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Abstract: Self-supervised learning (SSL) is an emerging technique that has been1

successfully employed to train convolutional neural networks (CNNs) and graph2

neural networks (GNNs) for more transferable, generalizable, and robust repre-3

sentation learning. However its potential in motion forecasting for autonomous4

driving has rarely been explored. In this study, we report the first systematic explo-5

ration and assessment of incorporating self-supervision into motion forecasting.6

We first propose to investigate four novel self-supervised learning tasks for motion7

forecasting with theoretical rationale and quantitative and qualitative comparisons8

on the challenging large-scale Argoverse dataset. Secondly, we point out that9

our auxiliary SSL-based learning setup not only outperforms forecasting methods10

which use transformers, complicated fusion mechanisms and sophisticated online11

dense goal candidate optimization algorithms in terms of performance accuracy,12

but also has low inference time and architectural complexity. Lastly, we conduct13

several experiments to understand why SSL improves motion forecasting.14

Keywords: Motion Forecasting, Autonomous Driving, Self-Supervised Learning15

1 Introduction16

Motion forecasting in a real-world urban environment is an important task for autonomous robots. It17

involves predicting the future trajectories of traffic agents including vehicles and pedestrians. This is18

absolutely crucial in the self-driving domain for safe, comfortable and efficient operation. However,19

this is a very challenging problem. Difficulties include inherent stochasticity and multimodality20

of driving behaviors, and that future motion can involve complicated maneuvers such as yielding,21

nudging, lane-changing, turning and acceleration or deceleration.22

The motion prediction task has traditionally been based on kinematic constraints and road map in-23

formation with handcrafted rules. These approaches however fail to capture long-term behavior and24

interactions with map structure and other traffic agents in complex scenarios. Tremendous progress25

has been made with data-driven methods in motion forecasting [3, 4, 5, 6, 7, 8, 9, 10]. Recent26

methods use a vector representation for HD maps and agent trajectories, including approaches like27

Lane-GCN [2], Lane-RCNN [11], Vector-Net [12], TNT [5] and Dense-TNT [6]. More recently, the28

enormous success of transformers [13] has been leveraged for forecasting in mm-Transformer [9],29

Scene transformer [8], Multimodal transformer [14] and Latent Variable Sequential Transformers30

[15]. Most of these methods however are extremely complex in terms of architecture and have low31

inference speeds, which makes them unsuitable for real-world settings.32

In this work, we extend ideas from self-supervised learning (SSL) to the motion forecasting task.33

Self-supervision has seen huge interest in both natural language processing and computer vision34

[16] to make use of freely available data without the need for annotations. It aims to assist the35

model to learn more transferable and generalized representation from pseudo-labels via pretext tasks.36

Given the recent success of self-supervision with CNNs, transformers, and GNNs, we are naturally37

motivated to ask the question: Can self-supervised learning improve accuracy and generalizability38

of motion forecasting, without sacrificing inference speed or architectural simplicity?39
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Figure 1: Motion forecasting on Argoverse [1] validation. We show four challenging scenarios at
intersections. The baseline [2] misses all the predictions. In the first row, our proposed lane masking
successfully captures the right-turn. For the second row, predicting distance to intersection helps the
most in capturing the left turn. In the third row, acceleration at an intersection is best captured by
the model that is made to classify maneuvers of traffic agents. Finally, in the fourth row, classifying
successful final goal states is the most effective at capturing the left turn. These tasks are trained
with pseudo-labels which are obtained for free from data. Please refer to Sec. 6.2 for details.

Contributions: Our work, SSL-Lanes, presents the first systematic study on how to incorporate40

self-supervision in a standard data-driven motion forecasting model. Our contributions are: (a)41

We demonstrate the effectiveness of incorporating self-supervised learning in motion forecasting.42

Since this does not add extra parameters or compute during inference, SSL-Lanes achieves the best43

accuracy-simplicity-efficiency trade-off on the challenging large-scale Argoverse [1] benchmark.44

(b) We propose four self-supervised tasks based on the nature of the motion forecasting problem.45

The key idea is to leverage easily accessible map/agent-level information to define domain-specific46

pretext tasks that encourage the standard model to capture more superior and generalizable represen-47

tations for forecasting in comparison to pure supervised learning. (c) We further design experiments48

to explore why forecasting benefits from SSL. We provide extensive results to hypothesize that49

SSL-Lanes learns richer features from the SSL training as compared to a model trained with vanilla50

supervised learning.51

2 Related Work52

Motion Forecasting: Traditional methods for motion forecasting primarily use Kalman filtering53

[17] with a prior from HD-maps to predict future motion states [18, 19]. With the huge success54

of deep learning, recent works use data-driven approaches for motion forecasting. These methods55

explore different architectures involving rasterized images and CNNs [3, 20, 21], vectorized repre-56

sentations and GNNs [12, 11, 22, 4, 7], point-cloud representations [23], transformers [8, 9, 15, 14]57

and sophisticated fusion mechanisms [2], to generate features that predict final output trajectories.58

While the focus of these works is to find more effective ways of feature extraction from HD-maps59

and interacting agents, they need huge model capacity, heavy parameterization, and extensive aug-60

mentations or large amounts of data to converge to a general solution. Other works [5, 10, 24, 25]61

build on them to incorporate prior knowledge in the form of predefined candidate trajectories ob-62

tained from sampling or clustering strategies from training data. However the disadvantage of these63

methods is that their performance is highly related to the quality of the trajectory proposals, which64

becomes an extra dependency. End-to-end solutions for optimizing end-points of these candidates65

trajectories are proposed by Dense-TNT [6] and HOME [26]. Dense-TNT has state-of-the-art accu-66

racy with a reasonable parameter budget, but its online dense goal candidate optimization strategy is67

computationally very expensive, which is unrealistic for real-time operations like autonomous driv-68
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Figure 2: Illustration of the overall SSL-Lanes framework for self-supervision on motion forecast-
ing through joint training. SSL-Lanes improves upon a standard-motion forecasting baseline, that
consists of an agent encoder, map encoder, interaction model and a trajectory decoder, trained using
a supervised loss Lsup. SSL-Lanes proposes four pretext tasks: (1) Lane Masking: which recovers
feature information from the perturbed lane graphs. (2) Distance to Intersection: which predicts the
distance (in terms of shortest path length) from all lane nodes to intersection nodes. (3) Maneuver
Classification: predicts the form of a ‘maneuver’ the agent-of-interest intends to execute (4) Suc-
cess/Failure Classification: which trains an agent specialized at achieving end-point goals.

ing. Lately, ensembling techniques like MultiPath++ [27] and DCMS [28] have been proposed and69

while they have high forecasting performance, a major disadvantage is their high memory cost for70

training and heavy computational cost at inference. We also refer the reader to the supplementary71

for a detailed discussion of how SSL-Lanes differs from methods like Vector-Net [12], CS-LSTM72

[29] and MultiPath[3].73

Self-supervised Learning: SSL is a rapidly emerging learning framework that generates additional74

supervised signals to train deep learning models through carefully designed pretext tasks. In the75

image domain, various self-supervised learning techniques have been developed for learning high-76

level image representations, including predicting the relative locations of image patches [30], jigsaw77

puzzle [31], image rotation [32], image clustering [33], image inpainting [34], image colorization78

[35] and segmentation prediction [36]. In the domain of graphs and graph neural networks, pretext79

tasks include graph partitioning, node clustering, context prediction and graph completion [37, 38,80

39, 40]. To the best of our knowledge, this is the first principled approach that explores motion81

forecasting for autonomous driving with self-supervision.82

3 Background83

Problem Formulation: We are given the past motion of N actors. The i-th actor is denoted as a84

set of center locations over the past L time-steps. We pre-process it to represent each trajectory as85

a sequence of displacements Pi = {∆p−L+1
i , ...,∆p−1

i ,∆p0
i }, where pl

i is the 2D displacement86

from time step l − 1 to l. We are also given a high-definition (HD) map, which contains lanes and87

semantic attributes. Each lane is composed of many consecutive lane nodes, with a total of M nodes.88

X ∈ RM×F denotes the lane node feature matrix, where xj = X[j, :]T is the F -dimensional lane89

node vector. Following the connections between lane centerlines (i.e., predecessor, successor, left90

neighbour and right neighbour), we represent the connectivity within the lane nodes with 4 adjacency91

matrices {Af}f∈{pre,suc,left,right}, with Af ∈ RM×M . This implies that if Af,gh = 1, then node h is92

an f -type neighbor of node g. Our goal is to forecast the future motions of all actors in the scene93

O1:T
GT = {(x1

i , y
1
i ), ..., (x

T
i , y

T
i )|i = 1, ..., N}, where T is our prediction horizon.94

3



SSL Task Property Level Primary Assumption Type
Lane-Masking Map features Local map structure Aux. auto-encoder

Distance to Intersection Global map structure Aux. regression
Maneuver Classification Map-aware

agent features
Agent feature similarity Aux. classificationSuccess/Failure Classification Distance to success state

Table 1: Overview of our proposed self-supervised (SSL) tasks

Standard Motion Forecasting Model: We briefly introduce a standard data-driven motion fore-95

casting framework, consisting of a feature encoder, interaction-modeler and prediction header.96

Feature Encoding: We first encode the agent and map inputs similar to Lane-GCN [2]. The agent97

encoder includes a 1D convolution with a feature pyramid network, parameterized by genc, as given98

by Eq. (1). For map-encoding, we adopt two Lane-Conv residual blocks, parameterized by Θ =99

{W 0,W left,W right,W pre,k,W suc,k}, where k ∈ {1, 2, 4, 8, 16, 32}, as given by Eq. (2).100

p̂i = genc(Pi) (1)
101

Y = XW 0 +
∑

j∈{left,right}

AjXW j +
∑
k

Ak
preXW pre,k +Ak

sucXW suc,k (2)

Modeling Interactions: Since the behavior of agents depends on map topology and social consis-102

tency, each encoded agent i subsequently aggregates context from the surrounding map features and103

its neighboring agent features, via spatial attention [41] as given by Eq. (3):104

p̃i = p̂iWM2A +
∑
j

ϕ(concat(p̂i,∆i,j ,yj)W 1)W 2

ṕi = p̃iW A2A +
∑
j

ϕ(concat(p̃i,∆i,j , p̃j)W 3)W 4

(3)

Here, yj is the feature of the j-th node, p̂i is the feature of the i-th agent, ϕ the composition of layer105

normalization and ReLU, and ∆ij = MLP(vj−vi), where v denotes the (x, y) 2-D bird’s-eye-view106

(BEV) location of the agent or the lane node. The parameters for map and agent feature aggregation107

is represented by Λ = {WM2A,W 1,W 2,W A2A,W 3,W 4}.108

Trajectory Prediction: Finally, we decode the future trajectories from the features ṕi corresponding109

to the agents of interest as given by: O1:T
pred = {gdec(ṕi)|i = 1, ..., N}, where gdec is the parameter-110

ized trajectory decoder. The parameters for the motion forecasting model are learned by minimizing111

the supervised loss (Lsup) calculated between the predicted output and the ground-truth future tra-112

jectories (O1:T
GT ), as given by Eq. (4):113

g⋆enc,Θ
⋆,Λ⋆, g⋆dec = arg min

genc,Θ,Λ,gdec

Lsup(O1:T
pred ,O1:T

GT ) (4)

4 SSL-Lanes114

The goal of our proposed SSL-Lanes framework is to improve the performance of the primary115

motion forecasting baseline by learning simultaneously with various self-supervised tasks. Fig. 2116

shows the pipeline of our proposed approach, and Tab. 1 summarizes the self-supervised tasks.117

Self-Supervision meets Motion Forecasting: Considering our motion forecasting task and a self-118

supervised task, the output and the training process can be formulated as:119

Ψ⋆,Ω⋆,Θ⋆
ss = arg min

Ψ,Ω,Θss

α1Lsup(Ψ,Ω) + α2Lss(Ψ,Θss) (5)

where, Lss(·, ·) is the loss function of the self-supervised task, Θss parameterizes the corresponding120

task-specific layers, and α1, α2 ∈ R>0 are the weights for the supervised and self-supervised losses.121

If the pretext task only focuses on the map encoder, then Ψ = {Θ} and Ω = {genc,Λ, gdec}. Other-122

wise, Ψ = {genc,Θ,Λ} and Ω = {gdec}. Henceforth, we also define the following representations.123

We will represent the primary task encoder as function fΨ, parameterized by Ψ. Furthermore, given124

a pretext task, which we will design in the next section, the pretext decoder pΘss is a function that125

predicts pseudo-labels and is parameterized by Θss.126
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Method minADE1 minFDE1 MR1 minADE6 minFDE6 MR6

Baseline 1.42 3.18 51.35 0.73 1.12 11.07

Lane-Masking 1.36 2.96 49.45 0.70 1.02 8.82
Distance to Intersection 1.38 3.02 49.53 0.71 1.04 8.93
Maneuver Classification 1.33 2.90 49.26 0.72 1.05 9.36

Success/Failure Classification 1.35 2.93 48.54 0.70 1.01 8.59

Table 2: Motion forecasting performance on Argoverse validation with our proposed pretext tasks

4.1 Pretext tasks for Motion Forecasting127

At the core of our SSL-Lanes approach is defining pretext tasks based upon self-supervised informa-128

tion from the underlying map structure and the overall temporal prediction problem itself (Tab. 1).129

4.1.1 Lane-Masking130

The goal of the Lane-Masking pretext task is to encourage the map encoder Ψ = {Θ} to learn local131

structure information in addition to the forecasting task that is being optimized. Specifically, we132

randomly mask (i.e., set equal to zero) the features of ma percent of nodes per lane and then ask the133

self-supervised decoder to reconstruct these features.134

Ψ⋆,Θ⋆
ss = arg min

Ψ,Θss

1

ma

ma∑
i=1

Lmse

(
pΘss([fΨ(X̃,Af )]vi),Xi

)
(6)

Here, X̃ is the node feature matrix corrupted with random masking, i.e., some rows of X corre-135

sponding to nodes vi are set to zero. pΘss is a fully connected network that maps the representations136

to the reconstructed features. Lmse is the mean squared error (MSE) loss function penalizing the137

distance between the reconstructed map features pΘss([fΨ(X̃,Af )]vi
) for node vi and its actual138

features Xi.139

4.1.2 Distance to Intersection140

Distance-to-Intersection pretext task is proposed to guide the map-encoder, Ψ = {Θ}, to maintain141

global topology information by predicting the distance (in terms of shortest path length) from all142

lane nodes to intersection nodes. We aim to regress the distances from each lane node to pre-143

labeled intersection nodes annotated as part of the dataset. Given K labeled intersection nodes144

Vintersection = {vintersection,k|k = 1, ...K}, we first generate reliable pseudo labels using breadth-first145

search (BFS). Specifically, BFS calculates the shortest distance di ∈ R for every lane node vi from146

the given set Vintersection. The target of this task is to predict the pseudo-labeled distances using a147

pretext decoder. If pΘss([fΨ(X,Af )]vi
) is the prediction of node vi, and Lmse is the mean-squared148

error loss function for regression, then the loss formulation for this SSL pretext task is as follows:149

Ψ⋆,Θ⋆
ss = arg min

Ψ,Θss

1

M

M∑
i=1

Lmse

(
pΘss([fΨ(X,Af )]vi), di

)
(7)

4.1.3 Maneuver Classification150

We propose Maneuver Classification, and we expect it to provide prior regularization to Ψ =151

{genc,Θ,Λ}, based on driving modes of agents. We aim to construct pseudo label to di-152

vide agents into different clusters according to their driving behavior and thus explore un-153

supervised clustering algorithms to acquire the maneuver for each agent. We find that us-154

ing naive k-Means (on agent end-points) or DBSCAN (on Hausdorff distance between entire155

trajectories [42]) leads to noisy clustering. We find that constrained k-means [43] on agent156

end-points works best to divide trajectory samples into C clusters equally. We define C =157

{maintain-speed, accelerate, decelerate, turn-left, turn-right, lane-change} and the clustering func-158

tion as ρ. If pΘss(fΨ(Pi,X,Af )) is the prediction of agent i’s intention and Ei = (xT
i,GT, y

T
i,GT)159
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Method minADE1 minFDE1 MR1 minADE6 minFDE6 MR6 b-FDE6

NN + Map [1] 3.65 8.12 94.0 2.08 4.02 58.0 -
Jean [4] 1.74 4.24 68.56 0.98 1.42 13.08 2.12

Lane-GCN [2] 1.71 3.78 58.77 0.87 1.36 16.20 2.05
LaneRCNN [11] 1.68 3.69 56.85 0.90 1.45 12.32 2.15

TNT [5] 1.77 3.91 59.70 0.94 1.54 13.30 2.14
DenseTNT [6] 1.68 3.63 58.43 0.88 1.28 12.58 1.97
PRIME [24] 1.91 3.82 58.67 1.22 1.55 11.50 2.09
WIMP [7] 1.82 4.03 62.88 0.90 1.42 16.69 2.11
TPCN [23] 1.66 3.69 58.80 0.87 1.38 15.80 1.92
HOME [26] 1.70 3.68 57.23 0.89 1.29 8.46 1.86

mmTransformer [9] 1.77 4.00 61.78 0.87 1.34 15.40 2.03
MultiModalTransformer [14] 1.74 3.90 60.23 0.84 1.29 14.29 1.94

LatentVariableTransformer [15] - - - 0.89 1.41 16.00 -
SceneTransformer [8] 1.81 4.06 59.21 0.80 1.23 12.55 1.88

Success/Failure
Classification (Ours) 1.63 3.56 56.71 0.84 1.25 13.26 1.94

Table 3: Comparison of our (best) proposed model and top approaches on the Argoverse Test. The
best results are in bold and underlined, and the second best is also underlined.

is its ground-truth end-point, then the learning objective is to classify each agent maneuver into its160

corresponding cluster using cross-entropy loss Lce as:161

Ψ⋆,Θ⋆
ss = arg min

Ψ,Θss

Lce

(
pΘss(fΨ(Pi,X,Af )), ρ(Ei)

)
(8)

4.1.4 Forecasting Success/Failure Classification162

We propose a pretext task called Success/Failure Classification, which trains an agent specialized at163

achieving end-point goals and thus links directly to the forecasting task. We expect this to constrain164

Ψ = {genc,Θ,Λ} to predict trajectories ϵ distance away from the correct final end-point. Similar to165

maneuver classification, we wish to create pseudo-labels for our data samples. We label trajectory166

predictions as successful (c = 1) if the final prediction (xT
i,pred, y

T
i,pred) is within ϵ < 2m of the167

final end-point Ei, and as failure (c = 0) otherwise. We choose 2m as our ϵ threshold because it is168

also used for miss-rate calculation (Sec. 5). If the pretext decoder predicts agent i’s final-endpoint169

as pΘss(fΨ(Pi,X,Af )) and, given the ground-truth end-point Ei, its success or failure label is ci,170

then the pretext loss can be formulated as:171

Ψ⋆,Θ⋆
ss = arg min

Ψ,Θss

Lce

(
pΘss(fΨ(Pi,X,Af )), ci

)
(9)

4.2 Learning172

As all the modules are differentiable, we can train the model in an end-to-end way. We use the sum173

of classification, regression and self-supervised losses to train the model. Specifically, we use:174

L = Lcls + Lreg + Lterminal + Lss (10)

For classification and regression loss design, we adopt the formulation proposed in [2]. Lterminal =175

1
N

∑N
i=1 L2

(
(xT

i,pred, y
T
i,pred), (x

T
i,GT, y

T
i,GT)

)
is a simple L2 loss that minimizes the distance between176

predicted final-endpoints and the ground-truth. This is because Lreg is averaged across all time-177

points 1 : T , and from a practical end user perspective, minimizing the endpoint loss is much more178

important than weighting loss from all time-steps equally. Our proposed pretext tasks contribute to179

Lss. During evaluation, we study each pretext task separately, and their corresponding loss formula-180

tions defined in Eq. (6), Eq. (7), Eq. (8), Eq. (9) are used for joint training.181
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Figure 3: (a) min-FDE6 - Miss-Rate6 trade-off on Argoverse Validation. Lower-left is better. We
optimize both successfully in comparison to other popular approaches. (b) and (c) We plot min-FDE
on Argoverse Test against number of model parameters (in millions) and inference time (in milli-
seconds). We find that there is a trade-off between min-FDE performance, architectural complexity
(as measured by number of parameters) and computational efficiency (as measured by inference
time). Our work achieves the best trade-off (lower-left).

5 Experiments182

Dataset: Argoverse provides a large-scale dataset, where the task is to forecast 3 seconds of future183

motions, given 2 seconds of past observations. It has more than 300K real-world driving sequences184

collected in Miami (MIA) and Pittsburgh (PIT). Those sequences are further split into train, val-185

idation, and test sets, without any geographical overlap. Each of them has 205,942, 39,472, and186

78,143 sequences respectively. In particular, each sequence contains the positions of all actors in187

a scene within the past 2 seconds history, annotated at 10Hz. It also specifies one actor of interest188

in the scene, with type ‘agent’, whose future 3 seconds of motion are used for the evaluation. The189

train and validation splits additionally provide future locations of all actors within 3 second hori-190

zon labeled at 10Hz, while annotations for test sequences are withheld from the public and used191

for the leaderboard evaluation. HD map information is available for all sequences. We have two192

main requirements for the dataset: (a) Scale of Data: Modern motion forecasting methods and self-193

supervised learning systems require a large amount of training data to imitate human maneuvers in194

complex real-world scenarios. Thus, the dataset should be large-scale and diverse, such that it has195

a wide range of behaviors and trajectory shapes across different geometries represented in the data.196

(b) Interesting Scenarios for Forecasting Evaluation: The dataset should be collected for inter-197

esting behaviours by biasing sampling towards complex observed behaviours (e.g., lane changes,198

turns) and road features (e.g., intersections), since we wish to focus on these cases. We find that199

on the basis of these requirements, as well as its popularity in the the motion forecasting commu-200

nity, Argoverse [1] is the best candidate to showcase our method. Please refer to the supplementary201

for more details regarding why we choose to focus on it in comparison to other motion forecasting202

benchmarks.203

Metrics: ADE is defined as the average displacement error between ground-truth trajectories and204

predicted trajectories over all time steps. FDE is defined as displacement error between ground-truth205

trajectories and predicted trajectories at the final time step. We compute K likely trajectories for206

each scenario with the ground truth label, where K = 1 and K = 6 are used. Therefore, minADE207

and minFDE are minimum ADE and FDE over the top K predictions, respectively. Miss rate (MR)208

is defined as the percentage of the best-predicted trajectories whose FDE is within a threshold (2 m).209

Brier-minFDE is the minFDE plus (1− p)2, where p is the corresponding trajectory probability.210

Experimental Details: To normalize the data, we translate and rotate the coordinate system of each211

sequence so that the origin is at current position t = 0 of ‘agent’ actor and x-axis is aligned with its212

current direction, i.e., orientation from the agent location at t = −1 to the agent location at t = 0213

is the positive x axis. We use all actors and lanes whose distance from the agent is smaller than214

100 meters as the input. We train the model on 4 TITAN-X GPUs using a batch size of 128 with215

the Adam [44] optimizer with an initial learning rate of 1× 10−3, which is decayed to 1× 10−4 at216
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100,000 steps. The training process finishes at 128,000 steps and takes about 10 hours to complete.217

We provide more implementation details in the supplementary.218

6 Results219

6.1 Ablation Studies220

We first examine the effect of incorporating our proposed pretext tasks (Sec. 4) with the standard221

data-driven motion forecasting baseline (Sec. 3). While evaluating the importance of our proposed222

pretext tasks, we wish to underline that motion prediction for autonomous driving is a safety-critical223

task, especially at intersections where most of our data is collected, and most accidents also happen.224

We thus posit that in this situation, even a small error in predicting final locations (FDE) for a given225

agent can lead to dangerous potential collision scenarios. Results in Tab. 2 show that all proposed226

pretext tasks improve motion forecasting performance for Argoverse. Specifically, the Lane Mask227

pretext task improves min-FDE by 8.9% and MR@2m by 20.3%. Distance to Intersection improves228

min-FDE by 7.1% and 19.3%. Maneuver classification improves min-FDE by 6.3% and MR@2m229

by 15.4%. We expect that improving the quality of clustering for maneuvers and thus creating better230

pseudo-labels will improve this further. Finally, Success/Failure classification improves min-FDE231

by 9.8% and, perhaps expectedly, MR@2m by 22.4%. Moreover, since pretext tasks are not used for232

inference and only for training, they also do not add any extra parameters or FLOPs to the baseline,233

thereby increasing accuracy but at no cost to computational efficiency or architectural complexity.234

6.2 Comparison with State-of-the-Art235

Performance: We compare our approach with top entries on Argoverse [1] in Tab. 3. SSL-Lanes236

improves the metrics for K = 1 convincingly and outperforms existing approaches w.r.t. min-237

ADE1, min-FDE1 and MR1. We are strongly competitive w.r.t. min-ADE6, min-FDE6 and MR6.238

with a relatively simple architecture.239

Trade-off between min-FDE and Miss-Rate: min-FDE6 and MR6 are both important for au-240

tonomous robots to optimize. Ideally we wish for both of these metrics to be low. However, there241

exists a frequent trade-off between them. We compare this trade-off in Fig. 3(a) w.r.t 6 other pop-242

ular motion forecasting models (in terms of citations and GitHub stars), namely: Lane-GCN [2],243

Lane-RCNN [2], MultiPath [3], mm-Transformer [9], TNT [5] and Dense-TNT [6] on the Argov-244

erse Validation Set. We are on the lowest-left of Fig. 3(a), meaning we optimize both min-FDE6 and245

MR6 successfully in comparison to other top models.246

Trade-off between accuracy, efficiency and complexity: We are the first to point out a trade-off247

that exists for current state-of-the-art motion forecasting models between forecasting performance,248

architectural complexity and inference speed, in this work. This is illustrated in Fig. 3(b, c). In249

contrast to the popular models, our approach has high accuracy (min-FDE6: 1.25m, MR6: 13.3%),250

while also having low architectural complexity (1.84M parameters) and high inference speed (3.3251

ms). Thus it provides a great balance for application to real-time safety-critical autonomous robots.252

Qualitative Results: We present some multi-modal prediction trajectories on several hard cases253

shown in Fig. 1. The yellow trajectory represents the observed 2s. Red represents ground truth for254

the next 3s and green represents the multiple forecasted trajectories for those 3s. In Row 1, the agent255

turns right at the intersection. The baseline misses this mode completely, despite having access to256

the map. The model trained with lane-masking successfully predicts this right turn within 2m of the257

ground-truth end-point. In Row 2, the agent has a noisy past history and accelerates while turning258

left at the intersection. The pretext task distance-to-intersection can correctly capture this, while the259

baseline has only one trajectory covering this mode but vastly overshoots the ground-truth. Inter-260

estingly, we note that the success/failure pretext task is unable to capture this mode. We believe261

this is due to a stronger prior imposed by the model during learning. In Row 3, we have an agent262

accelerating while going straight at an intersection. We find that the maneuver classification pretext263

task is the only model that correctly predicts trajectories aligned with the ground-truth. In Row 4,264
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Description Experimental Setup Method minADE6 minFDE6 MR6Training Validation
Effects of limited

training data 25% of train All Baseline 0.82 1.33 14.66
Ours 0.78 1.22 12.63

Effects of
new domain

100% PIT +
20% MIA MIA val Baseline 0.88 1.46 17.21

Ours 0.85 1.34 14.96
Performance on

difficult maneuvers All Turning &
lane changing

Baseline 0.90 1.53 19.90
Ours 0.84 1.34 14.93

Effects of
imbalanced data

2x straight
1x other maneuvers

Turning &
lane changing

Baseline 0.94 1.65 21.53
Ours 0.90 1.49 17.97

Effects of
noisy data All Gaussian noise (σ = 0.2)

with p = 0.25
Baseline 1.01 1.37 15.59

Ours 0.96 1.24 11.98
Effects of
noisy data All Gaussian noise (σ = 0.2)

with p = 0.5
Baseline 1.19 1.56 20.64

Ours 1.13 1.40 15.65

Table 4: Different experimental settings for SSL-based training

we have an agent turning left at an intersection. Most of the predictions of other models predicts265

that the agent will go straight. The success/failure pretext task however picks up on the left-turn,266

possibly due to the priors imposed upon it by end-point conditioning.267

Overall, SSL-Lanes can capture left and right turns better, while also being able to discern accelera-268

tion at intersections. Our pretext tasks provide priors for the model and provides data-regularization269

for free. We believe this can improve forecasting through better understanding of map topology,270

agent context with respect to the map, and generalization with respect to imbalance implicitly present271

in data.272

6.3 When does SSL help Motion Forecasting?273

We design 6 different training and testing setups as shown in Tab. 4. We use Success/Failure classifi-274

cation as the pretext task, and all models are trained for 50,000 steps. We initialize the map-encoder275

with the parameters from a model trained with the lane-masking pretext task.276

We hypothesize that training with SSL pretext tasks helps motion forecasting in the following ways:277

(a) Topology-based context prediction assumes feature similarity or smoothness in small neighbor-278

hoods of maps, and the resulting feature representation may improve prediction performance. This279

is mainly expected to help in the first and second settings, which requires generalizing to new topolo-280

gies. (b) Clustering and classification assumes that feature similarity implies target-label similarity281

and can group distant nodes with similar features together, leading to better generalization. This is282

mainly expected to help with dataset imbalance and performance on difficult maneuvers, which re-283

quires generalizing to hard cases. (c) Supervised learning with imbalanced datasets sees significant284

degradation in performance. Although most of the data samples in Argoverse are at an intersection,285

a significantly large number involve driving straight while maintaining speed. Recent studies [45]286

have shown that SSL tends to learn richer features from more frequent classes, which also allows it287

to generalize to other classes better. We expect this to help with imbalanced data, limited training288

data and noisy data.289

SSL leads to better generalization compared to pure supervised learning: To provide evidence290

for our hypotheses, we design 6 different training and testing setups as shown in Tab. 4. We use291

Success/Failure classification as the pretext task, and all models are trained for 500,000 steps. We292

initialize the map-encoder with the parameters from a model trained with the lane mask pretext task.293

Our first setting is to train with 25% of the total data available for training and testing on the full294

validation set. Our second setting assumes that SSL also generalizes to topology from different295

cities and trains on 100% of data from Pittsburgh (PIT) but only 20% of data from Miami (MIA).296

For evaluation, we only test on data examples taken from the city of MIA. For our third setting,297

we assume that SSL learns superior features and can thus perform better in difficult cases like lane-298

changes and turning cases. For evaluation, we only test on data examples which involves these299
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difficult cases. In our fourth setting, we choose to explicitly train with data that contains 2× ‘straight-300

with-same-speed’ maneuver and 1× all other maneuvers. We test only on lane-changes and turning301

cases from validation. Finally in order to test the effect of noise on motion forecasting performance,302

we take two models already trained on full data. We now take the full validation set, randomly select303

agent trajectories or map nodes with probability p = 0.25 and p = 0.5, and then add Gaussian noise304

with zero mean and 0.2 variance to their features. There is strong evidence from our experiments that305

SSL-based tasks provide better generalization and can thus be more effective than pure supervised306

training.307

7 Discussion: Potential of this Work308

We expect this work to influence real world deployment of SSL forecasting methods for autonomous309

driving. Another use case for this work is realistic behavior generation in traffic simulation. The310

general construction of the prediction problem, inspired by [2], enables a generic understanding311

of how an object moves in a given environment without memorizing the training data. A neural312

network may learn to associate particular areas of a scene with certain motion patterns. To prevent313

this, we centre around the agent of interest and normalize all other trajectory and map coordinates314

with respect to it. We predict relative motion as opposed to absolute motion for the future trajectory.315

This helps to learn general motion patterns. Reconstructing the map or predicting distances from316

map elements are conducted in a frame-of-reference relative to the agent of interest. This helps317

in learning general map connectivity. Following work in pedestrian trajectory prediction, we also318

additionally add random rotations to the training trajectories to reduce directional bias. Furthermore,319

we provide strong evidence that SSL-based tasks provide better generalization compared to pure320

supervised training, thereby having the ability to effectively reuse the same prediction model across321

different scenarios.322

8 Conclusion323

We propose SSL-Lanes to leverage supervisory signals generated from data for free in the form of324

pseudo-labels and integrate it with a standard motion forecasting model. We design four pretext tasks325

that can take advantage of map-structure and similarities between agent dynamics to generate these326

pseudo-labels, namely: lane masking, distance to intersection prediction, maneuver classification327

and success/failure classification. We validate our proposed approach by achieving competitive328

results on the challenging large-scale Argoverse benchmark. The main advantage of SSL-Lanes is329

that it has high accuracy combined with low architectural complexity and high inference speed. We330

further demonstrate that each proposed SSL pretext task improves upon the baseline, especially in331

difficult cases like left/right turns and acceleration/deceleration. We also provide hypotheses and332

experiments on why SSL-Lanes can improve motion forecasting.333

Limitations: A limitation of our framework is that it uses the different losses for our formulation334

only in a 1:1 ratio without tuning them. We also use only one pretext task at a time and do not335

explore the combination of these different tasks. For our future work, we plan to incorporate meta-336

learning [46] to identify an effective combination of pretext tasks and automatically balance them—337

we expect that this will lead to more gains in terms of forecasting performance. Another limitation338

is that we report improvements with SSL-pretext tasks in scenarios without specifically considering339

multiple heavily interacting agents. In the future we would like to explore how the interactions340

between road agents can influence our SSL losses on the interaction split of the Waymo Open Motion341

dataset (WOMD) [47]. Finally, we explore generalization in terms of implicit data imbalance only in342

comparison to pure supervised training on the same dataset from which training samples are derived.343

We would like to study the generalization of our work to other datasets without re-training.344
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