
Agents Robust to Distribution Shifts Learn Causal
World Models Even Under Mediation

Matteo Ceriscioli, Karthika Mohan
School of Electrical Engineering and Computer Science (EECS)

Oregon State University
Corvallis, OR 97331, USA

{ceriscim,karthika.mohan}@oregonstate.edu

Abstract

In this work, we prove that agents capable of adapting to distribution shifts must
have learned the causal model of their environment even in the presence of media-
tion. This term describes situations where an agent’s actions affect its environment,
a dynamic common to most real-world settings. For example, a robot in an indus-
trial plant might interact with tools, move through space, and transform products to
complete its task. We introduce an algorithm for eliciting causal knowledge from
robust agents using optimal policy oracles, with the flexibility to incorporate prior
causal knowledge. We further demonstrate its effectiveness in mediated single-
agent scenarios and multi-agent environments. We identify conditions under which
the presence of a single robust agent is sufficient to recover the full causal model
and derive optimal policies for other agents in the same environment. Finally, we
show how to apply these results to sequential decision-making tasks modeled as
Partially Observable Markov Decision Processes (POMDPs).

1 Introduction

Consider an AI system designed to control a sprinkler. The goal of this system is to maintain optimal
vegetation conditions while minimizing water consumption. Such a system adapts to seasonal changes
and shifts in the rainfall distribution in order to consistently achieve optimal results across diverse
weather patterns. This system can be viewed as an agent since it is an entity that maps percepts
(e.g. humidity, month of the year) to actions (activation of the sprinkler), and maximizes expected
utility (promoting vegetation growth while conserving water) [Russell and Norvig, 1995]. Now,
suppose we are tasked with developing an AI system to control a robot responsible for cleaning
the windows of a building. One might notice that there is an overlap between the environment in
which the sprinkler controller operates and that of the window-cleaning robot. For example, along
the Mediterranean coasts of Europe, southerly winds such as the sirocco and libeccio transport dust
and sand from the Sahara, which, when mixed with rain, settle and leave persistent stains on glass
surfaces. Therefore, meteorological factors such as wind direction and rainfall occurrence also play an
important role in the cleaning robot decision task. This raises the question of whether the adaptability
of the sprinkler controller entails the acquisition of some form of weather-related knowledge, and
whether this knowledge, possibly causal in nature, can be transferred to help us develop robust
policies for the window-cleaning robot. In this paper, we show that agents capable of behaving
optimally under distribution shifts must indeed possess causal knowledge about their environment,
and that this knowledge can be elicited and reused to derive better policies for other agents. Returning
to the sprinkler example, its adaptability reflects causal knowledge about the weather, which can be
extracted and used to improve the policy of the window-cleaning robot.

Investigating the link between causal understanding and robustness to shifts in the environment
is essential for building AI systems capable of generalizing across diverse scenarios [Pearl, 2018,

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Schölkopf, 2022]. While traditional machine learning excels at pattern recognition within fixed
distributions, they often struggle when faced with distribution shifts or interventions that alter the
underlying system dynamics. This issue has been extensively studied through diverse methodologies
including domain adaptation [Ben-David et al., 2006], transfer learning [Pan and Yang, 2010, Zhuang
et al., 2021], federated learning [Konečný et al., 2016], and transportability [Pearl and Bareinboim,
2011], each addressing distinct flavors of the problem. Modern AI systems are expected to meet sev-
eral key requirements, including robustness to distribution shifts, reliable generalization, transparent
decision-making, and avoidance of unintended consequences [Amodei et al., 2016, Hendrycks et al.,
2021, Shah et al., 2025]. Causal models offer a powerful framework that addresses these challenges
by providing a formal representation of the mechanisms governing an environment [Pearl, 2009].
Causal modeling enables AI systems to generalize more effectively by capturing the underlying
causal relationships that persist across scenarios [Schölkopf et al., 2021], and it enhances system
explainability by supporting both interventional and counterfactual reasoning [Bareinboim et al.,
2024]. Yet, a fundamental question remains: Is causal knowledge truly necessary for generalization,
or can agents achieve robustness without causal understanding of their environment?

Recent work [Richens and Everitt, 2024] has demonstrated that agents capable of adapting to
distribution shifts must have learned a causal model of their environment, i.e., if the environment
can be represented by a causal model, the model’s causal structure can be reconstructed by querying
an agent capable of behaving optimally under distribution shifts. However, these results focus on
single-agent, non-sequential tasks, and rely on the strong assumption of no mediation [Pearl, 2009],
meaning the agent’s actions cannot have an effect on the utility via environment states. In contrast,
many real-world AI applications involve tasks where mediation exists. For example, an autonomous
car navigating from point A to point B, may affect lane occupancy and, in turn, traffic flow and the
behavior of other drivers.

The goal of this paper is to extend this theoretical framework to the more general mediated case and
explore the implications for multi-agent systems and sequential decision tasks. See Appendix A.4 for
a comparison with Richens and Everitt [2024]. This work makes the following key contributions:

1. We demonstrate that agents robust to distribution shifts must have learned a causal model of their
environment, even when the no-mediation assumption in Richens and Everitt [2024] is relaxed.

2. We present an algorithm to learn the Causal Influence Diagram (CID) depicting mediated deci-
sion tasks, by querying optimal policy oracles. We outline how to incorporate prior knowledge
into the causal model (Section 3.1).

3. We offer insights into the implications of our findings for multi-agent environments (Section 3.2)
and for sequential decision tasks modeled with Partially Observable Markov Decision Pro-
cesses (POMDPs) (Section 3.3).

2 Preliminaries

We are interested in representations of decision tasks that capture both the independence structure
and the causal relationships among environmental variables, while explicitly specifying the agent’s
role, including its observable inputs and the variables subject to its control.

Causal Influence Diagrams (CIDs) [Heckerman, 1995, Everitt et al., 2021] provide a representation
that naturally fulfills these requirements. Similar to Influence Diagrams [Howard and Matheson,
1984], CIDs are commonly used to reason about decision-making tasks. CIDs further assume that the
graph encodes the causal relationships between the nodes. We denote the set of parents of a node X
as PaX , the set of children as ChX , the set of ancestors as AncX , the set of descendants as DescX
and instantiations of random variables in lower-case. Each variable X has a finite set of possible
values dom(X).

Definition 1 (Causal influence diagram [Heckerman, 1995, Everitt et al., 2021]). A causal influence
diagram (CID) is a Causal Bayesian Network M = (G = (V,E), P), where P is a joint probability
distribution compatible with the conditional independences encoded in G. The nodes in V are
partitioned into decision (D), utility (U), and chance (C) nodes, V = (D,U,C). Each utility node
Ui is associated with a real function fi of its parents fi : dom(PaUi

)→ R, which is referred to as
the utility or loss function associated with Ui.

2

M R

W UD

Figure 1: A CID representing a mediated decision task with
U = {U}, D = {D}, and C = {M,R,W}, where M
denotes the month of the year, R indicates rainfall, and W
the lawn wetness. An AI agent controls a sprinkler (D) with
the goal of keeping the grass wet (W = 1). Directed edges
indicate causal relationships except the edge that enters D.
The utility function U depends on both wetness and sprinkler
use, rewarding W = 1 and discouraging water wastage.

The chance nodes correspond to variables describing the environment. A decision task represented
with a CID containing a decision node D and a utility node U is said to be mediated if DescD ∩
AncU ̸= ∅, that is, if a decision influences some part of the environment that is relevant to the task. For
example, a doctor’s treatment choice (decision D) alters a patient’s condition (environment variable
C), which affects recovery (utility U). Edges pointing into decision nodes are called informational
links, they indicate which variables the agent observes when making a decision. All other edges
are causal links, representing causal relationships. We prove that an agent capable of adapting to
distribution shifts must have learned the CID of its environment by showing that it is possible to
recover the causal structure and the Conditional Probability Tables (CPTs) of the variables describing
the environment by observing the agent’s optimal policies under distribution shifts. Note that this
setup is unsuitable for traditional causal discovery algorithms like PC [Spirtes and Glymour, 1991]
and FCI [Spirtes, 2001] because we do not have access to the joint probability distribution of the
variables or any sample data. In this paper, the terms adaptable agent and robust agent refer to an
agent that maintains optimal performance across all the possible distribution shifts in its environment.

Each agent may correspond to a different set of decision nodes and have access to a distinct subset
of observable variables. When making a decision D, the agent only observes the variables that are
parents of D. An example of a CID modeling the sprinkler story can be found in Figure 1.

Modeling distribution shifts. A key concept in this setting is domain dependence [Richens and
Everitt, 2024], meaning that no single policy π is optimal under all possible distribution shifts.
Definition 2 (Domain dependence [Richens and Everitt, 2024]). A CID M is said to satisfy domain
dependence if there exist P (C = c) and P ′(C = c), both compatible with the CID M such that
π∗ = argmaxπ Eπ

P [U] =⇒ π∗ ̸= argmaxπ Eπ
P ′ [U].

Domain dependence rules out trivial cases where the optimal policy remains the same under all
distribution shifts. When it does not hold, any agent that is optimal in the unshifted environment
would automatically be robust, making causal reasoning unnecessary for adaptation.

Following the work of Richens and Everitt [2024], we represent distribution shifts as mixtures of
local interventions. Given a random variable X with x1, . . . , xn as possible observable values, a
local intervention on X is a function that maps each observable value xi to a new observable value
f(xi) ∈ {x1, . . . , xn}. In other words, local interventions deterministically reassign a random
variable’s outcomes independently of other variables.
Definition 3 (Local intervention [Richens and Everitt, 2024]). Local intervention σ on X involves
applying a map to the states of X that is not conditional on any other endogenous variables, x 7→ f(x).
The conditional probability distribution of X is modified as follows:

P (x | paX ;σ) :=
∑

x′:f(x′)=x

P (x′ | paX) (1)

We use the notation σ = do(X = f(x)) indicating that variable X is assigned the value f(x).
Local interventions are a subset of soft interventions, with hard interventions as a special case.

A local intervention has limited capacity to model distribution shifts. For instance, it cannot model
the shift from a coin that always lands on heads to a fair coin because a local intervention must
deterministically map the observable value ’head’ to another observable value. Therefore, we now
report the concept of a mixture of interventions [Richens and Everitt, 2024]. This mixture is a convex
combination σ∗ =

∑
i piσi of interventions σi, where each coefficient pi represents the probability

that σi is used to map the observable value of X .

3

Definition 4 (Mixture of interventions [Richens and Everitt, 2024]). A mixture of interventions
σ∗ =

∑
i piσi for

∑
i pi = 1 performs intervention σi with probability pi. Formally:

P (x | pax;σ∗) =
∑
i

piP (x | pax;σi) (2)

We consider mixtures of local interventions on the environment variables, that is, on the chance nodes
of the CID. An example of how a mixture of local interventions can represent a distribution shift is
provided in Appendix D.

We use optimal policy oracles to formalize the agent’s understanding of optimal behavior under
distribution shifts. A policy for a decision D is a set of conditional distributions on dom(D) given
each possible instantiation of its parent variables Pa(D). Let D be a decision variable taking values
in d ∈ dom(D). Given a set Σ of interventions on the environment variables corresponding to chance
nodes, an optimal policy oracle is a map that for any intervention (distribution shift) σ ∈ Σ returns
the corresponding optimal policy πσ(D | PaD).
Definition 5 (Policy oracle [Richens and Everitt, 2024]). A policy oracle for a set of interventions
Σ is a map ΠΣ : σ 7→ πσ(D | PaD) ∀ σ ∈ Σ. A policy oracle Π∗

Σ is optimal if for each σ ∈ Σ,
Π∗

Σ(σ) = π∗
σ(D | PaD) = argmaxπ E[U | do(D = π(paD));σ].

As a simple example, consider a game where an agent has to guess the outcome of a die roll X , the
utility function is U := 1 if D = X , and 0 otherwise. Let σ be an intervention that corresponds to a
distribution shift that makes the die always land on 3. Then, querying the policy oracle with σ would
return a policy πσ(D) so that πσ(D = 3) = 1.

In most real-world settings, such an ideal agent may not exist. However, previous results have shown
that for unmediated tasks, relaxing the optimality assumption for the policy oracle still requires the
agent to have learned an approximate causal model [Richens and Everitt, 2024]. This suggests that
the necessity to learn an exact or approximate causal model is a stable property that holds even for
suboptimal agents.

In our work, we rely on Algorithm 1 from Richens and Everitt [2024], which takes as input a utility
function U , an optimal policy oracle, an intervention σ ∈ Σ, and a parameter N that controls the
number of samples. For any local intervention σ ∈ Σ, let d be the deterministic optimal decision under
the shift induced by σ. By domain dependence, there exists a hard intervention σ′ such that d is no
longer optimal, with d2 as the new optimal decision. Considering the mixture σ(q) := qσ+(1−q)σ′,
there exists a value qcrit for q such that d2 and another decision d1 are both optimal. The algorithm
returns qcrit, d1, and d2. The value qcrit is used to compute the CPTs of the chance variables which
we use to reconstruct the causal graph. For an example see Appendix E.1 and Figure 7.

3 Learning Causal Influence Diagrams with Adaptable Agents

In Section 3.1, we present LearnCID, an algorithm for recovering the environment’s CID from an
adaptable agent, modeled as an optimal policy oracle. This algorithm establishes that acquiring
causal knowledge is necessary for agents to be robust to distribution shifts, even in mediated decision
tasks. In Section 3.2, we discuss the implications of our results for multi-agent environments. Finally,
in Section 3.3 we outline the relation between CIDs and POMDPs and explain how our approach
extends to sequential decision tasks modeled by POMDPs.

3.1 LearnCID algorithm for eliciting causal knowledge from adaptable agents

Under specific assumptions detailed below, the LearnCID algorithm (Algorithm 1) enables the
reconstruction of the underlying causal model by identifying the CID structure and the CPTs for the
variables corresponding to chance nodes that are not children of the decision node.

Assumption pertaining to causal discovery

A1 The CID satisfies faithfulness [Spirtes et al., 1991] and causal sufficiency [Pearl, 2009].
Faithfulness means that every conditional independence in the joint probability P of the CID also
holds in the graph G. A set of variables in a CID is sufficient if it includes all common causes.

4

Assumptions pertaining to the CID structure

A2 Given the CID M = (G = (V,E), P), the partition of V into (D,U,C) is known.

A3 The CID contains exactly one decision node D and one utility node U (|D| = |U | = 1).
For CIDs with multiple utility nodes, we can run the algorithm once for each utility node. Note that
the optimal policy oracle depends on both the specific CID and decision node, so different utility
node selections might correspond to different optimal policy oracles.

A4 The set of parents of both D and ChD, and the CPTs of the children of D are known.
Motivations for Assumption A4 can be found in Appendix B.

A5 D is a parent of U .

A6 All chance nodes are ancestors of U .
Chance nodes that are not ancestors of U (and consequently, since D ∈ PaU , not ancestors of D)
have no influence on the decision task. LearnCID would ignore these nodes, and their associated
causal structure and CPTs would not be recovered.

Assumptions pertaining to utility evaluation and decision policies

A7 The utility function f associated with the utility node U is fully specified.
The utility function’s functional form is known, which tells us all the variables involved in calculating
the utility. These variables appear in the causal graph as parents of the utility node.

A8 We have access to a set Σ of all possible mixtures of local interventions, along with the optimal
policy oracle Π∗

Σ for decision node D.

A9 There exist no decision d∗ ∈ dom(D) that is optimal for all instantiations of PaU \D.
Assumption A9 states that there does not exist a single decision d ∈ Dom(D) that is optimal
regardless of the value taken by the chance nodes that are parents of U . If Assumption A7 holds,
Assumption A9 is testable by substituting different value combinations for the parent nodes of U .
While Assumption A9 is equivalent to domain dependence (Definition 2) in unmediated decision
tasks, this equivalence breaks down in the general mediated case. Nevertheless, Assumption A9 is
sufficient to guarantee domain dependence.

The set of assumptions in Richens and Everitt [2024] is identical to that above, except we drop the
unmediated task assumption. Under the no-mediation assumption, Assumption A4 corresponds to
knowing the parents of D, A9 corresponds to domain dependence, and Assumption A4 together with
Assumption A5 correspond to assuming the knowledge of the parents of D and U . In the unmediated
task case, Assumption A5 is implied by domain dependence [Richens and Everitt, 2024].

In this setting, Assumption A2 implies that the variables comprising the causal model are known.
Beyond domain knowledge, there exist techniques to learn these variables; for instance, substantial
work in causal representation learning aims, among other goals, to identify latent variables for causal
models directly from data [Schölkopf et al., 2021, Varici et al., 2024].

The following theorem states that for a CID satisfying A9, domain dependence also holds.
Theorem 1. Let M = (G,P) be a CID where DescD ∩AncU ̸= ∅. A9 =⇒ Domain dependence.

Proof. See Appendix C.

While under no mediation domain dependence implies A9 [Richens and Everitt, 2024], this no longer
holds in the mediated case. Theorem 1 shows that A9 implies domain dependence, making the two
equivalent in the unmediated setting. This is further discussed in Appendix C.

3.1.1 Algorithm formulation

The LearnCID algorithm reconstructs the structure and CPTs of the CID by iteratively exploring
chance nodes connected to the utility node U . For each chance node X with a known path to U , we
first identify a set of candidate parent chance nodes Pa∗X , also making use of prior knowledge: Vkwn

the subset of chance nodes whose parents are fully known, and G′ a graph containing known edges.
Consider the following local intervention:

fx(X)←
{
x, if X = x

x′, otherwise
(3)

5

Algorithm 1 LearnCID
Input: Nodes V = {{D}, {U}, C}, graph G′ on V containing known edges, set of chance nodes
with all known parents Vkwn, set of known CPTs Θ′, and the number of samples N to estimate qcrit.
Output: The CID’s graph G, and the set of CPTs Θ,

1: Mark all chance nodes as unvisited.
2: while there are still unvisited chance nodes with a known path to U , starting from the parents of

U not children of D do
3: Let X be an unvisited chance node with a known path to U .
4: Let Ip be the set of intermediate chance nodes on a directed path p from X to U , or to D if

no such path to U exists.
5: Let CX be the set of chance nodes not in Ip
6: if X ∈ Vkwn then Pa∗X ← PaX else Pa∗X ← CX\DescX
7: for each instantiation x of X do
8: for each Pa∗X,i ∈ Pa∗X do
9: for each instantiation of variables c1 in CX \

(
{Pa∗X,i} ∪DescX

)
do

10: Let c2 be a valid instantiation of the variables in CX ∩DescX
11: Construct c instantiation of CX \ Pa∗X,i by combining c1 and c2
12: Initialize σPa∗

X,i
(c) as in Equation 4.

13: for each σ ∈ σPa∗
X,i

do
14: Estimate qcrit, d1, d2, pa

′
U using ALGqcrit(U,Π

∗
Σ, N, σ).

15: Compute P (X = x | pax;σ) using Θ and Equations 5 and 6.
16: if Pa∗X,i→X /∈G′ and ∃σ, σ′ ∈ σPa∗

X,i
s.t.P (x | paX ;σ) ̸=P (x | paX ;σ′)then

17: Add Pa∗X,i → X to G′

18: for each paX ∈ dom(PaX) do
19: P (x | paX)← P (x | paX ;σ) for any hard intervention σ compatible with paX .
20: return the updated CID’s graph G′, and the set of CPTs Θ′.

where x′ is an arbitrary observable value for X different from x. Let CX represent the set of all
chance nodes except X and the intermediate nodes on a directed path from X to either U or D. For
example, in a CID X4 → X3 → X2 → X1 → U ← D, then CX3

= {X4} because X2 → X1 is
on the only directed path between X3 and U . For each candidate parent Pa∗X,i ∈ Pa∗X , we define a
family of interventions σPa∗

X,i
.

σPa∗
X,i

(c)← {do(Pa∗X,i = pa∗X,i, CX \ {Pa∗X,i} = c,X = fx(X)) | pa∗X,i ∈ dom(Pa∗X,i)} (4)

Note that in these interventions, all variables to which we assign a specific value are fixed except
one, Pa∗X,i, which is varied across different interventions. To compute the CPTs, we use ALGqcrit
(Algorithm 1 in Richens and Everitt [2024]). Given an intervention σ1 and the corresponding optimal
decision d1 obtained from the policy oracle, the algorithm finds another intervention (a distribution
shift) σ2 under which d1 is no longer optimal. The existence of such an intervention is guaranteed
by A9. It then defines a mixture of interventions σ(q) := qσ1 + (1 − q)σ2 and identifies qcrit, the
convex coefficient at which d1 performs as well as an optimal decision d2 under σ2. In other words,
at qcrit the expected utilities of d1 and d2 under σ(qcrit) are equal. Rearranging this equality leads to
Equations 5 and 6, which use the value of qcrit to compute the interventional distributions.

Let C1, . . . , Ck be the intermediate chance nodes in a directed path from X to U or D. If
C1 ∈ PaU let C := {C1, . . . , Ck} otherwise let C := {C2, . . . , Ck}. For both x and x′, we compute:

β(x) :=
∑

c∈dom(C)

k∏
i=1

P (ci | paCi
)[U(d2, c)− U(d1, c)] (5)

Observe that the right-hand side of Equation 5 depends on X for determining the set containing the
path of chance nodes C, and depends on the specific instantiation x of X because X is the parent of
either a chance node in C, the decision node D, or the utility node U . Let pa′U be the instantiation of
the variables associated with the chance nodes that are parents of U under σ2. Using Equation 5, we

6

can compute P (x | paX ;σ) as:

P (x | paX ;σ) =
(1− 1

qcrit
)[U(d2, pa

′
U)− U(d1, pa

′
U)]− β(x′)

β(x)− β(x′)
(6)

We proceed by testing whether any pair of interventions produces distinct interventional conditional
distributions for X . If so, the way the interventions in σPa∗

X,i
are defined ensures that Pa∗X,i

is a parent of X . We can then recover the observational conditional distribution of X from the
interventional ones by noting that, according to Equation 1, for any σ ∈ σPa∗

X,i
that sets PaX to

paX , it holds that P (x | paX ;σ) = P (x | paX). This process is repeated until all chance nodes that
are ancestors of U have been processed, returning the learned structure and CPTs.

An example of an application of Algorithm 1 (LearnCID) to a single-agent CID is provided in
Appendix E.1. The proof of correctness for Algorithm 1 can be found in Appendix A. The algorithmic
complexity of Algorithm 1 is discussed in Appendix A.3.

With Theorem 2, we prove that agents robust to distribution shifts must have learned a causal
model of their environment even under mediation and formalize the correctness of Algorithm 1:
Theorem 2. Let M be a CID satisfying Assumptions A1∼A9. Suppose for each Ci, we know a
set P̂ aCi

⊆ PaCi
and a set of nodes Vkwn ⊆ V where Ci ∈ Vkwn ⇐⇒ P̂ aCi

= PaCi
. Let

{π∗
σ(d|paD)}σ∈Σ denote the set of optimal policies available where π∗

σ(d|paD) is an optimal policy
under the intervention σ and Σ is the set of all mixtures of local interventions.
Then, for almost all CIDs, the graph G and the joint distribution P over all the ancestors of the utility
node AncU can be identified.

Proof. See Appendix A.

In Richens and Everitt [2024], it is claimed that the set of optimal policies is almost al-
ways sufficient to identify all causal relationships, where almost always means except on a set of
parameters of Lebesgue measure zero. While this holds for unmediated tasks, we show that in the
mediated case, the children of the decision node D cannot, in general, be identified, which in turn
motivates Assumption A4.
Theorem 3. Let M = (G = {V,E}, P) be a single decision/single utility CID, assume we know
D,U,C, and Pa(U), Pa(D). Let Σ be the set of all mixtures of local interventions, Π∗

Σ be an
optimal policy oracle for D. Then in general ChD cannot be uniquely determined.

Proof. See Appendix B.

3.2 Implications for multi-agent environments

In this section we show how to apply our results to multi-agent systems represented by multi-decision
CIDs. The fact that an adaptable agent must necessarily learn a causal model of its environment has
significant implications when extending this concept to multi-agent systems. Under the assumptions
of Algorithm 1, the causal model of the nodes in AncU , the variables influencing the utility function,
can be recovered. Now suppose we introduce a new agent A′ into the same environment, by adding
its decision nodes and related edges. The existing causal knowledge over U ∪AncU can, in principle,
inform A′ and aid in designing policies that make it adaptable to distribution shifts [Bareinboim
et al., 2024]. Let U′ denote the set of utility functions that A′ tries to optimize. Intuitively, the
extent to which the original agent’s causal knowledge can be transferred to A′ depends on how much
of the environment they share, more precisely, on the intersection AncU ∩

(⋃
U ′∈U′ AncU ′

)
. We

can expect this transferability to be maximal when AncU =
⋃

U ′∈U′ AncU ′ and minimal when
AncU ∩

(⋃
U ′∈U′ AncU ′

)
= ∅. As an example, Consider a factory with two agents: agent A,

the production manager, determines how much to produce to maximize profit, while agent B, the
maintenance manager, checks the machine conditions and schedules maintenance actions in order
to avoid breakdowns and maximize uptime. In this example AncUA

∩AncUB
is not empty, since a

breakdown reduces uptime and could prevent agent A from producing the desired quantity of goods.
Agent A’s causal knowledge about breakdowns can be informative for agent B and vice versa.

Learning multi-decision CIDs. Even if LearnCID can be applied only to single-decision CIDs,
there exist different approaches to handle multi-decision CIDs. We propose two approaches for when

7

UA

DAN

O

B

UB

M

DB UA

DAN

O

BM

DB

Figure 2: On the left, a CID representing a factory decision-making scenario with U = {UA, UB},
D = {DA, DB}, and C = {M,B,O,N}. Here, M denotes machine condition, B machine
breakdown, O the production output, and N the product demand. Agent A (the production manager)
controls DA, adjusting the production rate in response to N , while Agent B (the maintenance
manager) controls DB , scheduling maintenance actions informed by M . Utilities UA and UB reflect
production profit and machine uptime, respectively. On the right, the corresponding transformed CID
used to apply LearnCID, with DA as the primary decision node and DB as a secondary decision
node, assuming DB is assigned a faithful policy. Edges marked in red denote unknown dependencies.

all agents are able to influence the same utility function and where at least one agent optimizes it.
In both approaches the optimizing agent may correspond to multiple decision nodes. We designate
one of these as the primary decision node and require the single-decision assumptions to hold for it
(knowledge of its children, their CPTs, and its parents). All remaining decision nodes are referred to
as secondary decision nodes. In the example described in Figure 2, assuming agent A is robust, its
decision node DA is designated as the primary decision node and DB as secondary decision node.
If the multi-decision CID contains multiple utility nodes, we can prune all but one and then run
LearnCID to recover its ancestors and their CPTs. It is then possible to repeat the procedure for other
utility nodes in the environment, provided that for each such node there is at least one optimal policy
oracle available corresponding to a decision node that optimizes the associated utility function and
that the other LearnCID assumptions are satisfied.

1. Let {Di}i be the set of all secondary decision nodes. A possible approach consists in assuming
that the decision associated to each secondary decision node Di is determined by a faithful policy
πi, i.e. a policy that actually depends on PaDi . Since the policy is fixed, we can convert these
decision nodes to chance nodes with the corresponding, potentially unknown, policy πi as CPT. If
we assume the availability of an optimal policy oracle for the primary decision node, we can apply
Algorithm 1 to recover the full CID.

2. As a special case, if we know the parent sets of all secondary decision nodes {Di}i. It is then
possible for us to assign any faithful policy to each decision node Di. Then, we can again convert
these nodes to chance nodes by using their policies as CPTs. Assuming the existence of an optimal
policy oracle for the primary decision node, we can apply Algorithm 1 to learn the full CID.

Once the CPTs for all chance nodes are learned, it becomes possible to determine an optimal policy
for every decision node in the original graph under any distribution shift [Shachter, 1986, Koller
and Milch, 2001, Hammond et al., 2021, Bareinboim et al., 2022]. In Appendix E.2, we provide an
example of an application of LearnCID to a system where two agents cooperate.

3.3 Applying LearnCID to Partially Observable Markov Decision Processes

Let M = (S,A, T,R,Ω, O, γ) be a Partially Observable Markov Decision Process (POMDP) [Kael-
bling et al., 1998] where S is the set of states, A the set of actions/decisions, T : S ×A→ Π(S) is
the state-transition function where Π(S) is the set of probability distributions over the set of states,
R : S ×A→ R is a reward function, Ω is the set of observables (values of observable variables), O
is the set of conditional observation probabilities, and γ ∈ [0, 1) is the discount factor.

POMDPs form a class of models for sequential decision-making that typically involve mediation, as
state transitions generally depend on the agent’s actions. In this section, we demonstrate that under
mild assumptions, given a POMDP with unknown state-transition function T and states described by
a finite set of discrete variables, a POMDP can be represented with a CID with a temporal component.
Given access to an optimal policy oracle, Algorithm 1 can then be used to learn both the intra- and
inter-temporal causal structure, as well as the CPTs and the state-transition function.

8

Structural constraints. We make the following assumptions on the POMDP:

P1 Time-homogeneity, i.e. the transition probabilities do not change over time.

P2 The set of observable variables is fixed and the agent gets an observation from these variables
at every timestep.
Formally, each state s in S is described by a finite set of variables V (i.e., there exists a
bijective function f : dom(V)→ S), there exists a subset of observable variables Vo ⊆ V,
and for every state s in S and every action a in A it holds that O(s, a, vo) = 1, where vo is
the instantiation of the observable variables at the current state.

Note that under Assumptions P1 and P2, we can model the state space of a POMDP using a CID
with PaD := Vo. If the set of observable variables coincides with the set of all state variables then
we get a Markov Decision Process (MDP) as a special case of a POMDP.

Causal representation of POMDPs. By identifying the observable variables of the POMDP as
the parents of decision nodes, the reward function as the utility function associated with a utility
node, and all other unobserved variables as chance nodes that are not parents of decision nodes, we
can observe that a POMDP can be seen as a CID unrolled over time. Previous work has explored
analogous causal representations of POMDPs [Everitt et al., 2019, Bareinboim et al., 2024].

The mapping from a POMDP to a CID with unknown structure is described in Algorithm 2. Since
we want to apply Algorithm 1 to this CID, we further need to assume each variable is discrete, the
POMDP reward directly depends on the action (equivalent to D ∈ PaU). In this case, we have a
slightly weaker condition for the Markov blanket of the decision node: other than the parents of D, we
only need to know which chance nodes are children of D in the same timestep, their CPTs, and their
parents, while we can ignore the chance nodes that are children of D in the following timesteps (e.g.,
considering the POMDP described in Figure 3, we do not need to know that Xt+1 is a child of Dt

because they belong to different timesteps). Due to the Markov property of POMDPs, direct causal
relationships can exist only within a single timestep or, when inter-temporal, from past to future
between consecutive timesteps. Note that the causal structure, the CPTs, and the state-transition
function associated with the POMDP are independent of the discount factor. Therefore, even if the
CID obtained with Algorithm 2 does not contain any information about the original discount factor,
as long as the assumptions of LearnCID are satisfied, we can still recover these components.

Algorithm 2 POMDPtoCID
Input: POMDP (S,A, T,R,Ω, O, γ) with unknown state-transition function T , states described by
a finite set of variables V, and the subset of observable variables Vo ⊆ V.
Output: Corresponding CID’s graph G without causal arcs involving chance nodes.

1: Initialize G as an empty graph.
2: Add decision node Dt to CID’s graph G with A as set of decisions.
3: Add chance node Dt−1 to CID’s graph G.
4: for each variable V ∈ V do
5: Add chance nodes corresponding to random variables Vt and Vt−1 to CID’s graph G.
6: if V ∈ Vo then
7: Add edge Vt → Dt and Vt−1 → Dt−1 to CID’s graph G.
8: Define U :dom(V)×dom(D)→R as U(v, d) 7→R(f(v), d) for all d∈dom(D) and v∈dom(V)
9: Add utility node Ut with utility function U to G.

10: Add edge Dt → Ut with utility function U to G.
11: return CID’s graph G.

Learning intra- and inter-temporal causal relationships. We can run LearnCID on the CID
produced by Algorithm 2 to learn the causal relationships for variables both at the same time step and
at different ones. The algorithm maps the variables, decisions, and rewards related to two consecutive
timesteps to nodes of a CID. We now refer to these timesteps as t − 1 and t. Therefore, for each
variable X partially describing the state of the POMDP, this newly defined CID contains two variables
Xt−1 and Xt. Similarly, there will be two decision nodes Dt−1 and Dt and two utility nodes Ut−1

and Ut. Observe that we can prune Ut−1, and, similarly to what we proposed for multi-agent settings,

9

Figure 3: Example of an application of Algo-
rithm 2 and Algorithm 1 (LearnCID) to a time-
homogeneous POMDPs. On the left, a causal
representation of a POMDP. On the right, the cor-
responding CID with unknown edges marked in
red. To apply LearnCID, we consider two time
steps t−1 and t, with decision node Dt and utility
node Ut. We select any faithful policy for Dt−1,
convert it into a chance node, and prune Ut−1.
Time-homogeneity ensures that inter-temporal
causal relationships are preserved across all time
steps, allowing us to recover the full causal graph.

Yt−1

Xt−1

Dt−1

Ut−1

Yt

Xt

Dt

Ut

· · ·

· · ·

Yt−1

Xt−1

Dt−1

Yt

Xt

Dt

Ut

we convert Dt−1 to a chance node and assign any faithful policy as its CPT. This is possible because
the chance nodes that are parents of decision nodes correspond to the observable variables which are
known. Then, if the assumptions of LearnCID are satisfied, including having an optimal policy oracle
available, then we can use it to learn all the missing causal relationships. For time-homogeneous
POMDP, like in the example illustrated in Figure 3, this is sufficient to learn all the intra- and
inter-temporal causal relationships of variables in AncUt for any timestep since they do not change
when varying t because this would imply a change in the transition probability which contradicts the
time-homogeneity assumption.

Learning the state-transition function. Once we have learned the CPTs for all the chance nodes
and we have fixed a policy π for the agent, it is possible to recover the state-transition function T ,
i.e., for all states s ∈ S and actions a ∈ A we can find a probability distribution over the state of the
process at the following timestep. Let V (t)

1 , . . . , V
(t)
n be the variables V associated with the chance

nodes at timestep t we observe that:

T (s(t−1), a(t−1)) = P (s(t)|s(t−1), a(t−1)) = P (V
(t)
1 , . . . , V (t)

n |v
(t−1)
1 , . . . , v(t−1)

n , a(t−1))

=
∏

i|Vi∈ChD

∑
d∈A

P (V
(t)
i |paVi

, d)π(d|paD)
∏

i|Vi∈V\ChD

P (V
(t)
i |paVi

) (7)

Since all the CPTs are known and the policy is fixed, we can compute the state-transition function for
all states and actions.

Non time-homogeneous case. For non time-homogeneous POMDPs, this method only recovers
causal links between two adjacent timesteps, as time-varying dynamics can change variable inter-
actions. For example, irrigation may affect soil humidity in the dry season but not during the rainy
season, so applying the algorithm on two rainy days could falsely suggest no causal link. One fix is
to augment the state space to enforce time homogeneity [Puterman, 2005]. Alternatively, the method
can be applied separately at each timestep, which is practical when time dependence is finite or
periodic. Otherwise, it is possible to map each interval to a CID, prune intermediate utility nodes, and
use our multi-decision CID approach. Each strategy has different oracle requirements: the augmented
model needs time interventions, while the others require one oracle per time interval.

4 Conclusions and Future Work

In this work, we addressed the challenge of understanding the relationship between robustness to
distribution shifts and an agent’s causal understanding of its environment. While previous work estab-
lished that robust agents encode the causal model in single-agent, unmediated tasks, we demonstrated
that this connection also holds in mediated, multi-agent, and sequential settings. We presented an
algorithm to show that it is possible to elicit the learned causal model from robust agents. In multi-
agent systems, we showed how a single robust agent enables the discovery of the complete causal
model, and how this could be used to learn optimal policies for other agents in the same environment.
We further applied our approach to POMDPs, demonstrating that robust agents necessarily learn intra-
and inter-temporal causal relationships and the state-transition function. These findings contribute to
a theoretical foundation for world modeling approaches based on the extraction and combination of
causal knowledge from robust agents and facilitate the exploration of approximate settings, where the
agent’s optimality assumption is relaxed.

10

References
Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.

Concrete problems in ai safety. 06 2016. doi: 10.48550/arXiv.1606.06565.

Elias Bareinboim, Juan D. Correa, Duligur Ibeling, and Thomas Icard. On Pearl’s Hierarchy and
the Foundations of Causal Inference, page 507–556. Association for Computing Machinery, New
York, NY, USA, 1 edition, 2022. ISBN 9781450395861.

Elias. Bareinboim, Junzhe Zhang, and Sanghack Lee. Towards causal reinforcement learning.
Technical Report R-65, Causal Artificial Intelligence Lab, Columbia University, December 2024.

Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations for
domain adaptation. In Proceedings of the 19th International Conference on Neural Information
Processing Systems, NIPS’06, page 137–144, Cambridge, MA, USA, 2006. MIT Press.

Tom Everitt, Rahul Kumar, Victoria Krakovna, and Shane Legg. Modeling agi safety frameworks
with causal influence diagrams. In Workshop on Artificial Intelligence Safety, volume 2419 of
CEUR Workshop Proceedings, 2019.

Tom Everitt, Ryan Carey, Eric D. Langlois, Pedro A. Ortega, and Shane Legg. Agent incentives:
A causal perspective. Proceedings of the AAAI Conference on Artificial Intelligence, 35(13):
11487–11495, May 2021. doi: 10.1609/aaai.v35i13.17368. URL https://ojs.aaai.org/
index.php/AAAI/article/view/17368.

Lewis Hammond, James Fox, Tom Everitt, Alessandro Abate, and Michael Wooldridge. Equilibrium
refinements for multi-agent influence diagrams: Theory and practice. In Proceedings of the 20th
International Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’21, page
574–582, Richland, SC, 2021. International Foundation for Autonomous Agents and Multiagent
Systems. ISBN 9781450383073.

David Heckerman. A bayesian approach to learning causal networks. In Proceedings of the Eleventh
Conference on Uncertainty in Artificial Intelligence, UAI’95, page 285–295, San Francisco, CA,
USA, 1995. Morgan Kaufmann Publishers Inc. ISBN 1558603859.

Dan Hendrycks, Nicholas Carlini, John Schulman, and Jacob Steinhardt. Unsolved problems in ml
safety, 09 2021.

Ronald A. Howard and James E. Matheson. Influence diagrams. Readings on the Principles and
Applications of Decision Analysis, Vol. II, 1984.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in par-
tially observable stochastic domains. Artificial Intelligence, 101(1):99–134, 1998. ISSN 0004-3702.
doi: https://doi.org/10.1016/S0004-3702(98)00023-X. URL https://www.sciencedirect.
com/science/article/pii/S000437029800023X.

Daphne Koller and Brian Milch. Multi-agent influence diagrams for representing and solving games.
In Proceedings of the 17th International Joint Conference on Artificial Intelligence - Volume 2,
IJCAI’01, page 1027–1034, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.
ISBN 1558608125.

Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtarik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. In NIPS
Workshop on Private Multi-Party Machine Learning, 2016. URL https://arxiv.org/abs/
1610.05492.

Masashi Okamoto. Distinctness of the Eigenvalues of a Quadratic form in a Multivariate Sample.
The Annals of Statistics, 1(4):763 – 765, 1973. doi: 10.1214/aos/1176342472. URL https:
//doi.org/10.1214/aos/1176342472.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering, 22(10):1345–1359, 2010. doi: 10.1109/TKDE.2009.191.

11

https://ojs.aaai.org/index.php/AAAI/article/view/17368
https://ojs.aaai.org/index.php/AAAI/article/view/17368
https://www.sciencedirect.com/science/article/pii/S000437029800023X
https://www.sciencedirect.com/science/article/pii/S000437029800023X
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1610.05492
https://doi.org/10.1214/aos/1176342472
https://doi.org/10.1214/aos/1176342472

Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, USA, 2nd
edition, 2009. ISBN 052189560X.

Judea Pearl. Theoretical impediments to machine learning with seven sparks from the causal
revolution. In Proceedings of the Eleventh ACM International Conference on Web Search and Data
Mining, WSDM ’18, page 3, New York, NY, USA, 2018. Association for Computing Machinery.
ISBN 9781450355810. doi: 10.1145/3159652.3176182. URL https://doi-org.oregonstate.
idm.oclc.org/10.1145/3159652.3176182.

Judea Pearl and Elias Bareinboim. Transportability of causal and statistical relations: A formal
approach. In 2011 IEEE 11th International Conference on Data Mining Workshops, pages 540–547,
2011. doi: 10.1109/ICDMW.2011.169.

Martin L. Puterman. Markov decision processes : discrete stochastic dynamic programming, 2005.

Jonathan Richens and Tom Everitt. Robust agents learn causal world models. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=pOoKI3ouv1.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Series in Artificial Intelligence.
Prentice-Hall, Englewood Cliffs, NJ, 1995.

Bernhard Schölkopf. Causality for Machine Learning, page 765–804. Association for Computing
Machinery, New York, NY, USA, 1 edition, 2022. ISBN 9781450395861.

Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. Proceedings of the
IEEE, 109(5):612–634, 2021. doi: 10.1109/JPROC.2021.3058954.

Ross D. Shachter. Evaluating influence diagrams. Oper. Res., 34(6):871–882, December 1986. ISSN
0030-364X.

Rohin Shah, Alex Irpan, Alexander Matt Turner, Anna Wang, Arthur Conmy, David Lindner, Jonah
Brown-Cohen, Lewis Ho, Neel Nanda, Raluca Ada Popa, Rishub Jain, Rory Greig, Samuel Albanie,
Scott Emmons, Sebastian Farquhar, Sébastien Krier, Senthooran Rajamanoharan, Sophie Bridgers,
Tobi Ijitoye, Tom Everitt, Victoria Krakovna, Vikrant Varma, Vladimir Mikulik, Zachary Kenton,
Dave Orr, Shane Legg, Noah Goodman, Allan Dafoe, Four Flynn, and Anca Dragan. An approach
to technical agi safety and security, 2025. URL https://arxiv.org/abs/2504.01849.

Peter Spirtes. An anytime algorithm for causal inference. In Thomas S. Richardson and Tommi S.
Jaakkola, editors, Proceedings of the Eighth International Workshop on Artificial Intelligence and
Statistics, volume R3 of Proceedings of Machine Learning Research, pages 278–285. PMLR,
04–07 Jan 2001. URL https://proceedings.mlr.press/r3/spirtes01a.html. Reissued
by PMLR on 31 March 2021.

Peter Spirtes and Clark Glymour. An algorithm for fast recovery of sparse causal graphs. Social
science computer review, 9(1):62–72, 1991.

Peter Spirtes, Clark Glymour, N Scheines, et al. Causation, prediction, and search. 1991.

Burak Varici, Emre Acartürk, Karthikeyan Shanmugam, and Ali Tajer. General identifiability
and achievability for causal representation learning. In Sanjoy Dasgupta, Stephan Mandt, and
Yingzhen Li, editors, Proceedings of The 27th International Conference on Artificial Intelligence
and Statistics, volume 238 of Proceedings of Machine Learning Research, pages 2314–2322.
PMLR, 02–04 May 2024. URL https://proceedings.mlr.press/v238/varici24a.html.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, and
Qing He. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1):43–76,
2021. doi: 10.1109/JPROC.2020.3004555.

12

https://doi-org.oregonstate.idm.oclc.org/10.1145/3159652.3176182
https://doi-org.oregonstate.idm.oclc.org/10.1145/3159652.3176182
https://openreview.net/forum?id=pOoKI3ouv1
https://openreview.net/forum?id=pOoKI3ouv1
https://arxiv.org/abs/2504.01849
https://proceedings.mlr.press/r3/spirtes01a.html
https://proceedings.mlr.press/v238/varici24a.html

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We carefully presented the paper’s claims in the abstract and introduction in a
way that accurately reflects the paper’s contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper includes a transparent list of the assumption made and comments
about the precise scope of the results and the corresponding limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

13

Answer: [Yes]

Justification: Each theorem includes a precise list of assumptions and a complete proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The results of this paper are purely theoretical, the paper does not include
experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

14

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper does not include experimental results, nor the use of data or code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We read the NeurIPS Code of Ethics. This paper conforms with the code of
ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We included a paragraph in the appendix discussing societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

16

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

17

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

18

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We have read the NeurIPS LLM policy. This research does not involve LLMs
as any important component.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A Correctness Proof for LearnCID

A.1 Setup and Assumptions

Our goal is to show that agents capable of adapting to distribution shifts must have learned a causal
model of their environment. To do this we show it is possible to recover the causal structure and
the Conditional Probability Tables (CPTs) of the variables describing the environment in which the
agents operate. This environment consists of both observable variables and hidden latent variables.
We define a set of interventions modeling distribution shifts, and to learn the causal graph, we query
an optimal policy oracle associated with one agent to get the optimal policy for that agent under
the specified distribution shift. Observe that this setup is unsuitable for traditional causal discovery
algorithms like PC [Spirtes and Glymour, 1991] and FCI [Spirtes, 2001] because we do not have
access to the joint probability distribution of the variables or any sample data.

To model the causal relationships in the environment, we use Causal Influence Diagrams (CIDs) [Heck-
erman, 1995, Everitt et al., 2021]. Similar to Influence Diagrams [Howard and Matheson, 1984],
CIDs are commonly used to reason about decision-making tasks. CIDs further assume that the graph
encodes the causal relationships between the nodes. We denote the set of parents of a node X as
PaX , the set of children as ChX , the set of ancestors as AncX , the set of descendants as DescX
and instantiations of random variables in lower-case.

Definition 1 (Causal influence diagram [Heckerman, 1995, Everitt et al., 2021]). A causal influence
diagram (CID) is a Causal Bayesian Network M = (G = {V,E}, P), where P is a joint probability
distribution compatible with the conditional independences encoded in G. The variables in V are
partitioned into decision, utility, and chance variables, V = (D,U,C). Each utility node Ui is
associated with a real function fi of its parents fi : dom(PaUi)→ R.

Each agent may correspond to a different set of decision nodes and have access to a distinct subset
of observable variables. A variable observed by one agent may be latent for another. Additionally,
considering a situation where an agent takes more than one decision, the set of variables that it
observes when it takes one decision can differ from the one that it observes when taking another
decision.

Following the work of [Richens and Everitt, 2024], we represent distribution shifts as mixtures of
local interventions. Given a random variable X with x1, . . . , xn as possible observable values, a
local intervention on X is a function σ : xi 7→ f(xi) that maps each observable value xi to a new
observable value f(xi). In other words, local interventions deterministically reassign a random
variable’s outcomes independently of other variables.

Definition 3 (Local intervention [Richens and Everitt, 2024]). Local intervention σ on X involves
applying a map to the states of X that is not conditional on any other endogenous variables, x 7→ f(x).
We use the notation σ = do(X = f(x)) (variable X is assigned the state f(x)). Formally, this is a
soft intervention on X that transforms the conditional probability distribution as,

P (x | paX ;σ) :=
∑

x′:f(x′)=x

P (x′ | paX) (8)

In general, a local intervention has limited capacity to model distribution shifts. For instance, it cannot
model the shift from a coin that always lands on heads to a fair coin because a local intervention must
deterministically map the observable value ’head’ to another observable value. Therefore, we now
report the concept of a mixture of local interventions [Richens and Everitt, 2024]. This mixture is a
convex combination σ∗ =

∑
i piσi of local interventions σi, where each coefficient pi represents the

probability that σi is used to map the observable value for X .

Definition 4 (Mixture of interventions [Richens and Everitt, 2024]). A mixture of interventions
σ∗ =

∑
i piσi for

∑
i pi = 1 performs intervention σi with probability pi. Formally, P (x | σ∗) =∑

i piP (x | σi).

We use optimal policy oracles to formalize the agent’s understanding of optimal behavior under
distribution shifts. Let D be a decision variable with observable values d ∈ dom(D), given a set
of interventions Σ, an optimal policy oracle is a map Π∗

Σ : σ 7→ πσ(d | paD) for σ ∈ Σ, where
πσ(d | paD) is the optimal policy under the distribution shift induced by the intervention σ.

20

Definition 5 (Policy oracle [Richens and Everitt, 2024]). A policy oracle for a set of interventions
Σ is a map ΠΣ : σ 7→ πσ(D | PaD) ∀ σ ∈ Σ. A policy oracle Π∗

Σ is optimal if for each σ ∈ Σ,
Π∗

Σ(σ) = π∗
σ(D | PaD) = argmaxπ E[U | do(D = π(paD));σ].

In our work, we rely on Algorithm 1 from Richens and Everitt [2024], which takes as input a utility
function U , an optimal policy oracle, an intervention σ ∈ Σ, and a parameter N that controls the
number of samples. For any local intervention σ ∈ Σ, let d be the deterministic optimal decision
under the shift induced by σ. By Assumption A9, there exists a hard intervention σ′ such that d is
no longer optimal. Let d2 be the deterministic optimal decision under σ′. Considering the mixture
σ(q) := qσ + (1− q)σ′, there exist a value qcrit for q such that d2 and another decision d1 are both
optimal. The algorithm returns qcrit, d1, and d2.

Now, we list and motivate our assumptions.

Assumption pertaining to causal discovery
Assumption 1. The CID is faithful [Spirtes et al., 1991] and sufficient [Pearl, 2009].

Faithfulness implies that every conditional independence in the joint probability P of the CID also
holds in the graph G. A set of variables in a causal model is sufficient when it includes all common
causes.

Assumptions pertaining to the CID structure
Assumption 2. Given the CID M = (G = {V,E}, P) with V = (D,U,C), the set of nodes and
the partition (D,U,C) is known.

The set of nodes together with the node partition (D,U,C) is known, therefore we know all variables
in the system and the type of each node (decision, utility, or chance).
Assumption 3. The CID contains exactly one decision node D and one utility node U .

Despite assumption 3, this algorithm can be applied to multi-decision CIDs. It is possible to find
further details in the main paper.
Assumption 4. The Markov blanket of decision node D is known. We also know all the edges
between these nodes. The CPTs of chance nodes that are children of D are known.

Motivations for Assumption 4 can be found in Appendix B.
Assumption 5. D is a parent of U .

We assume D is a parent of U . In particular, this plays a role in the proof of Lemma 1.
Assumption 6. All chance nodes are ancestors of U .

In the presence of chance nodes that are neither ancestors of D or U , these nodes do not have any
influence on the decision task. LearnCID would simply not process those nodes and the related causal
structure or CPT would not be recovered.

Assumptions pertaining to utility evaluation and decision policies
Assumption 7. The utility function f associated with the utility node U is fully specified.

The utility function’s functional form is known, which tells us all the variables involved in calculating
the utility. These variables appear in the causal graph as parents of the utility node.
Assumption 8. We have access to a set Σ of all possible mixtures of local interventions, along with
the optimal policy oracle Π∗

Σ for decision node D.
Assumption 9. There exists no d∗∈dom(D) such that d∗∈argmaxd U(d, x) ∀x∈dom(PaU\{D}).

Assumption 9 states that there does not exist a single decision d ∈ Dom(D) that is optimal regardless
of the value taken by the chance nodes that are parents of U .When Assumption 7 holds, it is possible
to verify if the CID we are considering satisfies Assumption 9 by computing the utility for different
instantiations of variables associated with the parents of U .

Observe that under Assumptions 3, 5 and 9, there must be at least one chance node that is a parent
of U , otherwise the utility function would only depend on the decision and therefore there would
exist at least one optimal decision that would violate Assumption 9. We provide a discussion the
Assumption 9 and domain dependence in Appendix C.

21

A.2 Proof

Lemma 1. Under Assumptions 1,3,5 and 7, given a CID M = (G,P), for any given local interven-
tion σ there is a single deterministic optimal policy for almost all P, U.

Proof. When there is no other directed path from D to U except D → U , i.e. DescD ∩AncU = ∅
(unmediated case) the statement is proven by Lemma 3 in Richens and Everitt [2024]. Assume there
exist a path from D to U other than D → U , i.e. DescD ∩AncU ̸= ∅. Let Z = AncU \ PaD, and
X = PaU \ {D} Assume ∃ d1, d2 s.t. both are optimal decisions in the context paD, we divide the
proof in two cases.

Case 1. Assume ChD ∩ C ̸= C.

Since d1 and d2 are both optimal we have:

E[u | paD, do(D = d1);σ] = E[u | paD, do(D = d2);σ] (9)

Since D ⊥⊥ U | PaD in GD, then according to rule 2 of do-calculus [Pearl, 2009] we can rewrite the
equation as:

E[u | paD, D = d1;σ] = E[u | paD, D = d2;σ] (10)

Equivalently:

∑
z

U(d1, x)P (z | paD, D = d1;σ) =
∑
z

U(d2, x)P (z | paD, D = d2;σ) (11)∑
z

U(d1, x)P (z | paD, D = d1;σ)−
∑
z

U(d2, x)P (z | paD, D = d2;σ) = 0 (12)

Let us define S1 := Z \ ChD and PaCi
:= PaCi \ {D}. We factorize the joint distribution:

P (z | paD, D = d1;σ) =
∏

Zi∈S1

P (Zi | paZi
;σ)

∏
Ci∈ChD

P (Ci | paCi
, D = d1;σ) (13)

Same for d2. Now, we can rewrite Equation 12 as:

∑
z

∏
Zi∈S1

P (Zi | paZi ;σ)
[
U(d1, x)

∏
Ci∈ChD

P (Ci | paCi
, D = d1;σ)

− U(d2, x)
∏

Ci∈ChD

P (Ci|paCi
, D = d2;σ)

]
= 0

(14)

We can define a(d, z) := U(d, x)
∏

Ci∈ChD
P (Ci|paCi

, D = d;σ).

Observe that: ∑
z

∏
Zi∈S1

P (Zi|paZi
;σ)

[
a(d1, z)− a(d2, z)

]
= 0 (15)

Is a polynomial equation with variables ∀ i. P (Zi|paZi ;σ). Also notice that if we rewrite each of
these variables using Definition 3 (Local intervention) P (Zi|paZi ;σ) =

∑
z′
i:f(z

′
i)=zi

P (z′i|paZi
) the

equation is still a polynomial equation with all the parameters of the CPTs, excluding those related to
the children of D, as variables. If the polynomial is not trivial (∃ d, z. a(d1, z)− a(d2, z) ̸= 0) then
the Lebesgue measure of the solution of this equation is zero [Okamoto, 1973], and since the set of
parameters that allow for multiple optimal solutions has measure zero along at least one dimension, it
follows that the whole set has measure zero.

Now, let us consider when the polynomial is trivial. Then for all d, z we have:

22

a(d1, z)− a(d2, z) = 0 (16)

U(d1, x)
∏

Ci∈ChD

P (Ci|paCi
, D = d1;σ)− U(d2, x)

∏
Ci∈ChD

P (Ci|paCi
, D = d2;σ) = 0 (17)

Again, this is a finite number of polynomial equations with some of the network parameters as
variables and its coefficients are not trivial because d1 ̸= d2 and because of Assumption 5. Therefore,
it is satisfied only on a set of Lebesgue measure zero [Okamoto, 1973].

Case 2. Now assume ChD ∩ C = C, then the factorization of Equation 13 simplifies to:∏
Ci∈ChD

P (Ci | paCi
, D = d1;σ) (18)

Therefore we can rewrite 12 as:

∑
z

U(d1, x)
∏

Ci∈ChD

P (Ci|paCi
, D = d1;σ)− U(d2, x)

∏
Ci∈ChD

P (Ci|paCi
, D = d2;σ) = 0

(19)

That again is a polynomial equation in some of the network parameters and therefore the set of
solutions has Lebesgue measure zero. Again, since the set of parameters that satisfies Equation 12
has measure zero along at least one dimension, the whole set has measure zero.

This implies that for almost all P,U and any given local intervention σ the optimal decision is unique.

In the following lemma, we consider masking as a special case of a local intervention. A local
intervention deterministically transforms the states of a random variable X via a predefined function.
Specifically, we can apply a function that maps all states of X ∈ PaD to a masked state, rendering X
unobservable to the agent under this intervention. We denote by Pa′D ⊆ PaD the subset of variables
that remain unmasked. Consequently, the set PaD \ Pa′D represents the variables that are masked
and thus hidden from the agent when making the decision D.
Lemma 2. Given a CID M = (G,P), under Assumptions 1∼9, given an optimal policy oracle
Π∗

Σ where Σ includes all mixtures of local interventions on C including masking inputs Pa′D ⊆ PaD,
then for any given Pa′D = pa′D such that Pa′D ∩ PaU = ∅, we can identify:∑

z

P (C = c|do(D = d);σ)U(d, x)− P (C = c|do(D = d′);σ)U(d′, x) (20)

for some d, d′ ∈ dom(D) where d ̸= d′ and Z = C \ Pa′D.

Proof. By Lemma 1, for almost all P,U there exist only one optimal decision d1 =
argmaxd E[u|do(D = d), pa′D;σ] following the shift σ. The decision d1 can be identified using the
optimal policy oracle Π∗

Σ(σ).

By Assumption 9 we know that for every decision d in the context Pa′D ⊆ PaD, there exists
at least one instance c = (c1, . . . , cN) of C where d ̸= argmaxd′ U(d′, x). Note that we can
set the values for X as Pa′D ∩ PaU = ∅. So let x′ be the instantiation of PaU \ {D} that
satisfies d1 ̸= argmaxd U(d, x′), and σ′ be a hard intervention that sets X to x′, then there exist
d2 = argmaxd U(d, x′), with d2 ̸= d1. Note that under a hard intervention like σ′ we have
E[u|do(D = d), pa′D;σ] = U(d, x′) where x′ are the values that the variables PaU \ {D} take after
the intervention. We can pick σ′ such that it sets Pa′D to be the same as in observation.

For q ∈ [0, 1] consider the joint distribution over C under the parametrized family of mixed local
interventions σ̃(q) = qσ + (1− q)σ′:

P (C = c|do(D = d); σ̃(q)) = qP (C = c|do(D = d);σ) + (1− q)P (C = c|do(D = d);σ′)

(21)

23

Table 1: A partition of the CID’s chance nodes C that assigns them to cases in Theorem 2. Cells
marked with (1) correspond to nodes that can be identified by case 1 of Theorem 1 in Richens and
Everitt [2024]. Cells with (2) correspond to case 2. Cells with ∅ indicate that either no nodes fall
within that intersection or that those nodes can be pruned since we are not able to learn the structure
or the parameters for those. The cell marked with (3) corresponds to nodes that exist only in the
mediated case and were therefore not considered by the previous paper.

(AncD ∪DescD)C AncD DescD

AncU (GD) (1) (1) (3)

AncU (GD)C ∅ (2) ∅

From Assumption 9 it follows that Z := C \ PaD ̸= ∅. We can write the expected utility as:

E[U |pad, do(D = d); σ̃(q))] =
∑
z

P (Z = z|paD, do(D = d); σ̃(q))U(d, x) (22)

=
∑
z

P (C = c|do(D = d); σ̃(q))

P (PaD = paD|do(D = d); σ̃(q))
U(d, x) (23)

=
1

P (PaD = paD; σ̃(q))

∑
z

qP (C = c|do(D = d);σ)U(d, x)+

+ (1− q)P (C = c|do(D = d);σ′)U(d, x′)

(24)

Where in Equation 24 P (PaD = paD|do(D = d); σ̃(q)) = P (PaD = paD; σ̃(q)) according to
Rule 3 of do-calculus since D ⊥⊥ PaD in GD [Pearl, 2009]. Note that d1 is the optimal decision
for q = 1, but that is not the case for q = 0. Therefore there exists qcrit such that for all q < qcrit
d2 := Π∗

Σ(σ̃(q)) is a decision in the set {d|d = argmaxd U(d, x′)}, and for q ≥ qcrit the optimal
decision is not in this set. Let d3 ̸∈ {d|d = argmaxd U(d, x′)}. Consider the following equation:

E[U |paD, do(D = d2); σ̃(qcrit)]− E[U |paD, do(D = d3); σ̃(qcrit)] = 0 (25)

⇐⇒ qcrit

[∑
z

P (C = c|do(D = d2);σ)U(d2, x)− P (C = c|do(D = d3);σ)U(d3, x)

]
+

+(1− qcrit)[U(d2, x
′)− U(d3, x

′)] = 0
(26)

⇐⇒

qcrit =

(
1−

∑
z P (C = c|do(D = d2);σ)U(d2, x)− P (C = c|do(D = d3);σ)U(d3, x)

U(d2, x′)− U(d3, x′)

)−1

(27)

Therefore, since the functional relationship between U and its parents is known, if we find qcrit we
can identify:∑

z

P (C = c|do(D = d2);σ)U(d2, x)− P (C = c|do(D = d3);σ)U(d2, x) (28)

Let GD be G without the edges leaving D, the mediated case allows for DescD ∩AncU (GD) ̸= ∅.
Consider the partition of C proposed in Table 1, the proof of Theorem 1 in Richens and Everitt [2024]
can still be used with minor changes in the mediated case for some of the nodes, but a new case needs
to be introduced for AncU (GD) ∩DescD.

24

Theorem 2. Let M be a CID satisfying Assumptions 1∼9. Suppose for each Ci, we know a set
P̂ aCi ⊆ PaCi and a set of nodes Vkwn ⊆ V where Ci ∈ Vkwn ⇐⇒ P̂ aCi = PaCi . Let
{π∗

σ(d|paD)}σ∈Σ denote the set of optimal policies available where π∗
σ(d|paD) is an optimal policy

under the intervention σ and Σ is the set of all mixtures of local interventions.
Then, for almost all CIDs, the graph G and the joint distribution P over all the ancestors of the utility
node AncU can be identified.

Proof. Let GD be G without the edges leaving D. Following the CID’s chance node partition
described in Table 1, we consider three cases:

• [Case 3, AncU (GD)∩DescD]. For the third case, we provide a constructive proof for nodes
in AncU (GD) ∩DescD. We establish this proof by strong induction. Consider a directed
path Ck → · · · → C1 where C1 ∈ PaU , ∀ i. Ci ∈ DescD \ChD. Assume we know PaCi

and P (Ck|PaCi
) for all i = 1, . . . , k − 1, we want to learn PaCk

and P (Ck|PaCk
). For

each of the nodes Yi in Y := C \ {C1, . . . , Ck} we define the following hard interventions
σCk

(Y \ Yi = y, Yi = κ) := do(Y1 = y1, . . . , Yi = κ, . . . , Y|Y | = yn, Ck = f(ck)) where
y is an instantiation for Y \ {Yi} and κ one for Yi. Here f(Ck) is the following local
intervention on Ck:

f(Ck) =

{
c′k, Ck = c′k
c′′k , otherwise

(29)

We also mask all inputs to the policy: Pa′D = ∅. Assume Ck ̸∈ ChD, by Lemma 2 we can
identify the following query:∑

c

P (C = c|do(D = d);σCk
(Y \ Yi = y, Yi = κ))U(d, x)−

−P (C = c|do(D = d′);σCk
(Y \ Yi = y, Yi = κ))U(d′, x) =

(30)

=
∑
ck

· · ·
∑
c1

(

k∏
j=1

P (Cj = cj |paCj
, do(D = d);σCk

(Y \ Yi = y, Yi = κ))U(d, x)−

−
k∏

j=1

P (Cj = cj |paCj , do(D = d′);σCk
(Y \ Yi = y, Yi = κ))U(d′, x))

(31)
According to Rule 3 of do-calculus [Pearl, 2009], since D ⊥⊥ C1, . . . , Ck|Y in GY the
expression in Equation 31 is equal to:

=
∑
ck

· · ·
∑
c1

k∏
j=1

P (Cj = cj |paCj ;σCk
(Y \ Yi = y, Yi = κ))[U(d, x)− U(d′, x)] (32)

=
∑
ck

P (Ck = ck|paCk
;σCk

(Y \ Yi = y, Yi = κ))β(ck) (33)

=
∑
ck

P (Ck = ck|paCk
)β(ck) (34)

where:

β(ck) :=
∑
ck−1

· · ·
∑
c1

k−1∏
j=1

P (Cj = cj |paCj ;σCk
(Y \Yi = y, Yi = κ))[U(d, x)−U(d′, x)]

(35)

This result is analogous to the one for Case 1. In Equation 34, following the definition of
the intervention σCk

(Y \ Yi = y, Yi = κ), we have:
P (Ck = c′k|paCk

;σCk
(Y \ Yi = y, Yi = κ)) = P (Ck = ck|paCk

) (36)
and

P (Ck = c′′k |paCk
;σCk

(Y \ Yi = y, Yi = κ)) =

= 1− P (Ck = c′k|paCk
;σCk

(Y \ Yi = y, Yi = κ)) =

= P (Ck = ck|paCk
)

(37)

25

Therefore there is only one parameter to be identified. If Ck ̸∈ Vkwn, we can repeat this
procedure with a different leave-one-out intervention for each potential parent Yi of Ck and
different ck. If for some configuration of κ1, κ2 and ck we have

P (Ck = c′k|paCk
;σCk

(Y \ Yi = y, Yi = κ1))

̸=
P (Ck = c′k|paCk

;σCk
(Y \ Yi = y, Yi = κ2))

then Yi ∈ PaCk
. We can exclude from this search all nodes in P̂ aCk

, since we already
know they are parents of Ck. If Ck ∈ Vkwn we can skip this step since we already know
PaCk

. Then, for each instantiations of the variables in PaCk
and each ck ∈ dom(Ck) we

repeat the procedure and recover all the parameters for Ck.

And now we describe the necessary modification to the cases covered in Richens and Everitt [2024]
(Case 1 and 2 in Table 1):

1. AncU (GD) ∩
[
(AncD ∪DescD)C ⊔AncD

]
. The identification problem for nodes in this

set is described in Theorem 1 Case 1 of Richens and Everitt [2024]. The proof is based on
strong induction on k for directed paths Ck → · · · → C1 where C1 ∈ PaU , where for all
i = 1, . . . , k we have Ck ̸= D. The procedure to incorporate prior knowledge is the same
as the one specified in the proof for Case 3.

2. AncU (GD)C ∩AncD. This case corresponds to Theorem 1 Case 2 of Richens and Everitt
[2024]). The original proof considered strong induction on k for directed paths Ck → · · · →
C1 where C1 ∈ PaD. Again, the procedure to incorporate prior knowledge is the same as
the one specified in the proof for Case 3.

A.3 Algorithmic Complexity of LearnCID

First consider that the complexity of LearnCID (Algorithm 1) depends on the complexity of querying
the policy oracle, let us call this complexity K. As a worst-case scenario there is no prior knowledge
about the graph, so Vkwn is empty. Let n be the number of variables, and b := maxX∈C |dom(X)|
be the maximum number of observable values of any chance variable. The most computationally
expensive steps correspond to computing qcrit with ALGqcrit (line 10) and the CPTs’ entries for all
the chance nodes. Each call to ALGqcrit costs O(N(K + |dom(D)|)), filling one CPT’s entry costs
O(nbn). Overall the algorithm’s time complexity is O(n2bnN(K + |dom(D)|) + n3b2n).

A.4 Comparison to Richens and Everitt [2024]

Richens and Everitt introduced an innovative perspective on the connection between robustness to
distribution shifts and causal understanding of the environment [Richens and Everitt, 2024]. While the
existence of a link between causal reasoning and generalization across domains was well established
[Pearl and Bareinboim, 2011, Schölkopf et al., 2021], it was unclear whether causal understanding
was necessary for domain adaptation. They were the first to show that agents must learn a causal
model of their environment to achieve robustness to distribution shifts. This work builds on and
extends their contributions in several ways. First, while their results are limited to unmediated tasks,
this work shows that causal information is learned by robust agents even in mediated settings. Second,
this paper includes a general algorithm for eliciting CIDs from optimal policy oracles, whereas
Richens and Everitt [2024] presents an example limited to a two-variable CID. Third, the main
theorem and algorithm of this paper explicitly allow for incorporating prior knowledge about the
CID’s causal structure, which is a dimension not addressed in their work. Fourth, the analysis is
extended to multi-agent systems and techniques are discussed for applying the LearnCID algorithm
in such settings. Finally, while Richens and Everitt [2024] focuses on single-shot tasks, this work
also explores sequential decision-making by representing POMDPs as infinite CIDs, drawing on
prior structural ideas from Everitt and Bareinboim [Everitt et al., 2019, Bareinboim et al., 2024], and
shows how LearnCID can be applied to time-homogeneous POMDPs.

26

B Non-identifiability of ChD and their CPTs

Now we prove that, under the same assumptions made for the previous results, ChD cannot be
uniquely determined in general. This motivates the LearnCID assumption requiring knowledge of the
children of D, their CPTs, and their parents.

Theorem 3. Let M = (G = {V,E}, P) be a single decision/single utility CID, assume we know
D,U,C, and Pa(U), Pa(D). Let Σ be the set of all mixtures of local interventions, Π∗

Σ be an
optimal policy oracle for D. Then in general ChD cannot be uniquely determined.

Proof. Consider the following example:

X

UD

X

UD

Figure 4: On the left, a CID where X ̸∈ ChD. On the right, a CID with the same nodes, but where
X ∈ ChD.

Let X and D be binary variables and consider the CID illustrated on the left side Figure 4. Let
p := P (X = 1) = 0.9 and P (X = 0) = 0.1. Let U(d, a) := 1 if d = a and 0 otherwise. In this
case the optimal decision without interventions is d∗ is 1. There are four possible local interventions
σ1 := do(X = 1), σ0 := do(X = 0), σid corresponding to an identity map for X , σs switching the
values 0 and 1 of X . The set of all mixtures of local interventions Σ includes all the interventions
in the parametrized family of mixtures σ(p0, p1, pid, ps) := p0σ0 + p1σ1 + pidσid + psσs with all
the convex coefficient pi ∈ [0, 1] and 0 ≤ pi ≤ 1. Note that each of the four local interventions is a
special case of this mixture, obtained by setting the corresponding coefficient to 1 and the others to 0.

D X P (X | D)
0 0 0.2
0 1 0.8
1 0 0
1 1 1

Table 2: Conditional probabilities of X given D for the CID where D ∈ ChD.

Also consider the CID illustrated on the right side of Figure 4, along with its corresponding conditional
probability table (CPT) in Table 2. The set of chance nodes is the same in both CIDs; therefore, the
set of all possible mixtures of local interventions, denoted Σ, is also identical. For any given pair of
interventions, the critical value qcrit is the same in both models. For example, the policy oracle Π∗

Σ
returns d∗ = 0 for σ0, d∗ = 1 for σ1, and for σ(q), it returns d∗ = 0 when q < 0.5, d∗ = 1 when
q > 0.5, and may return any policy when q = qcrit = 0.5.

The same behavior holds for other mixtures, such as:

• σ′(q) := qσ1 + (1− q)σs, where qcrit =
4
9 ,

• σ′′(q) := qσid + (1− q)σs, where again qcrit = 0.5.

In general, for all mixtures in Σ, both the critical threshold qcrit and the optimal decision returned by
the oracle are the same in both models. Therefore, it is not possible to distinguish between the two
CIDs based on oracle responses alone.

27

Now, let z := P (X = 1 | D = 1) and q := P (X = 1 | D = 0) in the second CID. Observe that
regardless of the specific values of z and q, the model is equivalent to a model with X /∈ Ch(D) and
marginal distribution P (X = 1) = z+q

2 .

We also show that unlike for other chance nodes, the CPT of the children chance variables of the
decision node can not be fully estimated in the general case. It might be possible to estimate only
those parts of the CPT that correspond to decisions that are optimal for some distribution shift σ, but
not for the others.

Corollary 1 (of Lemma 2). Let M = (G = {V,E}, P) be a single decision/single utility CID,
assume we know G. Let Σ be the set of all mixtures of local interventions, Π∗

Σ be the optimal policy
oracle. Then, using the identification result of Lemma 2, in general the CPTs for C ∩ChD cannot be
uniquely determined for a set of parameters with a strictly positive Lebesgue measure.

Proof. Consider the CID described on the right side of Figure 4 with the CPT described in Table 3.
Assume dom(D) = {0, 1, 2} and that we don’t know the CPT for X . The set of local interventions
Σ contains σ1 := do(X = 1), σ0 := do(X = 0), σid corresponding to an identity map for X , and
the parametrized family of mixtures σ(p0, p1, pid, ps) := p0σ0 + p1σ1 + pidσid + psσs with all the
convex coefficient pi ∈ [0, 1] and 0 ≤ pi ≤ 1. For all the feasible combinations of p0, p1, pid, ps the
deterministic policy d = 2 is dominated by d = 0 and d = 1.

D X P (X | D)
0 0 0.5
0 1 0.5
1 0 0
1 1 1
2 0 0.4
2 1 0.6

Table 3: Conditional probabilities of X given D, in this example dom(D) = {0, 1, 2}.

Therefore, for all σ ∈ Σ, the deterministic policy corresponding to d = 2 is never selected by
the policy oracle Π∗

Σ(σ). Since the identification result of Lemma 2 includes only probabilities
P (C | do(D = d′);σ) where d′ is an optimal solution for some σ selected by the policy oracle,
it follows that, in particular, we cannot identify P (X | do(D = 3)) = P (X | D = 3), or, more
generally, the portion of the CPT for chance variables that are children of D corresponding to
decisions that are never optimal under any intervention σ.

C Domain dependence in mediated tasks

Previous results [Richens and Everitt, 2024] show that for unmediated decision tasks domain de-
pendence implies Assumption 9. Here we show that this implication does not hold in the mediated
case. Moreover, we prove that Assumption 9 implies domain dependence in the mediated case and
therefore that Assumption 9 is equivalent to domain dependence in the unmediated case, which is a
subcase of the mediated one. We report the definition of Domain dependence.

Definition 2 (Domain dependence [Richens and Everitt, 2024]). A CID M is said to satisfy domain
dependence if there exist P (C = c), P ′(C = c), both compatible with the CID M such that
π∗ = argmaxπ Eπ

P [U] =⇒ π∗ ̸= argmaxπ Eπ
P ′ [U].

28

D X U

D X P (X|D) P ′(X|D)
0 0 0.5 0
0 1 0.5 1
1 0 0 1
1 1 1 0

D X U(X|D)
0 0 0
0 1 1
1 0 0
1 1 2

Figure 5: An example CID to show that in the mediated case domain dependence does not imply
Assumption 9. Starting from the left, a specification of the utility function associated with node U ,
the example’s CID, and the two CPTs for X before the distribution shift (P) and after the distribution
shift (P ′).

Consider the example described in Figure 5. Let U(d, x) := 2 if d = x = 1, U(d, x) := 1 if
d = 0 and x = 1, and 0 otherwise. For the distribution P the only optimal policy corresponds to
always choosing D = 1 because X will always correspond to 1 and therefore the expected utility
is 2. But this policy is no longer optimal under P ′ because X will always be observed as 0 and
the expected utility is 0 while for example a policy that always chooses D = 0 corresponds to an
expected utility of 1. Therefore domain dependence holds, but at the same time, Assumption 9 does
not hold because d∗ = 1 ∈ argmaxd U(d, x) for all x ∈ dom(X). Therefore, domain dependence
≠⇒ Assumption 9 in the general mediated case.

Now we prove that Assumption 9 implies domain dependence in the mediated case, and consequently
is equivalent to domain dependence in the unmediated case.
Theorem 1. Let M = (G,P) be a CID where DescD ∩AncU ̸= ∅ (mediated task).

Assumption 9 =⇒ Domain dependence.

Proof. Assume ∀ P ′(C = c) compatible with M we have π∗ ∈ argmaxπ E[U] =
argmaxπ Eπ

P ′ [U |do(D = π(d|paD)), paD]. Let d ∈ dom(D) be a decision s.t. π∗(d|paD) > 0.
For Assumption 9 there exist a non-empty set Xd := {x|d ̸∈ argmaxd′ U(d′, x)}. Let
d∗, x∗ ∈ argmaxd′,x∈Xd

U(d′, x). We can write x∗ as (x∗
1, . . . , x

∗
n) where {x∗

i }ni=1 are in-
stantiations of the random variables {X1, . . . , Xn} = PaU \ {D} and n := |PaU \ {D}|.
Now, we want to define an alternative distribution P ′ compatible with M by updating the
CPTs of the variables corresponding to the parents of U . For each Xj ∈ Pau \ {D} let

pa1j , . . . , pa
|PaXj

|
j be instantiations of parents of Xj . Let xi

j be an observable value for

the variable Xj . We set P (xi
j |pa1j , . . . , pa

|PaXj
|

j) = ϵ
pa1

j ,...,pa
|PaXj

|

j ,xi
j

if xi
j ̸= x∗

j and

P (xi
j |pa1j , . . . , pa

|PaXj
|

j) = 1 −
∑

l ̸=i ϵ
pa1

j ,...,pa
|PaXj

|

j ,xl
j

if xi
j = x∗

j . We repeat this procedure for

all combinations of xi
j and pa1j , . . . , pa

|PaXj
|

j . We call the set of these epsilon parameters Σ. To
preserve faithfulness we require the epsilon parameters to be pair-wise distinct. Observe that if we
also require all epsilon ϵ ∈ Σ to be 0 < ϵ ≪ 1 and 0 <

∑
ϵ∈Σ ϵ ≤ 1 then we obtain valid CPT

parameters for the CID. We repeat the CPT update for all variables {X1, . . . , Xn}.

Observe that assuming π∗ ∈ argmaxEπ
P ′ [U] for all P ′ compatible with M implies that ∀ π′ and P ′

compatible with M we have:

Eπ∗

P ′ [U]− Eπ′

P ′ [U] ≥ 0 (38)

⇐⇒ EP ′ [U | do(D = π∗(d | paD) =, paD]− EP ′ [U | do(D = π′(d | paD), paD] ≥ 0 (39)
Let π′ be a deterministic policy where d∗ is always selected and X := PaU \{D} with x instantiation
of X .

⇐⇒ EP ′ [U | do(D = π∗(d | paD) =, paD]− EP ′ [U | do(D = d∗), paD] ≥ 0 (40)

⇐⇒
∑
d′

π∗(d′ | paD)
∑
Ci∈C

∏
j

P (Ci = cj | paCi
)U(d′, x)−

−
∑
Ci∈C

∏
j

P (Ci = cj | paCi
)U(d∗, x) ≥ 0

(41)

29

Now we compute the limit for all Σ ∋ ϵ→ 0:

lim
Σ∋ϵ→0

Eπ∗

P ′ [U]− Eπ′

P ′ [U] = (42)

=
∑
d′

π∗(d′ | paD)U(d′, x∗)− U(d∗, x) (43)

=π∗(d | paD)U(d, x∗) +
∑
d′ ̸=d

π∗(d′ | paD)U(d′, x)− U(d∗, x∗) ≤ (44)

≤π∗(d | paD)U(d, x∗) + U(d∗, x∗)

∑
d′ ̸=d

π∗(d′ | paD)− 1

 (45)

where in the last passage we used the fact that d∗ ∈ argmaxd′ U(d′, x∗).

=−

∑
d′ ̸=d

π∗(d′ | paD)− 1

U(d, x∗) + U(d∗, x∗)

∑
d′ ̸=d

π∗(d′ | paD)− 1

 (46)

=π∗(d | paD) (U(d∗, x∗)− U(d, x∗)) < 0 (47)

The last expression is strictly negative because we assumed π∗(d | paD) > 0 and x∗ ∈ Xd, therefore
d ̸∈ argmaxd′ U(d′, x∗) while d∗ ∈ argmaxd′ U(d′, x∗). Since Eπ∗

P ′ [U]− Eπ′

P ′ [U] is a polynomial
in the parameters Σ, we can apply the theorem of permanence of sign and therefore ∃ϵ∗ ∈ Σ s.t. the
inequality 38 is false. Therefore ∃P ′ compatible with M s.t. π∗ ̸∈ argmaxπ Eπ

P ′ . It follows that
domain dependence holds.

From Theorem 1 it directly follows that for unmediated decision tasks, which are a subcase of the
family of mediated decision tasks, domain dependence is equivalent to Assumption 9. This provides
us with a very straightforward way to verify domain dependence in these tasks.
Corollary 2. Let M = (G,P) be an unmediated CID. Assumption 9 is equivalent to Domain
dependence.

Proof. In the unmediated case the implication Domain dependence =⇒ Assumption 9 is proven
in Richens and Everitt [2024]. Since the unmediated case is a subcase of the mediated case, from
Theorem 1 it directly follows that Assumption 9 =⇒ Domain dependence. Therefore the two
statements are equivalent.

D Example of mixture of local interventions

As an example of how a mixture of local interventions can represent a distribution shift, consider
the following (illustrated in Figure 6): we have a random variable X representing the outcome of
a biased coin flip that always lands on heads, where X ∈ {H,T} corresponds to heads and tails,
respectively. Let σi := do(X = i) with i ∈ {H,T}, then define σ∗ =

∑
i piσi. By changing the

coefficients pi, we can map the distribution of the fair coin to any distribution on the observable
values set dom(X) = {H,T}. For example, by setting pH = 2

3 and pT = 1
3 , we can map the

original distribution to a new one where heads is observed 2
3 of the time and tails is observed 1

3 of the
time. Note that in this example, each local intervention was a hard intervention because, regardless of
the value of the coin, each intervention mapped it to a specific value. In general, this is not required,
as a local intervention can be any deterministic map from the set of observable values to itself.

While hard interventions break the dependence of a variable on its parents, local interventions may
preserve this dependence. For example, consider an unbiased coin flip Y and a die throw X . If the
coin lands on heads, we throw a six-sided die, if it lands on tails, we throw a twelve-sided die. In
this scenario, Y and X are clearly dependent and in the corresponding causal graph Y ∈ PaX . Now
consider the local intervention σm := do(X = X mod 12 + 1). This intervention increases the die
result by one or sets it to 1 if the result was 12. This local intervention does not make X independent
of Y because, for instance:

P (X = 4|Y = T ;σm) = P (X = 3|Y = T) =
1

12
(48)

30

Figure 6: Histograms illustrating the distribution shift induced by a mixture of local interventions.
The left histogram shows a biased coin distribution P (X), where the coin always lands on heads.
The right histogram represents a shifted distribution P (X | σ∗) obtained by applying the mixture
σ∗ = pHσH + pTσT for σi := do(X = i) with pH = 2

3 and pT = 1
3 .

However,
1

12
̸= 1

8
= P (X = 3) = P (X = 4|σm) (49)

E LearnCID examples

In this section, we provide two examples to illustrate the application of LearnCID (Algorithm 1) in
both single and multi-agent environments.

E.1 Example 1 - Single-agent environment

Now we will go over a complete, step-by-step example of a LearnCID application to learn the simple
CID illustrated in Figure 7. For this example, we assume Vkwn is empty.

First, let us go over the LearnCID Assumptions 1-9:

1. By observing the (unknown) CPT of A we can see that for this example faithfulness holds,
there are no latent confounders so causal sufficiency also holds.

2. The set of decision nodes is {D}, the utility node associated with the utility function U(d, a)
is U , and the set of chance nodes is C = {A,B}.

3. The CID indeed contains one decision node D and one utility node U .

4. The Markov blanket of D is {B}, and we know that D is a parent of B, i.e., the graph
contains the edge D → B.

5. Since the decision is an input of the utility function U(d, a) we know D is a parent of U .

6. Both chance nodes A and B are ancestors of U .

7. The utility function U(d, a) := 1 if d = a and 0 otherwise, is fully specified.

8. We have an optimal policy oracle Π∗
Σ where Σ is the set of all mixtures of local interventions.

9. We can verify that for A = 1, argmaxd U(d,A = 1) = 1 but argmaxd U(d,A = 0) = 0.

For ease of comprehension we summarize the application of Algorithm 1 to the example CID in
Figure 7, in the following steps:

S1 Visit A, the only unvisited chance node with a known path to U .

S2 Define local interventions on B as in Equation 4.

S3 Estimate qcrit using ALGqcrit (Algorithm 1 in Richens and Everitt [2024]).

S4 Compute P (A = ai|do(B = bi)).

S5 Repeat steps 2 to 4 for all configurations of ai and bi.

S6 Deduce the set of parents of A and its CPT.

31

B A

D U

B A P (A|B)
0 0 0.7
0 1 0.3
1 0 0.1
1 1 0.9

Figure 7: An example of a single-decision/single-utility CID. On the bottom-left, the CPT for variable
A. The edge marked in red is unknown. On the right, following Example 1, let us examine two
interventions: σ0 := do(B = 0) with optimal decision d1, and a hard intervention σ′ with optimal
decision d2 where d1 ̸= d2. We define a mixture of local interventions as σ(q) = qσ0 + (1− q)σ′.
The plot displays the expected utility of both decisions as q varies. The value for q where both
decisions become simultaneously optimal is called qcrit.

Following the aforementioned steps:

Step 1: In this example PaD is empty and PaU = {A}. LearnCID visits and finds the set of parents
and CPT of all chance nodes that have a known path to U , since at the beginning the only chance
node with a known path to U is A, we start by visiting node A (line 3).

Observe that since A is the only chance node that is not children of D the process will stop after A.
On line 4, the variable "Path" is initialized with a set of all chance nodes in one path from A, the
chance node we are currently visiting, and U . Since A ∈ PaU , "Path" is empty.

On line 5, we initialize the set CA by including all the chance nodes that are not A and not
in the path from A to U we selected ("Path"). Since "Path" is empty, the only chance node different
from A is B and therefore CA = {B}.
Step 2: Now, from CA = {B} we pick a node that could potentially be a parent of A (lines 6 and 8),
in this case the only option is B. Since CA \ {B} is empty, then the only possible instantiation for
CA \ {B} is ∅. Then on line 9, following Equation 4, we initialize a set of interventions σB(∅) as:

σB(∅) = {σ0, σ1} where σ0 := do(B = 0), and σ1 := do(B = 1) (50)

Also, we pick an observable value for A (line 7), for example 0, and aim to recover P (A = 0;σ) for
all σ ∈ σB . Note that since A is binary, the function f in Equation 4 is the identity function and can
therefore be ignored.

Step 3: For each σ ∈ σB , in ALGqcrit we use the oracle to find the optimal decision under σ (line
11). For example, for σ0 = do(B = 0), Π∗

Σ(σ0) returns the optimal decision d0 := 0. This is evident
from the (unknown) CPT because for B = 0 the probability that A = 0 is higher than the one for
A = 1, since the utility is maximized when A and D take the same value, the oracle returns the
optimal decision D = 0 which will be equal to A more often than D = 1.

ALGqcrit then estimate qcrit. It works by finding an intervention σ′ such that the optimal decision is
no longer D = 0 as it was under σ0. Since in this example D is binary, we already know the new
optimal decision must be D = 1, in general, for this we can use the optimal policy oracle. We can
find σ′ by hard intervening on the parents of the utility node U , which is A in this case, such that d0
is no longer optimal. Specifically, we can define σ′ as a hard intervention that sets A to 1, therefore
the new optimal decision is d1 := 1. Note that this is always possible thanks to Assumption 9. Then,
we define the mixture of local interventions σ(q) := qσ0 + (1 − q)σ′. The right side of Figure 7
shows how the expected utility of both decisions varies with q. We can sample q uniformly in the

32

interval [0, 1] N times and each time query the optimal policy oracle. Each time the oracle returns an
optimal decision for the intervention σ′ we increment a counter θ. Then θ

N is an unbiased estimate
for qcrit. For this example, qcrit = 5

7 .

Step 4: Now we can compute P (A = 0;σ0). Consider the mixture of interventions σ(q) from Step 3.
We can write:

E[U | do(D = 0);σ(q)] =
∑
a,b

P (A = a,B = b | do(D = 0);σ(q))

=
∑
a,b

qP (A = a,B = b | do(D = 0);σ0) + (1− q)P (A = a,B = b | do(D = 0);σ′)

When q = qcrit both decisions D = 1 and D = 0 are optimal:

E[U | do(D = 1);σ(qcrit)] = E[U | do(D = 0);σ(qcrit)]

⇐⇒ E[U | do(D = 1);σ(qcrit)]− E[U | do(D = 0);σ(qcrit)] = 0

⇐⇒ qcrit

∑
a,b

P (A = a,B = b | do(D = 1);σ0)U(1, a)− P (A = a,B = b | do(D = 0);σ0)U(0, a)


+ (1− qcrit) [U(d = 1, a = 1)− U(d = 0, a = 1)] = 0

(51)

Recall σo = do(B = 0). Since we know that A is not a child of D and we are hard intervening on
all chance nodes non-descendants of A, by rule 3 of do-calculus [Pearl, 2009] P (A = a | do(D =
d,B = b)) = P (A = a | do(B = b)), and we can write:

qcrit

[∑
a

P (A = a | do(D = 1, B = 0))U(1, a)− P (A = a | do(D = 0, B = 0)U(0, a)

]
+

+ (1− qcrit)[U(1, 1)− U(0, 1)] = 0

⇐⇒ qcrit

[∑
a

P (A = a | do(B = 0))U(1, a)− P (A = a | do(B = 0))U(0, a)

]
+

+ (1− qcrit)[U(1, 1)− U(0, 1)] = 0

⇐⇒ qcrit

[∑
a

P (A = a | do(B = 0))[U(1, a)− U(0, a)]

]
+ (1− qcrit)[U(1, 1)− U(0, 1)] = 0

Now we can define the following expression, which corresponds to Equation 5:

β(a) := U(1, a)− U(0, a) (52)

And rewrite Equation 51 as:

qcrit

[∑
a

P (A = a | do(B = 0))β(a)

]
+ (1− qcrit)[U(1, 1)− U(0, 1)] = 0

⇐⇒ qcrit [P (A = 0 | do(B = 0))β(0) + P (A = 1 | do(B = 0))β(1)]+

+ (1− qcrit)[U(1, 1)− U(0, 1)] = 0

⇐⇒ qcrit [P (A = 0 | do(B = 0))β(0) + [1− P (A = 0 | do(B = 0))]β(1)]+

+ (1− qcrit)[U(1, 1)− U(0, 1)] = 0

⇐⇒ P (A = 0 | do(B = 0))[qcritβ(0)− qcritβ(1)] + qcritβ(1)+

+ U(1, 1)− U(0, 1)− qcritU(1, 1) + qcritU(0, 1) = 0

⇐⇒ P (A = 0 | do(B = 0)) =
(1− 1

qcrit
)(U(1, 1)− U(0, 1))− β(1)

β(0)− β(1)

33

Which corresponds to Equation 6. We can compute β(0) = −1, β(1) = 1, U(1, 1) = 1, and
U(0, 1) = 0, then:

P (A = 0 | do(B = 0)) =
(1− 7

5)− 1

−2
= 0.7 (53)

Which is consistent with the CID and CPT shown in Figure 7.

Step 5: We can repeat the same procedure for σ1 = do(B = 1). In this case, since A is binary we
can compute P (A = 1;σ0) = 1 − P (A = 0;σ0), in general we can repeat the procedure for all
possible instantiations a of A to obtain P (A = a;σ) for all σ ∈ σB .

Step 6: Since P (A = 0|do(B = 0)) ̸= P (A = 0|do(B = 1)) (line 13), we can conclude that B is
a parent of A. In the general case, this approach ensures that B is not just an ancestor but indeed
a parent of A, because the intervention blocks all other paths from B to A. Thus, if B were not
a parent, P (A = 0|paA, do(B = 0)) would be equal to P (A = 0|paA). Once we have identified
the set of parents, we can reconstruct the CPT for A using the interventional distributions, e.g.:
P (A = 1|do(B = 0)) = P (A = 1|B = 0) = 0.3 (lines 14 and 15).

As expected, this process allows us to learn both the correct graph structure and the CPT for A (and,
more generally, for all chance nodes that are not children of D).

E.2 Example 2 - Multi-agent environment

Examine the multi-decision CID in Figure 8. It represents a cooperative game between two agents,
agents A and B, respectively controlling decision variables DA and DB . Both agents aim to maximize
a shared utility function U , and operate in different contexts defined by the parent sets of their decision
nodes (PaDA

= ∅ ≠ {Z} = PaDB
). As usual, we assume knowledge of the children for the decision

node DA, their CPTs, their parents, and the utility function associated with the node U . In this
section, we demonstrate how to apply LearnCID to this example by providing a high-level description
omitting the details we provided in the single-agent case.

U

Y

XDA DB

Z

U

Y

XDA DB

Z

Figure 8: A multi-decision CID that represents an environment where agents A and B cooperate to
maximize the utility U . The edges marked in red are unknown. Example 2 demonstrates how to
adapt this CID to apply Algorithm 1 and recover the missing edges and CPTs for chance nodes.

Let Π∗
Σ be the optimal policy oracle for DA and π(DB | Z) be any given policy that governs DB .

• The nodes for which we need to learn the parents are Y and Z.

• Node Y ’s potential parents are X and Z, whereas node Z’s only potential parent is Y .

We know X cannot be a parent of Z because by Assumption 4 we know DB is a parent of X , and we
assumed to know the parents of every decision node. Therefore we know X is a descendant of Z
meaning it cannot be its parent. Using Algorithm 1, we determine parental relationships as follows:

1. We check if Z is a parent of Y . We consider the instantiation Y = 0. With Algorithm 1 we
can compute P (Y = 0 | paY ;σ0) and P (Y = 0 | paY ;σ′

0) using σ0 := do(X = 0, Z = 0),
and σ′

0 := do(X = 0, Z = 1) respectively. We observe that these two probabilities are
equal. We repeat this process with σ1 := do(X = 1, Z = 0) and σ′

1 := do(X = 1, Z = 1),
and again, P (Y = 0 | paY ;σ1) = P (Y = 0 | paY ;σ′

1). Performing the same procedure

34

for Y = 1, we find that all pairs of interventions yield the same probabilities. Therefore, Z
is not a parent of Y .

2. Next, we check whether X is a parent of Y . Comparing P (Y = y | paY ;σ0) with
P (Y = y | paY ;σ1), and P (Y = y | paY ;σ′

0) with P (Y = y | paY ;σ′
1) for all y ∈ {0, 1},

we find that at least one of these pairs of probabilities differs. This confirms that X is a
parent of Y .

3. Finally, we consider Z and aim to determine whether Y is a parent of Z. According to
the algorithm, we would again verify that the conditional probabilities remain unchanged
when setting different values for Z. However, we can arrive at the same conclusion also by
noticing that since Y was found to be a child of X , Y can not be a child of Z because this
would introduce a cycle in the graph. Z has no other potential parents and therefore we have
learned the full CID.

The fact that agents A and B cooperate on the same utility function does not affect the outcome. We
would have obtained the same result even if agent B was competing with agent A, or if agent B did
not try to optimize U but was still able to causally influence it.

F Broader Impacts

This paper presents foundational research on the relationship between an agent’s ability to adapt
to distribution shifts and its causal understanding of its environment. Our findings contribute to
a deeper understanding of what decision-making systems, including AI systems, must learn to be
robust to distribution shifts. By characterizing the internal representations that such systems develop,
our work promotes greater transparency in how decisions are made. This understanding lays the
groundwork for designing more explainable, interpretable, and robust decision-making systems. In
the long term, these advancements stand to benefit not only the users of these systems but also the
broader population affected by their outcomes. If used maliciously, this technology could potentially
be employed to probe the causal representations of decision-making systems that are intended to
remain private. However, given the theoretical nature of our results and, in particular, the absence of
a scalable algorithm to obtain full causal models, such misuse remains very unlikely in practice.

35

	Introduction
	Preliminaries
	Learning Causal Influence Diagrams with Adaptable Agents
	LearnCID algorithm for eliciting causal knowledge from adaptable agents
	Algorithm formulation

	Implications for multi-agent environments
	Applying LearnCID to Partially Observable Markov Decision Processes

	Conclusions and Future Work
	Correctness Proof for LearnCID
	Setup and Assumptions
	Proof
	Algorithmic Complexity of LearnCID
	Comparison to Richens and Everitt [2024]

	Non-identifiability of ChD and their CPTs
	Domain dependence in mediated tasks
	Example of mixture of local interventions
	LearnCID examples
	Example 1 - Single-agent environment
	Example 2 - Multi-agent environment

	Broader Impacts

