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Abstract

Attention mechanisms have emerged as trans-
formative tools in core AI domains such as
natural language processing and computer
vision. Yet, their largely untapped potential for
modeling intricate physical systems presents a
compelling frontier. Learning such systems often
entails discovering operators that map between
functional spaces using limited instances of
function pairs—a task commonly framed as a
severely ill-posed inverse PDE problem. In this
work, we introduce Neural Interpretable PDEs
(NIPS), a novel neural operator architecture that
builds upon and enhances Nonlocal Attention
Operators (NAO) in both predictive accuracy and
computational efficiency. NIPS employs a linear
attention mechanism to enable scalable learning
and integrates a learnable kernel network that acts
as a channel-independent convolution in Fourier
space. As a consequence, NIPS eliminates the
need to explicitly compute and store large pair-
wise interactions, effectively amortizing the cost
of handling spatial interactions into the Fourier
transform. Empirical evaluations demonstrate
that NIPS consistently surpasses NAO and other
baselines across diverse benchmarks, heralding
a substantial leap in scalable, interpretable,
and efficient physics learning. Our code and
data accompanying this paper are available at
https://github.com/fishmoon1234/
Nonlocal-Attention-Operator.
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1. Introduction
Interpretability in machine learning (ML) models is of
paramount importance, particularly in the study of phys-
ical systems, where grasping the underlying governing prin-
ciples is as critical as achieving high predictive accuracy.
Unlike conventional data-driven tasks, physics-based prob-
lems necessitate models that not only yield reliable outputs
but also elucidate the fundamental mechanisms driving ob-
served phenomena. This need is especially acute in high-
stakes domains such as materials science, healthcare, and
engineering, where ML-driven insights can directly influ-
ence human safety and technological progress (Coorey et al.,
2022; Ferrari & Willcox, 2024; Liu et al., 2025). However,
extracting physical laws from data remains a formidable
challenge, as many learning tasks—such as deducing mate-
rial properties from deformation fields—are inherently an
ill-posed inverse problem, lacking direct supervision and
admitting multiple plausible solutions (Hansen, 1998). That
means, although ML models may serve as effective surro-
gates for predictive tasks, their inferred internal representa-
tions may diverge from true physical parameters, leading to
spurious interpretations and potential failures in practical ap-
plications. Thus, advancing interpretability is not merely a
matter of transparency but an essential endeavor in ensuring
the development of robust, trustworthy, and scientifically
principled ML models for physics-based learning.

Uncovering interpretable mechanisms for physical systems
presents a fundamental challenge: inferring governing laws
that are often high- or infinite-dimensional from data con-
sisting of discrete measurements of continuous functions. A
data-driven surrogate model must therefore learn not only
the mapping between input-output function pairs but also
the latent representations that govern the system’s behav-
ior. From a partial differential equation (PDE) perspective,
constructing a surrogate model corresponds to solving a
forward problem, whereas identifying the underlying gov-
erning mechanism constitutes an inverse problem, which
is often rank-deficient or even ill-posed, especially when
data is limited. Neural network models exacerbate this ill-
posedness due to their intrinsic approximation biases (Xu
et al., 2019), making the inference of governing laws par-
ticularly challenging. To address this, recent deep learning
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approaches have been developed as inverse problem solvers
(Fan & Ying, 2023; Molinaro et al., 2023; Jiang et al., 2022;
Chen et al., 2023; Lu & Yu, 2025), aiming to reconstruct
unknown parameters from solution data. These approaches
generally rely on effectively embedding prior information,
in terms of governing equations (Yang et al., 2021; Li et al.,
2021), regularization techniques (Dittmer et al., 2020; Ob-
mann et al., 2020; Ding et al., 2022; Chen et al., 2023), or
additional operator structures (Uhlmann, 2009; Lai et al.,
2019; Yilmaz, 2001). However, in complex systems, such
priors are often unavailable or highly problem-specific, lim-
iting the generalizability of these approaches. Consequently,
existing methods can only solve inverse problems for a fixed
system, requiring a complete reconfiguration when the sys-
tem evolves—such as when material properties degrade in a
material modeling task.

In this work, we introduce Neural Interpretable PDEs
(NIPS), a novel attention-based neural operator architecture
that extends and enhances Nonlocal Attention Operators
(NAO) (Yu et al., 2024) in both predictive accuracy and com-
putational efficiency. NAO introduces an attention-based
kernel map to simultaneously learn the operator and its asso-
ciated kernel, effectively extracting hidden knowledge from
diverse physical systems. By implicitly enforcing prior in-
formation and exploring the function space of identifiability
for the kernels, the attention mechanism enables automatic
inference of underlying system contexts in an unsupervised
manner (Lu & Yu, 2025). Nevertheless, NAO relies on an
attention mechanism of quadratic complexity and explic-
itly models spatial interactions through a square projection
matrix, which are both time- and memory-intensive. In con-
trast, NIPS adopts a linear attention mechanism for scalable
learning and incorporates a learnable kernel network that
functions as a channel-independent convolution in Fourier
space. This design eliminates the need to compute and store
large pairwise interactions explicitly, effectively amortizing
the cost of spatial interactions through the Fourier transform.
Our key contributions are:

• We introduce Neural Interpretable PDEs (NIPS), a
novel attention-based neural operator architecture for
simultaneous physics modeling (as a forward PDE
solver) and governing physical mechanism discovery
(as an inverse PDE solver).

• NIPS integrates attention with a learnable kernel net-
work for channel-independent convolution in Fourier
space, eliminating the need to compute and store large
pairwise interactions and amortizing the cost of han-
dling spatial interactions into the Fourier transform.

• We reformulate the original NAO using linear attention,
enabling scalable learning in large physical systems.
Together with Fourier convolution, NIPS effectively
harmonizes Fourier insights with attention for scalable
and interpretable physics discovery.

• We conduct zero-shot learning experiments on unseen
physical systems, demonstrating both the generaliz-
ability of NIPS in predicting system responses and its
capability in discovering hidden PDE parameters.

2. Background and Related Work
Neural operators for hidden physics learning. Learning
complex physical systems from data has become increas-
ingly prevalent in scientific and engineering fields (Karni-
adakis et al., 2021; Liu et al., 2024b; Ghaboussi et al., 1991;
Carleo et al., 2019; Zhang et al., 2018; Liu et al., 2023b; Cai
et al., 2022; Pfau et al., 2020). In many cases, the underly-
ing governing laws remain unknown, concealed within the
data, and must be uncovered through physical models. Ide-
ally, these models should be interpretable, enabling domain
experts to derive meaningful insights and make further pre-
dictions, thereby advancing the understanding of the target
physical system (Jafarzadeh et al., 2024; Wang et al., 2025).
Furthermore, they should be resolution-invariant, capable
of handling data at different scales. Neural operators (NOs)
are designed to map between infinite-dimensional function
spaces (Li et al., 2020a;c; You et al., 2022a; Ong et al., 2022;
Cao, 2021; Lu et al., 2019; 2021; Goswami et al., 2022; Liu
et al., 2024a), making them a powerful tool for discover-
ing continuum physical laws by capturing the relationships
between spatial and spatio-temporal data. A major mile-
stone in operator learning is the Fourier Neural Operator
(FNO) (Li et al., 2020c; Liu et al., 2023a), which utilizes the
Fast Fourier Transform (FFT) to efficiently perform convolu-
tions in Fourier space. This approach reduces computational
complexity, enabling scalable learning of high-dimensional
physical systems while retaining the capacity to capture
intricate physical interactions. By incorporating FFT, NOs
can learn kernels with truncated modes in Fourier space,
enhancing efficiency and making them a promising tool for
complex modeling physical systems across various scales.

Inverse PDE solving. Inverse PDE solving involves un-
covering the underlying physical laws or parameters from
observational data (Liu et al., 2024c). This task is partic-
ularly challenging due to the high dimensionality of the
problem and the need to infer unknowns from limited or
noisy data. Recent progress in inverse PDE solving has led
to the development of innovative approaches (Cho & Son,
2024), such as Neural Inverse Operators (NIOs) (Molinaro
et al., 2023) and Nonlocal Attention Operators (NAOs) (Yu
et al., 2024). NIOs are designed to map solution operators
to the underlying PDE parameters as functions in a super-
vised setting, leveraging a composition of DeepONets and
FNOs. This architecture has demonstrated superior per-
formance in solving inverse PDE problems, outperforming
traditional optimization methods. On the other hand, NAOs
employ attention mechanisms to capture nonlocal interac-
tions among spatial tokens in an unsupervised setting. They
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effectively mitigate ill-posedness and rank deficiency by im-
plicitly extracting global prior knowledge from training data
of multiple systems (Lu & Yu, 2025). NAOs can generalize
across unseen data resolutions and system states, demon-
strating their potential as interpretable foundation models
for physical systems.

Attention mechanism. Attention mechanisms (Vaswani
et al., 2017) are renowned for their remarkable in-context
learning capabilities in language models. In particular, they
enable zero-shot generalizability, allowing models to adapt
to new tasks from just a few examples in the prompt with-
out retraining (Vladymyrov et al., 2024; Lu et al., 2024;
Oko et al., 2024). Recently, attention mechanisms have
become integral to learning hidden physics, especially in
tasks involving PDE solving. Beyond generalizability, at-
tention mechanisms enhance model capacity by capturing
long-range dependencies and spatiotemporal interactions,
making them highly effective for modeling complex phys-
ical systems. To improve the accuracy of forward PDE
solvers, linear attention has been employed in NOs to re-
place softmax normalization and act as a learnable kernel
(Cao, 2021). This relaxes the quadratic complexity require-
ment while maintaining the ability to capture intricate physi-
cal relationships. Further innovations include the integration
of Galerkin-type linear attention within encoder-decoder ar-
chitectures (Li et al., 2022), hierarchical transformers for
multiscale learning (Liu et al., 2022), and heterogeneous nor-
malized attention mechanisms for handling multiple input
features (Hao et al., 2023). On a related note, polynomial
attention (Kacham et al., 2023; Deng et al., 2024) offers
a promising alternative to linear attention by replacing the
softmax function with polynomial kernels, enabling efficient
computation of attention scores, particularly for long-range
dependencies and complex physical systems. Recent studies
have applied attention mechanisms not only to solve individ-
ual PDEs but also to tackle multiple types of PDEs within
a unified framework, demonstrating the potential of these
methods in advancing interpretable and scalable models for
physical mechanism discovery (Yang & Osher, 2024; Ye
et al., 2024; Sun et al., 2024; Zhang, 2024).

3. Neural Interpretable PDEs
This section introduces NIPS, a Fourier-domain kernel op-
erator that simultaneously solves both forward and inverse
PDE problems. Compared to existing NOs, NIPS incor-
porates two key innovations. First, it constructs a data-
dependent neural operator through the linear attention mech-
anism, parameterizing an inverse mapping from data to
the underlying kernel and offering a generalizable kernel
method for PDEs with varying hidden parameter fields. Sec-
ond, the attention mechanism is combined with spectral
convolution to enhance expressivity by enabling interac-

tions across different frequency modes, while also provid-
ing efficient evaluation of domain integrals. As a result,
NIPS delivers an accurate, efficient, and interpretable PDE
solution operator.

3.1. Problem Setting

We consider a series of PDEs with different hidden physical
parameters:

Lb[u](x) = f(x) , x ∈ Ω . (1)
Here, Ω ⊂ Rs is the domain of interest, f(x) represents
the loading function on Ω, and u(x) is the corresponding
solution of the system. Lb denotes the unknown govern-
ing law, such as balance laws, which is determined by the
(possibly unknown and high-dimensional) parameter field
b. For example, in material modeling, Lb typically repre-
sents the constitutive law, and b can be a vector (b ∈ Rdb)
representing the homogenized material parameter field, or a
vector-valued function (b ∈ L∞(Ω;Rdb)) representing the
heterogeneous material properties.

Many physical modeling tasks can be formulated as either
forward or inverse PDE-solving problems. In a forward
problem setting, the goal is to find the PDE solution given
the PDE information, such as coefficient functions, bound-
ary/initial conditions, and loading sources. Concretely,
given the governing operators K, the parameter (field) b,
and loading field f(x) in (1), the objective is to solve for
the corresponding solution field u(x) using either classi-
cal PDE solvers (Brenner & Scott, 2007) or data-driven
approaches (Lu et al., 2019; Li et al., 2020c). As a result, a
forward map is constructed:

G : (b,f) → u . (2)
Here, b and f are input vectors/functions, and u is the
output function.

Conversely, solving an inverse PDE problem involves re-
constructing the underlying full or partial PDE information
from solutions, where one seeks to construct an inverse map:

H : (u,f) → b . (3)
Solving an inverse problem is typically more challenging
due to the ill-posed nature of the PDE model. In general, a
limited number of function pairs (u,f) from a single system
is insufficient for inferring the underlying parameter field
b, rendering the inverse problem generally non-identifiable
(Molinaro et al., 2023).

Formally, we consider S training datasets from different
systems, each of which contains d function pairs (u,f) ∈
U × F :

Dtr = {{(uη
i (x),f

η
i (x))}

d
i=1}Sη=1 . (4)

The index η corresponds to different hidden PDE parameter
field/set bη ∈ B. Here, U ⊂ L2(Ω;Rdu), F ⊂ L2(Ω;Rdf )
represent the (infinite-dimensional) Banach spaces of the
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Figure 1. Illustration of the NIPS architecture. NIPS applies physics-informed data augmentation by randomly permuting embedding
dimensions to prevent features from being tied to a specific sequence. The data is then tokenized and normalized, followed by several
Fourier and linear attention layers that implicitly extract hidden prior knowledge from multiple physical systems. For each system, the
final layer maps the last iterative layer feature from contextual input-output function pairs to the corresponding kernel. In downstream
tasks, discovering the hidden kernel only requires a forward pass from contextual data, without requiring model retraining.

solution function u and loading function f , respectively,
and B is a finite-dimensional manifold where the hidden
parameter b takes values on. Our goal is to solve both the
forward and inverse PDE problems simultaneously from
multiple systems. That means, given Dtr and measure-
ments {(utest

i (x),f test
i (x))}di=1 corresponding to a new

and hidden parameter field btest, we aim to infer the key
information about btest and provide a surrogate mapping
Gtest : f test

i → utest
i without additional training or tuning.

3.2. Attention-Based Kernel Map

To develop a generalizable forward PDE solver capable of
handling multiple PDEs, our architecture is inspired by the
kernel method for PDEs (Evans, 2002). In this method,
the solution of a linear PDE is formulated as an integral
involving a kernel function that captures the influence of
one point in space on another:

GKb
[f ](x) =

∫
Ω

Kb(x,y)f(y)dy = u(x), x ∈ Ω. (5)

Here, the kernel function depends on the parameter field
b. In generic integral NOs (Li et al., 2020b;c; You et al.,
2022a;b) such as FNOs and GNOs, the kernel Kb is pa-
rameterized as either a convolutional kernel or a shallow
MLP and is then optimized to minimize the data loss∑d

i=1 ||G[fi; θ]− ui|| on function pairs from a single PDE.

Consequently, the forward solver G is tailored specifically
for that particular PDE.

The first key feature of NIPS is the transition from a static
kernel to a data-dependent kernel. In particular, we propose
to replace Kb with a kernel map K[u1:d,f1:d] in the form:

GKb
[f ](x) =

∫
Ω

K[u1:d,f1:d](x,y)f(y)dy, (6)

where x ∈ Ω, and the nonlinear kernel map is constructed
using L numbers of iterative attention blocks:

g
(0)
j (x) := fj(x), v

(0)
j (x) := uj(x),(

g
(l)
j (x)

v
(l)
j (x)

)
= N

(∫
Ω

K(l)(x,y)

(
g
(l−1)
j (y)

v
(l−1)
j (y)

)
dy

)
,

1 ≤ l ≤ L, (7)
with

K(l)(x,y) :=

[
K[g(l), g(l);Wl] K[g(l),v(l);Wl]

K[v(l), g(l);Wl] K[v(l),v(l);Wl]

]
, (8)

K[p, q;W ] :=

d∑
ω,ν=1

∫
Ω

W
P
(x, z)

(
pω(z)W

QK
[ω, ν]qν(y)

)
dz.

Here, N is a chosen normalizer, WQK
l :=

1√
dk
WQ

l (WK
l )⊤ characterizes the (trainable) interaction

of d input function pair instances, W P
l is a projection func-

tion, and θ := {{W P
l (x, z),WQ

l ,WK
l }Ll=1} are learnable
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functions/parameters. By setting v
(L)
j (x) := uj(x), we

notice that the kernel K[u1:d,f1:d] can be expressed as:
K[u1:d, f1:d; θ](x,y)

:=

d∑
ω,ν=1

∫
Ω

W P,u
L (x,z)

(
g(L−1)
ω (z)WQK

L [ω, ν]g(L−1)
ν (y)

)
dz

+

d∑
ω,ν=1

∫
Ω

W P,f
L (x,z)

(
v(L−1)
ω (z)WQK

L [ω, ν]g(L−1)
ν (y)

)
dz.

Hence, the proposed architecture simultaneously serves
as an inverse PDE solver, mapping (u,f) pairs to the
parameter-dependent kernel Kb, which provides a forward
PDE solver in the form of a kernel method as in GK .

3.3. Efficient Fourier Kernel Learning

Although the attention block in (7) enables a generalizable
kernel for multiple PDEs, it is inherently more computation-
ally expensive than its single-PDE counterpart. Comparing
(7) and (5), one can see that the single-PDE solver involves a
spatial integral per layer update, whereas the proposed multi-
PDE solver requires evaluating two integrals over the entire
domain Ω: the first integral in (8) maps data pairs to the
kernel K, while the second performs the kernel-weighted
integral in (7), updating the data pairs for the next block.
When these integrals are computed on a discretized domain
with N grid points, both require O(N2d) flops, making the
model computationally expensive on large discretizations.

The class of shift-equivariant kernels can be decomposed as
a linear combination of eigenfunctions, enabling efficient
multiplication in the eigen-transform domain and accelerat-
ing integral evaluations. For single-PDE solvers, a notable
example is the FNO model (Li et al., 2020c), which enforces
translation invariance on the kernel Kb(x,y) := Kb(x−y)
in (5), reducing the computational complexity from O(N2)
to O(N logN). Inspired by this, the second core feature
of NIPS enhances efficiency by enforcing a convolutional
structure and computing the integral as element-wise multi-
plication in the frequency domain.

To alleviate the computational cost, we first notice that the
proposed architecture can be reformulated from a linear
attention perspective:∫

Ω

K[p, q;W ](x,y)qj(y)dy =

1√
dk

∫
Ω

W P (x,z)
(
p(z)WQ

)
dz

∫
Ω

(
q(y)WK

)⊤
qj(y)dy.

This reduces the computational complexity of the kernel-
weighted integral in (7) from O(N2d) to O(Nd2). Addi-
tionally, we impose a convolutional structure on W P , and
evaluate the first integral in the spectral domain:∫

Ω

K[p, q;W ](x,y)qj(y)dy =

1√
dk

F−1(R · F(pWQ))(x)

∫
Ω

(
q(y)WK

)⊤
qj(y)dy,

where R is a learnable Fourier kernel that substitutes
F(W P ), WQ and WK are learnable matrices. Here,
F and F−1 denote the Fourier transform and its inverse,
respectively. This formulation reduces both parameter
count and computational overhead. When taking W P

as a point-wise evaluation on the grid, it requires O(N2)
memory, whereas learning R directly in Fourier space re-
duces memory footprint to O(m), with m ≪ N being
the number of retained Fourier modes. Consequently, the
computational cost for the first integral is reduced from
O(N2d) to O(Nd logN), leading to an overall complexity
of O(Nd2 +Nd logN) for NIPS.

3.4. NIPS: A Generalizable and Efficient PDE Solver

With the aforementioned modifications, the model is illus-
trated in Figure 1, along with the training algorithm summa-
rized in Algorithm 1.

4. Experiments
We assess the performance of NIPS across a broad spec-
trum of physics modeling and discovery tasks, focusing
on several key aspects. First, we highlight the advantages
of using Fourier kernel with linear attention, and compare
NIPS to various baseline models, including NAO with full
LayerNorm (NAO-f), NAO with optimized normalization
(NAO), NAO with full learnable square projection (NAO-
W p), and a NO with a convolution-based attention mech-
anism (AFNO (Guibas et al., 2021)). Our evaluation em-
phasizes generalizability, particularly zero-shot prediction
performance when modeling new physical systems with
unseen governing equations, as well as performance across
different resolutions. Additionally, we examine the data
efficiency-accuracy trade-off in inverse PDE learning tasks
and assess the interpretability of the learned kernels. All ex-
periments are optimized using the Adam optimizer. For fair
comparison, we tune hyperparameters—including learning
rates, decay rates, and regularization parameters—to mini-
mize training loss. Experiments are conducted on a single
NVIDIA A100 GPU with 40 GB of memory. Additional
details on data generation and implementation can be found
in the Appendix.

4.1. Darcy Flow

We begin by examining NIPS’s ability to simultaneously
learn both forward and inverse solution surrogates on the
2D Darcy flow benchmark. Specifically, we consider the
modeling of 2D subsurface flows through a porous medium
characterized by a heterogeneous permeability field. Follow-
ing the setup in Yu et al. (2024), the high-fidelity synthetic
simulation data for this problem are governed by the Darcy’s
flow. In this setting, the physical domain is Ω = [0, 1]2, b(x)
represents the permeability field, and the Darcy’s equation
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Algorithm 1 The overall training algorithm and architecture of NIPS.

1: Given Dtr := {fη
i (x),u

η
i (x)}

T tr,d
η=1,i=1 for training, Dtest := {f̃η

i (x), ũ
η
i (x)}

T test,d
η=1,i=1 for test sets. Each η corresponds

to a different PDE parameter field bη .
2: Training Phase:
3: for ep = 1 : epochmax do
4: Update θ := {{Rl,W

Q
l ,WK

l }Ll=1}, using Adam with respect to the optimization problem:

θ∗ = argmin
θ

1

Ttrd

T tr,d∑
η=1,i=1

∣∣∣∣∫
Ω
K[fη1:d,u

η
1:d; θ](x,y)f

η
i (y)dy − uη

i (x)
∣∣∣∣
L2(Ω)

||uη
i (x)||L2(Ω)

, (9)

where K[fη1:d,u
η
1:d] is defined as:

g
(0)
j (x) =fj(x), v

(0)
j (x) = uj(x),

g
(l)
j (x) =g(l−1)(x) +N

(
1√
dk

F−1(Rl · F(g(l−1)WQ
l ))(x)

∫
Ω

(
g(l−1)(y)WK

l

)⊤
g
(l−1)
j (y)dy

+
1√
dk

F−1(Rl · F(g(l−1)WQ
l ))(x)

∫
Ω

(
v(l−1)(y)WK

l

)⊤
v
(l−1)
j (y)dy

)
,

v
(l)
j (x) =v(l−1)(x) +N

(
1√
dk

F−1(Rl · F(v(l−1)WQ
l ))(x)

∫
Ω

(
v(l−1)(y)WK

l

)⊤
v
(l−1)
j (y)dy

+
1√
dk

F−1(Rl · F(v(l−1)WQ
l ))(x)

∫
Ω

(
g(l−1)(y)WK

l

)⊤
g
(l−1)
j (y)dy

)
, 1 ≤ l < L− 1,

K[u1:d, f1:d; θ](x,y) =
1√
dk

F−1(RL · F(g(L−1)WQ
L ))(x)

(
g(L−1)(y)WK

L

)⊤

+
1√
dk

F−1(RL · F(v(L−1)WQ
L ))(x)

(
g(L−1)(y)WK

L

)⊤
. (10)

5: end for
6: Test Phase:
7: Compute prediction error on the test dataset, as an evaluation for the forward PDE solver:

Etest
forward :=

1

Ttestd

T test,d∑
η=1,i=1

∣∣∣∣∣∣∫Ω K[f̃η1:d, ũ
η
1:d; θ

∗](x,y)f̃η
i (y)dy − ũη

i (x)
∣∣∣∣∣∣
L2(Ω)

||ũη
i (x)||L2(Ω)

.

8: If the ground-truth microstructure/kernel is available, compute kernel error on the test dataset, as an evaluation for the
inverse PDE solver:

Etest
inverse :=

1

Ttest

T test∑
η=1

∣∣∣∣∣∣K[f̃η1:d, ũ
η
1:d; θ

∗](x,y)−Kb̃η (x,y)
∣∣∣∣∣∣
L2(Ω×Ω)∣∣∣∣Kb̃η (x,y)

∣∣∣∣
L2(Ω×Ω)

.

is given by:
−∇ · (b(x)∇p(x)) = g(x) , x ∈ Ω ,

p(x) = 0 , x ∈ ∂Ω . (11)
We aim to learn the solution operator of Darcy’s equation
and simultaneously compute the pressure field p(x) and
discover the underlying (hidden) permeability field b(x).

Ablation study. We first conduct an ablation study on

NIPS by comparing its performance against its variants (i.e.,
NAO, NAO-f, NAO-W p), using a fixed embedding dimen-
sion of d = 50, query-key projection dimension of dk = 40,
and a sequence length of 21× 21 = 441. The results are re-
ported in Table 1. All models are configured with two layers.
Notably, NAO-f incorporates full LayerNorm in every layer,
while NAO-W p employs a layerwise learnable projection,
both of which significantly increase the number of trainable
parameters. To isolate the effects of these modifications, we
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keep the remaining architectural components unaltered. We
first examine the impact of LayerNorm placement in NAO
and NAO-f. In NAO, LayerNorm is applied across both the
token and projection dimensions in the first layer, but only
across the projection dimension in subsequent layers. In
contrast, NAO-f normalizes across both dimensions in all
layers. A comparison of test errors reveals that NAO outper-
forms NAO-f, achieving a 10.4% improvement in prediction
accuracy while using 46.6% fewer trainable parameters.
These results indicate that applying full LayerNorm across
all layers is neither necessary nor beneficial, as it not only
drastically increases the number of trainable parameters but
also degrades model performance.

Next, we adopt the optimal LayerNorm placement and in-
vestigate whether incorporating layerwise learnable projec-
tions improves performance. Comparing NAO with NAO-
W p, we observe that the number of trainable parameters
increases by more than 15 times, while accuracy deterio-
rates by 29.4%. This decline stems from the large square
projection weights, whose size scales quadratically with the
sequence length, explicitly computing and storing exten-
sive pairwise token interactions. The substantial increase
in trainable parameters also exacerbates overfitting, further
degrading model performance. In contrast, NIPS achieves
the highest accuracy while using the fewest trainable param-
eters among all models, outperforming the best NAO variant
by 26.2% in accuracy. This improvement is attributed to
NIPS’s ability to implicitly model token dependencies by
learning to interact with spectral modes, which encode a
more concise representation of the data’s intrinsic behavior.
As a result, the model focuses more effectively on mean-
ingful patterns while reducing redundancy. An additional
advantage of learning spatial interactions in Fourier space
is the substantial reduction in trainable parameters. Unlike
NAO where weight size scales with the total number of spa-
tial tokens, NIPS scales with the number of spectral modes
considered, leading to significant computational savings.
This efficiency gain is evident in per-epoch runtime compar-
isons: while NIPS slightly outperforms the linear version of
NAO when the sequence length is relatively small, it accel-
erates training by a substantial 28.8% when the sequence
length increases to 41 × 41 = 1681, accompanied by a
23.5% improvement in predictive accuracy.

Comparison with additional baselines. We then com-
pare the performance of NIPS against an additional baseline,
particularly a NO with a convolution-based attention mecha-
nism, i.e., AFNO. To ensure a fair comparison, we maintain
a comparable number of trainable parameters across differ-
ent layer configurations and input sequence lengths. While
AFNO’s runtime is similar to that of NIPS, it fails to achieve
zero-shot generalization to unseen PDE parameters, with
test errors consistently exceeding 50% across all considered
scenarios. Moreover, its performance deteriorates further as

Table 1. Test errors, per-epoch runtime, and number of trainable
parameters for the Darcy flow problem, where bold numbers high-
light the best method. The per-epoch runtimes for both the original
quadratic attention and the re-formulated linear attention are re-
ported and separated by “/” where applicable.

Case Model #param Per-epoch
time (s)

Test
error

2 layers,
441 tokens
(21× 21)

NIPS 98,396 1.6 2.28%
NAO 101,134 5.4/1.7 3.09%
NAO-f 189,234 5.4/1.7 3.45%
NAO-W p 1,658,746 5.8/1.9 4.00%
AFNO 101,200 1.6 52.09%

4 layers,
441 tokens
(21× 21)

NIPS 108,692 2.5 1.03%
NAO 109,494 7.8/2.5 1.45%
AFNO 121,600 1.9 52.84%

4 layers,
1681 tokens
(41× 41)

NIPS 366,932 8.4 1.14%
NAO 357,494 58.8/11.8 1.49%
AFNO 364,000 24.5 98.70%

model depth increases.

Physics-informed data augmentation. The above studies
are conducted with a fixed number of random permutations,
nrand = 100, and a projection dimension of dk = 40.
Here, we investigate the impact of these two parameters.
Random permutations in the embedding dimension help
encode physical knowledge in the data by ensuring that
features in the embedding space are not tied to a specific
sequence order. This allows the model to disregard sequence
effects in the embedding dimension and instead focus on
learning spatial dependencies across tokens, which enhances
generalization. Meanwhile, the projection dimension dk
determines the level of information compression. As shown
in Table 2, model performance improves monotonically with
increasing nrand and dk, eventually saturating when both
parameters become sufficiently large.

Interpretable physics discovery. To demonstrate the phys-
ical interpretability of the learned kernel, we present in the
first row of Figure 2 the ground-truth microstructure b(x), a
test loading field instance g(x), and the corresponding solu-
tion p(x). By summing the kernel strength along each row,
one can discover the interaction strength of each material
point x with its neighbors. Since this strength correlates
with the permeability field b(x), the underlying microstruc-
ture can be recovered. The bottom row of Figure 2 shows
the discovered microstructure for this test case. Due to the
continuous nature of the learned kernel, the discovered mi-
crostructure appears smoothed, necessitating a thresholding
step to distinguish the two-phase structure. The discovered
microstructure (bottom-middle plot) matches well with the
hidden ground-truth microstructure (top-left plot), except
near the domain boundary. This discrepancy arises from
the applied Dirichlet-type boundary condition (p(x) = 0 on
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Table 2. Parametric studies on the effect of the number of random
permutations and the size of dk. A 2-layer NIPS with 441 tokens
is adopted for demonstration.

Case nrand ntrain Test error

dk = 40

1 90 42.04%
2 180 28.98%
5 450 18.37%

10 900 9.02%
25 2250 3.52%
50 4500 2.53%

100 9000 2.28%

Case dk ntrain Test error

nrand = 50

5 4500 14.67%
10 4500 6.93%
20 4500 4.03%
30 4500 3.01%
40 4500 2.53%
50 4500 2.45%

Figure 2. Interpretable microstructure discovery in experiment 1.

∂Ω) in all samples, which prevents the measurement pairs
(p(x), g(x)) from containing information near ∂Ω, making
it impossible to identify the kernel at the boundaries.

With additional physics knowledge, one can quantitatively
assess the interpretability provided by the recovered ker-
nel. Specifically, the learned kernel should correspond
to K−1, where K is the stiffness matrix of (11). Given
this, the underlying permeability field b(x) can be re-
covered by solving the following optimization problem:
B∗ = argminB

∑
i,j

∣∣∣∣K−1
B [i, j]−K−1[i, j]

∣∣∣∣2, where
B = [b(x1), · · · , b(xN )] denotes the pointwise value of b at
each grid point, and KB [i, j] represents the corresponding
stiffness matrix obtained using a finite difference solver. In
Table 3, we report the relative errors of both K and b on an
11×11 grid to quantitatively assess interpretability. Beyond
the in-distribution (ID) setting where the microstructure b is
sampled from a Gaussian random field with covariance oper-
ator (−∆+52)−4 and the loading field g from (−∆+52)−1,
we also consider two out-of-distribution (OOD) scenarios:
1) ID microstructure b with OOD loading field g, sampled

from (−∆+ 52)−4, and 2) OOD microstructure b sampled
from (−∆ + 52)−1 with ID loading field g. Intuitively,
these OOD tasks are more challenging due to distributional
shifts. Nevertheless, NIPS consistently achieves the low-
est errors in both test performance and in the recovery of
the kernel and microstructure across nearly all scenarios.
Additionally, we consider a real-world data setting by in-
troducing additional noise into the dataset. In particular,
we perturb the training data with additive Gaussian noise:
g̃(x) = g(x) + ϵ(x), ϵ ∼ N (0, σ2), where g(x) denotes
the true source field and ϵ(x) represents zero-mean Gaus-
sian noise with variance σ2. Experiments are conducted
for noise levels σ = 0.01 and 0.1. As shown in Table 3,
while NIPS’s predictive accuracy naturally degrades with
increasing noise, it remains robust overall, demonstrating
resilience to observational perturbations.

4.2. Mechanical MNIST Benchmark

In this experiment, we study the learning of heterogeneous
and nonlinear material responses using the Mechanical
MNIST (MMNIST) dataset (Lejeune, 2020). MMNIST
consists of 70,000 heterogeneous material specimens un-
dergoing large deformations, each governed by a Neo-
Hookean material model with a varying modulus derived
from MNIST bitmap images. These material specimens are
subjected to random 2D uniaxial extension, shear, equibiax-
ial extension, and confined compression loadings, with their
corresponding material responses captured as prediction tar-
gets. The total number of tokens is thus 29×29×2 = 1682,
where “2” indicates the two in-plane directions.

In this and the following experiments, we directly compare
NIPS with the best-performing baseline, NAO. Since the
resolution is fixed at 29× 29 in the MMNIST dataset, we
evaluate model performance across different depths. As
shown in Table 4, NIPS consistently outperforms NAO in
both the 2-layer and 4-layer configurations, achieving per-
formance gains of 59.2% and 78.9%, respectively. This
underscores the advantages of implicitly learning token in-
teractions in Fourier space, where NIPS captures intrinsic
features (i.e., spectral modes) in data rather than relying on
extensive discrete token dependencies.

4.3. Synthetic Tissue Learning

In the final experiment, we demonstrate NIPS’s capability in
learning synthetic tissues with highly organized structures,
where collagen fiber arrangements vary spatially. Under-
standing the underlying hidden microstructural properties
within the latent space of the complex, high-dimensional
tissues is crucial, as they are inferred from experimental
mechanical measurements. In this setting, we use loading
data with a sequence length of 29× 29× 2 = 1682 as input
and aim to simultaneously learn a forward solution opera-
tor to predict the corresponding displacement field while
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Table 3. Test errors, kernel errors, and microstructure errors for the Darcy flow problem, where bold numbers highlight the best method.

Data Setting Case Model #param
Test
error

Kernel
error

Microstructure
error

ID No noise NIPS 327,744 4.09% 9.24% 7.92%
NAO 331,554 4.15% 10.35% 7.09%

OOD, Scenario 1 No noise NIPS 327,744 3.40% 10.63% 11.23%
NAO 331,554 6.86% 14.46% 20.37%

OOD, Scenario 2 No noise NIPS 327,744 4.98% 9.68% 16.06%
NAO 331,554 5.57% 10.94% 20.30%

ID Noise ϵ ∼ N (0, 0.012) NIPS 327,744 4.40% 9.47% 7.97%
OOD, Scenario 1 Noise ϵ ∼ N (0, 0.012) NIPS 327,744 3.88% 11.14% 13.63%
OOD, Scenario 2 Noise ϵ ∼ N (0, 0.012) NIPS 327,744 5.65% 10.21% 17.36%

ID Noise ϵ ∼ N (0, 0.12) NIPS 327,744 9.98% 21.77% 14.84%
OOD, Scenario 1 Noise ϵ ∼ N (0, 0.12) NIPS 327,744 3.84% 21.08% 19.87%
OOD, Scenario 2 Noise ϵ ∼ N (0, 0.12) NIPS 327,744 11.67% 22.77% 26.54%

Table 4. Test errors and number of trainable parameters for the
MMNIST benchmark. Bold numbers highlight the best method.

Case Model #param Test error

2 layers with
1682 tokens

NIPS 720,600 2.11%
NAO 722,748 5.17%

4 layers with
1682 tokens

NIPS 768,600 1.11%
NAO 763,548 5.27%

Table 5. Test errors and number of trainable parameters for experi-
ment 3, where bold numbers highlight the best method.

Case Model #param Test error

4 layers with
1682 tokens

NIPS 768,600 4.95%
NIPS-mlp 2,183,582 4.52%
NAO 763,548 5.62%

uncovering the underlying microstructures in the tissues.

We present our experimental results in Table 5, compar-
ing the 4-layer NIPS with NAO of the same depth. This
problem exhibits significant nonlinearity due to the inherent
complexity of the tissue microstructure. Nevertheless, NIPS
successfully learns an accurate solution operator, achieving
a test error within 5% and outperforming NAO by 11.9%.
Notably, NIPS’s predictive accuracy can be further improved
by passing the V vector through an MLP before its matrix
multiplication with the K vector in the final layer, enabling
nonlinear mixing of the loading data. To illustrate this idea,
we introduce a simple two-layer MLP with skip connection
and report the results in Table 5 as NIPS-mlp. This modifica-
tion improves accuracy by an additional 7.7%, with further
gains possible through careful MLP design. However, it also
nearly triples the number of trainable parameters. Given the

somewhat marginal performance improvement relative to
the increased model complexity, we opt not to pursue this
direction further.

5. Conclusion
We present NIPS, a novel attention-based neural operator
architecture for simultaneous forward PDE solving and gov-
erning physics discovery. NIPS integrates the attention
mechanism with a learnable kernel network for channel-
independent convolution in Fourier space, effectively elimi-
nating the need to compute and store large pairwise interac-
tions and amortizing the cost of handling spatial interactions
into the Fourier transform. Through reformulation in a lin-
ear attention perspective, NIPS harmonizes Fourier insights
with attention for scalable and interpretable physics dis-
covery. Our zero-shot learning experiments demonstrate
that NIPS generalizes effectively across both forward and
inverse PDE learning tasks, thereby enhancing physical in-
terpretability and enabling more robust generalization across
diverse physical systems.

Limitations: As discussed in NAO, the core idea of
attention-based operators is to extract prior knowledge
across multiple PDE tasks, in the form of an identifiable
kernel space. This approach assumes that the target kernel
shares structural similarities with those seen during training.
Consequently, performance may degrade when the target
kernel significantly deviates from the training distribution.
For example, if the operator is trained solely on diffusion
problems, where all kernels (i.e., stiffness matrices) are sym-
metric, the learned prior will inherently favor symmetric
structures. As a result, NIPS may struggle to predict the
stiffness matrix for systems with non-symmetric kernels,
such as those arising in advection-dominated problems.
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A. Data Generation and Additional Results
A.1. Experiment 1 - Darcy Flow

We generate synthetic data based on Darcy flow in a square domain Ω = [0, 1]2 subjected to Dirichlet boundary conditions.
The problem is described by the equation: −∇(b(x)∇p(x)) = g(x) with p(x) = 0 on all boundaries. This equation models
diffusion in heterogeneous fields, such as subsurface water flow in porous media, where the heterogeneity is represented
by the location-dependent conductivity b(x). Here, p(x) is the source term, and g(x) is the hydraulic height (the solution).
For each sample, we solve the equation on both 21× 21 and 41× 41 grids using an in-house finite difference code. We
consider 100 random microstructures, each consisting of two distinct phases. In particular, we sample from a Gaussian
random field with zero mean and covariance operator (−∆+ 52)−4 for the in-distribution (ID) scenario, and (−∆+ 52)−1

for the out-of-distribution (OOD) scenario. For each sample ξ, we divide the square domain into two subdomains, with
conductivities b(x) = 12 when ξ(x) < 0 and b(x) = 3 when ξ(x) ≥ 0. Additionally, we generate 100 distinct source
functions g(x) using a Gaussian random field generator with zero mean and covariance operator (−∆ + 52)−1 for the
ID case, and (−∆+ 52)−4 for the OOD case. For each microstructure, we solve the Darcy problem with all 100 source
terms, yielding a dataset of N = 10, 000 function pairs in the form of {pi(xj), gi(xj)}Ni=1, where j = 1, 2, · · · , 441 for the
21× 21 mesh and j = 1, 2, · · · , 1681 for the 41× 41 mesh, with xj denoting the discretization points on the square domain.

In operator learning, we note that the permutation of function pairs in each sample should not alter the learned kernel, i.e.,
K[u1:d, f1:d] = K[uσ(1:d), fσ(1:d)] , (12)

where σ is the permutation operator. To address this, we augment the training dataset by permuting the function pairs in
each task. Specifically, with 100 microstructures (tasks) and 100 function pairs per task, we randomly permute the function
pairs and take 100 different permutations per task. This process generates a total of 10,000 samples (9,000 for training and
1,000 for testing) in the form of {uη

1:100,f
η
1:100}

10,000
η=1 .

We demonstrate the scalability of NIPS using larger discretizations (e.g., 121 × 121 with 14,641 tokens in total), and
compare its per-epoch runtime and peak GPU memory usage with the best-performing baseline, NAO. The results are
summarized in Table 6, where “x” indicates that the method exceeds memory limits on a single NVIDIA A100 GPU with 40
GB memory due to the explicit computation of spatial token interactions. Compared to the quadratic NAO that fails at 3.7k
tokens and the linear NAO that fails at 6.5k tokens, NIPS can easily scale up to 15k tokens on a single A100 GPU. Note
that the analysis is performed on a single GPU. To further accelerate training, one can utilize multiple GPUs and leverage
distributed training frameworks, such as PyTorch’s Distributed Data Parallel (DDP) module.

Table 6. Scalability demonstration via per-epoch runtime and peak memory footprint for the Darcy flow problem. All models are 4-layer.
The per-epoch runtimes for both the original quadratic attention and the re-formulated linear attention are reported and separated by “/”.
“x” denotes exceeding memory limits on a single NVIDIA A100 GPU with 40 GB memory.

# tokens 441 1,681 3,721 6,561 10,201 14,641

Per-epoch runtime (s) NIPS 2.5 8.4 17.1 25.1 45.6 65.66
NAO 7.8/2.5 58.8/11.8 x/20.9 x/x x/x x/x

Peak memory usage (GB) NIPS 0.46 1.68 3.68 6.46 10.04 14.39
NAO 2.47/0.66 32.61/5.69 x/25.53 x/x x/x x/x

We repeat the experiments three times with randomly selected seeds in the first case of experiment 1, using NIPS and the
major baseline models including NAO and AFNO. The results are reported in Table 7. Consistent with the previous findings,
NIPS outperforms the best baseline by 28.9%.

Table 7. Test errors and number of trainable parameters for the Darcy flow problem. Bold numbers highlight the best method.
Model NIPS NAO AFNO
Test error 2.31%±0.03% 3.25%±0.14% 52.92%±0.72%
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A.2. Experiment 2 - Mechanical MNIST benchmark

Mechanical MNIST is a benchmark dataset of heterogeneous materials undergoing large deformation, modeled by Neo-
Hookean material with a varying modulus derived from MNIST bitmap images (Lejeune, 2020). It contains 70,000 material
specimens, each governed by the Neo-Hookean model with a modulus varying according to the MNIST images. Figure 3
illustrates samples from the MMNIST dataset, including the underlying microstructure, randomly selected loading fields,
and the corresponding displacement fields in the two in-plane directions.

(a) MMNIST material microstructure

(b) Exemplar loading and the corresponding displacement field in x direction

(c) Exemplar loading and the corresponding displacement field in y direction

Figure 3. Illustration of exemplar MMNIST samples in experiment 2. (a): material parameter field corresponding to different b. (b):
displacement fields (second row) ux corresponding to the same loading field (first row) fx. (c): displacement fields (second row) uy

corresponding to the same loading field (first row) fy .

A.3. Experiment 3 - Synthetic Tissue Learning

We generate synthetic tissue data by sampling the fiber orientation distribution for each sample, which consists of two
segments with orientations α1 and α2 on each side, respectively, separated by a line passing through the center of a square
domain. The values of α1 and α2 are independently sampled from a uniform distribution over U [0, 2π], and the centerline’s
rotation is sampled from U [0, π]. We generate 500 material sets, each containing 100 loading/displacement pairs, and divide
these into training and test sets with a 450/50 split. The loading in this dataset is taken as the body load, f(x). Each instance
is generated as the restriction of a 2D random field, ϕ(x) = F−1(γ1/2F(Γ))(x), where Γ(x) is a Gaussian white noise
random field on R2, γ = (w2

1 + w2
2)

− 5
4 represents a correlation function, and w1 and w2 are the wave numbers on x and y

directions, respectively. The operators F and F−1 denote the Fourier transform and its inverse, respectively. This random
field is expected to have a zero mean and covariance operator C = (−∆)−2.5, with ∆ being the Laplacian under periodic
boundary conditions on [0, 2]2, and we then restrict it to Ω. For details on Gaussian random field sample generation, we
refer readers to Lang & Potthoff (2011). Finally, for each sampled loading field fi(x) and microstructure field b(x), we
solve for the displacement field ui(x) on the entire domain.
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B. Implementation Details and Further Discussion on Baselines
The configuration of each baseline is detailed below, where the parameter choice of each model is selected by tuning the
number of layers and the width (channel dimension), ensuring that the total number of parameters remains within the same
order of magnitude. We follow the two key principles in McGreivy & Hakim (2024) for fair comparisons: (1) evaluating
models at either equal accuracy or equal runtime, and (2) comparing against an efficient numerical method. First, we
emphasize that our comparisons focus on state-of-the-art (SOTA) machine learning methods rather than standard numerical
solvers used in data generation. Specifically, we evaluate our proposed model, NIPS, against NAO, its variants, and AFNO,
which are established baseline models in the field. To ensure fairness (rule 1), we maintain a comparable total number of
trainable parameters across models, as large discrepancies could lead to misleading conclusions. Within this constraint,
we assess (1) per-epoch runtime to measure computational efficiency and (2) test errors to evaluate prediction accuracy.
Regarding rule 2, we select SOTA neural operator models as baselines to demonstrate the advantages of NIPS in accuracy
and efficiency. These models represent the strongest available baselines for learning-based PDE solvers. Therefore, our
experimental setup adheres to the principles outlined in McGreivy & Hakim (2024).

• NAO: We use a 4-layer NAO model with LayerNorm applied across both the token and projection dimensions in the
first layer, but only across the projection dimension in subsequent layers. Both the original quadratic attention and the
reformulated linear attention are tested. We parameterize the kernel network WP,u and WP,f with a 3-layer MLP with
hidden dimensions (32, 64) and LeakyReLU activation functions.

• NAO-f: The NAO-f model follows the same configuration as NAO, except that LayerNorm is applied across both the
token and projection dimensions in all layers.

• NAO-W p: The NAO-W p model follows the same configuration as NAO, except that a learnable projection weight of
size [2× ntokens, 2× ntokens] is added to each iterative layer.

• AFNO: We closely follow the setup in Guibas et al. (2021) and stack 4 AFNO layers together to form the final AFNO
model. For each AFNO layer, the number of blocks is set to 1, and the channel dimension size is set to the embedding
size with the hidden size factor equal to 3. All other parameters such as the sparsity threshold and the hard thresholding
fraction are set to the default values of 0.01 and 1, respectively.

Note that NIPS is conceptually related to the Performer (Choromanski et al., 2020), which introduces kernel-based approx-
imations for efficient self-attention. Performer replaces the standard softmax attention with positive orthogonal random
features, enabling linear scaling with respect to sequence length. While NIPS similarly aims to mitigate the quadratic
complexity of self-attention, NIPS achieves this through a Fourier-domain reformulation that leverages convolutional
structure. Unlike Performer’s randomized feature mappings, NIPS deterministically decomposes attention using spectral rep-
resentations, making it particularly well-suited for physics-based PDE learning. Additionally, NIPS is also related to Graph
Neural Operators (GNOs) (Li et al., 2020a), which provide a graph-based formulation for learning nonlocal interactions
in operator learning tasks. GNOs use graph message passing to propagate information over irregular domains, effectively
capturing spatial dependencies. In contrast, NIPS operates in the Fourier domain, leveraging spectral representations to
encode long-range dependencies in a continuous and structured manner. While graph-based architectures such as GNOs and
NAO can learn operators on discretized graph structures, our Fourier-based formulation provides a leveraged efficiency on
structured grids.
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