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Figure 1: Illustration of nonstationary causal structures in physical systems. Casual structures can
be represented as a graph, where edges indicate interaction between objects. Take the example of
the supporting force in the block falling sequence, the graph changes over time, posing a challenge
to video causal discovery methods.

ABSTRACT

Nonstationary causal structures are prevalent in real-world physical systems. For
example, the stacked blocks interact until they fall apart, while the billiard balls
move independently until they collide. However, most video causal discov-
ery methods can not discover such nonstationary casual structures due to the
lack of modeling for the instantaneous change and the dynamics of the causal
structure. In this work, we propose the Intervention-based Recurrent Casual
Model (IRCM) for nonstationary video casual discovery. First, we extend the
existing intervention-based casual discovery framework for videos to formulate
the instantaneous change of the causal structure in a principled manner. Then, we
use a recurrent model to sequentially predict the causal structure model based on
previous observations to capture the nonstationary dynamic of the causal struc-
ture. We evaluate our method on two popular physical system simulation datasets
with various types of multi-body interactions. Experiments show that the pro-
posed IRCM achieves the state-of-the-art performance on both the counterfactual
reasoning and future forecasting tasks.

1 INTRODUCTION

Causal reasoning from visual input is essential for intelligence systems in understanding the complex
mechanisms in the physical world. For instance, autonomous vehicles need to infer the unseen
causal structures on the road that drives the state evolution of other agents across time to anticipate
future events better accordingly. One main obstacle in discovering such causal structures is the
dynamic nature of events. In Figure 1, we illustrate the varying casual relationship in a simple
multi-body system where the stacked blocks fall to the ground. In nonstationary video sequences,
the causal structure can have abrupt changes and/or long-term dependencies, posing challenges for
casual graphical models (CGM).

For the first challenge, most CGMs in video causal understanding can not handle abrupt causal
relationship changes. Li et al. (2020) (VCDN, Figure 2a) partially address this issue by learning a
stationary causal summary graph, where causal structures are learned but fixed throughout the video.
Zheng et al. (2018) (DYNOTEARS, Figure 2b) relaxed such fixed structure settings by assuming a
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Figure 2: Comparison of existing causal structure representations for causal discovery. For sta-
tionary causal models, (a) Li et al. (2020) propose the double-edged causal summary graph and
(b) Zheng et al. (2018) model both the instantaneous interactions (i.e., among objects at the same
time step) and time-leg interactions (i.e., among objects at different time steps). For nonstationary
causal models, (c) Gerhardus & Runge (2020) learns both the causal graph structure and the in-
tervention set (i.e., nodes in orange color). (d) We propose the intervention-based recurrent causal
model (IRCM) to use interventions to model nonstationary time-leg interactions. (e) We visualize
the matrix representation of the intervention set and causal graph for the given example.

stationary order for the period bigger than 1. On the other hand, Brouillard et al. (2020) (DCDI,
Figure 2c) recently proposes a differentiable causal model for a spatial graph to naturally capture
the abrupt change of probability distributions during interventions. In this work, we naturally extend
the intervention-based causal model to the graph with time-leg edges in videos, i.e., current objects’
states are fully determined by previous states (Figure 2d).

For the second challenge, most CGMs in video causal understanding purely depend on the object
state observations. That is the causal graph at time t is conditionally independent from the causal
graph at time t − 1 given the object states’ observations. Illustrated in Figure 1, CGMs that can be
represented as graphs can be modeled as a trajectory in the nonstationary video. In this work, we
adopt a recurrent network to sequentially predict CGM to model the trajectories.

Based on the intuitions above, we propose the Intervention-based Recurrent Casual Model (IRCM)
to better capture the dynamics in nonstationary videos. As the ground truth CGMs are often not
directly measurable, we adopt two popular downstream tasks to benchmark the efficacy of the pro-
posed model: counterfactual reasoning and future state forecasting. Deducing the alternative results
countering the reality over the discovered CGM can directly express the impacts of causality. Also,
the causal knowledge endows better insights into which factors affect the target variable and how to
manipulate the system properly.

We summarize the contribution of this work as follows:

• We introduce the IRCM model to extend the previous intervention-based causal discovery
framework to nonstationary video sequences.

• We propose to use recurrent networks to capture the long-term trajectory of Causal Graph
Models (CGM) and provide optimization solution to train recurrent networks together with
downstream causal models.

• We achieve state-of-the-art performance on two downstream tasks: counterfactual reason-
ing and future forecasting on two standard benchmark datasets (CoPhy (Baradel et al.,
2020), Fabric Manipulation (Brouillard et al., 2020)) by showing an averaged improvement
of 11% across 9 metrics.
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2 RELATED WORK

Causal Discovery of Stationary Models. Given the input time-series data, the goal is to un-
cover one fixed directed acyclic graph (DAG), where edges represent the direct causal relationships
among variables. There are two main approaches: observation-based and intervention-based. The
observation-based approach fully relies on the passive observation of the input system. Constraint-
based methods rely on conditional independence tests as constraint-satisfaction to recover Markov-
Equivalent Graphs (Spirtes et al., 2000; Entner & Hoyer, 2010; Colombo et al., 2011). Score-based
methods assign a score to each DAG, and perform searching in this score space (Chickering, 2002;
Zheng et al., 2018). The third class of methods exploits such asymmetries or causal footprints to
uniquely identify a DAG (Shimizu, 2014; Zhang & Hyvärinen, 2009).

In practice, domain experts may design interventional experiments and collect additional data of
the input system. The intervention-based approach aims to combine such interventional data with
the observational data for a better identifiability of the causal structure (Eberhardt, 2012; Eberhardt
et al., 2012). However, many of current approaches (Hyttinen et al., 2013; Ghassami et al., 2018b;
Kocaoglu et al., 2017; Wang et al., 2017; Shanmugam et al., 2015; Peters et al., 2016; Rothenhäusler
et al., 2015; Ke et al., 2019) either assume full knowledge of the intervention, make strong assump-
tions about the model class, or have scalability limitations. Recently, Brouillard et al. (2020) utilizes
the continuous-constrained framework to model the interventions with neural network models. In
contrast, our proposed method aims to uncover nonstationary causal structures.

Causal Discovery of Nonstationary Models. To extend to nonstationary data, recent works dis-
cover causal models in each sliding window separately, and then compare and merge them. Adams
& MacKay (2007) explicitly detect the change points and divide the time series into stationary
processes. To implicitly model the change of the causal model, Huang et al. (2015) assume cer-
tain smoothness properties and Zhang et al. (2017) use kernel distribution embeddings to describe
shifting probabilistic distributions. Later, the problem was reformulated with the online parame-
ter learning framework (Song et al., 2009; Xing et al., 2010). To tackle the varying instantaneous
causal relations, both linear (Ghassami et al., 2018a; Huang et al., 2019; Huang & Zhang, 2019;
Huang et al., 2020a) and nonlinear (Huang et al., 2020b) causal models are proposed. Our pro-
posed method treats the nonstationary changes of the system as interventions and re-purposes the
intervention-based framework to discover time-varying causal graph structures.

Video Causal Discovery. The relevant literature in the computer vision community has accumulated
several efforts to tackle down the challenges of video modeling and prediction (Ye et al., 2019; Hsieh
et al., 2018; Yi et al., 2020). Nevertheless, one topic that had enjoyed recent success is reasoning
objective dynamics in a video sequence. A line of research attempts to solve this task by modeling
the correlations in a spatio-temporal context, such as (Yi* et al., 2020; Chen et al., 2021; Bakhtin
et al., 2019; Qi et al., 2021; Zhang et al., 2021). However, focusing on modeling the dependencies
substantially might not suffice to offer clear interpretations of object dynamics as we humans do.
Addressing this issue, the authors of (Baradel et al., 2020) and (Li et al., 2020) try to make efforts
to introduce causal knowledge (Schölkopf et al., 2021; Bengio et al., 2020; Runge et al., 2019) to
this task. A few works adapt various topics into such a context. Whereas neither of them is able
to fully uncover the causal structure underlying the video sequences.: CoPhyNet (Baradel et al.,
2020) derives an alternative output based on a known causal graph; VCDN (Li et al., 2020) focus on
recovering the stationary causal structures from the video. Instead, our proposed method apply the
new intervention-based method to capture nonstationary causal structures.

3 METHODOLOGY

In this section, we present Intervention-based Recurrent Casual Model (IRCM) for non-stationary
video causal discovery. We first give an overview of model architecture, as shown in Figure 3, then
dive into two components of IRCM , Recurrent Network and Intervention-based Causal Model.
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Figure 3: Model designs of the proposed IRCM. The model has two modules: recurrent network
(RN) and intervention-based causal model (ICM). Given the input video frame feature xt−1, RN
updates the hidden states ht and predicts probability values (αt, βt) to sample DAG structureMt

and intervention set It, respectively. With observation x1:t−1 and causal structure representation
(Mt, It), ICM predicts the mean and covariance of multivariate Gaussian distribution for both
observation and intervention sets, (µt,Σt) and (µ̃t, Σ̃t), resulting the probability density function f .

3.1 PROBLEM FORMULATION

We factorize the joint probability of a temporal sequence into a sequential form:

p(x1:T ; θ) = p(x1; θ)

T∏
t=2

p(xt|x1:t−1; θ), (1)

where θ is the model parameters to learn. This formulation makes it easy to do future forecasting by
conditioning any unknown xt on observed or previously predicted history x1:t−1. For simplicity, we
decode multiple frames in an autoregressive way, i.e., at each timestep, we predict x̂t as the mode
of p(xt|x1:t−1; θ) and do further prediction conditioning on this prediction.

Furthermore, we decompose the density function into Recurrent Network (RN) and Intervention-
based Causal Model (ICM) by:

fθ(x
t|x1:t−1; θ) = fICM(xt|Mt, It,x1:t−1; θICM) (2)

Mt, It ∼ Bern(αt, βt) (3)

αt, βt = RN(x1:t−1; θRN) (4)

In this way, we extend the framework of Continuous constrained optimization for structure learning
to sequential data.

3.2 MODEL DESIGNS

Intervention-based Casual Model. Formally, given the observed d agents in the scene from time
1 to T , a joint probability distribution f(x) depict their state through time. In the context of Causal
Graph Model (CGM) (Pearl et al., 2016), a directed acyclic graph (DAG) G with dT nodes defines
f(x), where node xtj is associates with agent j at time step t. Directed edges represents causal
relationships. The distribution of agent states at time t can be factorized as:

f(xt|x1:t−1; θ) =

d∏
j=1

f(xtj |Pa(xtj); θ), (5)

where Pa(xtj) pertains to the set of parent nodes of xtj in G. Eq. 5 implicitly hypothesizes the
causal sufficiency (Peters et al., 2017), i.e., our work does not involve any hidden confounding
elements. Also, we neither consider the instantaneous edges nor edges that go back in time in this
work. Simply put, Pa(xtj) ⊆ {xij}i<t. This feature makes our causal graph fully identifiable in the
context of video sequence as Li et al. (2020).

Eq. 5 allows us to swap f(xtj |Pa(xtj)) with another conditional distribution, which is called in-
terventions. One intervention target set I ⊆ V is a subset of graph nodes where interventions are
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exerted. We consider an intervention family I = {Ik}Kk=1. In particular, I1 = ∅ denotes the ob-
served distribution. We furthur use Itk to denote intervened nodes at time t in the kth intervention
family. Given an interventional family Ik, we formalize the intervened distribution at time t by:

f (k)(xt) =
∏
j 6∈Itk

f (1)(xtj |Pa(xtj))
∏
j∈Itk

f (k)(xtj |Pa(xtj)). (6)

In our case, we use k = 2, assuming only one intervention family. Following Brouillard et al.
(2020), we use neural networks (NN) to output the parameters of density function f̃ , e.g., Gaussian.

f (1) = f̃(.; NN(., φtj)), f (2) = f̃(.; NN(., ψtj)), (7)

where φ and ψ are parameters for the observational and interventional density function respectively.
Thus, Eq. 6 can be written as:

fICM(xt|Mt, It,x1:t−1; θICM) =
∏
j 6∈It2

f̃
(
xtj ; NN(Mt

j � x;φtj)
) ∏
j∈It2

f̃
(
xtj ; NN(Mt

j � x;ψtj)
)
, (8)

whereMt
j ∈ {0, 1}dT is a binary vector indicating the parents of xtj and� is the Hadamard product.

In specific, two separate neural networks with identical architecture are used to predict mean vectors
and diagonal covariance matrices to parameterize the multivariate Gaussian distributions for our f̃ ,

µt,Σt = NN(Mt � x;φt), (9)

µ̃t, Σ̃t = NN(Mt � x;ψt), (10)
for observational and interventional distributions respectively. In summary, θICM = {φ, ψ}.
Causal Graph Sampling. Direct prediction of graph structure in its binary from Mt and It is
difficult and can lead to mode collapse. Following DCDI (Brouillard et al., 2020), we choose to
capture it through multivariate Bernoulli distributions.

In specific, an upstream module Recurrent Network (RN) will predict real matrix αt and real vector
βt, which are of the same shape asMt and It. Then we sample binary values in the following way:

Mt ∼ Bern(αt), (11)

It ∼ Bern(βt). (12)
All elements are mutually independent. Optimization difficulty incurred by sampling process is
solved by Straight-Through Gumbel estimator (Jang et al., 2016; Maddison et al., 2016).

Recurrent Network. In the Recurrent Network (RN), we are concerned with modeling the distri-
bution of a graph structure given previous observations x1:t−1. We consider all time-lagged but not
instantaneous causal relations in this model. Thus at time step t, we need to predict graph struc-
ture with all its previous t − 1 frames. We group these graphs into Mt ∈ {0, 1}d2×(t−1). For
intervention, it is a vector It ∈ {0, 1}d.

ht = fGRU(ht−1,xt; θGRU) (13)

αt, βt = fMLP(ht; θMLP) (14)

To model the non-stationary nature of real-world physical systems, we use an two-layer Gated
Recurrent Unit (GRU) (Chung et al., 2014) to model temporal dependencies and an MLP to pre-
dict the likelihood of existing causal relations αt and successful intervention βt. In summary,
θRN = {θGRU, θMLP}.

3.3 LEARNING AND INFERENCE

Learning. We do not have access to the ground-truth graph structure. This motivates us to follow
DCDI (Brouillard et al., 2020), which serves as the pedestal of our work, to train IRCM in a man-
ner of continuous constrained optimization problem. The core of our objective treats learning by
maximizing the regularized log-likelihood in Eq. 8 conditioning on the object states :

L =
∑
k

Ex∼Px log f(x)− ζ
∑
(j,t)

||Mt
j ||0 − η

∑
t

||It||1

s.t. Tr(eσ(α
t))− d = 0

(15)
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Figure 4: Learning and inference of the proposed IRCM. During learning, we first make the forward
pass to predict the Bernoulli distribution parameters (αt, βt) and sample causal structure represen-
tation (Mt, It) to predict the probability density function f . Then, we backpropagate the loss to
update the parameters in neural network models, θRN and θICM. During inference, we recursively
feed the predicted x̂t into the model to estimate the next time step state via the Monte Carlo method.

ζ and η are hyperparameters to control the sparsity of causal graphs and intervention sets respec-
tively. Because we do not consider instantaneous causal relations nor relations go back in time,
the learnt graph is guaranteed to be a DAG. Thus, IRCM naturally meets the requirement of the
acyclicity constraint Tr(eσ(α

t))− d = 0 (Zheng et al., 2018).

In order to estimate the gradient of αt and βt with regard toL, we choose to follow DCDI (Brouillard
et al., 2020) utilize the Straight-Through Gumbel estimator (Jang et al., 2016; Maddison et al., 2016).
This is equivalent to using discrete Bernoulli samples during forward passing and Gumbel-Softmax
samples during backpropagation.

Inference. During inference time, as shown in Figure 4, we use the observed and previously pre-
dicted sequence {x1:t0 , x̂t0+1:t−1} to predict the multivariate distribution of xt (t0 is the length of
observed sequence). We then do a secondary optimization to predict x̂t:

x̂t = arg max
xt

(
f(xt|x1:t−1; θ

)
(16)

=
∑

(Mt,It)

arg max
xt

(
f(xt|Mt, It; θICM)

)
p(Mt, It|x1:t−1; θRN)

x̂tj =
∑

(Mt,It)

(µtj)
δ(j 6∈It)(µ̃tj)

δ(j∈It)p(Mt, It|x1:t−1; θRN), (17)

where δ(j ∈ It) is the delta function indicating if object i is in the intervention set It. In practice,
we take the Monte Carlo approach to first sample (Mt, It) according to the distribution and average
the predicted mean values from either the observation and the intervention set.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUPS

Downstream tasks and Datasets. We conduct experiments to understand the efficacy of our pro-
posed IRCM in terms of discovering the causal structure to estiamte the object dynamics across
time. More specifically, the counterfactual reasoning and future forecasting in the video sequences
are selected to demonstrate this point.

Task 1: Counterfactual Reasoning. This problem is formalized as follows (Baradel et al., 2020):
During training, we first infer the causal structure upon a set of visual observations. The objective
is to reason the counterfactual outcome given the modified initial object state. The Counterfactual
Physics benchmark (CoPhy) (Baradel et al., 2020) dataset contains two types of sequences, observa-
tional and counterfactual. The latter sequence is built upon changing the initial object state from the
observations with other factors ((such as inertia, gravity or friction)) untouched. CoPhy comprises
three physical scenarios in total: BlockTowerCF, BallsCF and CollisionCF. Each scenario provides
the 3D positions of all objects in the scene. BlockTowerCF also includes a binary label for stability.
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Table 1: Quantitative results on three physical scenarios of the CoPhy dataset and Fabric dataset.
We compare with state-of-the-art methods: CoPhyNet (Baradel et al., 2020), and C-CDN (Li et al.,
2020). Non-existent experiments are marked by hyphens.

CoPhy Dataset (Baradel et al., 2020) Fabric Dataset
BlocktowerCF BallsCF CollisionCF (Li et al., 2020)

MSE ↓ NLL ↓ Acc. ↑ MSE ↓ NLL ↓ MSE ↓ NLL ↓ MSE ↓ NLL ↓

CoPhyNet 0.49 8.52 73.8 1.92 2.76 0.22 6.97 - -
V-CDN - - - - - - - 0.0028 0.32
IRCM (Ours) 0.42 7.55 77.9 1.61 2.45 0.20 6.65 0.0024 0.30

Task 2: Future Forecasting. Future forecasting refers to discerning unknown object future given
the observed histories. We use the Fabric Manipulation (FM) (Li et al., 2020) dataset for future
forecasting task, where 2D coordinates from learned keypoints in the dynamics scene are provided.

Implementation Details. For both tasks, we use the same model architectures and the same settings
for learning and inference. On each dataset, we directly use the extracted visual features from video
frames in the previous state-of-the-art methods. Below are the details.

Visual Features. For observation xt, we use the extracted visual features from input videos to im-
prove the model performance. For a fair comparison on CoPhy, we adopt the identical experimental
protocols in (Baradel et al., 2020) to examine the generalizability of IRCM. We train and test with 4
objects on BlockTowerCF and BallsCF. The experiments on CollisionCF utilize all types of objects
(spheres and cylinders) for both training and test. Moreover, following the settings opted in (Li
et al., 2020), we first extract the 2D positions of key points from a pretrained DNN-based mecha-
nism (Kulkarni et al., 2019) to represent the fabrics. Our experiments proceeds by observe first 5
time steps and foresee object states for next 20 time steps for training, and forecast the forthcoming
5 steps upon previous 5 steps for test. We first encode these location information with an MLP as
the object states for our model.

Model Architectures. We append two independent three-layer MLPs on a two-layer GRU to predict
both αt and βt. At the time instance τ , ατ is then reshaped to a set of d×d matrices forMt. Notably,
we zero-padded these matrices to ensure there exists t−1 individual matrix in total per time instance
for backpropagation. For the faster learning convergence, we place an instance normalization layer
before each ReLU activation in the MLP model and use the sigmoid activation for the final output
to make it a probability value.

Learning and Inference. In our experiments, RMSProp optimizer (Goodfellow et al., 2016) are
employed with the learning rate initialized at 8 × 10−5 . Our implementation uses PyTorch. The
experiments are executed on four Nvidia GeForce TITAN XPs, with 48 GB of memory in total.

Evaluation Metrics. Since none of the aforementioned datasets provide annotations for the causal
graphical model, we gauge model performance by the observed object dynamics which is gener-
ated from the unobserved causal structure. Thus the ideal metrics should rely on object states, i.e.,
coordinates and stability. In particular, we aim to understand how close the outcomes can approx-
imate the ground truth. To this end, we calculate the mean square error (MSE) and the negative
log-likelihood (NLL) (Ivanovic & Pavone, 2019) on coordinates of objects between ground-truth
and prediction. NLL is the average negative log-likelihood between a ground truth trajectory distri-
bution determined by a kernel density estimate and the predicted trajectory. In addition, the stability
classification accuracy are used for our experiment on BlockTowerCF. Lower NLL and MSE and
higher accuracy are preferred.

4.2 BENCHMARK RESULTS

As per comparing methods, we are primarily interested in assessing our IRCM versus two lead-
ing studies on estimating agent states in a video sequence in the context of learning CGM. More
specifically, CoPhyNet (Baradel et al., 2020), which achieves cutting-edge results on the CoPhy
benchmark and the VCDN framework (Li et al., 2020), which performs best on FM, are selected.
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Table 2: Ablation studies on the representative BallsCF scenario in CoPhy (Baradel et al., 2020).
We justify the design choices of the proposed IRCM in its two modules: Intervention-based Causal
Model (ICM) and Recurrent Network (RN).

IRCM ICM RN
IRCM w/o M, I IRCM w/o I IRCM-localM IRCM-stationary IRCM-indep.

MSE ↓ 1.61 2.95 1.79 1.85 1.93 1.68
NLL ↓ 2.45 3.82 2.57 2.64 2.70 2.51

CoPhyNet summarizes the problem with a given causal structure to handle the object dynamics over
time and approache object interactions with fully-connected graph convolution (Kipf & Welling,
2016; Battaglia et al., 2018). VCDN provides a model that infers a summary graph consists of time-
lagged causal relations as shown in Figure 2. To the best of our knowledge. these two methods are
the most relevant ones to ours.

We train our algorithm on CoPhy by the exact training objective Eq. 15 on BallsCF, CollisionCF,
and FM. For BlockTowerCF, we also include the stability classification term for a fair comparison:

L =
∑
k

Ex∼Px log fk(x)−

ζ∑
(j,t)

||Mt
j ||0 + η

∑
t

||It||1 + CE(Ŝt,St)

 , (18)

where the CE term is the cross entropy between predicted and ground-truth stability. We forward
the predicted locations and learntMt to a pre-trained GCN for the stability estimation.

It can be seen in Table 1 that out model consistently beat baselines. It demonstrate the necessity of
capturing nonstationary causal structures and intervention-based causal discovery.

4.3 ABLATION STUDIES

The proposed IRCM has two main components: Intervention-based Causal Model and Recurrent
Network. Below, we justify their design choices with the following ablation studies (Table 2).

Intervention-based Causal Model (ICM). The ICM model relies on the causal DAG structureM
and the intervention set I . Below, we demonstrate their necessities by the ablation studies.

Importance of Causal Graphical Model (M, I). IRCM w/oM, I treats the counterfactual reasoning
task as future forecasting on both sequences by not transferring the learnt causal structure from
observatinoal to counterfactual sequences. We can see in Table 2 that this significantly hurt the
performance of IRCM . In fact, IRCM w/o M, I shows the worst scores on both metrics. The
comparisons of those values against other methods overwhelmingly demonstrate the necessity and
merit to take the causal structure into account for video future forecasting.

Importance of Intervention (I). We justify the advantages of using interventional distribution to
discover the causal structure in a video sequence over IRCM w/o I , which directly approximates
Eq. 5 from the observations. We can observe the large performance gap between IRCM w/o I and
IRCM , demonstrating the impacts of interventions concerning learning the causal structure.

Importance of long-termM. IRCM-markov serves to verify the advantages of IRCM treatingM as
a d2×(t−1) matix. The scores of IRCM in Table 2 considerably exceed IRCM-localM. We attribute
this to the property of IRCM evidently offering better capability to learn the causal relationships than
setting t = 2. The advantages of IRCM also convey the message that the impacts of the agent states
in several previous time instances can impact on the current agent states. Additionally, the results
favor IRCM over CoPhyNet (Baradel et al., 2020) can be attributed to a similar reason.

Recurrent Network (RN). Instead of the sequential modeling of the causal graphical structures with
RN, we can predict a single structure or a sequence of structures that are temporally independent.

Importance of Nonstationary Modeling. IRCM-stationary assumes an invariant causal structure over
time, thus shares the similar idea with V-CDN (Li et al., 2020), i.e., we assume that the learned

8
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(Mt, It) and the weight of NN remain static. As shown in Table 2, IRCM significantly outper-
forms IRCM-stationary, fitting better the time-varying structures in the video sequences. This result
emphasizes the importance of considering nonstationary structures in temporal modeling.

Importance of Sequential Modeling. We evaluate the advantages of extrapolatingMt through our
RN against IRCM-indep that learns Mt independently at each time step. Table 2 suggest that
our IRCM significantly outperforms IRCM-indep, demonstrating the advantages of the sequential
modeling of causal structures.

5 CONCLUSION

In this paper, we propose an intervention-based recurrent casual model for video causal discovery.
IRCM differs from works the literature in that it introduces the interventions to discover the causal
structure for understanding the object dynamics in video sequences. At its core, we introduce a
recurrent network to model the interventional distributions. This formulation allows us to grasp
the time-varying property that widely exists in video sequences. Experiment results justify that our
IRCM delivers better performance in both counterfactual reasoning and future forecasting compared
with prior works. One direction is to loose the sufficiency assumption and involve the confounding
elements to our framework to enable discovering the causal relationships in real-world applications.
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