
LoQT: Low Rank Adapters for Quantized Training

Sebastian Loeschcke * 1 2 Mads Toftrup * 3 Michael J. Kastoryano 1 Serge Belongie 1 Vésteinn Snæbjarnarson 1

Abstract
Training of large neural networks requires signifi-
cant computational resources. Despite advances
using low-rank adapters and quantization, pre-
training of models such as LLMs on consumer
hardware has not been possible without model
sharding, offloading during training, or per-layer
gradient updates. To address these limitations,
we propose LoQT, a method for efficiently train-
ing quantized models. LoQT uses gradient-based
tensor factorization to initialize low-rank train-
able weight matrices that are periodically merged
into quantized full-rank weight matrices. Our
approach is suitable for both pretraining and fine-
tuning models, achieving similar performance to
full training, which we demonstrate experimen-
tally for language modeling and downstream task
adaptation. We find that LoQT enables efficient
training of models up to 13B parameters on a
consumer-grade 24GB GPU.

1. Introduction
Training large neural networks requires substantial hardware
and energy resources. Reducing these requirements is thus
important for cost efficiency and environmental sustainabil-
ity, while also lowering the entry barrier for researchers and
practitioners. The main barriers in training large models
are the compute operations required, as well as the memory
needed to store those computations, in this paper we focus
on the latter. Memory use during training comes primarily
from the weights of the model itself as well as the opti-
mizer states used to train the model. To target the weights,
variations on low-rank adaptation (LoRA) (Hu et al., 2021;
Hayou et al., 2024b; Dettmers et al., 2023a; Lialin et al.,
2023; Liao & Monz, 2024) have been suggested to decrease
the number of trainable parameters, in combination with the
use of low precision representations. To target the optimizer,

*Equal contribution 1University of Copenhagen 2IT University
of Copenhagen 3Aarhus University. Correspondence to: Sebastian
Loeschcke <sbl@di.ku.dk>, Mads Toftrup <toftrup@cs.au.dk>.

Accepted to the Workshop on Advancing Neural Network Training
at International Conference on Machine Learning (WANT@ICML
2024).

0 10 20 30 40 50 60 70 80
Memory Usage (GB)

Adam

GaLore

GaLore A8bit

GaLore A8bit LW

LoQT

LoQT A8bit

LoQT A8bit LW RTX 4090
Llama 13B

Memory Type
OOM
Optimizer
Model
Forward
Gradients
Unknown

Figure 1: Memory usage of Llama 13B, rank 1024. LW:
per-layer gradient updates. A8bit: Adam 8-bit

low-rank approaches for projecting gradients to a lower rank
have been employed (Zhao et al., 2024). Finally, various
applications of quantization (Gholami et al., 2021; Ma et al.,
2024; Dettmers et al., 2023a) have been used to decrease
memory requirements. In this work, we combine and extend
these approaches into a highly memory-efficient training
configuration.

In typical training setups, the optimizer states take up
larger space than the model itself, as methods such as
Adam (Kingma & Ba, 2017) need to keep track of two
parameters for each weight of the model. GaLore (Zhao
et al., 2024) significantly reduces the number of parameters
needed for storing the optimizer states by only keeping track
of the optimizer state in a low-rank projection, which is then
projected up to be applied to the model weights. Combin-
ing this method with quantization would further shrink the
footprint of the model. However, updating the weights of a
highly quantized model directly in low-precision space has
not been shown to work. This is mainly due to the higher-
precision gradient updates being too small to have an impact
on the lower-precision quantized states. Lastly, while LoRA
is memory efficient for parameter-efficient fine-tuning of
pre-trained models, it does not work as a pretraining method
by itself (Lialin et al., 2023).

To address these shortcomings, we propose a new method,
LoQT. LoQT initializes two low-rank factors for each

1

LoQT: Low Rank Adapters for Quantized Training

Figure 2: Overview of LoQT. (1) Low-rank factors P and B are periodically initialized from the gradient of the dequantized
model weights ∇W , (2) then only B is trained while Pq and Wq are kept quantized and frozen, over an exponentially
increasing interval until Ti, (3) the low-rank factors are merged back into the quantized model. The process is repeated until
training halts.

weight matrix W : 1) P , initialized using a projection of
W ’s gradients into a low-rank subspace, and 2) B, which is
initialized to minimize the quantization error. B is the only
directly trained matrix, which means that the optimizer state
can be shrunk significantly. The product PB is then periodi-
cally merged into the full rank matrix W with exponentially
increasing scheduling. As W and P do not receive gradient
updates, they can be quantized, thus optimizing memory
usage even further. The large accumulated updates make
it possible to update a quantized model, as the addition of
smaller changes would not register in the quantized state. A
high-level overview is given in Fig. 2.

We show that LoQT works well with and without a quan-
tized model, enabling not only a lower memory footprint
in the optimizer state but also over the model parameters.
Our results show that we get competitive performance to
prior methods using significantly less memory, in particular
when using quantization. We also demonstrate superior per-
formance when fine-tuning pre-trained models by training
and evaluating on the GLUE (Wang et al., 2018a) bench-
mark for natural language understanding. Finally, we ablate
several properties of the suggested approach, and we find
that an exponentially increasing projection gap is benefi-
cial, not only to our work but also for prior work (Zhao
et al., 2024). This is particularly crucial for the training of
quantized models. LoQT enables efficient training of 7B
models on consumer-grade hardware with 24GB of mem-
ory, and makes it feasible to train models with up to 13
billion parameters, without model parallel or by making use
of per-layer gradient updates (Lv et al., 2023) on the same
hardware as shown in Fig. 1.

2. Related Work and Background
2.1. Neural Network Quantization and NF4

Quantization compresses neural networks by converting
high-precision values into lower-precision formats, signif-
icantly reducing storage requirements (Zafrir et al., 2019;
Shen et al., 2019; Bai et al., 2021; Dettmers et al., 2022a).
The process involves taking a datatype of high precision,
such as 32-bit, requiring 4 bytes of memory, and converting
it into a representation with increasing rounding errors but
lower memory cost. In this work, we use NF4 quantization
(Dettmers et al., 2023a). Since it is a 4-bit code, it can
only represent 24 different values. NF4 works by first nor-
malizing values onto the interval [−1 : 1]. These are then
discretized onto quantiles of the normal distribution, (qi)16i=1

(see (Dettmers et al., 2023a) for details). The elements of a
layer are divided into blocks of 64 weights. Each block β
has a scaling factorMβ = maxw∈β |w32|.

wNF4 = qNF4(w,Mβ) := argminqi |w/Mβ − qi|, (1)

w = q−1
NF4(wNF4,Mβ) :=Mβ · wNF4. (2)

We provide an overview of different categories of quantiza-
tion techniques, and how they relate to LoQT, in Appendix
A. Compared to prior approaches, LoQT retains the benefits
of reduced memory usage while minimizing accuracy loss,
using high-precision updates on a low-rank representation.
This allows for efficient model updates without the overhead
of full matrix storage and re-quantization.

2.2. Adaptation of Pretrained Networks

Low-Rank Adaptation (LoRA) (Hu et al., 2021) enables
fine-tuning of pre-trained models using low-rank adaptors,

2

LoQT: Low Rank Adapters for Quantized Training

effectively reducing the memory footprint by only train-
ing weight adaptors for targeted layers. However, simple
low-rank training using LoRA factor matrices has not been
shown to work for pre-training (Lialin et al., 2023).

LoRA employs trainable low-rank matrices A and B that
are used to update W following Wt =Wt−1 +AB, where
Wt−1 is frozen to enable precise adjustments within a low-
rank framework. Extending this, LoRA+ (Hayou et al.,
2024a) applies different learning rates to B compared to
A to optimize tuning. LoRA-FA (Zhang et al., 2023) fur-
ther simplifies the process by training only B, eliminat-
ing the need to store full-rank activations for efficient fine-
tuning. DoRA (Liu et al., 2024) divides the LoRA adapter
into independent magnitude and direction components, pro-
viding granular control over weight adjustments. PISSA
initializes A and B using SVD of W for faster conver-
gence (Meng et al., 2024) and does not use gradient infor-
mation ∇W . Since LoRA only trains A and B and keeps
W fixed, QLoRA (Hu et al., 2021) explore quantizing W .
They fine-tune a quantized model q(W) = Wq with 4-bit
precision using randomly initialized 16-bit precision factors
A and B. To address quantization errors E = |Wq −W |,
low-rank factors of the quantization error E have been used
(Li et al., 2023).

LoQT extends LoRA to both pretraining and fine-tuning.
Unlike traditional LoRA, LoQT uses A and B to refine W
throughout training, with A initialized from W ’s gradient
projection and B trained along this gradient path. LoQT
also incorporates quantization and targeted optimization it-
erations similar in spirit to LoftQ (Li et al., 2023), correcting
for quantization errors in Wq, thus better aligning it with
the original non-quantized W .

2.3. Memory Efficient Optimization

Optimizer memory consumption A significant portion
of the memory needed to train neural networks is typically
consumed by optimizer states. Notably, Adam (Kingma &
Ba, 2017), one of the most widely used optimizers, uses dou-
ble the amount of memory as the gradient matrix to maintain
first and second-order gradient statistics. Efforts to reduce
this overhead have led to the development of adaptive opti-
mization algorithms like Adafactor (Shazeer & Stern, 2018),
which achieves sub-linear memory costs by factorizing the
second-order statistics into a row-column outer product. Ga-
Lore (Zhao et al., 2024) expands on this concept by using
low-rank factorization and projecting low-rank gradients up
to a full-rank when updating model weights.

Periodic updating of weight matrices ReLoRA (Lialin
et al., 2023) combines low-rank updates with initial full-
rank training. They find that doing one-third of the training
in full-rank, and the subsequent two-thirds in low-rank (see

§2.2) results in comparable performance to standard training
methods.

Low-rank gradients GaLore (Zhao et al., 2024), focuses
on the structure of the gradients, projecting them into a
low-rank space using factors P and Q, which are derived
from a truncated singular value decomposition (SVD) of
the weight matrix gradient, GW ≈ PrΣrQr. This reduces
memory costs associated with storing the optimizer states
and aligns with findings from recent studies which suggest
that learning primarily occurs within a low-dimensional
subspace at a given time (Larsen et al., 2022; Gur-Ari et al.,
2018). This can be further combined with applying per-layer
gradient updates, reducing the memory needed for storing
the gradients for the full model at once (Lv et al., 2023).

LoQT builds on GaLore’s gradient projection (§3.1) to ini-
tialize LoRA factors while updating the full matrix follow-
ing a schedule inspired by ReLora, while only training one
low-rank matrix per layer. We achieve comparable quality
to GaLore and better performance than ReLoRA while re-
ducing tunable parameters and memory usage compared to
both approaches.

3. Efficient Pretraining With LoQT
LoQT works by initializing and training low-rank adapters
obtained by taking the SVD of a given layer’s gradients. Let
W indicate the full weights matrix of a given layer, P be
the left factor constructed from the SVD decomposition of
the gradients matrix: ∇W = UΣV ⊤; i.e. P consists of the
first r columns of U corresponding to the singular vectors
with the r largest singular values of W . The update rule for
an interval [Ti−1, Ti] is then given by WTi =WTi−1 +PB,
where only the weights of B are updated. P and WTi−1

are kept constant over the time interval. We describe this
in more detail below, followed by a discussion on peri-
odic updating of the factor P , the enabling of quantized
pre-training, error compensation, and exponential update
intervals. Pseudo-code for LoQT is shown in Fig. 3.

3.1. Background: GaLore

Zhao et al. (Zhao et al., 2024) show that gradients exhibit
a low-rank structure during training. They exploit this in-
sight by projecting the gradient to a low-rank subspace and
applying the Adam optimizer before projecting back to the
original dimensions. By doing this, the memory-intensive
optimizer states required by Adam are shrunk significantly
for low enough ranks.
Definition 3.1 (Gradient Low-rank Projection, def. 3.4 in
(Zhao et al., 2024)). Gradient low-rank projection (GaLore)
denotes the following gradient update rules, where η is the
learning rate, ρ is the Adam optimizer, and W ∈ Rm×n

is the weight matrix being trained, and T represents the

3

LoQT: Low Rank Adapters for Quantized Training

total number of training iterations between recomputing the
projection matrices:

WT =W0+η

T−1∑
t=0

G̃t, where G̃t = Ptρt(P
⊤
t GtQt)Q

⊤
t ,

where Pt ∈ Rm×r and Qt ∈ Rn×r are are the top-r sin-
gular vectors from the SVD decomposition of the gradient
matrix at each iteration t. In practice, this can be approxi-
mated by only applying a one-sided projection, as in

W ′
T =W0 + η

T−1∑
t=0

Ptρt(P
⊤
t Gt) or (3)

W ′
T =W0 + η

T−1∑
t=0

ρt(GtQt)Q
⊤
t . (4)

GaLore demonstrates that it is sufficient to keep the projec-
tion matrix fixed and only update it once every T iterations,
which we use in the following.

3.2. Low-rank Gradients as Adapters

We now describe the process by which we initialize the
parameters we optimize in LoQT. We adopt the memory-
performance trade-off of using only a one-sided projection.
We compute P⊤G if m ≤ n and GQ otherwise. We want
to achieve a separation between trainable weights and static
weights, which we achieve by rewriting GaLore in terms of
low-rank adaptors. Assume, without loss of generality, that
m ≤ n. Using the fact that Pt is fixed in the interval [0, T]
we have that

WT =W0 + η

T−1∑
t=0

Pρt(P
⊤Gt) (5)

=W0 + η P︸︷︷︸
∈Rm×r

T−1∑
t=0

ρ(P⊤Gt)︸ ︷︷ ︸
B∈Rr×n

(6)

From (4) it is clear that we can keep track of low-rank up-
dates using rank-r low-rank adaptors. We note that in the
interval [0, T] only B is updated, creating the desired sepa-
ration. If implemented directly, we would need to compute
the gradient with respect to W and then project it down
using P⊤Gt. We find that this step is unnecessary; it is
sufficient to train B using standard gradient descent.

We now show that training the B matrix using gradient de-
scent is equivalent to training w.r.t. Wt as in definition 3.1.
Let GW indicate the gradient of the loss with respect to
W , and GB for the gradient of the loss with respect to B.
Given a weight matrix W , a factor P and a matrix B, when
computing the forward pass y = xW + xPB, the gradient

of a loss function L w.r.t. B is GB = P⊤GW . This can be
seen by applying the chain rule to get GW = x⊤ ∂L

∂y . The
vector multiplied onto B is xP giving GB = (xP)⊤ ∂L

∂y =

P⊤x⊤ ∂L
∂y = P⊤

t G
w. This shows that calculating the gra-

dient w.r.t B gives the same as projecting the gradient w.r.t
W . It is thus clear that GaLore’s low-rank gradient updates
should be the same as those obtained using backpropagation
through LoRA.

3.3. Enabling pretraining with LoRA

Previous work has shown that training low-rank weight
matrices works well for fine-tuning pre-trained weights.
However, it has been shown that training low-rank factors,
and periodically merging them into frozenW , does not work
when starting with a randomly initialized matrix (Lialin
et al., 2023). Here we address this shortcoming to enable
full training using low-rank weight matrices.

Inspired by prior work (Lialin et al., 2023; Zhao et al., 2024),
we periodically update a given layer WT+1 =WT +PTBT

at fixed steps T ∈ T . This approach allows W to evolve as
a sum of low-rank matrices aligning with GaLore’s strategy
of updating the gradient subspace during training:

Wt =W0 +∆WT1 +∆WT2 + . . .+∆WTn ,

where t =
∑|T |

i=1 Ti and ∆WTi = PTiBTi represents the
product of the learning fromB during the interval Ti−Ti−1

scaled by the learning rate η and modulated by the gradient
projection matrix PTi

. After each update at iteration Ti ∈
T , we reinitialize the low-rank factors PT and BT . As in
(Zhao et al., 2024), we compute the gradient of WT over a
single batch, focusing only on ∇WT without needing full
optimizer states. Not requiring optimizer states reduces the
memory increase compared to full-rank training.

With the updated Wt and reinitialized Pt and Bt, a new gra-
dient subspace is established for exploring the next Ti+1−Ti
steps. Our method treats Wt as the full-rank repository of
accumulated updates. Although it is periodically updated,
Wt is not part of the optimizer state computations, and the
gradients during the single forward pass are offloaded to
cpu. Since the SVD calculations are done layerwise only
the current layer is needed on GPU, or the SVD can be
calculated on CPU. Pt defines the general gradient subspace
and trajectory for the upcoming Ti+1 − Ti steps, and Bt is
adjusted to navigate optimally within the direction set by Pt.
As only Bt is trained, the number of parameters needing
optimizer states is drastically reduced.

3.4. Quantized Training

Given that B is the only matrix accumulating gradients and
undergoing changes, the other matrices W and P can be
kept quantized. This approach allows storing the weights

4

LoQT: Low Rank Adapters for Quantized Training

in NF4 precision without requiring high-precision gradient
and weights to update W and P . This approach reduces the
memory required for these matrices by almost a factor of 4.
To the best of our knowledge, we are the first to enable effi-
cient 4-bit quantized training using gradient descent without
storing the weights in full precision.

We quantize weights qNF4(W) = Wq and qNF4(P) = Pq

as described in §2.1. During periodic updates at interval
time steps (

∑n
i=1 Ti)

max
n=1, Pq andWq are dequantized using

the inverse function, PBF16 = q−1
NF4(PNF4) and WBF16 =

q−1
NF4(WNF4). After this, WTi = WTi−1 + PTi−1BTi−1 is

computed and quantized. The quantization and dequantiza-
tion processes are applied layer by layer, ensuring that not
all layers are simultaneously in a non-quantized state to re-
duce memory usage. Moreover, the quantization state itself
is re-quantized for further efficiency following (Dettmers
et al., 2023a). We implement LoQT using weight-only
quantization, meaning the quantized weights are loaded into
memory and then dequantized before computing the matrix
multiplications.

3.5. Compensating for Errors Introduced by
Quantization

As the quantization process inevitably leads to a discrepancy
between the non-quantized and quantized versions of W
we wish to reduce this effect as much as possible. While
compensating for quantization errors has been done before
(Li et al., 2023), we need a tailored solution for LoQT.

During the merging phase, we first dequantize to obtain
WT−1 and PT−1, and then compute the update WT =
WT−1 + PT−1BT−1. This is immediately followed by
re-quantizing to get QT = qNF4(WT). Our goal is thus to
minimize the quantization error ∥(QT + PTBT)−WT ∥F .
The projection matrix Pt is calculated as described in sec-
tion 3.1, whereas we are free to choose Bt to minimize the
quantization error. To achieve this, we solve for BT , giving
BT := P+

T (QT −WT), where P+
T is the Moore-Penrose

pseudo-inverse. Inspired by (Li et al., 2023) we then itera-
tively refineBT , by recomputingQT = qNF4(WT −PTBT)
and recomputing Bt, improving the alignment between the
full-precision W and its quantized state.

As training advances and the learning rate decays, the magni-
tude of the update BT−1 to form WT decreases. This leads
to negligible differences between |q (Qt + PtBt)−Qt|,
which results in the weights plateauing early, as depicted
in Fig. 4a. To address this, we implement an exponen-
tially increasing scheduler for updating W . Drawing from
GaLore’s observation on the exponential decay of gradi-
ent rank (Lemma 3.1 (Zhao et al., 2024)), we start with
a frequency gap τ and progressively increase the update
intervals by a factor of ψ. The sequence of updates is then
given by (Ti)

∞
i=0 = (τ + ψi)∞i=0 Each Ti marks a training

Algorithm 1 LoQT: Low Rank Adapters for Quantized
Training

Require: W : Weight, T : Update steps, η: LR, r: rank,
qN (·): N-bit quantization function.

1: GW ← ∇WL(W)
2: WQ, PQ, B ← Initialize(W,GW)
3: for each t in training steps do
4: if t ∈ T then
5: W ←WQ + s · PQ ·Bt

6: GW ← ∇WL(W)
7: WQ, PQ, Bt ← Initialize(W,GW)
8: else
9: Bt+1 ← Bt − ρ(GB

t)
10: end if
11: end for
12: return θ

Algorithm 2 Initialization Procedure

1: Initialize(W,GW):
2: U, S, V T ← SVD(GW)
3: P ← U [:, : r] {First r singular vectors}
4: Pq ← qN (P)
5: B ← 0
6: Ŵ ←W
7: for each c in compensation steps C do
8: Qc ← qN (Ŵ)
9: B ← P+(Ŵ −Qc)

10: Ŵ ←W − PB
11: end for
12: return Qc, B, Pq

Figure 3: Pseudo-code for LoQT.

step t when W is updated. This scheduling ensures more
frequent updates earlier in training and more well-spaced ad-
justments later, allowing more accumulated gradients before
each update.

4. Experiments and Results
4.1. Experimental Setup

We evaluate LoQT by training LLaMA-based (Touvron
et al., 2023) language models on the C4 dataset (Raffel
et al., 2019), a collection of processed text in English that
was scraped from the internet (Raffel et al., 2019). We
train models of sizes of 60M, 130M, 350M, and 1B param-
eters, adhering to single-epoch training cycles determined
by Chinchilla Scaling Laws (Hoffmann et al., 2022). While
LoQT is capable of training models up to 13 billion param-
eters on consumer GPUs, compute limits prevent us from
training to convergence for sizes above 1B. We also bench-
mark LoQT on the GLUE test-suite for natural language

5

LoQT: Low Rank Adapters for Quantized Training

Table 1: Comparison of low-rank pre-training methods for LLaMA2-style language models on the C4 dataset. The table
shows validation perplexity and memory estimates for model weights and optimizer states. The rank ratio r/dmodel is
relative to the largest weight matrix dimension. Perplexity values are averaged over three seeds showing mean and standard
error. (*) Denotes results from GaLore (Zhao et al., 2024). Only one seed was used for the 1B experiment due to compute
constraints.

60M 130M 350M 1B

Full 33.32 ± 0.22 (0.36G) 24.51 ± 0.03 (0.76G) 18.87 ± 0.18 (2.06G) 15.56* (7.80G)

LoQT (Ours) 33.98 ± 0.15 (0.23G) 24.57 ± 0.01 (0.49G) 19.12 ± 0.01 (0.98G) 15.55 (3.16G)
LoQT-nq (No quant.) 33.55 ± 0.03 (0.28G) 24.37 ± 0.02 (0.63G) 18.85 ± 0.01 (1.47G) 15.20 (5.11G)
GaLore 34.15 ± 0.24 (0.24G) 24.81 ± 0.04 (0.52G) 19.47 ± 0.01 (1.22G) 15.64* (4.38G)
LoRA 34.99* (0.36G) 33.92* (0.80G) 25.58* (1.76G) 19.21* (6.17G)
ReLoRA 37.04* (0.36G) 29.37* (0.80G) 29.08* (1.76G) 18.33* (6.17G)

r/dmodel 128 / 256 256 / 768 256 / 1024 512 / 2048
Training Tokens 1.1B 2.2B 6.4B 13.1B

understanding (Wang et al., 2019). Runs were conducted on
up to 4x 40GB NVIDIA A100s 2x 80GB NVIDIA H100s,
or a single 24GB NVIDIA RTX 3090. The longest run was
the training of the 1B models, taking approximately four
days on the four A100s. The 3090 was used for throughput
and to empirically verify memory claims.

Hyperparameters are consistent across model sizes, with
experiments in BF16 format for memory efficiency. All
models use a maximum sequence length of 256, a total to-
ken batch size of 131K tokens, and a learning rate warmup
for the first 10% of the training steps, followed by cosine
annealing to 10% of the initial learning rate. Full experi-
mental details, including the specific hyperparameters for
each task, are provided in Appendix C.

Baselines For pre-training, we compare LoQT against
LoRA (Hu et al., 2021), ReLoRA (Lialin et al., 2023),
GaLore (Zhao et al., 2024), and non-quantized version of
LoQT, LoQT-nq. In our experiments, LoQT, LoRA, and
ReLoRA modify attention and fully connected layers while
maintaining full-rank embeddings and normalization layers.
This contrasts with GaLore, which keeps weights full-rank
but projects gradients to low-rank, and standard full-rank
training. For fine-tuning, we benchmark LoQT against Ga-
Lore, LoftQ (Li et al., 2023), LoRA and LoQT-nq. All mod-
els use identical update frequencies for GaLore, ReLoRA,
LoQT-nq, and LoQT, starting with an update frequency
of T = 100 and then with exponentially increasing update
frequencies. This means more frequent updates early and
fewer as the model stabilizes (see Section 4b for details).
All models are trained using the Adam optimizer, except
GaLore which uses GaLoreAdam for gradient projection.

4.2. Pre-training of Generative Language Models

Results and details for pretraining of language models of
sizes 60M, 130M, 350M and 1B parameters are shown in
Table 1. Model sizes are calculated based on the full mod-
els without any low-rank methods. We see that LoQT and
LoQT-nq both perform very close to full rank pretraining
and GaLore, while using significantly less memory by keep-
ing most of the model weights in a quantized state. For
the 60M model, full training is only slightly better than
LoQT, while we see results improve or be within the stan-
dard error for the other sizes. We also notice a slight drop
in performance from quantizing the original weight matrix,
comparing LoQT and LoQT-nq. The key difference be-
tween the approaches are the theoretical memory estimates,
e.g. where LoQT requires 59% less memory for the 1B
model in full precision and 28% less memory than GaLore.

4.3. Memory-efficient finetuning

We fine-tune the pre-trained DeBERTa-V3-base1 (He et al.,
2023) model on GLUE tasks using LoQT and compare its
performance with a full fine-tuning baseline, LoRA, LoftQ,
and GaLore. See Appendix 5 for details on hyperparameters.
Results are given in Table 2.

We find that both LoQT-nq and LoQT perform well. Some-
what surprisingly, it sometimes surpasses GaLore, LoftQ,
and LoRA.This may indicate that initializing the LoRA fac-
tors with information about the gradient of W could be
a beneficial starting point compared to standard initializa-
tion methods. As the goal of this work is to limit memory
consumption, we leave out further comparisons that could
verify these findings to future work.

1From https://huggingface.co/microsoft/
deberta-v3-base.

6

https://huggingface.co/microsoft/deberta-v3-base
https://huggingface.co/microsoft/deberta-v3-base

LoQT: Low Rank Adapters for Quantized Training

Table 2: Results with LoQT, LoQT-nq, and GaLore of DeBERTaV3-base models on the GLUE development set. We report
mean and standard error over three seeds. The best results on each dataset are shown in bold.

Rank Method MNLI QNLI RTE SST MRPC CoLA QQP STSB Average
Acc Acc Acc Acc f1 Matt f1 PCorr

32 LoQT-nq 90.0±0.10 94.2±0.06 84.8±0.75 95.9±0.06 94.1±0.25 72.5±0.41 90.0±0.06 91.5±0.07 89.1
32 LoQT 90.0±0.09 94.3±0.04 84.1±0.91 95.5±0.10 94.4±0.20 70.5±0.35 89.2±0.02 91.5±0.13 88.7

32 LoRA 89.9±0.03 94.0±0.09 83.6±0.12 95.7±0.15 93.5±0.26 69.3±0.47 89.8±0.11 90.7±0.22 88.3
32 LoftQ 90.4±0.09 93.2±0.02 83.8±0.63 95.6±0.07 93.2±0.14 71.1±0.28 89.6±0.12 91.0±0.09 88.5
32 GaLore 90.3±0.07 94.0±0.04 83.7±0.79 95.6±0.07 93.4±0.38 70.7±0.24 89.8±0.05 90.6±0.01 88.5

Table 3: Comparison of memory usage between GaLore, LoRA,
and LoQT. W ∈ Rm×n (m ≤ n), rank r.

GaLore LoRA LoQT (Ours)

Weights mn mn+mr + nr mn+mr + nr
Optimizer States mr + 2nr 2mr + 2nr 2nr
Gradients mn mr + nr nr
Pretraining Yes No Yes
Fine-Tuning Yes Yes Yes
Quantizeable No Yes Yes

4.4. Memory and Throughput

Memory usage An overview of memory usage for Ga-
Lore, LoRA and LoQT is given in Table 3. We see that
LoQT makes use of the same number of trainable parame-
ters as LoRA for a given rank while using less memory for
the optimizer states and gradients than in both LoRA and
GaLore.

We compare the LoQT to the closest in memory perfor-
mance approach, GaLore, for 13B in Figure 1, and for other
model-sizes in Figure 6. We compare three different use
cases, using the approaches directly, combining them with
an 8-bit Adam optimizer (Dettmers et al., 2022b), and using
per-layer weight updates with offloading (while still using
8-bit Adam). We see from the figures that LoQT signifi-
cantly shrinks both the number of trainable parameters and
optimizer states compared to GaLore.

Per-layer weight update is essential for GaLore; without it,
an additional ∼12 GB of VRAM is needed for gradients
in a 7B model, making full-parameter fine-tuning impossi-
ble on a 24GB GPU. Additionally, the per-layer gradient
updates may not work well with DDP (Distributed Data
Parallel) and gradient accumulation. With our method, we
can get a lower memory than GaLore even when they use
per-layer gradient updates. When not using per-layer gra-
dient updates, this difference becomes even bigger as seen
for the 7B model in Figure 6. This allows us to increase
the batch size during training on multi-GPU setups, leading
to speed improvements when training larger models. We
note that the memory required for storing gradients can be
reduced in GaLore by doing gradient accumulation in the
low-dimensional space and only projecting back once right

before adding the gradient update to the weight matrix. The
memory consumption of this approach would fall some-
where between Galore with and without per-layer updates
but does still not allow for quantized training.

Moreover, our method supports training 7B models without
per-layer computations on 24GB GPU. This makes it possi-
ble to use multi-GPU training with gradient accumulation,
a capability not possible with the current GaLore approach.
Our memory advantage allows for a batch size of 1280 to-
kens compared to GaLore’s 256 for the 7B model on the
24GB RTX3090. With per-layer gradient updates, LoQT
can train a 13B model on a single GPU, pushing the limits
of hardware efficiency.

Throughput We evaluate the throughput with a sample
batch size of 16 with a total batch size of 512 using gradi-
ent accumulation, which is the largest power of 2 that fits
on the GPU. We update the projection matrix P every 200
iterations. The per-layer gradient update algorithms apply a
weight update for every mini-batch as they do not support
gradient accumulation. For evaluation, we use a 1B param-
eter model with rank 512. We find that LoQT can process
16% fewer tokens per second than only using AdamW, at
3996 tokens/s compared to 4782 tokens/s on the RTX3090.

5. Ablations
Quantization Error Compensation and Initialization
To assess the impact of quantization error compensation,
we analyze the validation loss curves for a 130 million pa-
rameter model. Figure 4a shows that quantizing W or both
W and P without error compensation, or exponential fre-
quency updates, causes the loss to stagnate early. We also
note that quantizing P has a much smaller effect on the
loss compared to quantizing W . Error compensation sig-
nificantly improves the model’s performance, resulting in
approximately 3.5 points better perplexity. Adding expo-
nentially increasing update frequency improves perplexity
by an additional 1.5 points, achieving performance close to
that of models without quantization.

Without the quantization error compensation detailed in

7

LoQT: Low Rank Adapters for Quantized Training

4000 8000 12000 16000 20000
Step

24

26

28

30

32

34

P
er

pl
ex

ity
Ablation LoQT - Perplexity vs Steps

Model Configuration
Quant W
Quant P
Quant W&P
Quant W&P - EF
Quant W&P - EC, EF
No Quantization

(a) Ablation of quantization effects, with/without EC (Error Com-
pensation) and EF (Exp. Decreasing Update Frequency).

4000 8000 12000 16000 20000
Step

24

26

28

30

32

34

36

38

P
er

pl
ex

ity

Update Frequency Ablation - Perplexity vs Steps

Update Frequency
200
400
500
1000
100+1.20Ti

(b) Ablation of fixed update frequencies (200, 400, 500, 1000) and
exponentially increasing frequency starting at 100 (factor 1.2).

Figure 4: Ablation results for update frequency, error-compensation, quantization, model size 130m, and rank 256.

§3.5, LoQT’s performance stagnates earlier and diverges
more from the other models. This demonstrates the effec-
tiveness of our compensation approach in mitigating the
quantization errors introduced during the W update with
AB and subsequent quantization steps.

Projection update frequency Our scheduling approach
ensures frequent updates early in training for substantial
weight adjustments, with decreasing frequency as training
progresses. This allows for larger updates to compensate for
smaller ones canceled out by quantization errors. Figure 4b
presents an ablation study on our method of progressively
increasing update frequency starting at 100 and increasing
by a factor of 1.2T up to 2500. We show validation loss
curves for fixed update frequencies 200, 400, 500, and 1000.

The results show that exponentially increasing the update
gap is particularly beneficial for models employing quan-
tization, enabling them to achieve the same perplexity as
those without quantization while making use of GaLore.
Conversely, the performance gains are more subtle for mod-
els that do not use quantization and rely solely on GaLore.
This could be due to the reduction in the accumulation of
errors from frequent updates of the projection factor P , as
the influence of outdated optimizer statistics becomes less
prevalent. Finally, an ablation on the ranks used for P and
B is given in Figure 5 in the Appendix.

6. Discussion and Conclusion
We present LoQT, a method for memory-efficient pretrain-
ing and adaptation of quantized models. The key insights
behind the approach are the benefits of initializing two low-
rank factors using the gradient of the weight matrix and us-

ing exponentially increasing update gaps. By training only
one low-rank factor in higher precision, we keep the other
factor and the main weight matrix frozen and quantized. We
then periodically merge in updates from the trainable fac-
tor into the quantized original matrix, allowing the frozen
matrix to store updates while the trainable factor guides
optimization based on gradient information.

While our initial goal was to lower memory usage to facili-
tate the training of models such as LLMs on consumer-grade
hardware, we are cautiously excited about the results some-
times being better than the baselines. These evaluations will
be explored in more detail in future work.

Our method is general and opens up new ways of decreasing
memory use as well as improving the training throughput.
This could be done by implementing kernel fusion and using
other quantization methods such as NF2 (Dettmers et al.,
2023a) or quantization of activations, making it possible
to do the matrix multiplications using modern tensor core
formats such as FP8 or INT4.

7. Impact and Limitations
Our work has the potential to have a significant impact on
those working in hardware-constrained settings by enabling
more efficient training on consumer hardware. We are par-
ticularly excited to see the method being applied in single
GPU settings. We validate LoQT on several model sizes, by
training over many steps and by fine-tuning on a standard
benchmark for natural language understanding. While we
are confident in our results, further exploration of training
duration, data diversity, and hyper-parameter tuning might
lead to different results in those settings.

8

LoQT: Low Rank Adapters for Quantized Training

References
Bai, H., Hou, L., Shang, L., Jiang, X., King, I., and Lyu,

M. R. Towards efficient post-training quantization of
pre-trained language models, 2021.

Banner, R., Hubara, I., Hoffer, E., and Soudry, D. Scalable
methods for 8-bit training of neural networks, 2018.

Chmiel, B., Banner, R., Hoffer, E., Yaacov, H. B., and
Soudry, D. Logarithmic unbiased quantization: Simple
4-bit training in deep learning, 2022.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Llm.int8(): 8-bit matrix multiplication for transformers
at scale, 2022a.

Dettmers, T., Lewis, M., Shleifer, S., and Zettlemoyer, L.
8-bit optimizers via block-wise quantization, 2022b.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer,
L. Qlora: Efficient finetuning of quantized llms, 2023a.

Dettmers, T., Svirschevski, R., Egiazarian, V., Kuznedelev,
D., Frantar, E., Ashkboos, S., Borzunov, A., Hoefler, T.,
and Alistarh, D. Spqr: A sparse-quantized representation
for near-lossless llm weight compression, 2023b.

Egiazarian, V., Panferov, A., Kuznedelev, D., Frantar, E.,
Babenko, A., and Alistarh, D. Extreme compression of
large language models via additive quantization, 2024.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers, 2023.

Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney,
M. W., and Keutzer, K. A survey of quantization
methods for efficient neural network inference. CoRR,
abs/2103.13630, 2021. URL https://arxiv.org/
abs/2103.13630.

Gur-Ari, G., Roberts, D. A., and Dyer, E. Gradient descent
happens in a tiny subspace, 2018.

Hayou, S., Ghosh, N., and Yu, B. Lora+: Efficient
low rank adaptation of large models. arXiv preprint
arXiv:2402.12354, 2024a.

Hayou, S., Ghosh, N., and Yu, B. Lora+: Efficient
low rank adaptation of large models. arXiv preprint
arXiv:2402.12354, 2024b.

He, P., Gao, J., and Chen, W. Debertav3: Improving
deberta using electra-style pre-training with gradient-
disentangled embedding sharing, 2023.

Heo, J. H., Kim, J., Kwon, B., Kim, B., Kwon, S. J., and
Lee, D. Rethinking channel dimensions to isolate outliers
for low-bit weight quantization of large language models,
2024.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., de Las Casas, D., Hendricks,
L. A., Welbl, J., Clark, A., Hennigan, T., Noland, E.,
Millican, K., van den Driessche, G., Damoc, B., Guy,
A., Osindero, S., Simonyan, K., Elsen, E., Rae, J. W.,
Vinyals, O., and Sifre, L. Training compute-optimal large
language models, 2022.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation
of large language models, 2021.

Jung, S., Son, C., Lee, S., Son, J., Kwak, Y., Han, J.-J.,
Hwang, S. J., and Choi, C. Learning to quantize deep
networks by optimizing quantization intervals with task
loss, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization, 2017.

Larsen, B. W., Fort, S., Becker, N., and Ganguli, S. How
many degrees of freedom do we need to train deep net-
works: a loss landscape perspective, 2022.

Lee, J. H., Kim, J., Kwon, S. J., and Lee, D. FlexRound:
Learnable rounding based on element-wise division for
post-training quantization. In Krause, A., Brunskill, E.,
Cho, K., Engelhardt, B., Sabato, S., and Scarlett, J. (eds.),
Proceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 18913–18939. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/lee23h.html.

Li, Y., Yu, Y., Liang, C., He, P., Karampatziakis, N., Chen,
W., and Zhao, T. Loftq: Lora-fine-tuning-aware quantiza-
tion for large language models, 2023.

Lialin, V., Shivagunde, N., Muckatira, S., and Rumshisky,
A. Relora: High-rank training through low-rank updates,
2023.

Liao, B. and Monz, C. Apiq: Finetuning of 2-bit quantized
large language model, 2024.

Liu, S.-Y., Wang, C.-Y., Yin, H., Molchanov, P., Wang,
Y.-C. F., Cheng, K.-T., and Chen, M.-H. Dora: Weight-
decomposed low-rank adaptation, 2024.

Liu, Z., Oguz, B., Zhao, C., Chang, E., Stock, P., Mehdad,
Y., Shi, Y., Krishnamoorthi, R., and Chandra, V. Llm-qat:
Data-free quantization aware training for large language
models. arXiv preprint arXiv:2305.17888, 2023.

Lv, K., Yang, Y., Liu, T., Gao, Q., Guo, Q., and Qiu, X. Full
parameter fine-tuning for large language models with
limited resources, 2023.

9

https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/2103.13630
https://proceedings.mlr.press/v202/lee23h.html
https://proceedings.mlr.press/v202/lee23h.html

LoQT: Low Rank Adapters for Quantized Training

Ma, S., Wang, H., Ma, L., Wang, L., Wang, W., Huang, S.,
Dong, L., Wang, R., Xue, J., and Wei, F. The era of 1-bit
llms: All large language models are in 1.58 bits, 2024.

Meng, F., Wang, Z., and Zhang, M. Pissa: Principal singular
values and singular vectors adaptation of large language
models, 2024.

Park, G., Park, B., Kim, M., Lee, S., Kim, J., Kwon, B.,
Kwon, S. J., Kim, B., Lee, Y., and Lee, D. Lut-gemm:
Quantized matrix multiplication based on luts for effi-
cient inference in large-scale generative language models,
2024.

Peng, H., Wu, K., Wei, Y., Zhao, G., Yang, Y., Liu, Z.,
Xiong, Y., Yang, Z., Ni, B., Hu, J., Li, R., Zhang, M., Li,
C., Ning, J., Wang, R., Zhang, Z., Liu, S., Chau, J., Hu,
H., and Cheng, P. Fp8-lm: Training fp8 large language
models, 2023.

Perez, S. P., Zhang, Y., Briggs, J., Blake, C., Levy-Kramer,
J., Balanca, P., Luschi, C., Barlow, S., and Fitzgibbon,
A. W. Training and inference of large language models
using 8-bit floating point, 2023.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. arXiv e-prints, 2019.

Shao, W., Chen, M., Zhang, Z., Xu, P., Zhao, L., Li, Z.,
Zhang, K., Gao, P., Qiao, Y., and Luo, P. Omniquant:
Omnidirectionally calibrated quantization for large lan-
guage models, 2024.

Shazeer, N. and Stern, M. Adafactor: Adaptive learning
rates with sublinear memory cost, 2018.

Shen, S., Dong, Z., Ye, J., Ma, L., Yao, Z., Gholami, A.,
Mahoney, M. W., and Keutzer, K. Q-bert: Hessian based
ultra low precision quantization of bert, 2019.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog,
I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,
K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R.,
Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X.,
Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur,
M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S.,
and Scialom, T. Llama 2: Open foundation and fine-tuned
chat models, 2023.

Tseng, A., Chee, J., Sun, Q., Kuleshov, V., and Sa, C. D.
Quip : Even better llm quantization with hadamard inco-
herence and lattice codebooks, 2024.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. GLUE: A multi-task benchmark and analysis
platform for natural language understanding. In Linzen,
T., Chrupała, G., and Alishahi, A. (eds.), Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pp. 353–355,
Brussels, Belgium, November 2018a. Association for
Computational Linguistics. doi: 10.18653/v1/W18-5446.
URL https://aclanthology.org/W18-5446.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. Glue: A multi-task benchmark and analy-
sis platform for natural language understanding, 2019.

Wang, H., Ma, S., Dong, L., Huang, S., Wang, H., Ma, L.,
Yang, F., Wang, R., Wu, Y., and Wei, F. Bitnet: Scaling
1-bit transformers for large language models, 2023.

Wang, N., Choi, J., Brand, D., Chen, C.-Y., and Gopalakrish-
nan, K. Training deep neural networks with 8-bit floating
point numbers, 2018b.

Wortsman, M., Dettmers, T., Zettlemoyer, L., Morcos, A.,
Farhadi, A., and Schmidt, L. Stable and low-precision
training for large-scale vision-language models, 2023.

Xi, H., Chen, Y., Zhao, K., Zheng, K., Chen, J., and Zhu,
J. Jetfire: Efficient and accurate transformer pretraining
with int8 data flow and per-block quantization, 2024.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models, 2024.

Zafrir, O., Boudoukh, G., Izsak, P., and Wasserblat, M.
Q8bert: Quantized 8bit bert. In 2019 Fifth Work-
shop on Energy Efficient Machine Learning and Cogni-
tive Computing - NeurIPS Edition (EMC2-NIPS). IEEE,
December 2019. doi: 10.1109/emc2-nips53020.2019.
00016. URL http://dx.doi.org/10.1109/
EMC2-NIPS53020.2019.00016.

Zhang, L., Zhang, L., Shi, S., Chu, X., and Li, B. Lora-fa:
Memory-efficient low-rank adaptation for large language
models fine-tuning, 2023.

Zhao, J., Zhang, Z., Chen, B., Wang, Z., Anandkumar, A.,
and Tian, Y. Galore: Memory-efficient llm training by
gradient low-rank projection, 2024.

10

https://aclanthology.org/W18-5446
http://dx.doi.org/10.1109/EMC2-NIPS53020.2019.00016
http://dx.doi.org/10.1109/EMC2-NIPS53020.2019.00016

LoQT: Low Rank Adapters for Quantized Training

A. Quantization Methods
Quantization methods can be broadly categorized into Quantization-Aware Training (QAT), Post-Training Quantization
(PTQ), and Fully Quantized Training (FQT).

Quantization-Aware Training (QAT) QAT (Liu et al., 2023; Jung et al., 2018; Egiazarian et al., 2024; Wang et al., 2023;
Ma et al., 2024) integrates quantization in the training process by emulating inference time quantization where the model
weights are quantized. By maintaining high precision gradients and optimizer states, QAT allows the model to adapt to
quantized weights while preserving accuracy. These methods predominantly focus on weight-only quantization approaches,
which involve converting weight matrices into low-precision formats and then upcasting them just before computation (Wang
et al., 2023; Ma et al., 2024). This allows the main computation to occur at high precision, effectively preserving
model accuracy while significantly compressing the model (Frantar et al., 2023). However, QAT can require significant
computational resources due to the need for full precision gradient calculations and large optimization states (Dettmers
et al., 2023a).

Post-Training Quantization (PTQ) PQT (Frantar et al., 2023; Dettmers et al., 2023b; Tseng et al., 2024; Xiao et al.,
2024; Park et al., 2024; Dettmers et al., 2022a; Lee et al., 2023; Heo et al., 2024; Shao et al., 2024) involves converting a
pre-trained high-precision model into a lower precision format. This can be done directly or by using a subset of the training
data to calibrate the quantization process or fine-tune the quantized weights to adapt the model to the quantization. However,
PTQ often results in reduced accuracy compared to QAT because the model does not learn to adjust to quantized weights
during training (Frantar et al., 2023; Xiao et al., 2024).

Fully Quantized Training (FQT) FQT aims to minimize memory and accelerate the training process by quantizing both
forward and backward passes (Wang et al., 2018b; Chmiel et al., 2022; Banner et al., 2018; Perez et al., 2023; Wortsman
et al., 2023). These methods often require specialized hardware (Peng et al., 2023; Xi et al., 2024) but are promising for
efficient training, and current approaches cannot maintain accuracy (Xi et al., 2024).

LoQT is a form of QAT that gets close to FQT. As we perform a variant of LoRA (see §2.2), we factor the layers W into
two matrices P and B. We quantize the W and P with NF4, but keep B in 16-bit precision. We periodically update the W
matrices using the product of the fixed P and the updated Bs without ever dequantizing it all at once, only layerwise when
merging in PB. This approach retains the benefits of reduced memory usage while minimizing accuracy loss, focusing
high-precision updates on a low-rank representation, and allowing efficient model updates without the overhead of full
matrix re-quantization.

B. Intuition for Only Training the B Adapter and Keeping P Fixed
The intuition behind training only the B matrix while keeping P fixed is that P defines a low-rank subspace for optimization,
containing information about the direction of optimization for the full model. By updating only B, we ensure all updates
remain within this predefined subspace. This approach reduces the memory required due to only storing gradients and
optimizer states for B. Additionally, by keeping P fixed it can be quantized for further memory savings. Experiments also
showed that optimizing both B and P led to less consistent convergence than only optimizing B.

C. Hyperparamters
C.1. Pre-training

For the pre-training results shown in Table 1, we adopted configurations from GaLore (Zhao et al., 2024) and tested
pre-training methods on different LLaMA 2 model sizes using the C4 dataset. Training was conducted with optimizer states
in BF16 precision, and NF4 precision quantization was used for LoQT. The model rank was adapted based on the largest
layer with specific parameters.

Table 1 shows the ratio r/dmodel, which denotes the rank relative to the largest weight matrix dimension. All experiments
used a maximum sequence length of 256, learning rate warmup for the first 10% of training steps, and cosine annealing for
the learning rate schedule, decaying to 10% of the initial rate.

Galore, LoQT-nq, and LoQT used exponentially increasing update frequencies starting at 100 and increasing by 100 + ψi,

11

LoQT: Low Rank Adapters for Quantized Training

where ψ is 1.2 and i is the update counter (see Section D.1 for more details).

We tested learning rates of 0.01, 0.005, 0.001, and 0.0005 across different model sizes. For models ranging from 60M
to 350M parameters, a learning rate of 0.01 yielded the best performance. In contrast, full-rank models required smaller
learning rates: 0.001 for 60M to 350M models and 0.0005 for the 1B model. To scale the learning rates for LoQT, LoQT-
nq, and Galore, we employed a scale parameter s set to 0.5 and 0.25 for the 1B model. This parameter functions similarly
to the LoRA alpha parameter, determining the weight on the learned factors for LoQT and LoQT-nq. For Galore, our
experiments indicated that s = 0.5 was more effective than the 0.25 reported in (Zhao et al., 2024). This scaling approach
effectively adjusts the learning rate, resulting in an actual rate of 0.005 for the multi-head attention and feed-forward layers
in LLaMA models, which is relatively large compared to the 0.001 used for full-rank models. Higher learning rates led to
spikes in the training loss for both full-rank and LoQT models.

Table 4: Pre-training hyperparameters of LLaMA models for evaluation. (-) Indicates we did not train such a model.

Model Size Hidden/Intermediate Attention Heads Layers Steps Data Amount Rank

60M 512 / 1376 8 8 10K 1.3B 128
130M 768 / 2048 12 12 20K 2.6B 256
350M 1024 / 2736 16 24 60K 7.8B 256

1B 2048 / 5461 24 32 100K 13.1B 512
7B 4096/11008 32 32 - - 1024

13B 5120/13824 40 40 - - 1024

C.2. Fine-tuning

We test learning rates in the range of 1× 10−5 to 5× 10−4. For LoQT LoftQ, we employed normal float NF4 quantization
and performed 5 iterations of optimizing the error of quantization. We used a batch size of 32 and a maximum sequence
length of 256. Table 5 summarizes the detailed hyperparameters for tasks in GLUE using the DeBERTaV3-base model. We
use a fixed projection gap of 2400 for all runs.

Table 5: Hyperparameter setup for LoQT-nq, LoQT, LoftQ (Li et al., 2023), LoRA (Li et al., 2023), and Galore across
various tasks on the GLUE benchmark.

Method Hyper-parameter MNLI RTE QNLI MRPC QQP SST-2 CoLA STS-B

LoQT, LoftQ # Epochs 5 20 10 60 10 10 20 60
Learning Rate 1× 10−4 5× 10−5 5× 10−5 1× 10−4 5× 10−5 5× 10−5 1× 10−4 5× 10−5

LoRA, Galore # Epochs 10 30 30 30 30 30 30 30
Learning Rate 1× 10−5 2× 10−5 1× 10−5 2× 10−5 1× 10−5 2× 10−5 2× 10−5 3× 10−5

D. Rank Ablation
Figure 5 shows the validation perplexity versus training steps for various ranks using LoQT-nq and LoQT on a 130 million
parameter model over 20,000 iterations. All models employ an exponentially increasing update frequency starting at 100,
with a factor of 1.2Ti . The results demonstrate that both the quantized (LoQT) and non-quantized (LoQT-nq) models
follow a similar trajectory for ranks ranging from 64 to 512. However, for the smaller rank of 64, there is a slight divergence
between LoQT-nq and LoQT, indicating a limit to how low the rank can be while maintaining accuracy with quantization.
This plot highlights the tradeoff between rank and perplexity, suggesting that while our method supports low-rank training,
there is a minimum rank threshold needed to achieve results comparable to regular pre-training.

D.1. Memory Measurements

Figure 6 demonstrates that LoQT requires less memory than GaLore and Adam, even without using per-layer gradients (Lv
et al., 2023) or Adam 8-bit (Dettmers et al., 2022b). The gap between LoQT and the baselines increases with larger model
sizes. The configurations and ranks for each model are shown in Table 4. With LoQT and Adam 8-bit, it is possible to

12

LoQT: Low Rank Adapters for Quantized Training

4000 8000 12000 16000 20000
Step

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

P
er

pl
ex

ity

Rank Ablation - Perplexity vs Steps
Model - Rank

LoQT-nq - 64
LoQT - 64
LoQT-nq - 128
LoQT - 128
LoQT-nq - 256
LoQT - 256
LoQT-nq - 512
LoQT - 512

Figure 5: Rank ablation for LoQT and LoQT-nq showing perplexity as a function of steps.

pre-train a 13B model with rank 1024 on a GPU with 24GB of VRAM. This enables training with LoQT on consumer
GPUs, such as the NVIDIA 4090, using a small per-GPU token batch size 256. Figure 1 in the main text provides a detailed
breakdown of each memory component for the 13B model. Maximum memory allocated is measured using nvitop
(https://github.com/XuehaiPan/nvitop).

13

https://github.com/XuehaiPan/nvitop

LoQT: Low Rank Adapters for Quantized Training

1b 3b 7b 13b
Model Size

0

10

20

30

40

50

60

M
em

or
y

U
sa

ge
 (G

B
)

RTX 4090

Memory Usage vs. Model
Group

Adam
GaLore
GaLore A8bit
LoQT-nq A8bit
GaLore A8bit LW
LoQT
LoQT A8bit
LoQT A8bit LW

Figure 6: Memory usage for LoQT vs baselines for different model sizes. LW means per-layer gradient updates as per (Lv
et al., 2023), and A8bit mean with Adam 8-bit. We evaluate using a token batch size of 256.

14

