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ABSTRACT

Recently, contrastive loss with data augmentation and pseudo class creation has
been shown to produce markedly better results for out-of-distribution (OOD) de-
tection than previous methods. However, a major shortcoming of this approach is
that it is extremely slow due to significant increase in the data size and the number
of classes and the quadratic complexity of pairwise similarity computation. This
paper proposes a novel and simple method that can build an effective data genera-
tor using Conditional Variational Auto-Encoder (CVAE) to generate pseudo OOD
samples. Based on the generated pseudo OOD data, a flexible and efficient OOD
detection method is proposed through fine-tuning, which achieves results compa-
rable to the state-of-the-art OOD detection techniques, but the execution speed is
at least 10 times faster. Also importantly, the proposed approach is in fact a gen-
eral framework that can be applied to many existing OOD methods and improve
them via the proposed fine-tuning. We have combined it with the best baseline
OOD models in our experiments to produce new state-of-the-art results.

1 INTRODUCTION

With the development of deep learning, a well-trained neural network model is able to obtain very
high accuracy on its testing data. However, when exposed to samples or data instances drawn from
a distribution that is far from the training distribution (called In-distribution (IND)), the model may
make arbitrary predictions under the known framework (Nguyen et al., 2015; Recht et al., 2019).
This limits the model’s application in a broad range of applications, including secure authentica-
tion (Sharif et al., 2016), autonomous driving (Nitsch et al., 2020) and medical diagnosis (Caruana
et al., 2015) as in these applications novel or out-of distribution (OOD) data instances occur fre-
quently. Therefore, OOD detection (Hodge & Austin, 2004), which aims to detect abnormal or
novel data that are very different from the training data, is an important research task.

Many approaches have been proposed to solve this problem, from distance-based methods (Bendale
& Boult, 2015; 2016; Gunther et al., 2017; Júnior et al., 2017), to generative models (Ge et al., 2017;
Neal et al., 2018; Oza & Patel, 2019; Nalisnick et al., 2018) and self-supervised learning (Bergman &
Hoshen, 2020; Golan & El-Yaniv, 2018; Hendrycks et al., 2019). Recently, contrastive learning has
been shown highly effective in many applications (Hjelm et al., 2018; Oord et al., 2018; Chen et al.,
2020b;a; Falcon & Cho, 2020). Applying supervised contrastive learning and data augmentation, the
recent CSI system has produced state-of-the-art (SOTA) OOD detection results (Tack et al., 2020).

However, data augmentation-based contrastive learning also has some drawbacks. First, designing
data augmentation functions and deciding how to use various types of augmented data in contrastive
learning involve a great deal of trial and error and manual work. That is, there is a large number of
transformations (or augmentations) such as cropping, rotation and gray-scaling that can be exerted
on images but not all of them may benefit the end tasks. In SimCLR (Chen et al., 2020a), system-
atic experiments have been reported to explore the augmentations’ influence on classification tasks.
Based on SimCLR’s results, CSI (Tack et al., 2020) chooses several operations for OOD detection.

Second, contrastive learning with data augmentation is very time-consuming to run and resource-
hungry due to a large amount of augmented data and quadratic pairwise similarity computation
during training. For example, CSI creates 3 shifted instances for each original image sample and
the 4 images are then subjected to an additional augmentation operation. Each image is finally
expanded to 8 images or samples. Furthermore, every 2 samples in the augmented batch is treated
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as a pair to calculate contrastive loss. The performance is negatively affected if the batch size is not
large enough. Therefore, it is necessary to use a large batch size, which demands a huge amount
of memory and takes a very long time to run. It is thus not suitable for applications on hardware
devices that do not have the required resources such as edge devices.

In this paper, we propose a general and much more efficient solution, called CGA (CVAE-based
Generative data Augmentation for OOD detection). CGA consists of two parts. The first part gen-
erates pseudo OOD data and the second part makes use of the pseudo OOD data to train an OOD
detection model. We discuss the first part first. OOD detection is basically a classification problem
but the challenge is that there is no OOD data to use in training. This paper proposes a novel method
to generate pseudo OOD data. This method works in the latent space of a Conditional Variational
Auto-Encoder (CVAE) and uses CVAE’s decoder to generate pseudo OOD data. CVAE is able to
generate instances from the training distribution on the basis of latent representations consisting
of conditional information and variables sampled from a prior distribution of CVAE, normally the
Gaussian distribution. If the latent space features or representations are created with some abnormal
conditional information, the CVAE will generate “bad” instances but such instances can serve as ef-
fective pseudo OOD data. The second part of CGA is a fine-tuning framework that can make use of
the generated pseudo OOD data to fine-tune any classification model built using only the IND data.
Applying the framework to a simple IND classification model, we can already produce comparable
results to existing SOTA contrastive learning models but much more efficient. Applying it to the
existing SOTA methods, we can improve their results too.

Our contributions can be summarized as follows: (1) We propose to employ a CVAE structure to
generate pseudo OOD samples by providing some synthetic conditional information, which, to our
knowledge, has not been done before. (2) We design a two-stage framework to train an OOD de-
tection model by leveraging the generated pseudo OOD data. The first stage simply builds a normal
classification model using only the IND data. The second stage fine-tunes the model using the gen-
erated OOD data to produce an effective OOD detection model. Extensive experiments show that
this approach achieves comparable performance to the state-of-the-art (SOTA) contrastive learning
methods in OOD detection, while consuming only one-tenth of the execution time. (3) Equally
importantly, the proposed framework can be applied to existing SOTA OOD detection models to
improve them to produce new SOTA results.

2 RELATED WORK

Out-of-distribution Detection. It is well-known that the discriminative neural networks can pro-
duce overconfident predictions on out-of-distribution (OOD) inputs (Hendrycks & Gimpel, 2016;
Lakshminarayanan et al., 2016). The early idea to solve this problem focuses on modifying soft-
max scores to obtain calibrated confidence for OOD detection (Bendale & Boult, 2016; Guo et al.,
2017). In addition, many other score functions have been proposed, such as likelihood ratio (Ren
et al., 2019), input complexity (Serrà et al., 2019) and typicality (Nalisnick et al., 2019). A recent
work utilizes Gram matrices to characterize activity patterns and identify anomalies in Gram matrix
values to do OOD detection (Sastry & Oore, 2020). Some methods found that auxiliary anomalous
data significantly improve detection performance (Hendrycks et al., 2018; Mohseni et al., 2020) and
thus generative models are adopted to anticipate the distribution of novel samples. In some of these
methods, generated data are treated as OOD samples to optimize the decision boundary and calibrate
the confidence (Ge et al., 2017; Vernekar et al., 2019). In some other works, generative models such
as auto-encoders (Zong et al., 2018; Pidhorskyi et al., 2018) and generative adversarial networks
(GAN) (Deecke et al., 2018; Perera et al., 2019) are used to reconstruct the training data. During
the training of a GAN model, low quality samples acquired by the generator can also work as OOD
data directly (Pourreza et al., 2021). Owing to the fact that the model can hardly be generalized
to unknown data, the reconstruction loss can help detect OOD data. There are also works using
auxiliary OOD data to fine-tune the model (Liu et al., 2020). Fort et al. (2021) showed that using
pre-trained representations and taking few-shot outlier exposure can improve the results. Recently,
self-supervised techniques have been applied to OOD detection. It focuses on acquiring rich rep-
resentations through training with some pre-defined tasks (Gidaris et al., 2018; Kolesnikov et al.,
2019). Self-supervised models show outstanding performance on OOD detection tasks (Kolesnikov
et al., 2019; Bergman & Hoshen, 2020). CSI (Tack et al., 2020) is a representative method (see more
below), which uses contrastive learning and data augmentation to improve the features of all labeled
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IND data and produce state-of-the-art (SOTA) results. Some researchers also tried to improve con-
trastive learning based methods (Sehwag et al., 2021) and proposed distance-based methods (Miller
et al., 2021). However, based on our experiments, CSI outperforms them. Our method falls into the
generative approach. Unlike existing methods that use perturbations to anticipate OOD data, our
method uses synthetic conditions and CVAE to obtain effective and diverse pseudo OOD data.

Contrastive Learning. Contrastive learning learns representations by contrasting positive pairs
against negative pairs (Hadsell et al., 2006). It has been applied to various domains (Oord et al.,
2018). Recently, a new method called SimCLR (Chen et al., 2020a) was proposed to create sample
pairs via data augmentation. It is effective but also very time and resource consuming. SimCLR
also shows that contrastive learning benefits more from larger batch sizes and longer training time.
CSI (Tack et al., 2020) proposes that augmentation can not only help construct positive pairs but also
negative pairs and makes use of them to detect OOD samples with supervised contrastive learning.
It obtains the SOTA OOD detection results with labeled IND data. However, due to contrastive
learning, it is extremely slow and memory demanding. Our proposed method generates pseudo
OOD using CVAE, avoiding the use of contrastive loss, and is much more efficient than CSI.

Auto-Encoder Auto-Encoder (AE) is a family of unsupervised neural networks (Rumelhart et al.,
1986; Baldi & Hornik, 1989). A basic AE consists of an encoder and a decoder. The encoder en-
codes the input data into a low-dimensional hidden representation and the decoder transforms the
representation back to the reconstructed input data (Vincent et al., 2008; Chen et al., 2012; Hin-
ton et al., 2006). Variational auto-encoder is a special kind of AE (Kingma & Welling, 2013).
It encodes the input as a given probability distribution (usually Gaussian) and the decoder recon-
structs data instances according to variables sampled from that distribution. CVAE is an extension
of VAE (Kingma et al., 2014). It encodes the label or conditional information into the latent rep-
resentation so that a CVAE can generate new samples from specified class labels. CVAE makes it
possible to control the generating process, i.e., to generate samples with features of specified classes.
We make use of this property of CVAE to generate high quality pseudo OOD data.

3 PROPOSED CGA METHOD

In tasks related to out-of-distribution (OOD) detection, the problem of recognition is commonly
formulated as a classification problem. The main challenge is that an important class, OOD data, is
not available. Therefore, to effectively train an OOD detection model, an intuitive idea is to generate
pseudo OOD data and use them together with the IND data to train the model. As we mentioned
earlier, data augmentation and contrastive learning have been shown especially effective for this
purpose. However, this approach is extremely inefficient. We propose to use Conditional Variational
Auto-Encoder (CVAE) to generate pseudo OOD data and present a new fine-tuning framework to
leverage the generated pseudo OOD data to train an OOD detection model.

3.1 CONDITIONAL VARIATIONAL AUTO-ENCODER

Conditional Variational Auto-Encoder (CVAE) is derived from Variational auto-encoder (VAE). We
first introduce VAE which is a conditional directed graphical model consisting of three main parts,
an encoder qφ(·) with parameters φ, a decoder pθ(·) with parameters θ and a loss function L(x; θ, φ),
where x represents an input sample. The loss function is as follows:

L(x; θ, φ) = −Ez∼qφ(z|x)[log pθ(x|z)] +KL(qφ(z|x)||pθ(z)) (1)

where qφ(z|x) is a proposal distribution to approximate the prior distribution pθ(z), pθ(x|z) is the
likelihood of the input x with a given latent representation z, and KL(·) is the function to calcu-
late Kullback-Leibler divergence. qφ(z|x) is the encoder and pθ(x|z) is the decoder. In Eq.(1), the
expected negative log-likelihood term encourages the decoder to learn to reconstruct the data with
samples from the latent distribution. The KL-divergence term forces the latent distribution to con-
form to a specific prior distribution such as the Gaussian distribution. After training, a VAE can
generate data using the decoder pθ(x|z) with a set of latent variables z sampled from the prior dis-
tribution pθ(z). Commonly, the prior distribution is the centered isotropic multivariate Gaussian
pθ(z) = N (z; 0, I).

However, VAE does not consider the class label information which is available in classification
datasets and thus has difficulty generating data of a particular class. Conditional variational Auto-
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Encoder (CVAE) was introduced to extend VAE to address this problem. It improves the generative
process by adding a conditional input information into latent variables so that a CVAE can generate
samples with some specific characteristics or from certain classes. We use c to denote the prior class
information. The loss function for CVAE can be written as follows:

L(x; θ, φ) = −Ez∼qφ(z|x)[log pθ(x|z, c)] +KL(qφ(z|x, c)||pθ(z|c)) (2)

One implementation of CVAE uses a one-hot vector to represent a class label yc, and a weight matrix
is multiplied to it to turn the one-hot vector to a class embedding yc. Then a variable z, generated
from the prior distribution pθ(z), is concatenated with yc to construct the whole latent variable.
Finally, the generated instance pθ(x|z, c) of class c is produced. We can formulate the process as:

pθ(x|z, c) = pθ(x|[yc, z]) (3)

3.2 GENERATING PSEUDO OOD DATA

The ability of CVAE to control the generating process using the conditional information (e.g. class
label in our case) inspired us to design a method to generate possible OOD samples. This is done by
the conditional decoder using atypical prior information c in pθ(x|z, c). As introduced before, OOD
data need to be different from in-distribution data but also resemble them. The continuity property
of CVAE, which means that two close points in the latent space should not give two completely
different contents once decoded (Cemgil et al., 2019), ensures that we can manipulate CVAE latent
space features to generate high quality pseudo OOD data. Since we have no information of the future
OOD data, we have to make use of the existing training data (i.e., in-distribution data) to construct
pseudo OOD data. We can provide it with pseudo label information to generate pseudo OOD data.

Specifically, we propose to construct pseudo class embedding by combining the embeddings of two
existing classes in the in-distribution training data. The formulation is as follows:

pθ(x|z, k, ci, cj) = pθ(x|[k ∗ yci + (1− k) ∗ ycj , z]) (4)

where k is a vector generated from Bernoulli distribution B(0.5) with the same length as the class
label embedding. k is basically for the system to randomly select the vector components of the two
class embeddings with equal probability. Such a generated sample pθ(x|z,k, ci, cj) will not likely
to be an instance of either class ci or cj but still keep some of their characteristics, which meets the
need for pseudo OOD data. Furthermore, the pseudo class embedding has a great variety, owing to
the diverse choices of classes and the vector k. To generate pseudo OOD samples, we also need to
sample z from the encoder. In the training of CVAE, we ensure that z fits the Gaussian distribution
N (0, I). To sample z, we use another flatter Gaussian distribution N (0, σ2 ∗ I), where σ > 1 ∈ Z,
to make the generated samples highly diverse.

3.3 TRAINING PROCESS FOR OOD DETECTION

With the generated pseudo OOD samples and the original in-distribution (IND) training data, train-
ing an OOD detection model consists of two stages.

Stage 1 (IND classifier building and CVAE training): Only the original IND data is used to train
a classification model C. The classification model can be decomposed into two functions f and
h, where f is the final linear classifier and h is the feature extractor. f(h(x)) is the classification
output. A separate CVAE model is also trained for generating pseudo OOD data.

Stage 2 (fine-tuning with pseudo OOD data): We keep the trained feature extractor h fixed (or
frozen) and fine-tune only the classification layer f for OOD detection.

The proposed CGA approach is in fact a framework, which is illustrated in Figure 1 together with the
two-stage training process. The framework is very flexible as the classifier in the first stage can use
any model. Stage 2 is also flexible and can use many approaches. Here we introduce two specific
methods. They produce results comparable to the state-of-the-art OOD detection models, but are
very simple and very efficient. In fact, as we will see in the experiments, fine-tuning the existing
state-of-the-art (SOTA) OOD detection models can also improve them to produce new SOTA results.

CGA-softmax. In the fine-tuning stage, we simply add additional class (let us call it the OOD
class) in the classification layer to accept the pseudo OOD data. If the IND data has N classes,
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Figure 1: The CGA framework and its training process. The OOD loss can be the cross entropy loss
in CGA-softmax, cross-entropy+energy loss in CGA-energy, or other possible losses.

we add parameters to the classifier to make it output N + 1 logits. These added parameters related
to (N + 1)th OOD class is randomly initialized. We then train the model by only fine-tuning the
classification layer using the cross entropy loss with feature extractor trained in stage 1 fixed. Finally,
we use the softmax score of the (N + 1)th class as the OOD score.

CGA-energy. In this approach, we add an energy loss to the cross entropy loss (Lent + λLenergy) to
fine-tune the classification layer using the IND data and the pseudo OOD data to produce an OOD
score for each test instance. In this case, no OOD class is added. The energy loss is as follows,

Lenergy = Exin∼Din(max(0, E(xin)−min))
2 + Exout∼Dout(max(0,mout − E(xout)))2 (5)

where Din denotes the IND training data, Dout denotes generated pseudo OOD data, and min and
mout are margin hyper-parameters. The idea of this loss is to make the OOD data get similar
values for all N logits so that they will not be favored by any N IND data classes. Here N is the
number of classes of the IND data. As the loss function shows, the OOD data is necessary. This
loss was used in (Liu et al., 2020), which has to employ OOD data but such OOD data is often not
available in practice. This loss cannot be used by other OOD methods since they have no OOD data
available (Bendale & Boult, 2016; Khosla et al., 2020; Tack et al., 2020). However, this is not an
issue for us as we have pseudo data to replace real OOD training data.

Stage 2 produces an energy score calculated from a classification model for OOD detection:

E(x; f(h)) = −T · log
N∑
i=1

efi(h(x))/T (6)

where E(x; f(h(·))) denotes the energy of instance x with the classification model f(h(·)), which
maps x to N logits, where N is the number of classes in the IND data, fi(h(x)) is the i-th logit and
T is the temperature parameter.

4 EXPERIMENTS

We construct OOD detection tasks using benchmark datasets and compare our proposed technique
CGA with the state-of-the-art existing methods. The code of CGA has been submitted.

4.1 EXPERIMENT SETTINGS AND DATA PREPARATION

We use two experimental setups to evaluate our system.

Setting 1 - OOD Detection on the Same Dataset: In this setting, IND (in-distribution) and OOD
instances are from different classes of the same dataset. This setting is often called open-set detec-
tion. We use the following 4 popular datasets for our experiments in this setting.

(1) MNIST (LeCun et al., 2010): A handwritten digit classification dataset of 10 classes. The dataset
has 70,000 examples/instances, with the splitting of 60,000 for training and 10,000 for testing.
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(2) CIFAR-10 (Krizhevsky & Hinton, 2010): An image classification dataset consisting of 60,000
32x32 color images of 10 classes with the splitting of 50,000 for training and 10,000 for testing.

(3) SVHN (Netzer et al., 2011): A colorful street view house number classification dataset of 10
classes. It contains 99289 instances with the splitting of 73257 for training and 26032 for testing.

(4) TinyImageNet (Le & Yang, 2015): A classification dataset of 200 classes. Each class contains
500 training samples and 50 testing samples. The resolution of the images is 64x64.

We follow the data processing method in (Sun et al., 2020; Zhou et al., 2021) to split known and
unknown classes. For each dataset, we conduct 5 experiments using different splits of known (IND)
and unknown (OOD) classes. These same 5 splits are used by all baselines and our system. Fol-
lowing (Sun et al., 2020), for MNIST, CIFAR-10 and SVHN, 6 classes are chosen as IND classes,
and the other 4 classes are regarded as OOD classes. The following 5 fixed sets of IND classes, 0-5,
1-6, 2-7, 3-8, and 4-9, are used and they are called partition 1, 2, 3, 4, and 5, respectively. The rest
4 classes in each case serve as the OOD classes. For TinyImageNet, each set of IND data contains
20 classes and the sets of IND classes in the 5 experiments are 0-19, 40-59, 80-99, 120-139, and
160-189 respectively. The rest 180 classes are regarded as the OOD classes.

Setting 2 - OOD Detection on Different Datasets: The IND data and OOD data come from dif-
ferent datasets. Following (Tack et al., 2020), we use CIFAR-10 as the IND dataset and each of the
following datasets as the OOD dataset.

(1) SVHN (Netzer et al., 2011): See above. All 26032 testing samples are used as OOD data.

(2) LSUN (Yu et al., 2015): This is a large-scale scene understanding dataset with a testing set of
10,000 images from 10 different scenes. Images are resized to 32x32 in our experiment.

(3) LSUN-FIX (Tack et al., 2020): To avoid artificial noises brought by general resizing operation,
this dataset is generated by using a fixed resizing operation on LSUN to change the images to 32x32.

(4) TinyImageNet (Le & Yang, 2015): See above. All 10000 testing samples are used as OOD data.

(5) ImageNet-FIX (Le & Yang, 2015): 10,000 images are randomly selected from the training set of
ImageNet-30, excluding “airliner”, “ambulance”, “parkingmeter”, and “schooner” classes to avoid
overlapping with CIFAR-10. A fixed resizing operation is applied to transform the images to 32x32.

(6) CIFAR100 (Krizhevsky et al., 2009): An image classification dataset consisting of 60,000 32x32
color images of 100 classes. Its 10,000 test samples are used as the OOD data.

4.2 BASELINES

We compare with the following state-of-the-art baselines using the official code from their authors.

(1) Softmax: This is the popular classification score model. The highest softmax probability is used
as the confidence score for OOD detection.

(2) OpenMax (Bendale & Boult, 2016): This method combines the softmax score with the distance
between the test sample and IND class centers to detect OOD data.

(3) ODIN (Liang et al., 2017): This method improves the OOD detection performance of a pre-
trained neural network by using temperature scaling and adding small perturbations to the input.

(4) Maha (Lee et al., 2018): This method uses Mahalanobis distance to evaluate the probability that
an instance belongs to OOD.

(5) CCC (Lee et al., 2017): This is a GAN-based method, jointly training the classification and
pseudo OOD generator for OOD detection.

(6) OSRCI (Neal et al., 2018): This method also uses GAN to generate pseudo instances and further
improves the model to predict novelty (OOD) examples.

(7) CAC (Miller et al., 2021): This is a distance-based method, using the Class Anchor Clustering
loss to cluster IND samples tightly around the anchored centres for OOD detection.

(8) SupCLR (Khosla et al., 2020): This is a contrastive learning based method. It extends contrastive
learning to fully-supervised setting to improve the quality of features for classification.
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(9) CSI (Tack et al., 2020): This is also a supervised contrastive learning method. It uses extensive
data augmentations to generate shifted data instances. It also has a score function that benefits from
the augmented instances for OOD detection.

For Softmax, OpenMax and OSRCI, we use OSRCI’s implementation1. For SupCLR and CSI, we
use CSI’s code2. For ODIN, Maha, CCC and CAC, we use their original code3456. We also use their
default hyper-parameters.

4.3 IMPLEMENTATION DETAILS

For MNIST, we use a 9-layer CNN as the encoder (feature extractor) and a 2-layer MLP as the
projection head. CVAE includes a 2-layer CNN as the encoder and a 2-layer deconvolution net-
work (Zeiler et al., 2011) as the decoder, as well as two 1-layer MLPs to turn features into means
and variations. For the other datasets, the encoder is a ResNet18 (He et al., 2016) and the projection
head is a 2-layer MLP. CVAE also uses ResNet18 as the encoder, and 2 residual blocks and a 3-layer
deconvolution network as the decoder. The mean and variation projection are completed by two
1-layer MLPs. During the first stage of training, we use Adam optimizer (Kingma & Ba, 2014) with
β1 = 0.9, β2 = 0.999 and learning rate of 0.001. We train both the classification model and CVAE
model for 200 epochs with batch size 512. In the second stage, the learning rate is set to 0.0001
and the fine-tuning process with the generated pseudo data are run for 10 epochs. The number of
generated pseudo OOD data is the same as the IND data (we will study this further shortly). Each
batch has 128 IND samples and 128 generated OOD samples. There is no special hyper-parameter
for CGA-softmax in stage 2. For CGA-energy, two special hyper-parameters of the energy loss min

and mout are decided at the beginning of stage 2 by IND and pseudo data. We calculate the energy
of all training IND data and generated pseudo data. Then min and mout are chosen to make 80% of
IND data’s energy larger thanmin and 80% of pseudo data’s energy smaller thanmout. This ensures
that 80% of data get non-zero loss. We use the same 1 NVIDIA-GeForce-RTX-2080Ti GPU for the
experiments of evaluating the running speed of different methods.

4.4 RESULTS AND DISCUSSIONS

Table 1 shows the results of the two OOD detection settings on different datasets. Due to the large
image size, a large number of IND classes and a large batch size requirement, we were unable to
run SupCLR and CSI using TinyImageNet on our hardware and thus do not have their results in
Setting 1. On average, our CGA model can achieve the best results in Setting 1. In Setting 2,
benefiting from strong features learned using contrastive loss, CSI performs the best on average and
our CGA-e (CGA-energy) is slightly weaker than CSI. But from Table 3 we learn that CGA is much
more efficient than the contrastive learning methods. With comparable overall performances on
OOD detection, CGA spends only about 10% of CSI’s training time. We also notice that our CGA-s
(CGA-softmax) is slightly weaker than CGA-e, which shows that the energy function is effective.

Equally importantly, Table 2 demonstrates that CGA’s fine-tuning (stage 2) can improve the 3 best
performing baselines in Table 1, i.e., GAN-based OSRCI and contrastive learning based SupCLR
and CSI. Here after each baseline finishes its training, we apply fine-tuning of CGA’s stage 2 to fine-
tune the trained model using CGA-energy. Although CSI already produces the best OOD detection
result, it is improved further by our CGA framework to produce a new SOTA result.

4.5 ABLATION STUDY

We now perform the ablation study with various options of our system and report the AUC scores
on 5 partitions of the CIFAR10 dataset in Setting 1 - OOD detection on the same dataset.

1https://github.com/lwneal/counterfactual-open-set
2https://github.com/alinlab/CSI
3https://github.com/facebookresearch/odin
4https://github.com/pokaxpoka/deep Mahalanobis detector
5https://github.com/alinlab/Confident classifier
6https://github.com/dimitymiller/cac-openset
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Table 1: AUC (Area Under the ROC curve) (%) on detecting IND and OOD samples on 2 settings.
Results are averaged over the 5 partitions on setting 1. CGA-s is the CGA-softmax model and
CGA-e is the CGA-energy model. Every experiment was run 5 times.

Datasets Softmax OpenMax ODIN Maha CCC OSRCI CAC SupCLR CSI CGA-s CGA-e
Setting 1 - OOD Detection on the Same Dataset
MNIST 97.6±0.7 98.1±0.5 98.1±1.1 98.4±0.4 94.2±0.8 98.3±0.9 99.2±0.1 97.1±0.2 97.2±0.3 98.3±0.2 99.0±0.2
CIFAR-10 65.5±0.5 66.9±0.4 79.4±1.6 73.4±2.2 74.0±1.4 67.5±0.8 75.9±0.7 80.0±0.5 84.7±0.3 86.3±1.2 85.6±0.6
SVHN 90.3±0.5 90.7±0.4 89.4±2.0 91.5±0.6 64.6±2.3 91.7±0.2 93.8±0.2 93.8±0.2 93.9±0.1 91.8±0.5 92.1±0.4
TinyImageNet 57.5±0.7 57.9±0.2 70.9±1.5 56.3±1.9 51.0±1.2 58.1±0.4 71.9±0.7 \ \ 72.2±0.5 73.7±0.6
Average 77.8 78.4 84.5 79.9 71.0 78.9 85.2 \ \ 87.2 87.6
Setting 2 - OOD Detection on Different Datasets (CIFAR-10 as IND)
SVHN 80.2±1.8 82.7±1.9 83.2±1.5 97.5±1.6 83.3±0.8 80.2±1.8 87.3±4.6 97.3±0.1 97.9±0.1 95.8±0.6 96.2±2.5
LSUN 70.1±2.5 72.2±1.8 82.1±1.9 61.5±5.0 85.6±2.3 79.9±1.8 89.1±3.4 92.8±0.5 97.7±0.4 96.8±1.4 97.7±0.9
LSUN-FIX 76.7±0.8 75.6±1.2 84.1±1.7 77.8±2.1 86.6±1.6 78.2±0.5 85.5±0.7 91.6±1.5 93.5±0.4 94.1±0.9 93.7±0.4
TinyImageNet 62.5±3.6 65.2±3.1 68.7±2.2 56.8±2.1 83.2±1.8 70.0±1.7 86.4±4.6 91.4±1.2 97.6±0.3 94.8±1.6 95.2±2.7
ImageNet-FIX 75.9±4.6 75.6±0.7 74.8±0.6 79.0±3.1 83.7±1.1 78.1±0.3 85.6±0.3 90.5±0.5 94.0±0.1 89.7±0.3 92.9±1.2
CIFAR100 74.6±0.5 75.5±0.4 74.5±0.8 61.4±0.9 81.9±0.5 77.4±0.4 83.9±0.2 88.6±0.2 92.2±0.1 87.9±0.4 89.3±0.4
Average 73.3 74.5 77.9 72.3 84.1 77.3 86.3 92.0 95.5 93.2 94.2

Table 2: AUC (Area Under the ROC curve) (%) results of the original model (denoted by original)
and the model plus fine-tuning using CGA-energy (denoted by +CGA-e). Almost every +CGA-e
version of the baselines outperforms the original model. Every experiment was run 5 times.

Datasets OSRCI SupCLR CSI
original +CGA-e original +CGA-e original +CGA-e

Setting 1 - OOD Detection on the Same Dataset
MNIST 98.3±0.9 99.1±0.4 97.1±0.2 98.6±0.2 97.2±0.3 99.3±0.1
CIFAR-10 67.5±0.8 72.3±0.6 80.0±0.5 88.9±0.5 84.7±0.3 89.8±0.6
SVHN 91.7±0.2 92.1±0.1 93.8±0.2 96.5±0.3 93.9±0.1 96.7±0.2
TinyImageNet 58.1±0.4 59.9±0.3 \ \ \ \
Setting 2 - OOD Detection on Different Datasets (CIFAR-10 as IND)
SVHN 80.2±1.8 79.3±2.5 97.3±0.1 93.0±1.3 97.9±0.1 97.8±0.6
LSUN 79.9±1.8 92.1±0.6 92.8±0.5 97.7±0.6 97.7±0.4 99.2±0.1
LSUN-FIX 78.2±0.5 81.2±1.0 91.6±1.5 94.1±0.3 93.5±0.4 96.2±0.3
TinyImageNet 70.0±1.7 83.2±1.7 91.4±1.2 96.3±0.8 97.6±0.3 98.7±0.3
ImageNet-FIX 78.1±0.3 78.5±0.2 90.5±0.5 92.9±0.3 94.0±0.1 95.7±0.1
CIFAR100 77.4±0.4 77.4±0.6 88.6±0.2 90.3±0.2 92.2±0.1 92.0±0.2
Average 77.3 82.0 92.0 94.1 95.5 96.6

Table 3: Execution time (min) of each method spent in running the whole experiment on benchmark
datasets for setting 1.

Datasets Softmax OpenMax ODIN Maha CCC OSRCI CAC SupCLR CSI CGA-e (ours)
MNIST 6 6 71 54 133 49 13 1260 1728 24
CIFAR-10 20 20 61 56 111 70 49 1110 1428 144
SVHN 20 20 142 140 196 71 37 1770 2471 249
TinyImageNet 22 22 64 54 46 79 64 \ \ 131

CGA Stage 2. To verify the effect of different options of stage 2, we compare the results of CGA-e
model with (1) without stage 2, i.e., we directly use energy score of stage 1 to compute AUC, (2)
stage 2 without using pseudo OOD data, and (3) full stage 2. Figure 2(a) shows that without stage
2, stage 1 produces poor results. Stage 2 without the generated pseudo OOD data only improves
the performance slightly. The full stage 2 with the generated pseudo data greatly improves the
performance of OOD detection. The experiments prove the necessity of stage 2 and the effectiveness
of the generated pseudo OOD data. We do not vary stage 1 as our contribution is in stage 2.

Amount of Pseudo OOD Data. We run experiments of stage 2 with different numbers of generated
pseudo OOD samples to further analyze their effectiveness. Figure 2(b) demonstrates that the model
can benefit from only a few pseudo samples significantly. Though the amount is only 10% of the
IND data, the pseudo data can improve the results markedly, which indicates that pseudo samples are
highly effective. The results are similar when pseudo samples are more than half of the IND training
samples. We use the same number of pseudo samples as the IND samples in all our experiments.

Pseudo OOD Data Distribution. The CVAE generator is trained to make the latent variables or
features conform to the Gaussian distributionN (0, I) (see Section 3.2). To make pseudo data diverse
and different from the training data, we sample the latent variables z from a pseudo data sampling
distribution N (0, σ2 ∗ I). We conduct experiments to study the effect of the distribution. First, we
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(a) Different options of CGA Stage 2 (b) Ratio of pseudo OOD data to IND data.

Figure 2: Ablation study on (a) CGA Stage 2 and (b) amount of generated pseudo OOD data.

study the influence of σ. Note that σ is 1 in training. With larger σ values, the sampled values will
be more likely to be far from 0 (which is the mean) to make the latent features different from those
seen in training. Figure 3(a) shows the results, which indicate the necessity of using σ > 1. Results
are similar when σ ≥ 5 and we use 5 in our experiments.

Intuitively, we may only keep latent features z that are far from the Gaussian distribution mean
by filtering out values that are close to 0 (or the mean). We use a filtering threshold t to filter
out the sampled z whose component values are within the range [−t, t]. Experimental results in
Figure 3(b) allow us to make the following observations. When σ = 1, as t grows, the performance
improves slightly. But comparing with the results in Figure 3(a), we see that a larger σ improves
the performance more. Figure 3(c) tells us that when σ = 5, the effect of filtering diminishes. For
simplicity and efficiency, all our experiments employed σ = 5 without filtration.

(a) Influence of σ. (b) Filter under σ = 1. (c) Filter under σ = 5.

Figure 3: Ablation study on different options of generating pseudo OOD data. Figure 3(a) shows
AUC results of different σ values of the sampling distribution. Figure 3(b) filters values near the
center of the Gaussian distribution with σ = 1. Figure 3(c) filters values near the center of the
Gaussian Distribution with σ = 5.

5 CONCLUSION

It has been shown recently that contrastive learning with extensive data augmentations can pro-
duce the state-of-the-art out-of-distribution detection results. Our experiments also confirmed that.
However, such algorithms are extremely inefficient and resource hungry due to a large amount of
augmented data and quadratic pairwise similarity computation, which makes such algorithms un-
suitable for applications that do not have the required computing resources, e.g., edge devices. In
this paper, we proposed a simple alternative based on data generation using CVAE which delivers
similar accuracy results but is much more efficient. What is also interesting is that our proposed
approach can improve the results of those state-of-the-art contrastive learning based methods too.
Thus, our future work will focus on improving the detection accuracy while maintaining or fur-
ther reducing the computing resources requirements. We also plan to explore pre-trained feature
extractors and more advanced variants of CVAE to improve our method.

On broader impacts, we believe that the proposed approach has a great potential and may also be
applicable to one-class learning, positive and unlabeled (PU) learning, and continual learning. for
these problems, the ability to generate pseudo OOD data is useful.
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A IMPLEMENTATION DETAILS OF BASELINES

For OOD detection on the same dataset, since the partitions of in-distribution (IND) and out-of-
distribution (OOD) classes from a dataset affect the results significantly, we show the detailed results
of individual partitions in the next section. As for OOD detection on different datasets, we copy
SupCLR and CSI’s results from the CSI paper and produce our own results for the other baselines.
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Table 4: AUC (Area Under the ROC curve) (%) on detecting OOD samples from the same dataset.
Results of the 5 partitions of each dataset are listed in the table.

Partitions Softmax OpenMax OSRCI SupCLR CSI CGA-s CGA-e
MNIST
Partition1 97.9 97.6 97.3 97.5 96.8 98.0 99.0
Partition2 95.2 96.7 98.8 96.8 95.4 98.4 98.9
Partition3 98.3 98.6 98.0 96.6 97.6 98.4 99.1
Partition4 98.4 98.6 98.3 97.9 98.4 97.6 98.7
Partition5 98.0 98.8 99.1 96.5 97.7 98.9 99.3
Range 3.2 2.1 1.8 1.4 3.0 1.3 0.6
CIFAR-10
Partition1 62.4 62.2 64.2 77.3 81.8 81.6 79.7
Partition2 61.8 62.2 65.7 75.3 76.3 84.8 80.6
Partition3 67.3 70.4 70.8 88.7 93.5 91.9 91.5
Partition4 64.5 66.1 67.7 77.3 85.2 89.7 89.9
Partition5 69.9 71.4 72.3 81.2 86.6 83.3 86.3
Range 8.1 9.2 8.1 13.4 17.2 10.3 11.8
SVHN
Partition1 88.4 89.3 89.9 92.7 93.3 91.3 90.5
Partition2 90.0 90.4 91.7 92.1 91.9 90.4 91.3
Partition3 90.8 90.3 92.1 94.2 95.3 92.1 92.3
Partition4 90.8 91.4 92.4 95.2 94.6 92.7 93.2
Partition5 91.6 91.8 92.5 95.2 94.3 92.5 93.3
Range 3.3 2.4 2.6 3.2 3.4 2.3 2.8
TinyImageNet
Partition1 57.2 57.9 58.9 \ \ 73.2 75.0
Partition2 56.4 56.3 56.9 \ \ 73.0 74.0
Partition3 61.9 62.3 62.9 \ \ 71.2 73.0
Partition4 60.3 60.3 60.6 \ \ 74.4 75.8
Partition5 51.6 52.8 51.2 \ \ 69.3 70.8
Range 10.3 9.5 11.7 \ \ 5.1 5.0

B DETAILED EXPERIMENT RESULTS

We found that when conducting OOD detection experiments using the same dataset (i.e., some
classes of the dataset are used as the IND classes and the rest as the OOD classes), the choices
of IND and OOD classes can affect the results greatly. Some partitions of IND and OOD classes
are very hard while some are easy. Therefore, we fix 5 sets of IND and OOD classes to make the
comparison between different methods fair. Table 4 shows the average AUC score for each of the
5 partitions of each dataset. From Table 4, we learn that the ranges (or differences) of the results
for different IND and OOD partitions of the datasets are very large. On the CIFAR-10 dataset, the
difference is as large as 17.2%.

C VISUALIZATION OF DATA DISTRIBUTION

We visualize the latent representations of different data to learn their distributional property. The
visualization is done on partition 1 of MNIST dataset. Figure 4 shows the distribution of the gen-
erated data after dimensionality reduction by t-distributed Stochastic Neighbor Embedding (t-SNE)
method. The left figure shows 6 clusters of IND data of 6 classes. Red points in the middle figure
represent our generated pseudo data. This figure demonstrates that a large number of pseudo sam-
ples are around the boundaries of the clusters (representing the known classes). These are the most
effective OOD-like samples. At the same time, our generated data distribute widely, which shows
that the pseudo data is of great diversity. Pink points in the right figure represent real OOD data
during testing. Comparing red points and pink points, we can learn that the diverse pseudo data can
cover nearly all areas where there are true OOD instances.
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Figure 4: Distribution of IND data and the generated pseudo OOD data. The grey points represent
the IND data and the numbers are their class labels. The red points in the middle figure represent
the generated pseudo OOD data and the pink points in the right figure represent the true OOD data
used in testing. The left figure contains only the IND data of 6 classes.

D VISUALIZATION OF PSEUDO OOD IMAGES

Figure 5 shows the generated pseudo OOD images from our CVAE. For each group, we first employ
the standard class embedding and sample latent variables to generate 2 IND images. Then we use
these 2 class embeddings to compute our pseudo class embedding (see the paper) and then generate
pseudo OOD images with variables or features from different sampling distributionsN (0, σ2 ∗ I). It
is easy to see some characteristics of IND images from pseudo images. When σ = 1, pseudo OOD
images still resemble the IND images a great deal. But as σ grows, the difference between the IND
images and pseudo OOD images gets greater and the diversity also increases. That also explains
why changing σ can improve the final performance.
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Figure 5: Generated data of different settings. SCE means standard class embedding and this col-
umn shows the generated data from CVAE using the standard class embedding. PCE means pseudo
class embedding computed using the class embeddings of the two classes in each group (e.g., 0 and
5 in Group 1). For each setting of PCE & σ, we generate 4 images by sampling 4 different z values.
σ is the parameter of the sampling distribution for z, N (0, σ2 ∗ I).
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