-offs. A terminal-only agent already achieves competitive
results and can even surpass full Lita on strong models, which are better able to autonomously
explore the way to edit files and interact with the production system. However, for weaker models,
explicit editing and reasoning tools remain necessary. This demonstrates that Lita’s chosen tool set
in the default version provides a stable baseline for fair evaluation across model families.

4 DISCUSSION AND LIMITATIONS

Our study highlights both the promise and the limitations of lite agents in LLM-based coding sys-
tems.

Failure cases. While Lita generally outperforms existing agentic frameworks, we observe cases
where even strong models (e.g. Claude 4) fail at the very first step of a task, whereas workflow-
guided systems can still succeed. This suggests that minimal agents place greater demands on
model robustness. When an initial plan is flawed, recovery depends on the model’s capacity for
self-correction.

Self-exploration by stronger models. In Lita, stronger models often start by exploring the directory
structure before making edits. This exploratory strategy is particularly effective for complex projects
and contrasts with Aider’s fixed workflow, providing evidence that rigid workflows may constrain
model autonomy.

Liteness is not orthogonality. A lightweight design does not imply that tools are interchangeable.
For example, the Editor tool abstracts a set of frequently used coding actions; removing it cannot
be compensated by other components without performance loss. Thus, “minimal” should be under-
stood as “sufficient but not redundant”, rather than “functionally non-overlapping”.

Limitations. Our work also has several limitations. First, although we converted multiple bench-
marks into agentic form, these datasets still represent a narrow slice of real-world software engi-
neering. Future benchmarks could expand to multi-repository projects, collaborative development,
or longer-term maintenance tasks. Second, since Lita is a prototype system, we didn’t include ad-
vanced features such as retrieval, web search and multi-agent, or conduct post-training, which may
be necessary for scaling to more complex tasks. Finally, while our evaluation focuses on fairness
and truthfulness, we have not yet studied long-term human-agent interaction, which is essential for
deployment in practical development environments.

5 CONCLUSION

This paper asked a simple but pressing question: Is complex design really necessary for evaluat-
ing LLM-based coding agents? Our findings suggest that the answer is no. By stripping away
over-engineered workflows and benchmark-specific optimizations, we show that lite agents can be
both more faithful and economical, revealing the true capabilities of modern LLMs without hidden
scaffolding.

Lita demonstrates that minimal toolkits and lightweight action schemas suffice to solve diverse cod-
ing benchmarks, while also reducing overhead in token consumption and design effort. Our abla-
tions further illustrate that agent performance degrades gracefully under simplification, establishing
a clear baseline for what constitutes a sufficient design.

We believe the philosophy that less is more. The future of agent design should shift away from
handcrafted workflows and toward environments that stimulate genuine model competence. Freeing
agents from excessive scaffolding not only benefits evaluation by providing fairer, more authentic
comparisons, but also pushes forward the development of LLMs themselves.

Under review as a conference paper at ICLR 2026

REFERENCES
Aider-Al aider. Accessed: 2025-09-15. URL https://github.com/Aider—-AI/aider.

Anthropic. Introducing claude 4. Accessed: 2025-09-15, August 2025a. URL https://www.
anthropic.com/news/claude—4.

Anthropic. Claude code is now generally available. https://claude.com/product/
claude-code, 2025b. Accessed: 2025-09-22.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021b.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Classeval: A manually-crafted benchmark for evaluat-
ing llms on class-level code generation. arXiv preprint arXiv:2308.01861, 2023.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

Google. Gemini cli: your open-source ai agent. https://blog.google/technology/
developers/introducing—gemini-cli-open—-source—ai-agent/, June 2025a.
Accessed: 2025-09-22.

Google. Gemini 2.5: Our most intelligent ai model. Accessed: 2025-09-22,
August 2025b. URL https://blog.google/technology/google—deepmind/
gemini-model-thinking—-updates-march-2025/.

Alex Gu, Baptiste Roziere, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I
Wang. Cruxeval: A benchmark for code reasoning, understanding and execution. arXiv preprint
arXiv:2401.03065, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

10

https://github.com/Aider-AI/aider
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://claude.com/product/claude-code
https://claude.com/product/claude-code
https://zenodo.org/records/12608602
https://blog.google/technology/developers/introducing-gemini-cli-open-source-ai-agent/
https://blog.google/technology/developers/introducing-gemini-cli-open-source-ai-agent/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66

Under review as a conference paper at ICLR 2026

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and LINGMING ZHANG. Is your code generated
by chatGPT really correct? rigorous evaluation of large language models for code generation.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=1qvx610Cu7l

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

Hussein Mozannar, Valerie Chen, Mohammed Alsobay, Subhro Das, Sebastian Zhao, Dennis
Wei, Manish Nagireddy, Prasanna Sattigeri, Ameet Talwalkar, and David Sontag. The realhu-
maneval: Evaluating large language models’ abilities to support programmers. arXiv preprint
arXiv:2404.02806, 2024.

Niels Miindler, Mark Miiller, Jingxuan He, and Martin Vechev. Swt-bench: Testing and validating
real-world bug-fixes with code agents. Advances in Neural Information Processing Systems, 37:
81857-81887, 2024.

OpenAl. Codex gpt-5 prompt. Accessed: 2025-09-16, a. URL https://github.
com/openai/codex/blob/f037b2fd563856ebbac834ec7l6cbe0c582f25f4/
codex—rs/core/gpt_5_codex_prompt.md/.

OpenAl. How people are using chatgpt. Accessed: 2025-09-15, b. URL https://openai.
com/index/how—-people—are—using—-chatgpt/.

OpenAlL Introducing upgrades to codex. https://openai.com/index/
introducing-upgrades—-to-codex/, September 2025a. Accessed: 2025-09-22.

OpenAl Introducing gpt-4.1. Accessed: 2025-09-24, August 2025b. URL https://openai.
com/index/gpt—-4-1/.

OpenAl Introducing gpt-5. Accessed: 2025-09-22, August 2025c. URL https://openai.
com/index/introducing—-gpt—-5/.

OpenHands. Tool design of openhands’ codeact agent. Accessed: 2025-09-
24, . URL |https://github.com/All-Hands—-AI/OpenHands/blob/
d3d70fcc609312b6671abocfc3da9cladl3aldo’d/openhands/agenthub/
codeact_agent/codeact_agent.py#L111.

OpenHands. Openhands’ prompt for swe-bench. Accessed: 2025-09-16, b. URL
https://github.com/All-Hands—AI/OpenHands/tree/main/evaluation/
benchmarks/swe_bench/prompts.

Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Vishnu Suresh, Ion Stoica, and
Joseph E. Gonzalez. The berkeley function calling leaderboard (bfcl): From tool use to agentic
evaluation of large language models. In Advances in Neural Information Processing Systems,
2024.

Jiahao Qiu, Xuan Qi, Tongcheng Zhang, Xinzhe Juan, Jiacheng Guo, Yifu Lu, Yimin Wang, Zixin
Yao, Qihan Ren, Xun Jiang, et al. Alita: Generalist agent enabling scalable agentic reasoning
with minimal predefinition and maximal self-evolution. arXiv preprint arXiv:2505.20286, 2025.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

TTB Team. Terminal-bench: A benchmark for ai agents in terminal environments, 2025.

11

https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://github.com/openai/codex/blob/f037b2fd563856ebbac834ec716cbe0c582f25f4/codex-rs/core/gpt_5_codex_prompt.md/
https://github.com/openai/codex/blob/f037b2fd563856ebbac834ec716cbe0c582f25f4/codex-rs/core/gpt_5_codex_prompt.md/
https://github.com/openai/codex/blob/f037b2fd563856ebbac834ec716cbe0c582f25f4/codex-rs/core/gpt_5_codex_prompt.md/
https://openai.com/index/how-people-are-using-chatgpt/
https://openai.com/index/how-people-are-using-chatgpt/
https://openai.com/index/introducing-upgrades-to-codex/
https://openai.com/index/introducing-upgrades-to-codex/
https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/
https://github.com/All-Hands-AI/OpenHands/blob/d3d70fcc609312b6671ab6cfc3da9c1ad3a1d67d/openhands/agenthub/codeact_agent/codeact_agent.py#L111
https://github.com/All-Hands-AI/OpenHands/blob/d3d70fcc609312b6671ab6cfc3da9c1ad3a1d67d/openhands/agenthub/codeact_agent/codeact_agent.py#L111
https://github.com/All-Hands-AI/OpenHands/blob/d3d70fcc609312b6671ab6cfc3da9c1ad3a1d67d/openhands/agenthub/codeact_agent/codeact_agent.py#L111
https://github.com/All-Hands-AI/OpenHands/tree/main/evaluation/benchmarks/swe_bench/prompts
https://github.com/All-Hands-AI/OpenHands/tree/main/evaluation/benchmarks/swe_bench/prompts

Under review as a conference paper at ICLR 2026

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun
Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. SCIBENCH: Evaluating college-level
scientific problem-solving abilities of large language models. In The 3rd Workshop on Mathemat-
ical Reasoning and Al at NeurIPS’23, 2023. URL https://openreview.net/forum?
1d=A3W864NIW2.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for Al soft-
ware developers as generalist agents. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=0Jd3ayDDoF.

Hui Wei, Zihao Zhang, Shenghua He, Tian Xia, Shijia Pan, and Fei Liu. PlanGenLLMs: A modern
survey of LLM planning capabilities. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 19497-19521, Vienna, Austria, July
2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/
2025.acl-long.958. URL https://aclanthology.org/2025.acl-long. 958/l

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-
agent conversations. In First Conference on Language Modeling, 2024.

Chungiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
llm-based software engineering agents. arXiv preprint arXiv:2407.01489, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik R Narasimhan,
and Ofir Press. SWE-agent: Agent-computer interfaces enable automated software engineering.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=mXpgout8J3.

Shunyu Yao. The second half. Accessed: 2025-09-16. URL https://ysymyth.github.io/
The-Second-Half/.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. 7-bench: A benchmark for
tool-agent-user interaction in real-world domains. arXiv preprint arXiv:2406.12045, 2024.

Jingming Zhuo, Songyang Zhang, Xinyu Fang, Haodong Duan, Dahua Lin, and Kai Chen. ProSA:
Assessing and understanding the prompt sensitivity of LLMs. In Yaser Al-Onaizan, Mohit Bansal,
and Yun-Nung Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP
2024, pp. 1950-1976, Miami, Florida, USA, November 2024a. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-emnlp.108. URL https://aclanthology.
org/2024.findings—emnlp.108/.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-
marking code generation with diverse function calls and complex instructions. arXiv preprint
arXiv:2406.15877, 2024b.

A APPENDIX

A.1 RELATED WORK
A.1.1 AGENT DESIGN PHILOSOPHY EVOLUTION

The evolution of Al agent design represents a fundamental paradigm shift from traditional workflow
orchestration toward autonomous reasoning systems. SWE-Agent (Yang et al., |2024) pioneered

12

https://openreview.net/forum?id=A3W864NIW2
https://openreview.net/forum?id=A3W864NIW2
https://openreview.net/forum?id=OJd3ayDDoF
https://aclanthology.org/2025.acl-long.958/
https://openreview.net/forum?id=mXpq6ut8J3
https://ysymyth.github.io/The-Second-Half/
https://ysymyth.github.io/The-Second-Half/
https://aclanthology.org/2024.findings-emnlp.108/
https://aclanthology.org/2024.findings-emnlp.108/

Under review as a conference paper at ICLR 2026

repository-level understanding and multistep debugging workflows, it introduced fully autonomous
development cycles capable of handling entire feature implementations from planning to deploy-
ment. AutoGen (Wu et al.l 2024) pioneering multi-agent conversational systems enabling complex
task decomposition through structured dialogues, while contemporary enterprise solutions evolved
toward sophisticated terminal and cloud-based agents including Claude Code (Anthropic} [2025b)’s
terminal-based collaborative architecture for autonomous codebase operations with continuous de-
veloper oversight, Gemini CLI (Googlel 2025a))’s command-line Al assistance with built-in tools
and Model Context Protocol integration, and OpenAI’s Codex evolution from code completion to
autonomous cloud-based software engineering agents powered by GPT-5-Codex (OpenAll 2025a)
for parallel task execution across entire repositories with comprehensive testing and validation ca-
pabilities.

The increasing complexity of comprehensive agentic frameworks has prompted a significant trend
toward lightness” agent philosophies that prioritize minimal architectural overhead while maintain-
ing autonomous capabilities. This reflects recognition that operational simplicity often outweighs ar-
chitectural sophistication in production environments, exemplified by Mini-SWE-Agent (Yang et al.,
2024)’s 100-line Python implementation achieving 68% performance on SWE-bench (Jimenez et al.,
2024)) benchmarks and Alita (Q1u et al.l [2025)’s minimal predefinition approach reaching 75.15%
pass@1 accuracy on GAIA (Mialon et al., [2023) benchmarks. This trend represents a fundamental
shift toward production-oriented pragmatism, demonstrating that sophisticated problem-solving be-
havior can emerge from minimal architectural complexity through streamlined interaction patterns
rather than maximizing capabilities through complex frameworks.

A.1.2 LARGE LANGUAGE MODELS FOR CODE

The development of code-specialized large language models has achieved remarkable sophistica-
tion through leading proprietary and open-source architectures. Among proprietary systems, Claude
4 (Anthropic, [2025a)) introduce hybrid reasoning capabilities that seamlessly transition between
rapid responses and extended thinking modes. Gemini 2.5 Pro (Googlel |2025b)) demonstrates ad-
vanced multimodal code understanding through Deep Think reasoning mechanisms. GPT-5 (Ope-
nAl, 2025¢) represents unified intelligence architecture with dynamic reasoning effort allocation.
The open-source ecosystem demonstrates competitive alternatives through sophisticated architec-
tural innovations. DeepSeek V3 (Liu et al} [2024) employs a 671-billion parameter Mixture-of-
Experts design activating only 37 billion parameters per token for computational efficiency, while
DeepSeek R1 (Guo et al.,2025) introduces reinforcement learning-optimized reasoning for system-
atic code verification and multi-step logical problem solving. Qwen3 (Yang et al.l 2025) estab-
lishes repository-level pretraining strategies across over 40 programming languages with enhanced
instruction-following capabilities, offering cost-effective deployment options. Kimi K2 (Team et al.}
2025)) achieves competitive performance on autonomous coding benchmarks, demonstrating signif-
icant improvements in task resolution rates and efficient token utilization. These developments
collectively establish code generation as a mature domain where both proprietary and open-source
models achieve impressive success rates on real-world software engineering tasks.

A.1.3 BENCHMARKS FOR CODE AND SOFTWARE ENGINEERING

The evaluation landscape for code-generating systems encompasses traditional function-level bench-
marks and emerging agentic frameworks, organized by task categories reflecting evolution from iso-
lated coding assessment toward comprehensive software development evaluation. Code Generation
benchmarks establish foundational paradigms through HumanEval (Chen et al., |2021b)’s Pass@k
functional correctness metrics and MBPP (Austin et al., 2021))’s programming fundamentals, with
recent expansions including BigCodeBench (Zhuo et al) [2024b)’s practical software engineering
challenges, LiveCodeBench (Jain et al. [2024)’s contamination-resistant continuous updates, and
specialized variants like ClassEval (Du et al.l 2023) for class-level generation. Code Reasoning
evaluation represents a paradigmatic shift toward execution comprehension through CRUXEval (Gu
et al., 2024)’s input-output prediction tasks, revealing significant gaps between generation and un-
derstanding capabilities where models excelling at traditional benchmarks struggle with reasoning
tasks. Tool Use benchmarks evaluate API interaction capabilities via Berkeley Function Calling
Leaderboard (Patil et al., |2024)’s multi-language AST-based assessment and 7-bench (Yao et al.,
2024)’s dynamic user-agent conversations with domain-specific tools and behavioral consistency
metrics. Agentic Software Development assessment measures autonomous problem-solving through

13

Under review as a conference paper at ICLR 2026

SWE-Bench (Jimenez et al.l [2024)’s real GitHub issues requiring codebase understanding, SWT-
Bench (Miindler et al., 2024)’s test generation, and Terminal-bench (Team, 2025)’s command-line
interactions, reflecting recognition that modern LLM capabilities require evaluation beyond iso-
lated correctness metrics toward multi-turn interaction, strategic tool usage, and sustained problem-
solving assessment, though gaps remain in long-term project development and multi-agent collabo-
ration evaluation, suggesting continued evolution toward comprehensive autonomous programming
capability assessment.

A.2 REPRODUCIBILITY STATEMENT

For our submission, we have uploaded the entirety of the source code as a zipped file that has been
properly anonymized. We have organized the codebase such that separate directories correspond to
different contributions within the main paper (i.e. dataset collection, evaluation, open source model
inference, etc.). The source code contains inline documentation that details purpose and usage of
different parts of the codebase. These sections fully cover the logic presented in the code and can be
helpful for understanding it. Moving forward, as discussed in the ethics statement, we plan to more
formally release Lita to the public as an open source repository with thorough details that describes
the benchmark, outlines the code, and details its usage. Because of its easily maintainable design,
as discussed in the main paper, our hope and belief is that results should be highly reproducible.

A.3 THE USE OF LARGE LANGUAGE MODELS

Gemini and OpenAI-GPT were utilized to assist with two primary tasks: 1) Code Generation for
Figures: LLMs were used to generate or refine code snippets necessary for the creation of various
figures and visualizations within the paper. 2) Paper Writing Polishing: LLMs were employed to
review, proofread, and polish the English language and clarity of the manuscript.

A.4 DETAILED HYPERPARAMETER AND RUNTIME SETTINGS

For the SWE-bench Verified benchmark, we ran all Lita agents, limiting them to 100 iterations and
configuring them with temperature=0.0 and top_p=1.0.

A.5 ADDITIONAL FIGURES AND TABLES

Diff Format String Replace
(Aider Style) (OpenHands Style)
Original File Original File
def process-data(data); def process-data(data);
filtered = [ifori in dataif i > 0] > filtered =[iforiin dataifi> 0]
return filtered return filtered
Edit Block
<<<<<<< SEARCH API Function Call
filtered = [i foriin data if i > 0] path"process.py;'
======= old-str"[iforiin dataifi>0]"
filtered =[i * 2 for i in data if i > 0] newstr"[i * 2 for i in data if i > 0]"
>>>>>>> REPLACE v)
Different —
. i Formats, ;
Ilr(;-ﬁle bIoc(lj("I’_'th Sal:remRaezu“ Paramters specify old/new
old/new code lines strings
Modified File Modified File
def process-data(data); | , defprocess-data(data);
filtered = [i* 2 foriin dataifi>0] filtered =[i* 2 foriin data ifi > 0]

return filtered return filtered

Figure 4: Diff block vs string replace

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 4: Comparison of pass rates on HumanEval dataset across models with different scaffolds.

LLM Scaffold Pass rate in 30 turns Pass rate in 1 turn
Lita 98.2 84.8
GPT-4.1 OpenHands 93.9 94.5
Lita 97.6 94.5
GPT-4.1-mini OpenHands 97.5 97.5
Lita 43.6 51.2
GPT-40 OpenHands - -
Lita 16.7 14.6
GPT-40-mini OpenHands - -
Lita 100.0 95.7
Claude 3.7 Sonnet OpenHands 100.0 97.0
Lita 93.9 90.9

Qwen3-Coder-30B-A3B-Instruct OpenHands - -

Tool Usage Proportions — OpenHands (left) vs Lita (right)
100 —
80
60

40

Proportion (%)

20

et &

et 3.7 son

son®

fand

Tool
B editor W terminal EEE think search EEE plan mE finish

o Gt

Figure 5: Tool call proportions

A.6 EXAMPLE PROMPT FOR SWEBENCH

The task prompt prescribed a problem-solving workflow, which constrains the agent’s actions and
tool use. We believe this also introduces the risk of task data leakage.

https :// github .com/SWE-agent/mini-swe—agent/blob/main/src/
minisweagent/config/mini.yaml

Recommended Workflow

This workflows should be done step-by—step so that you can iterate
on your changes and any possible problems.

Analyze the codebase by finding and reading relevant files
Create a script to reproduce the issue

Edit the source code to resolve the issue

Verify your fix works by running your script again

Test edge cases to ensure your fix is robust

Submit your changes and finish your work by issuing the
following command: ‘echo COMPLETE_ TASK_AND_SUBMIT_FINAL_ OUTPUT

NN AW =

Do not combine it with any other command. <important>After this
command, you cannot continue working on this task.</
important>

Important Rules

15

Under review as a conference paper at ICLR 2026

—_

Every response must contain exactly one action

The action must be enclosed in triple backticks

Directory or environment variable changes are not persistent.

Every action is executed in a new subshell.

However, you can prefix any action with ‘MYENV_VAR=MY_VALUE cd
/path/to/working/dir && ... * or write/load environment
variables from files

16

Under review as a conference paper at ICLR 2026

Table 5: Tool usage distribution across models (OpenHands vs Lita). “Total”” shows the total number
of tool calls; other rows show the percentage distribution across modes.

Model Mode OpenHands Lita
Total 5838 5743
Editor 589% 55.4%
Terminal 25.6% 23.6%
GPT-4.1-mini Think 12.7% 14.5%
Search 0.0% 1.5%
Plan 0.0% 2.1%
Finish 2.8% 2.9%
Total 4652 4437
Editor 572% 60.7%
Terminal 229% 21.5%
GPT-4.1 Think 159% 11.8%
Search 0.0% 1.6%
Plan 0.0% 0.2%
Finish 4.1% 4.2%
Total 7232 7472
Editor 553% 61.3%
Terminal 243% 26.8%
GPT-40 Think 18.8% 7.5%
Search 0.0% 2.9%
Plan 0.0% 0.1%
Finish 1.6% 1.4%
Total 2416 2227
Editor 43.1% 52.0%
Terminal 485% 22.5%
GPT-5 Think 0.5% 3.0%
Search 00% 14.5%
Plan 0.0% 0.0%
Finish 7.9% 7.9%
Total 3204 3249
Editor 529% 49.8%
Terminal 33.6% 33.7%
Claude 3.7 Sonnet Think 7.0% 8.0%
Search 0.0% 1.7%
Plan 0.0% 0.1%
Finish 6.5% 6.8%
Total 4829 5006
Editor 51.8% 43.2%
Terminal 37.1% 41.5%
Claude Sonnet 4 Think 6.6% 3.8%
Search 0.0% 0.6%
Plan 0.0% 6.5%
Finish 4.5% 4.3%
Total 3307 3465
Editor 48.5% 45.5%
Terminal 39.1% 40.4%
Claude Opus 4 Think 6.7% 5.5%
Search 0.0% 0.4%
Plan 0.0% 2.0%
Finish 5.8% 6.1%

17

Under review as a conference paper at ICLR 2026

Table 6: Results on resolved rate, tokens usage, and cost across models and agents.
Tokens (M)

LLM Agent Resolved (%) Cost ($)
Input Output

Claude Opus 4 Lita 67.6 468.2 5.6 7441.91
Lita-mini 55.2 300.4 4.7 4856.07

Claude Sonnet 4 Lita 64.93 697.3 7.5 2204.11
Lita-mini 57.8 492.3 6 1566.31

Claude 3.7 Sonnet Lita 53.0 490.8 5.6 1556.22
Lita-mini 48.6 619.7 4.3 1923.44

GPT-4.1 Lita 35.6 744.5 1.3 1499.40
Lita-mini 19.6 597.2 1.1 1202.90

GPT-4.1-mini Lita 26.4 768.3 2.7 311.69
Lita-mini 11.8 668.4 1.8 270.23

18

	Introduction
	Method
	Principles of Lite Agent
	Component Design of Lita
	Benchmark Transformation
	Measuring Liteness

	Experiment and Result
	Results on Aider’s Polyglot
	Results on SWE-Bench Verified
	Ablation Studies

	Discussion and Limitations
	Conclusion
	Appendix
	Related Work
	Agent Design Philosophy Evolution
	Large Language Models for Code
	Benchmarks for Code and Software Engineering

	Reproducibility Statement
	The Use of Large Language Models
	Detailed hyperparameter and runtime settings
	Additional Figures and Tables
	Example Prompt for SWEbench

