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ABSTRACT

The need for algorithms able to solve Reinforcement Learning (RL) problems
with few trials has motivated the advent of model-based RL methods. The re-
ported performance of model-based algorithms has dramatically increased within
recent years. However, it is not clear how much of the recent progress is due to im-
proved algorithms or due to improved models. While different modeling options
are available to choose from when applying a model-based approach, the distin-
guishing traits and particular strengths of different models are not clear. The main
contribution of this work lies precisely in assessing the model influence on the
performance of RL algorithms. A set of commonly adopted models is established
for the purpose of model comparison. These include Neural Networks (NNs),
ensembles of NNs, two different approximations of Bayesian NNs (BNNs), that
is, the Concrete Dropout NN and the Anchored Ensembling, and Gaussian Pro-
cesses (GPs). The model comparison is evaluated on a suite of continuous con-
trol benchmarking tasks. Our results reveal that significant differences in model
performance do exist. The Concrete Dropout NN reports persistently superior
performance. We summarize these differences for the benefit of the modeler and
suggest that the model choice is tailored to the standards required by each specific
application.1

1 INTRODUCTION

Reinforcement Learning (RL) aims to learn an optimal strategy in a sequential decision-making set-
ting through the interactions between an agent and their environment (Li, 2017). In recent years,
Deep RL has been proven capable of handling high-dimensional problems catering to dramatically
accelerated progress in the domain of data-driven policy planning, allowing to solve previously in-
tractable problems (Arulkumaran et al., 2017; Mnih et al., 2015; Silver et al., 2017). Nevertheless,
the large amount of training data that is required has led to limited adoption in practical real-life set-
tings (Polydoros & Nalpantidis, 2017). As a result, Model-Based Reinforcement Learning (MBRL)
has gained increased attention as this approach is expected to close the gap between simulated and
real world tasks (Nagabandi et al., 2020), due to the higher sample-efficiency compared to model-
free algorithms (Chua et al., 2018; Gal et al., 2016; Janner et al., 2019; Nagabandi et al., 2018; Wang
et al., 2019). MBRL is characterized by the utilization of a model, in most cases a Neural Network
(NN) or a Gaussian Process (GP), to learn the dynamics of the agent’s environment. The learned
model is exploited by an RL algorithm, which attempts to solve the underlying planning task.

While the performance of MBRL algorithms has been increasing dramatically in recent years, when
coming to the choice of an appropriate model, the decision remains not trivial. Several authors
proposed diverse possibilities for structuring model-based algorithms. Nagabandi et al. (2018) ap-
plied a deterministic NN. Deisenroth & Rasmussen (2011) used Gaussian Processes. Later, Gal
et al. (2016) improved the previous method by leveraging Bayesian NNs relying on the Monte Carlo
(MC) Dropout approximation (Gal & Ghahramani, 2016). Janner et al. (2019) and Chua et al.

1Code available on GitHub. The link will be published after the review.
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(2018) exploited an ensemble of probabilistic NNs. However, it is not common practice to formally
investigate the choice of model within MBRL and it is still unclear whether substantial differences
exist between available model classes. As a result, it is not clear how much of the recent progress
in MBRL is due to improved algorithms or due to improved models. It is therefore evident that a
benchmark is needed for providing clarity on the matter.

The main contribution of this work is to establish such a benchmark. We examine a set of mathe-
matical methods that are commonly used as models in MBRL to assess the model influence on RL
algorithms. The evaluated models are Neural Networks, ensembles of Neural Networks, Bayesian
Neural Networks, and Gaussian Processes. The model comparison is carried out on a suite of 6
different continuous control environments of increasing complexity that are commonly utilized for
the performance evaluation of RL algorithms. Since sample-efficiency is the main reason to choose
model-based algorithms, we are particularly interested in evaluating how fast a model-based agent
can achieve good performance on a specific task. As such, each task is run for a limited number
of trials. Besides, we are also interested in overall performance, model robustness, and computing
time.

Works that formally assess model influence are lacking in MBRL literature. To the best of our
knowledge, Chua et al. (2018) and Wang et al. (2019) represent the only ones that even got close
to our intent. Chua et al. (2018) present one of scarce - if not the only - attempt to compare their
proposed method with different modeling options. However, the work in Chua et al. (2018) does
not aim to provide a benchmark to assess model influence on MBRL given the limited number of
tasks and evaluated models. Wang et al. (2019) recognized the difficulty in offering an objective
comparison between available MBRL methods. In order to quantify scientific progress, the authors
proposed the first benchmark in MBRL. However, their work differs from ours as it focuses on
comparing the algorithms rather than the models. While it allowed further steps in understanding
MBRL, model choice still remains unclear. In contrast to these prior works, we focus on the aspect
of model class selection and aim to assess their influence on the performance of MBRL algorithms.

2 BACKGROUND

In RL problems an agent observes the environment’s state st ∈ S, it selects an action at ∈ A and
receives the reward rt for the decision made. Next, the environment transitions to the next state
st+1 ∈ S and a new step of the sequential decision making problem initiates. The goal is to learn
a policy, i.e. a sequence of actions over a prescribed horizon, that maximizes the sum of future
rewards (Sutton & Barto, 2018).

Formally, a RL problem can be stated as a Markov Decision Process (MDP) (Van Otterlo & Wiering,
2012). In this work, we consider RL problems that can be described as fully observable MDPs
defined by the tuple (S,A, f, r,H). Here, S and A are the state and the action space, respectively,
which are both assumed continuous. Function f : S × A → S is the deterministic transition
dynamics f(st, at) = st+1 of the environment, while r : S × A → R represents the reward
function r(st, at) = rt. In MBRL, this is usually assumed known (Nagabandi et al., 2018; Wang
et al., 2019). Finally, H is the horizon of the problem: the considered MDPs are episodic, namely
the state is reset after each episode of lenght H .

In MBRL, the interactions with the environment are collected in a dataset D = {(st, at, st+1)}.
The agent thus learns a model of the transition dynamics of the environment f̂(st, at) = st+1.
This is exploited to simulate the environment and predict the next states for a sequence of actions.
Hence, the learned model can be used for planning the optimal sequence of actions to be executed
in this environment. In order to define such a policy, techniques such as stochastic or trajectory
optimization are commonly applied.

Finally, central to MBRL is the concept of uncertainty. Following Kendall & Gal (2017) we distin-
guish two kinds of uncertainty. Aleatoric or statistical uncertainty is the variance produced by some
noise intrinsic in data. Epistemic or model uncertainty is the uncertainty over model parameters
and depends on the limited amount of training data available. Modeling the epistemic uncertainty
is crucial in MBRL to cope with an imperfect model and know when “the model does not know”
(Kendall & Gal, 2017). In addition, it can also drive agent exploration (see Section 4.3).
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3 MODELS

This section introduces the models utilized for our evaluation and the motivations that make them
interesting modeling choices within MBRL. Furthermore, these models have already been applied
successfully to MBRL problems (Nagabandi et al., 2018; Chua et al., 2018; Clavera et al., 2018; Gal
et al., 2017; Pearce et al., 2018; 2020; Deisenroth & Rasmussen, 2011; Deisenroth et al., 2013).

3.1 DETERMINISTIC NN

NNs are powerful models, which led to the rise of Deep Reinforcement Learning (Arulkumaran
et al., 2017). We refer to this model as fully deterministic: given the model parameters, there is a
unique prediction for a specific input. Besides, this model is not able to recover the full distribution
that generated the observations nor to model any kind of uncertainty (Chua et al., 2018). As all
other NN-based methods, it is also referred to as a model of finite capacity (Gal et al., 2016), which
needs to smooth over all data points. Moreover, NN-based models take several training steps for
learning, in contrast to GPs. On the other hand, NNs scale very well with dimensionality and are
able to handle complex tasks. The Deterministic NN is also the model adopted by the model-based
Deep RL pioneering work in Nagabandi et al. (2018) for learning the dynamics of the environment.
While many advances have been produced in recent years over this model, some of which are also
introduced in the following sections, it is still meaningful to select it for our comparison to draw a
baseline and understand whether these constitute actual improvements.

3.2 DETERMINISTIC ENSEMBLE

We define the Deterministic Ensemble as an ensemble of several deterministic NNs. It is well-known
that by aggregating a group of predictors, this leads in improved and more robust performance than
any single predictor alone (Zhou, 2019). Further, an ensemble of NNs extends the previously de-
scribed model by providing an estimate of model uncertainty: the variance of the networks’ predic-
tions is an approximate measure of the epistemic uncertainty (Beluch et al., 2018). This technique
has already demonstrated interesting results (Lakshminarayanan et al., 2016). While it is important
that the NNs are mutually independent, it was empirically proved that bootstrapping is unnecessary,
and the stochasticity of the optimizer and the random initialization of the weights make the NNs
sufficiently independent (Lee et al., 2015). However, the NNs that compose the ensemble are fully
deterministic models and do not present any inherent regularization (such as a prior distribution over
the weights). As a result, the NNs may converge to similar parameters, nullifying the benefits of the
ensemble. Furthermore, deterministic NNs are also more prone to overfit data compared to Bayesian
models (Blundell et al., 2015).

3.3 CONCRETE DROPOUT NN

Concrete Dropout (Gal et al., 2017) is a practical approximation for applying the framework of
Bayesian deep learning, which promises improved robustness and superior capability for well-
calibrated uncertainty estimates. In general, Bayesian NNs are probabilistic models which replace
the deterministic parameter values of classical NNs with entire parameter distributions over the
weights (MacKay, 1992). Given a prior distribution p(θ) and some data D = (x,y), the posterior
distribution p(θ|D) is computed via Bayes rule. Given new input data xnew, it is thus possible to
recover the posterior predictive distribution by marginalizing over all posterior parameters:

p(y|xnew, D) =

∫
θ

p(y|xnew, θ)p(θ|D) (1)

While it is possible to apply this framework exactly for small-scale problems, computing p(θ|D)
and p(y|xnew, D) is generally analytically intractable due to the large number of parameters and
to the nonlinear functional form of a NN (Blundell et al., 2015). If we assume p(θ|D) known, the
posterior predictive distribution is empirically recovered with MC approximation. Let f θ̂(xi) be the
output of the BNN for a sample θ̂ ∼ p(θ|D) and a given input xi. If one repeats the prediction
T times, every time a different sample from the posterior weight distribution is obtained, which
yields different outputs. That is, we are taking samples from the posterior predictive distribution
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f θ̂(xi) ∼ p(y|xi, D). Provided T is large enough, we can approximate the predictive mean as
follows:

E(y) ≈ 1

T

T∑
t=1

f θ̂(xi) (2)

Unfortunately, recovering p(θ|D) is an extremely challenging task and the need for frameworks that
may sufficiently approximate the posterior weight distribution has long limited the use of BNNs.
Concrete Dropout forms one of the two solutions we employ in this work.

Dropout is a technique widely adopted in deep learning for enhancing generalization and improving
performance in out-of-sample predictions (Hinton et al., 2012). At each training step, every pa-
rameter has a probability p to be turned off and a probability 1 − p to be turned on. As a result, a
different NN configuration is sampled at each training step. Gal & Ghahramani (2016) have proved
that turning on dropout at testing time (called MC dropout) can be interpreted as a variational infer-
ence approximation of BNNs with a Bernoulli variational distribution. While MC dropout gained
large popularity in supervised learning tasks, two reasons inhibited its application in RL. First, the
technique requires hand tuning over the dropout probabilities, with prohibitive computing time in
RL applications. Second, the dropout probability should be adapted to the data at hand, making this
operation also infeasible within RL where the amount of data changes over time. Ideally, the dropout
rate should be higher at the beginning of the RL training and it should decrease as the amount of
data increases. To this end, Gal et al. (2017) conceived the Concrete Dropout variant tailored for RL
applications. This can be seen as a continuous relaxation of the discrete dropout technique. Conse-
quently, the Concrete Dropout is able to use the derivative estimator to self-optimize the dropout rate
for each layer and at each training step, solving both the issues. The Concrete Dropout matches the
performance of hand-tuned MC dropout on several tasks and allows the use of BNNs with dropout
in RL tasks. Following Gal et al. (2017) and Kendall & Gal (2017), the NN output is decomposed
into:

f θ̂(x) = (ŷ, σ̂) (3)
The predictive mean distribution is then computed as in Equation 2, while the predictive variance is
approximated as:

Var(y) ≈

 1

T

T∑
i=1

ŷ2
i −

(
1

T

T∑
i=1

ŷi

)2
+

1

T

T∑
i=1

σ̂2
i (4)

The first term is the aforementioned epistemic uncertainty and it vanishes when θ̂i is a constant
for all i, i.e. when we have zero parameter uncertainty. The second term represents the aleatoric
uncertainty, namely the intrinsic noise in data.

3.4 ANCHORED ENSEMBLING

Anchored Ensembling (Pearce et al., 2020) represents the second candidate solution we adopt for
applying BNNs in practice. The technique approximates Bayesian inference through an ensemble of
NNs with parameters regularised around values drawn from an anchor distribution. This exploits a
procedure which falls into a family of Bayesian methods called Randomised MAP Sampling (RMS).
The RMS procedure follows the premise that addition of a regularisation term to a loss function
returns a MAP parameter estimate, namely a point estimate of the Bayesian posterior. Injecting
noise into this loss and sampling repeatedly (i.e. ensembling) results in a distribution of MAP
solutions approximating the true posterior. Pearce et al. (2020) prove that under two conditions,
partly present in NNs, their approximate method samples from the true posterior distribution. The
authors show that their method is able to estimate an epistemic uncertainty extremely close to the one
of a Gaussian Process (considered the ground truth). We particularly choose to employ this model
for the expected superior capacity in providing well-calibrated uncertainty estimates. Furthermore,
this model achieved competitive performance with other methods in supervised learning tasks and it
has already been used for RL applications (Pearce et al., 2018).

3.5 GAUSSIAN PROCESSES

GPs (Williams & Rasmussen, 2006) are probabilistic non-parametric models widely used for ap-
plying Bayesian inference in regression tasks. GPs can be defined as an infinite set of random
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variables, completely defined by a mean function µ and a covariance function (also called kernel) k:
given x, x′ ∈ X , p(x) ∼ GP(µ(x), k(x, x′)). It is thus a distribution over functions. Function µ is
often assumed equal to zero, since more complicated mean functions do not improve substantially
the performance. When the GP has not yet observed the training data, the prior distribution lies
around µ = 0, according to the previous assumption. When the GP receives the information, the
covariance matrix determines the functions, from the space of all possible functions, which are more
probable. The conditioning property constrains this set of functions to pass through each training
data. The GP model assigns a random variable to each point to predict and, through the marginali-
sation of each random variable, it computes the mean function value µ′

i and the standard deviation
σ′
i of the i-th test point, where µ′

i is no longer equal to zero. If a test point is located on the training
data, the function goes directly through it. Otherwise, the predictions are influenced by the training
data proportionally to their distance, according to the kernel.

This model has been selected as it represents the principal counterpart of NNs for learning the
dynamics of the environment in MBRL (Deisenroth & Rasmussen, 2011; Deisenroth et al., 2013).
Since BNNs of infinite width are proved to converge to GPs (Neal, 2012), they are also considered
the ground truth to evaluate the epistemic uncertainty estimation of approximate models. Moreover,
its infinite capacity makes this model able to learn and memorize all observed data without the need
of different training steps, in contrast to NN models (Gal et al., 2016). On the other hand, this model
is known to scale cubically with number of data points and it is also negatively affected by problem
dimensionality.

4 BENCHMARK PROCEDURE

This section describes the algorithm employed for the model comparison benchmark and it presents
all implementation details of the considered models. A pure MBRL algorithm is usually composed
of the general controller, the optimization algorithm, and the exploration policy. The choice of the
MBRL algorithm is crucial for the success of the work. It should be tailored to serve our model
comparison purpose, highlighting how well each model has learned the transition dynamics, while
still delivering good performance. Considering this trade-off is key.

As a general controller, we employ the widely adopted Model Predictive Control (MPC) (Nagabandi
et al., 2018; Chua et al., 2018; Wang et al., 2019), which is reported in Algorithm 1. The MPC
controller is key to reach good performance even with an imperfect dynamics model. Its peculiarity
is contained in Line 6, where only the first action from the optimal trajectory is executed. As a result,
the agent re-plans the optimal sequence of actions at each time step, allowing to handle unexpected
outcomes. Thus, the agent really interacts with the environment and a closed-loop policy is achieved.

Algorithm 1: Model Predictive Control
1 Run random policy π0 to collect data D = {(st,at, st+1)i}
2 for K episodes do
3 Learn the dynamics model f̂(st, at) = st+1 to minimize some loss function.
4 for H steps do
5 Plan through f̂(s, a) to choose actions.
6 Execute the first planned action only and observe the resulting state st+1

7 Append (st,at, st+1) to D

4.1 LEARNING THE DYNAMICS MODEL

The dynamics model is learned in Line 3 of the MPC algorithm. How this is achieved depends on
which model is employed among the classes introduced in Section 3. All NN-based models are
composed by feed-forward fully-connected stacked layers and ReLu hidden activation functions.
The Deterministic NN and the Deterministic Ensemble are trained with an MSE loss function:

LMSE(θ̂,x,y) =
1

N

N∑
i=1

‖yi − ŷi‖2 (5)
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As in Kendall & Gal (2017), we assume a Gaussian likelihood and train the Concrete Dropout NN
with the heteroscedastic loss:

Lh(θ̂,x,y) =
1

N

N∑
i=1

1

σ̂2
i

‖yi − ŷi‖2 + log σ̂2
i (6)

The Anchored Ensembling is instead trained with the regularised MSE loss function, as in Pearce
et al. (2020):

Lanc,j(θ̂j ,x,y) =
1

N

N∑
i=1

‖yi − ŷi,j‖2 +
1

N

∥∥∥Γ1/2(θ̂j − θanc,j)
∥∥∥2 (7)

where the subscript j refers to the j-th NN of the ensemble, Γ is a diagonal regularisation matrix,
and θanc,j is the initialization drawn from the anchor distribution. For the GP model, the covari-
ance function determines the learning performance. As suggested in Stein (1999) and Williams &
Rasmussen (2006), we adopt the Matèrn52 class.

Following (Deisenroth et al., 2013), for all models the training target y is not directly the next state
st+1, but the difference between the next state and the current state ∆t = st+1 − st. The artifice
was introduced to prevent GPs from falling to 0 in uncertain zones. This technique turned out to
strongly reduce performance variance also in NNs and it has subsequently been adopted apart from
GPs (Nagabandi et al., 2018). Lastly, all models are trained on a replay buffer (Lillicrap et al., 2020)
which keeps only the last N = 2000 data and prevent the dataset D from quickly containing an
incredibly large amount of data. This trick also easily solves the issue of giving more importance to
new trials than old ones (Gal et al., 2016). However, a well-known disadvantage is that the model
might forget important old episodes.

In order to compute the predictive mean (Equation 2), we employ 5 NNs for the two ensembling
methods. This is a number generally accepted to achieve satisfying results for both Deterministic
(Beluch et al., 2018; Lakshminarayanan et al., 2016) and Anchored (Pearce et al., 2020) Ensembles.
Concerning the Concrete Dropout NN, we follow the author’s implementation (Gal, 2018) and repeat
the MC prediction T = 20 times.

4.2 THE OPTIMIZATION ALGORITHM

The core of the MBRL algorithm is composed by the online optimization algorithm that plans
through the learned model (Line 5 of MPC). As in Nagabandi et al. (2018), we apply the Random
Shooting (RS) method, which is reported in Algorithm 2.

Algorithm 2: Random Shooting
1 Set the number of trajectories N and the planning horizon n
2 Pick A1, . . . ,AN from uniform distribution p(A), where Ai = {a0,i,. . . , an,i}
3 for trajectory i = 1 to N do
4 for step t = 0 to n− 1 do
5 Predict f̂(st,i, at,i) = st+1,i

6 Evaluate the trajectory J(Ai) =
∑n
t=0 r(st,i, at,i)

7 Select Abest = arg maxi J(Ai).

Based on the findings in Nagabandi et al. (2018) and Wang et al. (2019), we set the number of
trajectories N to 500 and the planning horizon n to 20.

RS has been selected as optimization algorithm as the shooting methods family does not make strong
assumptions on the transition dynamics and the reward function. Furthermore, RS has recently
shown competitive results with more sophisticated algorithms such as Cross-Entropy Method (CEM)
when combined with complex models (Wang et al., 2019). Finally, RS performance heavily depends
on model accuracy. As a result, models that have learned better transition dynamics achieve better
performance. This makes RS perfect for our model comparison objective and allows us to consider
the sum of rewards per episode achieved during the RL training as a natural estimate of model
performance.
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As a common practice in MBRL, we also assume to access the reward function of the environment
in order to compute Line 6 of RS. This allows to separate the dynamics model from the task to
accomplish. Main benefit is obtaining a general model which can be applied to solve different tasks
by only changing the reward function (Nagabandi et al., 2018).

4.3 THE EXPLORATION POLICY

The last piece of the benchmarking algorithm is formed by the exploration policy. This is needed
to visit new states and potentially improve the dynamics model. Here, we try to fully exploit the
diverse model capacities. Consequently, we implement two different policies depending on whether
the employed model is able to estimate the epistemic uncertainty. For the Deterministic NN, a
simple ε-greedy policy (Azizzadenesheli et al., 2018) is used. For all other models, we conceive a
simple but effective exploration policy, which maximizes the Information Gain (IG) from visiting
new states. This follows from the approximation of the IG with the prediction gain (Bellemare et al.,
2016). Intuitively, a state is more informative if it causes a large change in model parameters. Let
U(·) be the function that outputs the epistemic uncertainty given a state and an action. The IG-based
policy works as follows:

Algorithm 3: IG-based exploration policy
1 Randomly sample N actions a1, . . . , aN
2 for action i = 1 to N do
3 Evaluate the epistemic uncertainty U(st, ai)

4 Select aIG = arg maxi U(st, ai)

The full MBRL algorithm is reported in pseudo-code in Algorithm 4.

Algorithm 4: The RL algorithm
Input: Set number of episodes K, episode length H , ε probability to explore, number of

actions sampled for IG exploration, number of trajectories and planning horizon n for
Random Shooting.

Output: Sum of rewards list R = {R0, . . . , RK}, with Ri =
∑H
t=0 rt.

Data: D = {} replay buffer with capacity 2000 steps.
1 Initialize D with a random controller for one episode.
2 for episode = 1 to K do
3 Train dynamics model f̂ on D.
4 for step t = 0 to H do
5 if p ∼ U(0, 1) < ε then
6 Do exploration to find aexpl. // IG exploration or random exploration

depending on the model
7 at := aexpl

8 else
9 Do Random Shooting to select Abest = {a0, . . . , an}.

10 at := a0

11 Execute at and collect reward rt.
12 Update dataset D ← D ∪ {(st, at, st+1)}

5 RESULTS

This section presents the benchmark results, i.e., the MBRL performance of the considered models
for the selected environments. The latter are composed by one OpenAI Gym (Brockman et al., 2016)
and five PyBullet Gym (Ellenberger, 2018–2019) environments, listed in Appendix A. In order to
access the reward functions (see Section 4.2), these are implemented as reported in Appendix A.1.
The employed model configurations are outlined in Appendix B for all tasks to ease reproducibility
and transparency of the results.
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Table 1: Benchmark results: models performance are reported with mean returns and standard error
over all different tasks. Best results are highlighted in bold.

Model Pendulum InvertedPendulum InvertedDoublePendulum

Deterministic NN −424.68± 25.76 −279.52± 39.41 −66.19± 2.08
Deterministic Ensemble −352.50± 22.41 − 81.48± 18.98− 81.48± 18.98− 81.48± 18.98 −48.37± 1.82
Concrete Dropout NN −315.40± 18.70−315.40± 18.70−315.40± 18.70 −126.17± 29.67 −34.95± 1.67−34.95± 1.67−34.95± 1.67
Anchored Ensembling −407.99± 26.62 −289.99± 40.06 −58.54± 2.03
Gaussian Process −417.49± 24.33 −115.58± 34.45 −53.03± 1.98

Model Reacher HalfCheetah Hopper

Deterministic NN −35.22± 0.54 −80.08± 1.63 −750.75± 41.27
Deterministic Ensemble −34.05± 0.48 −71.32± 1.46 −601.73± 38.52
Concrete Dropout NN −31.22± 0.35−31.22± 0.35−31.22± 0.35 −27.09± 1.72−27.09± 1.72−27.09± 1.72 −368.25± 37.50−368.25± 37.50−368.25± 37.50
Anchored Ensembling −34.58± 0.51 −81.67± 1.49 −715.41± 38.70
Gaussian Process −31.80± 0.36 −78.18± 1.50 −765.24± 43.83

The performance for each model is summarized in terms of average returns and standard error over
5 different random seeds. Table 1 depicts the benchmarks results.

The Concrete Dropout NN delivers the best performance in 5 out of 6 environments. Especially in
the most complex tasks, such as HalfCheetah and Hopper, it dramatically outperforms all other mod-
els. The results further prove the high robustness provided by the dropout technique as a Bayesian
approximation. In addition, this is the only model able to learn both the aleatoric and the epistemic
uncertainty. This supports the intuition in Lakshminarayanan et al. (2016) that learning both the two
types of uncertainty leads to improved performance.

The Deterministic Ensemble takes second place in most of the environments and even delivers the
highest performance in the InvertedPendulum problem. With significantly higher results than the
Deterministic NN, it proves that ensembling does improve performance in MBRL.

The Gaussian Process delivers high performance in Reacher, which is a relatively complex envi-
ronment, and in easier tasks such as InvertedPendulum. However, as the complexity of the task
increases, it is no longer possible to appreciate satisfying results. Indeed, it completely fails in
HalfCheetah and Hopper. It also reports strong instability across different random seeds.

Unexpectedly, the Anchored Ensembling does not show substantially better performance when com-
pared to the Deterministic NN. Along with the GP, it is affected by high instability across different
random seeds.
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Figure 1: Model performance on Reacher (left) and HalfCheetah (right) environments.
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Deepening our findings, we also show in Figure 1 two representative plots, whereby model perfor-
mance is depicted by “Average Return” and “Standard Deviation of Returns”, as suggested in Islam
et al. (2017), in Reacher and HalfCheetah environments. No smoothing technique is applied to the
results shown. Learning curves denote the mean performance, while the shaded regions represent
one standard deviation of rewards over 5 different random seeeds. In the Reacher task, the Concrete
Dropout NN and the Gaussian Process show an impressive sample-efficiency. While these two mod-
els converge to good results after only a couple of episodes, the others need about 20 episodes to
achieve similar performance. In HalfCheetah, the Concrete Dropout NN clearly succeeds in terms of
both sample-efficiency and overall performance, delivering unattainable results for all other models.

Lastly, it is noteworthy to consider the computing time of different models over the benchmark-
ing comparison. As one might expect, the Deterministic NN is the fastest model across all tasks.
Deterministic and Anchored Ensembles have a constant ratio with about 5 times longer computing
time than the previous model. The Concrete Dropout NN and the Gaussian Process starts at a sim-
ilar ratio than the former two in the easier tasks, but decay quickly as the complexity increases. In
HalfCheetah, the computing times become about 15 and 30 times more than the Deterministic NN,
respectively.

6 CONCLUSION

This work investigates the influence of models on the performance of RL algorithms. Model-based
methods are expected to solve RL problems with fewer trials (i.e. higher sample-efficiency). How-
ever, the choice of model within the RL architecture has not formally been investigated in terms of
its effect in improving the performance reported by novel algorithms. This work addresses this issue
by comparing typical method classes that are commonly used as models for MBRL. The selected
models are deterministic Neural Networks, ensembles of deterministic Neural Networks, Concrete
Dropout Neural Networks, Anchored Ensembles, and Gaussian Processes. The model comparison
is assessed on 6 benchmarking environments of increasing complexity.

Our results show that significant differences in model performance do exist. The Concrete Dropout
NN reports persistently superior performance in 5 out of 6 benchmarking environments. Especially
in the most complex tasks, it dramatically outperforms all other models. Its distinguishing strengths
are higher sample-efficiency, robustness, and flexibility over different task complexities. On the
negative side, this model requires larger computing time than other NN-based models. Without the
need of different training steps to memorize all data, main strength of the GP is the remarkable
sample-efficiency within the first handful of trials in low or medium dimensional problems. How-
ever, its lack of consistency prevents this model from converging to high performance compared
to other explored models. As task complexity increases, it requires dramatically higher computing
time and it is no longer possible to appreciate satisfying results. While the Deterministic Ensemble
consistently achieves higher returns than the Deterministic NN, the differences are reduced in high
dimensional problems. This suggests a lower flexibility in terms of task complexity when compared
to the Concrete Dropout NN. The Anchored Ensembling is not generally able to outperform the De-
terministic NN across the evaluated tasks. Lastly, the Deterministic NN does not deliver remarkable
performance in any task but it succeeds in terms of computing time.

Our work proves that it is important that differences among models are taken into account. The
improved performance reported by novel algorithms may (partly) be produced by the choice of
a different modeling approach. Performance of novel MBRL algorithms, which introduce both a
new RL approach and a different modeling choice, should be compared not only against previous
methods, but also formally investigated with different modeling options in a similar fashion that
we introduced in this work. Innovative techniques should therefore distinguish and make clear how
much of the enhanced performance is due to improved algorithms or due to improved models.

The differences found also suggest that model choice can be tailored to the application of the RL
algorithm. In the case where there are no computing time requirements, the Concrete Dropout NN
is consistently the favorite candidate among those explored to deliver the highest sample-efficiency
and overall performance, regardless of task complexity. However, if the task to accomplish is rela-
tively low-dimensional and has to be solved only once with a few samples, also Gaussian Processes
represent a valid alternative. On the other hand, if decisions must be made in the shortest possible
time, a simpler Deterministic NN may be preferred.
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A ENVIRONMENTS

Table 2: Dimensionality, horizon, and number of episodes run of the environments.

Environment Observation Space Action Space Horizon Episodes

Pendulum 3 1 200 50
InvertedPendulum 4 1 100 35
InvertedDoublePendulum 11 1 100 100
ReacherPyBullet 9 2 50 50
Hopper 11 3 500 100
HalfCheetah 17 6 500 100

A.1 REWARD FUNCTIONS

Table 3: Reward functions of the environments.

Environment Reward function

Pendulum −(((θt + π)%(2π))− π)2 − 0.1θ̇2t − 0.001a2t
InvertedPendulum −θ2t
InvertedDoublePendulum −θ2t − γ2t − 0.001θ̇2t − 0.005γ̇2t
Reacher −distancet − ‖at‖2
Hopper ẋt − 0.1‖at‖2 − 3h2t + 1
HalfCheetah ẋt − 0.1‖at‖2

B HIDDEN SIZE

Table 4: Hidden size of NN-based models.

Model Pendulum InvPendulum InvDoublePendulum

Deterministic NN 2× 32 2× 40 2× 100
Deterministic Ensemble 2× 32 2× 40 2× 100
Concrete Dropout NN 2× 100 2× 100 2× 200
Anchored Ensembling 2× 40 2× 40 2× 100

Model Reacher HalfCheetah Hopper

Deterministic NN 2× 200 3× 250 3× 250
Deterministic Ensemble 2× 200 3× 250 3× 250
Concrete Dropout NN 2× 500 3× 1024 3× 1024
Anchored Ensembling 2× 200 2× 500 2× 500
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