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Abstract

Deep neural networks have been shown to be vulnerable to backdoor attacks, in
which the adversary manipulates the training dataset to mislead the model when the
trigger appears, while it still behaves normally on benign data. Clean label attacks
can succeed without modifying the semantic label of poisoned data, which are more
stealthy but, on the other hand, are more challenging. To control the victim model,
existing works focus on adding triggers to a random subset of the dataset, neglecting
the fact that samples contribute unequally to the success of the attack and, therefore
do not exploit the full potential of the backdoor. Some recent studies propose
different strategies to select samples by recording the forgetting events or looking
for hard samples with a supervised trained model. However, these methods require
training and assume that the attacker has access to the whole labeled training set,
which is not always the case in practice. In this work, we consider a more practical
setting where the attacker only provides a subset of the dataset with the target
label and has no knowledge of the victim model, and propose a method to select
samples to poison more effectively. Our method takes advantage of pretrained self-
supervised models, therefore incurs no extra computational cost for training, and
can be applied to any victim model. Experiments on benchmark datasets illustrate
the effectiveness of our strategy in improving clean-label backdoor attacks. Our
strategy helps SIG reach 91% success rate with only 10% poisoning ratio.

1 Introduction

Modern deep learning models have exhibited tremendous success in solving challenging tasks,
ranging from autonomous driving and face recognition to natural language processing. Training
these large models requires massive training data, which is time-consuming, labor-intensive, and
incurs huge costs to collect and annotate. Therefore, users usually prefer to employ third-party or
open-source data. Recent studies have shown that deep models are vulnerable to backdoor attacks in
which triggers are injected into the training process [10, 16, 9]. This poses a serious threat since a
malicious data supplier can provide poisonous data such that the model trained on it behaves normally
on benign data, but returns the output that the attacker wants when the trigger appears.

Most existing backdoor attacks rely on data poisoning and can be classified as either dirty-label or
clean-label, depending on whether the label of poisoned data changes. For dirty-label attacks [10, 4,
22], the adversary adds trigger into data and points its label to their desired target label. Dirty-label
backdoor attacks are effective but are easy to detect by humans during data verification since the
semantics of the labels are changed. On the other hand, clean-label attacks [29, 1, 24] poison training
data without changing the label making them more difficult to detect. However, compared to the
dirty-label case, it is also much more difficult to mount clean-label backdoor attacks as one needs to
poison more training data and the resulting models can have poor performance on clean data. In this
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paper, we focus on improving the data effectiveness of backdoor attacks: specifically, to increase the
attack performance given a small budget for the number of poisoned samples.

Table 1: Properties of selection strategy. “✗” indi-
cates the method lacks the property, “✓” indicates
the method has the property.

Method trigger-
agnostic

model-
agnostic

no training
required

partial
data

access

FUS [31] ✗ ✓ ✗ ✗
Hard samples [8] ✓ ✓ ✗ ✗
BASEL ✓ ✓ ✓ ✓

Prior backdoor attacks implicitly assume all
training samples contributed equally to the at-
tack success, and perform data poisoning uni-
formly randomly over training data. However,
recent research [13, 12, 27] reveals that among
training data points, some are more important
while some others are redundant and can be dis-
carded from the training set. One can ask a
similar question for backdoor learning: “Can se-
lectively, rather than randomly, poisoning some
training data points lead to more effective at-
tacks?” [31] and [8] studied this problem and
proposed strategies to improve the efficiency in selecting samples to poison by recording forgetting
events or looking at loss values to identify hard samples. However, these methods have several
drawbacks. First, they need to train a model on the dataset from scratch, which is time-consuming
and computationally expensive. Second, they require access to the whole training data to train the
surrogate model, which is not applicable in some real-world scenarios where the user collects data
from multiple sources, and the attacker has no knowledge of training data other than that it supplies.

This paper considers a more practical setting where the attacker only provides data for the target class.
We propose Backdoor Attacks by SElective Poisoning with Limited Information (BASEL), a simple
yet effective strategy for selecting samples to be used in clean-label attacks.

For the victim model to learn the backdoor, it needs to focus on the trigger rather than other features
in the data [29]. Intuitively, if the samples with triggers are difficult to learn, the model will use
triggers as shortcuts to minimize the objective function. As a result, the model is more prone to
learning the triggers. To achieve such a goal without having access to the full training dataset or
victim model, we propose a novel data selection strategy that uses self-supervised, pretrained models
to identify hard training samples and add triggers to these samples. Using self-supervised, pretrained
models makes our method (i) independent of the trigger and the victim model, (ii) does not require
training, and (iii) does not require knowledge about other classes in the training set. Table 1 compares
our method with existing methods.

In summary, our contributions include:

• BASEL, a new simple, model-agnostic, trigger-agnostic data selection strategy, which exploits
pretrained models to select data points to poison for more successful clean-label backdoor attacks,
without training or access to other classes.

• Extensive experiments on benchmark datasets to demonstrate the effectiveness of our method.

2 Related Works

2.1 Backdoor Attacks

Backdoor attacks aim to insert a malicious backdoor into the victim model. The first attempt is
BadNets [10], where the attacker adds a predefined image patch to some images in the training set
and changes the labels of these images to the target class. Follow-up works introduce various forms
of the Trojan horse to enhance the stealthiness and the effectiveness of the attack, examples include
blended [4], dynamic [25], warping-based [22], input-aware [21, 17], and learnable trigger [6]. These
attacks are called dirty-label attacks as they change the true labels of poisoned examples.

Despite the success in manipulating the victim, dirty-label attacks can be easily spotted through
human inspection. Clean-label backdoor attacks are attack methods that perverse the original labels
of poisoned data points, and thus are more stealthy than dirty-label attacks. [29] suggested that using
dirty-label attack triggers is ineffective for implementing clean-label attacks and proposed a data
preprocessing method for implementing clean-label attacks. In the meantime, stronger triggers have
been proposed. SIG [1] uses sinusoidal signals as backdoors. Refool [19] uses physical reflection
models to implant reflection images into the dataset. HTBA [24] optimizes the input such that it
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looks similar to the target label in the pixel space but close to the malicious image in the latent space.
However, these attacks require a high poisoning rate and/or result in inferior success rates.

Research in backdoor attacks focuses on designing the trigger pattern, ignoring the possibility that
benign samples chosen to attack can also play an important role. FUS [31] first showed that the
number of forgetting events is an indicator of the contribution to the attack, and proposed a data
selection strategy based on forgetting events that resulted in a better attack success rate. [8] identified
three classical criteria to pick samples for clean-label attacks, namely loss value, gradient norm, and
forgetting event. To select samples for poisoning, these methods require a surrogate model trained on
a dataset with all training set classes, which is expensive and not always feasible.

2.2 Backdoor Defenses

Along with the emergence of backdoor attacks, defense methods to protect models are an active
research area. Backdoor defenses can be categorized into two lines: backdoor detection and backdoor
mitigation. Detection methods can be performed by examining the training dataset [23], verifying if
the model is safe to deploy [3, 30], or spotting poisoned test samples [7]. Mitigation methods aim to
reduce the backdoor effect in the model [18, 15]. From a security perspective, the adversary should
not only succeed in attacking the model but also in dodging backdoor defenses.

3 Threat Model

In this section, we describe the threat model being studied in this paper.

The attacker’s goal. The objective of the adversary is to inject a trigger into the victim model,
such that the model acts normally on benign data, but misclassifies with the presence of the trigger.
For instance, a facial recognition system that recognizes people to grant them certain permissions,
but when being poisoned with sunglasses as a trigger, it will give full authority to anyone wearing
sunglasses.

The attacker’s ability. We focus on data-poisoning scenarios, where the attack poisons the dataset
and supplies it to the victim. In the above example, to build a facial recognition model each person
is asked to provide their photos. Malicious users can inject triggers into their images to control the
model output for malicious purposes but they are unable to manipulate data provided by other users.
In general, we consider a practical setting where the adversary serves as a single client in the supply
chain, it only provides and controls data for the class it wants to attack. Therefore, the adversary can
only select a subset of images with the target label to insert the trigger.

The attacker’s knowledge. The adversary only has access to data for the target class that it provides.
No information of the victim model’s architecture, the training process, or data from other clients is
exposed to the attacker.

4 Method

4.1 Problem Formulation

Let fθ : X → Y be a deep neural network that maps from an image x ∈ X to a label y ∈ Y , and
Dc = {(x1, y1), . . . , (xn, yn)} be the clean training dataset. In backdoor attacks, the adversary first
defines a trigger injecting function T : X → X that implants a trigger into an input and then applies
T to m images in Dc.

Let S be the target class. The attacker selects a subset S′ ⊂ S of size m and adds triggers to samples
in S′. After injecting the trigger into S′ (and leaving the other examples in S intact), the attacker
gives its data to the victim and the victim combines that data with data from other sources to create a
poisoned dataset Dp. The victim then trains the model on Dp with the standard training pipeline to
obtain the model fθ∗ . The goal of the attacker is that any model that is trained on Dp would return
correct predictions on unpoisoned examples but predict the target label yt on any example on which
the trigger function T (·) is applied. Formally, for a benign input x with the correct label y, we have

fθ∗(x) = y, fθ∗(T (x)) = yt.
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The performance of backdoor attack methods is usually evaluated via two metrics: benign accuracy
(BA) and attack success rate (ASR). BA is the accuracy of the infected model on benign test samples.
ASR is the proportion of attacked test samples that are successfully predicted as the target label by
the infected model. In addition, stealthiness is an important factor for backdoor attacks, which is
reflected by small poisoning rate, imperceptibility of the backdoor, and resistance against backdoor
defense methods.

4.2 Selecting Samples with Self-Supervised models

We start with a simple question: “Why are dirty-label attacks more effective than clean-label attacks?”.
The difference between them is the samples selected to insert the triggers. For dirty-label attacks,
poisoned data comes from various labels, its features are dissimilar to those in the target class. For
example, if the adversary wants to attack class 0, dirty-label attacks can choose samples from class
0, 1, 2, . . . , while clean-label attacks only pick samples in class 0.

During the training process, the model looks for common features to form the decision boundary.
Therefore, an example containing features different from other examples in a class is harder to learn.
When the adversary injects a trigger and alters the label, the model can not rely on existing features in
the image to optimize the objective function, instead it favors backdoor features, leading to a higher
attack success rate.

Based on that intuition, we search for and add triggers to hard samples in the target class to achieve
stronger clean-label attacks. A straightforward solution is to train a surrogate model on the training
set and examine the behavior of the model on each data point. For example, a sample with a higher
loss value is likely to be more difficult to learn. However, this method violates our threat models as
it requires information from other classes, and training a surrogate model is also computationally
expensive.

Algorithm 1 Sample selection algorithm

Input: a self-supervised model g,
target class dataset S, attack budget m

Output: S′ ⊂ S where |S′| = m
for xi ∈ S do

zi ← g(xi)
end for
for xi ∈ S do

Compute s(xi) by Equation 1
end for
S′ ← set of m samples with the highest
s(x)

We propose a simple strategy called Backdoor
Attacks by SElective Poisoning with Limited Infor-
mation (BASEL) to find examples that are dissim-
ilar to other data in the target class by exploiting
pretrained self-supervised models. These samples
are far from other samples in the feature space and
can be identified by extracting feature representa-
tions, and then computing the distance between them.
To obtain discriminative and task-agnostic features,
we use self-supervised models. Let g be a feature
extractor, we define the distance between two sam-
ples xi, xj by cosine similarity between their feature
zi = g(xi), zj = g(xj):

d(xi, xj) =
z⊺i zj
∥zi∥∥zj∥

.

We apply the classical k-NN algorithm to calculate a score function s(x) as the mean of distances
between x and its k-nearest neighbors x1, . . . , xk in the target class in terms of the distance d(·, ·):

s(x) =
1

k

k∑
i=1

d(x, xi). (1)

With an attack budget of m, our strategy collects m samples with the highest scores. The detailed
algorithm is shown in Algorithm 1.

5 Experiments

In this section, we empirically evaluate the performance of our selection strategy.

5.1 Experimental Setup

Dataset. We consider two widely used benchmark datasets: CIFAR10 [14] and GTSRB [28].
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Table 2: The attack success rate (ASR) of clean-label attacks on CIFAR10 with 1%, 5% and 10% of
the target class being poisoned.

Model Strategy BadNets Blended SIG

1% 5% 10% 1% 5% 10% 1% 5% 10%

ResNet18 Random 10.27 12.60 17.21 21.00 38.81 48.36 39.65 67.33 71.26
BASEL 11.58 19.82 28.72 31.81 62.40 75.88 71.81 86.25 91.66

VGG19 Random 10.28 16.49 19.65 14.08 26.06 35.41 17.64 43.76 69.35
BASEL 11.73 29.43 29.91 15.79 39.49 52.15 19.69 77.13 84.23

Table 3: The attack success rate (ASR) of clean-label attacks on GTSRB with 1%, 5% and 10% of
the target class being poisoned.

Model Strategy BadNets Blended SIG

1% 5% 10% 1% 5% 10% 1% 5% 10%

ResNet18 Random 6.05 6.12 6.55 33.24 53.78 62.53 43.12 57.72 63.77
BASEL 5.89 6.85 7.40 44.29 55.07 67.09 43.46 59.02 67.09

VGG19 Random 6.42 6.68 7.48 35.55 46.12 52.72 21.61 40.42 48.98
BASEL 7.21 7.26 11.12 39.16 55.19 60.17 38.19 51.43 56.19

Models. For the victim model, we consider ResNet18 [11] and VGG19 [26].

Attacks. We adapt trigger patterns from BadNets, Blended and SIG.

Strategy. For comparison, we apply two strategies: the baseline random sample selection and
BASEL with VICReg [2] as a feature extractor.

5.2 Effectiveness of BASEL

Table 4: The clean accuracy (BA) of random strategy
and BASEL on CIFAR10 and GTSRB with various
poisoning rate.

Model Strategy CIFAR10 GTSRB

1% 5% 10% 1% 5% 10%

ResNet18 Random 95.24 94.94 95.11 94.37 93.46 94.90
BASEL 95.15 95.17 95.12 94.32 94.19 93.75

VGG19 Random 91.92 91.71 91.53 92.98 93.60 93.01
BASEL 91.82 91.76 91.82 93.17 93.00 93.35

We perform clean-label attacks on CI-
FAR10 with the random strategy and
BASEL, and report the attack success rate
in Table 2. As can be observed, our strategy
outperforms the random baseline on all the
attacks, models and poisoning rates. These
results validate our intuition, showing there
exist samples in the dataset that are more
suitable to perform the attack. Although
with very limited information, given the tar-
get class data only, BASEL still boosts the
attack success rate of clean-label attacks
significantly. For instance, with BadNets
trigger, the random strategy reaches less than 20% success rate and BASEL increases it by more
than 10%. For Blended and SIG, BASEL consistently improves the attack success rate by a large
margin on both models, up to 30%. Specifically, with just 10% poisoning rate on the target class (1%
of the whole dataset being poisoned), BASEL helps SIG achieve more than 90% success rate when
attacking ResNet18.

Furthermore, we study the effect of BASEL on GTSRB, which is a challenging dataset. It has
43 classes with imbalanced data, and more importantly, samples in different classes are less dis-
criminative compared to CIFAR10. Table 3 illustrates that our method still boosts the performance
remarkably. For instance, with 5% poisoning rate of the target class, BASEL improves the success
rate by around 10% for Blended and SIG on VGG19.

Finally, we evaluate the effect of BASEL to the clean performance of the model. Table 4 exhibits
the clean accuracy when applying random strategy and BASEL with SIG attack on CIFAR10 and
GTSRB, implying that BASEL causes no degradation to the performance on benign data. The results
for other triggers are similar.
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(a) Performance against backdoor detection method
STRIP. The behavior of the infected model is similar
between clean and backdoor data, showing the stealthy
of BASEL under STRIP detector.
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(b) Performance against backdoor mitigation method
Fine-pruning. The plot of clean accuracy and attack
success rate during filter pruning shows the resistance
of BASEL to Fine-pruning.

Figure 1: Performance of BASEL against backdoor defenses

5.3 Performance against Backdoor Defenses

We evaluate our strategy with backdoor defense methods, which are STRIP [7] (backdoor detection)
and fine-pruning [18](backdoor mitigation). We test these defenses on a ResNet18 model trained on
CIFAR10 with 10% of the target class being poisoned.

STRIP. This method is an inference-time defense by perturbing the input and examining the entropy
of the output. A sample with low entropy is more likely to be poisoned. Figure 1a visualizes the
entropy of the output of clean data and backdoor data with random strategy and BASEL. We observe
that with BASEL, the behavior of the poisoned model is similar between clean and backdoor data,
being stealthy under STRIP detector.

Fine-pruning. We evaluate the resistance of BASEL under Fine-pruning, which is a backdoor
mitigation method. Given a benign sample, it assumes that inactivated neurons are responsible
for backdoor features and gradually prunes these neurons. We plot the clean accuracy and attack
success rate during this process in Figure 1b, showing that BASEL is resistant to Fine-pruning and
consistently achieves higher ASR than the random strategy.

6 Conclusion

In this work, we study the sample selection problem in clean-label backdoor attacks. We propose
a selection strategy that works with a single class data only by exploiting self-supervised models
to select hard samples. Empirical results show that our method increases the attack success rate of
clean-label attacks significantly. Furthermore, our strategy is resistant to backdoor defenses. Finally,
it will be interesting to study the combination of our method and other preprocessing methods that
make samples harder to learn, and extend our strategy to dirty-label attacks in future works.
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Appendix

A Experimental Setup

A.1 Dataset

We conduct experiments on two widely used benchmark datasets: CIFAR10 [14] and GTSRB [28].

CIFAR10 contains images from 10 classes, with 50, 000 samples for the training set and 10, 000
samples for the test set.

GTSRB is a imbalanced dataset with 43 classes of traffic sign images, including 39, 209 samples for
training and 12, 630 samples for test.

A.2 Models

For the victim model, we consider ResNet18 [11] and VGG19 [26]. They are trained with
AdamW [20] optimizer for 300 epochs with cosine learning rate schedule. The initial learning
rate is set to 5e− 4 for ResNet18 and 1e− 4 for VGG19.

A.3 Attacks

We adapt two trigger patterns from dirty-label attacks, which are BadNets and Blended. For BadNets,
a checkerboard pattern [29] is added to the image. For Blended, we implant a Hello Kitty image with
the blended rate α = 0.2. Also, we evaluate our strategy on SIG, a clean-label attack, with ∆ = 20
and f = 6. We perform the clean-label attacks to class 0 for CIFAR10 and class 1 for GTSRB. These
attacks inject triggers to 1%, 5% and 10% of the target class, which are 0.1%, 0.5%, 1% poisoning
rate with respect to the whole dataset in CIFAR10, and 0.04%, 0.19%, 0.38% in GTSRB.

A.4 Strategy

For comparison, we apply two strategies: the baseline random sample selection and BASEL. To get
the vector representation for BASEL, we employ VICReg [2], a self-supervised model pretrained on
ImageNet [5] with ResNet50 as the architecture.
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