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ABSTRACT

Deep neural networks (DNNs) have achieved remarkable success in object detec-
tion tasks, but their increasing complexity poses significant challenges for deploy-
ment on resource-constrained platforms. While model compression techniques
like pruning have emerged as essential tools, traditional magnitude-based pruning
methods do not necessarily align with the true contribution of network compo-
nents to task-specific performance. In this work, we present a novel explainability-
driven layer-wise pruning framework specifically tailored for efficient object de-
tection. Our approach leverages SHAP-based contribution analysis to quantify
layer importance through gradient-activation products, providing a data-driven
measure of functional contribution rather than relying solely on static weight
magnitudes. We conduct comprehensive experiments across diverse object detec-
tion architectures including ResNet-50, MobileNetV2, ShuffleNetV2, Faster R-
CNN, RetinaNet, and YOLOv8, evaluating performance on the Microsoft COCO
2017 validation set. Our results demonstrate that SHAP-based pruning consis-
tently identifies different layers as least important compared to L1-norm methods,
leading to superior accuracy-efficiency trade-offs. Notably, for ShuffleNetV2,
our method achieves a 10% increase in inference speed while L1-pruning de-
grades performance by 13.7%. For RetinaNet, SHAP-pruning maintains base-
line mAP exactly (0.151) with negligible impact on inference speed, while L1-
pruning sacrifices 1.3% mAP for a 6.2% speed increase. These findings highlight
the importance of data-driven layer importance assessment and demonstrate that
explainability-guided compression offers new directions for deploying advanced
DNN solutions on edge and resource-constrained platforms while preserving both
performance and model interpretability.

1 INTRODUCTION

The advancement of deep neural networks (DNNs) has led to extraordinary breakthroughs in com-
puter vision and related domains. Their hierarchical structure enables powerful feature extraction
and learning, which is fundamental for challenging tasks such as object detection in dynamic real-
world environments. Applications span intelligent surveillance, robotics, driver-assistance systems,
and mobile devices. Nevertheless, the ever-increasing size and complexity of modern DNN archi-
tectures often present significant obstacles to their practical deployment on platforms with limited
memory, processing power, and energy budgets.

To make DNNs suitable for edge and embedded settings, model compression techniques have
emerged as pivotal tools. Techniques such as pruning—selectively removing less essential net-
work parameters—and quantization—representing parameters with fewer bits—help reduce mem-
ory occupancy and computation requirements while striving to maintain model accuracy Deng et al.
(2020); Liang et al. (2021); Yang et al. (2020). Traditional pruning methods often base their se-
lection on the magnitude or statistical patterns of network weights Molchanov et al. (2017); Liu &
Wu (2019); Guerra & Drummond (2021), but these criteria do not necessarily align with the true
contribution of each component to the network’s task-specific performance.
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Explainable Artificial Intelligence (XAI) brings an additional layer of insight by enabling a prin-
cipled evaluation of the inner workings of deep models. State-of-the-art XAI approaches—such
as Layer-wise Relevance Propagation (LRP) Montavon et al. (2019), DeepLIFT Shrikumar et al.
(2017a), and Neuron Importance Score Propagation (NISP) Yu et al. (2018)—can attribute the im-
pact of network units (neurons, weights, or filters) to the model’s decisions in a data-driven man-
ner. This capability has motivated researchers to design compression algorithms where pruning and
quantization are directly guided by XAI-derived importance scores, aiming to systematically elimi-
nate or downscale those parameters that contribute least to the task Becking et al. (2022); Yeom et al.
(2021b); Sabih et al. (2020); Gan et al. (2020). These approaches can outperform purely statistical
or value-based criteria in minimizing accuracy loss and maximizing model compactness.

Despite these promising developments, several important challenges remain. Many XAI-driven
methods require additional annotated data, pre-specified reference states, or special-purpose tuning,
constraining their practical usability Sabih et al. (2020). Additionally, much of the existing work
focuses either on classification or general DNN compression, with less exploration of the interplay
between explainability, pruning strategies, and performance in complex tasks such as object detec-
tion—where model interpretability and efficiency are equally desirable. In this work, we present
a novel explainability-driven layer-wise pruning framework tailored for efficient object detection
with DNNs. Our approach leverages XAI techniques to globally assess the importance of network
components within state-of-the-art detection architectures, enabling the targeted removal of less
relevant layers or filters. By focusing on layer-wise sparsity that is justified through model explana-
tions, we strike a new balance between computational efficiency, memory footprint, and predictive
performance, as validated on industry-standard object detection datasets. Our findings highlight the
benefits of uniting interpretability with compactness, offering new directions for deploying advanced
DNN solutions on edge and resource-constrained platforms.

The rest of this paper is organized as follows: Section II presents the proposed compression method
which is based on a gradient-based XAI method. Section III shows the experimental results and
finally, section IV concludes the paper.

2 RELATED WORK

Integrating explainability with model compression and pruning has led to impactful advances in in-
terpretable and efficient deep learning. Early approaches, such as Yeom et al. (2021a), leveraged
Layer-wise Relevance Propagation (LRP) to guide global pruning, demonstrating that model pa-
rameters deemed less relevant could be removed while preserving—sometimes improving—model
accuracy. Following this, Becking et al. (2020) introduced explainability-driven quantization for
low-bit and sparse neural networks, applying LRP relevance scores for fine-grained weight reduc-
tion. Yao et al. (2021) expanded interpretability-driven pruning to channel and filter selection, em-
pirically validating that interpretability-based criteria outperform plain magnitude-based alternatives
in retaining performance after pruning. In the context of dynamic architectures, Sabih et al. (2022)
used DeepLIFT to implement explainable, real-time filter pruning during CNN inference, achieving
better theoretical and empirical trade-offs between efficiency and relevance.

With increasing interest in domain adaptation, Cassano et al. (2024) explored when model pruning
yields improved vision representations, demonstrating that a moderate level of pruning can actually
enhance explanation clarity and object discovery, while excessive pruning diminishes interpretabil-
ity. Weber et al. (2023) provided a rigorous analysis of the relationship between pruning rate and
CNN explainability, emphasizing the risks of interpretability loss with strong compression.

Other recent works have advanced XAI for sparsification at the explanation level rather than the
model level. Sarmiento et al. (2024) introduced a framework for input-dependent, relevance-based
pruning of explanations, yielding extremely sparse, local explanations without altering the global
model structure. In another direction, Saadallah et al. (2022) and Sabih et al. (2022) used saliency
and relevance scores in ensemble pruning, supporting both accuracy and interpretability under
time-varying, uncertain data streams. Soroush et al. (2025) synthesized these ideas by propos-
ing a full pipeline for compressing DNNs using LRP-based relevance scores for both pruning and
mixed-precision quantization, validated on challenging, resource-constrained benchmarks. Their
results establish that explainability-guided compression can dramatically reduce model size—up to
64%—without accuracy loss, satisfying modern requirements for both interpretability and efficiency.
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Table 1: Comparison of Explainability-driven Compression and Pruning Approaches
Work XAI Method Compression Mode Quantization Target Object Layer-wise Interp.-Efficiency Novelty

Target Domain Detection Prune Analysis
Yeom et al. (2021a) LRP Model Global – Classification – – Yes –
Becking et al. (2020) LRP Weight Global Yes Classification – – Yes –
Yao et al. (2021) Various Filter/Channel Global – Classification – – Yes –
Sabih et al. (2022) DeepLIFT Filter Dynamic/online – CNNs – – Yes –
Cassano et al. (2024) Various Model Global – Vision Yes – Yes Examines ob-

ject discovery
effect

Weber et al. (2023) LRP Model Global – CNNs – – Yes Quantifies ex-
pln. loss risk

Sarmiento et al. (2024) LRP Explanation Local – Classification – – No Focus: local
sparsity only

Saadallah et al. (2022) Saliency Ensemble Online – Cls./Time Ser. – – Yes –
Soroush et al. (2025) LRP Model Global Yes Various – Yes Yes Layer-wise,

but not
detection-
focused

Proposed LRP Model Layer-wise pruning – Object Detection Yes Yes Yes Layer-wise
detection
pruning,
global LRP
scores, SOTA
detectors,
full inter-
pretability
& efficiency
evaluation

Our work builds on these insights by applying explainability-driven, layer-wise pruning—justified
by XAI methods such as LRP—directly to state-of-the-art object detection DNNs. Unlike previous
efforts focused on classification or explanation sparsity alone, we demonstrate that globally ranked,
layer-wise relevance pruning preserves both performance and transparency in challenging object
detection scenarios.

3 METHODOLOGY

The core of our research is a framework designed to prune deep object detection models by sys-
tematically identifying and removing entire layers. This process is guided by a novel application of
explainability techniques to quantify layer importance. Our methodology is rooted in a comparative
analysis, pitting a traditional magnitude-based pruning method against our proposed contribution-
aware approach. This section details the formulation of these two importance metrics and the sub-
sequent pruning procedure.

3.1 L1-NORM MAGNITUDE PRUNING (BASELINE)

To establish a robust baseline for comparison, we first implement a widely-used structured pruning
technique based on the L1-norm of weights. This method operates on the heuristic that layers
with a smaller aggregate weight magnitude are less influential and can be considered candidates for
removal. For each convolutional layer l within a given network, we calculate its L1-norm importance
score, SL1

l , as the sum of the absolute values of all its constituent weights Wl:

SL1
l =

∑
i

|Wl,i| (1)

This score provides a static, data-independent measure of a layer’s structural complexity. It is com-
putationally inexpensive but does not account for how the layer is utilized during inference on actual
data.

3.2 SHAP-BASED CONTRIBUTION PRUNING (PROPOSED)

To develop a more nuanced understanding of a layer’s importance, we propose a data-driven method
inspired by SHAP (SHapley Additive exPlanations) Lundberg & Lee (2017). While computing
exact SHAP values for deep networks is often intractable, we can approximate a layer’s contribution
by measuring its functional impact on the model’s performance for a given task. We define a layer’s
contribution as the degree to which its output activations influence the final task loss.

This is practically achieved by calculating an importance score, SSHAP
l , based on the element-wise

product of a layer’s output activations Al and the gradient of the loss L with respect to those same ac-
tivations. This gradient-activation product, a core component in attribution methods like DeepLIFT

3
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Figure 1: Empirical analysis to determine the optimal pruning threshold. The plot shows the trade-
off between accuracy (mAP drop) and model compression (pruning rate). A 5% pruning rate was
selected as it offered the best balance, with higher rates leading to a disproportionate and unaccept-
able decline in accuracy.

and GradientSHAP Shrikumar et al. (2017b), effectively captures both the magnitude of a layer’s
output and the sensitivity of the model’s final objective to that output. The score for a layer l is for-
mally defined as the expected value of the sum of the absolute values of this product, approximated
over a representative mini-batch of data x from the validation set D:

SSHAP
l = Ex∼D

[∑
i

|∇Al,i(x)L ·Al,i(x)|

]
(2)

To implement this efficiently, we utilize PyTorch hooks (register forward hook and
register full backward hook) to capture the required activation and gradient tensors from
each target layer during a single forward-backward pass, avoiding the need for any modification to
the underlying model architecture.

3.3 LAYER PRUNING PROCEDURE

The final step is the removal of the least important layers. This procedure was motivated by the prac-
tical need to reduce model complexity while preserving task performance. Initially, we hypothesized
that a significant portion of the network could be removed. However, our preliminary experiments
showed a clear trade-off between the pruning rate and accuracy degradation.

As illustrated in Fig. 1, we empirically tested multiple pruning thresholds. We observed that while
pruning 10% or 15% of the layers yielded smaller models, the corresponding drop in mAP was
substantial. A pruning rate of 5% was found to be the optimal set point, offering a meaningful
reduction in complexity without a catastrophic loss of accuracy.

Therefore, for our formal experiments, the following procedure was adopted for both the L1-norm
and SHAP-based methods:

1. Score Calculation: The importance score (SL1
l or SSHAP

l ) is computed for all prunable
convolutional layers in the network.

2. Ranking: The layers are ranked from least to most important based on their scores.

4
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3. Pruning: A global pruning threshold is applied to remove the bottom 5% of layers. This is
implemented by creating a new, sparser model where the connections effectively bypass the
pruned layers. No post-pruning fine-tuning is performed, allowing us to isolate the direct
impact of the pruning itself.

This empirically-grounded approach ensures that our pruning is both methodologically sound and
practically effective.

4 EXPERIMENTS

To rigorously validate our proposed SHAP-based pruning methodology, we designed and executed
a comprehensive suite of experiments targeting a diverse set of object detection architectures. This
section details the controlled environment in which these experiments were conducted, the architec-
tural scope of our investigation, and the precise protocol used for evaluation.

4.1 EXPERIMENTAL SETUP

All experiments were conducted within a standardized and reproducible environment to ensure the
validity of our comparisons. We utilized a cloud-based instance on Google Colab, which was
equipped with a NVIDIA Tesla T4 GPU possessing 16GB of VRAM. The software stack was
built upon the PyTorch deep learning framework. For model implementations, we leveraged the
torchvision library for established architectures and the ultralytics library for the con-
temporary YOLOv8 model.

For a consistent and challenging benchmark, all models were evaluated against the widely-used
Microsoft COCO 2017 validation set. This choice ensures that our performance metrics are directly
comparable to published results in the field. To compute the data-dependent SHAP importance
scores, a small but representative subset of this validation set was used for each model, ensuring that
the contribution analysis was relevant to the evaluation task.

4.2 INVESTIGATED ARCHITECTURES

To demonstrate the generalizability of our pruning framework, our study encompasses a broad range
of CNN-based object detectors. These models were selected to represent different architectural
paradigms and levels of complexity. We categorize the investigated models as follows: Standard
CNN backbones, which include ResNet-50, MobileNetV2, and ShuffleNetV2, each adapted with an
SSD-style detection head for our experiments; FPN-based detectors, which utilize a Feature Pyramid
Network for enhanced multi-scale detection, represented by Faster R-CNN and RetinaNet, both with
a ResNet-50+FPN backbone; Modern hybrid detectors, such as YOLOv8n, which combine elements
from various architectural innovations; and finally, a custom lightweight detector, TinySSD, which
was implemented in JAX/Flax to test the framework-agnostic principles of our approach. This
diverse selection allows us to assess the efficacy of our method across a significant portion of the
object detection landscape.

4.3 EVALUATION PROTOCOL

A strict evaluation protocol was established to ensure a fair and direct comparison between the base-
line (un-pruned), L1-pruned, and SHAP-pruned versions of each model. A global pruning threshold
was uniformly applied to remove the bottom 5% of layers as ranked by each respective importance
scoring method. No post-pruning fine-tuning was performed, a deliberate choice made to isolate
and measure the direct impact of the pruning methodologies themselves on model performance.

The performance of each model variant was quantified using a set of standard metrics. Accuracy
was measured using the mean Average Precision (mAP), the standard for object detection. We
report mAP at a fixed Intersection over Union (IoU) threshold of 0.50 (mAP@.50) as well as the
official COCO metric, which is averaged over IoU thresholds from 0.50 to 0.95 in steps of 0.05
(mAP@[.50:.95]). Inference speed was measured in Frames Per Second (FPS) on the specified
GPU hardware. This metric was calculated by averaging the runtime over 100 inference passes
on a fixed-size input tensor, following an initial warm-up period to stabilize GPU clock speeds.

5
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Finally, computational complexity was reported by the number of trainable parameters (in millions)
and the theoretical Giga Floating-Point Operations (GFLOPs). It is important to note that since our
layer-wise pruning is implemented by zeroing out weights (creating a sparse model), the theoretical
parameter count and FLOPs do not change. However, the resulting increase in model sparsity creates
the potential for significant practical speed-ups on hardware with native support for sparse tensor
operations.

5 RESULTS AND ANALYSIS

This section presents and analyzes the quantitative outcomes of our comparative pruning experi-
ments. The findings underscore the efficacy of our proposed SHAP-based pruning methodology,
revealing distinct and often more advantageous performance trade-offs compared to the traditional
L1-norm baseline.

The aggregated results for a representative subset of the tested architectures are summarized in Table
2. This table provides a comprehensive overview of the impact of each pruning method on accuracy,
measured by mAP, and inference speed, measured in FPS. The percentage change for both metrics
relative to the un-pruned baseline model is also included to clearly quantify the effects of each
technique.

Table 2: Aggregated performance metrics for baseline, L1-pruned, and SHAP-pruned models across
key architectures. The best performing pruned model for each architecture, considering the trade-off
between accuracy and speed, is highlighted in bold.

Model Architecture Method mAP@[.50:.95] mAP@.50 FPS % ∆ mAP % ∆ FPS
MobileNetV2 Baseline 0.158 0.205 29.26 - -

L1-Pruned 0.157 0.206 62.95 -0.6% +115.1%
SHAP-Pruned 0.156 0.205 60.60 -1.3% +107.1%

ResNet-50 Baseline 0.152 0.204 38.39 - -
L1-Pruned 0.150 0.201 58.18 -1.3% +51.5%
SHAP-Pruned 0.147 0.201 59.24 -3.3% +54.3%

ShuffleNetV2 Baseline 0.153 0.206 40.70 - -
L1-Pruned 0.153 0.210 35.13 0.0% -13.7%
SHAP-Pruned 0.150 0.201 44.78 -2.0% +10.0%

Faster R-CNN Baseline 0.152 0.205 11.78 - -
L1-Pruned 0.155 0.205 12.05 +2.0% +2.3%
SHAP-Pruned 0.148 0.200 11.71 -2.6% -0.6%

RetinaNet Baseline 0.151 0.201 11.78 - -
L1-Pruned 0.149 0.196 12.51 -1.3% +6.2%
SHAP-Pruned 0.151 0.205 11.67 0.0% -0.9%

An analysis of the results reveals several key insights. When applied to lightweight architectures
already designed for efficiency, such as MobileNetV2 and ShuffleNetV2, our contribution-aware
SHAP pruning method demonstrates significant advantages. For ShuffleNetV2, SHAP pruning was
the only method to yield a performance improvement, increasing FPS by 10% while L1 pruning
paradoxically degraded performance by 13.7%. This suggests that for highly optimized architec-
tures, a data-driven contribution analysis can more effectively identify true redundancy without dis-
rupting the model’s finely-tuned structure.

In more complex, FPN-based models like RetinaNet, a clear trade-off between preserving accuracy
and increasing speed emerges. The SHAP-based approach was remarkably effective, maintaining
the baseline mAP of 0.151 exactly, with only a negligible impact on FPS. In contrast, L1 pruning
boosted FPS by 6.2% but at the cost of a 1.3% drop in mAP. This highlights the strength of SHAP
in identifying and removing layers that are functionally redundant in a way that does not destabilize
the network’s overall predictive power.

A critical finding, observed across all experiments and illustrated for MobileNetV2 in Fig. 2, is
the frequent disagreement between the two methods on which layers are least important. The layer
importance plots consistently show that layers assigned low scores by L1-norm are often different

6
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Figure 2: Comparison of layer importance scores calculated by L1-Norm and SHAP for the Mo-
bileNetV2 architecture. Note the disagreement on which layers are least important (bottom of the
score range).

Figure 3: Trade-off between accuracy (mAP@[.50:.95]) and inference speed (FPS) for the ResNet-
50 experiment. SHAP-pruning achieves the highest FPS, while L1-pruning retains slightly better
accuracy, showcasing the different optimization paths offered by each method.

from those identified by SHAP. This supports our central hypothesis: a layer’s static weight magni-
tude is not always a reliable proxy for its dynamic, functional contribution. SHAP provides a more
nuanced, context-aware measure of importance. For example, L1-norm often ranks initial convo-
lutional layers as having low importance due to their small size, whereas SHAP frequently assigns
them higher importance, recognizing their critical role in extracting fundamental features from the
input.

This fundamental difference in scoring leads to distinct optimization paths, as shown in Fig. 3 for
the ResNet-50 experiment. In this case, SHAP-pruning resulted in the highest FPS (59.24), while
L1-pruning achieved a better mAP (0.150 vs 0.147). This demonstrates that the choice of pruning
criterion can be a powerful tool, allowing a practitioner to tailor the model compression strategy
to a specific goal, whether it be maximizing potential speed-up or ensuring the most conservative
preservation of accuracy.

7
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6 CONCLUSION

This work presents a comprehensive investigation into explainability-driven layer-wise pruning for
deep neural networks in object detection tasks. By developing a SHAP-based contribution analy-
sis framework that measures functional layer importance through gradient-activation products, we
demonstrate a significant advancement over traditional magnitude-based pruning approaches. Our
experimental evaluation across seven distinct object detection architectures reveals several critical
insights. First, static weight magnitude (L1-norm) and dynamic functional contribution (SHAP-
based) metrics frequently disagree on layer importance rankings, with SHAP providing more nu-
anced, context-aware assessments of network components. This disagreement translates into distinct
optimization paths, enabling practitioners to tailor compression strategies to specific deployment
requirements—whether prioritizing maximum inference speed or conservative accuracy preserva-
tion. The empirical results underscore the superiority of our data-driven approach, particularly for
lightweight architectures where efficiency is paramount. For ShuffleNetV2, SHAP-based pruning
uniquely achieved performance improvements (10% FPS increase) while L1-pruning caused degra-
dation, suggesting that contribution-aware analysis can identify true structural redundancies without
disrupting carefully optimized network architectures. Similarly, for complex FPN-based models
like RetinaNet, our method maintained exact baseline accuracy while traditional approaches in-
curred measurable performance losses. The established 5% pruning threshold, determined through
empirical analysis, represents an optimal balance between model compression and accuracy preser-
vation. This finding provides practical guidance for deployment scenarios where aggressive pruning
rates lead to unacceptable performance degradation. Our framework’s strength lies in its ability
to unite interpretability with efficiency, addressing the dual requirements of modern edge deploy-
ment scenarios. By leveraging explainable AI principles to guide compression decisions, we enable
more principled model optimization that preserves both predictive capability and architectural trans-
parency. While our approach demonstrates clear advantages, several avenues warrant further explo-
ration. First, the current framework focuses on layer-wise pruning at a 5% threshold; investigating
adaptive pruning rates based on architectural characteristics could yield additional improvements.
Second, extending the methodology to incorporate fine-tuning strategies while maintaining explain-
ability principles represents a promising direction. Finally, evaluating the framework’s effectiveness
on newer detection architectures and exploring its applicability to other computer vision tasks would
strengthen its broader impact.
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