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Abstract

Direct speech-to-speech translation (S2ST) translates speech from one language
into another using a single model. However, due to the presence of linguistic and
acoustic diversity, the target speech follows a complex multimodal distribution,
posing challenges to achieving both high-quality translations and fast decoding
speeds for S2ST models. In this paper, we propose DASpeech, a non-autoregressive
direct S2ST model which realizes both fast and high-quality S2ST. To better capture
the complex distribution of the target speech, DASpeech adopts the two-pass
architecture to decompose the generation process into two steps, where a linguistic
decoder first generates the target text, and an acoustic decoder then generates the
target speech based on the hidden states of the linguistic decoder. Specifically, we
use the decoder of DA-Transformer as the linguistic decoder, and use FastSpeech
2 as the acoustic decoder. DA-Transformer models translations with a directed
acyclic graph (DAG). To consider all potential paths in the DAG during training, we
calculate the expected hidden states for each target token via dynamic programming,
and feed them into the acoustic decoder to predict the target mel-spectrogram.
During inference, we select the most probable path and take hidden states on
that path as input to the acoustic decoder. Experiments on the CVSS Fr—En
benchmark demonstrate that DASpeech can achieve comparable or even better
performance than the state-of-the-art S2ST model Translatotron 2, while preserving
up to 18.53x speedup compared to the autoregressive baseline. Compared with the
previous non-autoregressive S2ST model, DASpeech does not rely on knowledge
distillation and iterative decoding, achieving significant improvements in both
translation quality and decoding speed. Furthermore, DASpeech shows the ability
to preserve the speaker’s voice of the source speech during translation

1 Introduction

Direct speech-to-speech translation (S2ST) directly translates speech of the source language into the
target language, which can break the communication barriers between different language groups and
has broad application prospects. Traditional S2ST usually consists of cascaded automatic speech
recognition (ASR), machine translation (MT), and text-to-speech (TTS) models [1} 2]]. In contrast,
direct S2ST achieves source-to-target speech conversion with a unified model [3]], which can (1)
avoid error propagation across sub-models [4]; (2) reduce the decoding latency [3]; and (3) preserve
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non-linguistic information (e.g., the speaker’s voice) during translation [6]. Recent works show that
direct S2ST can achieve comparable or even better performance than cascaded systems [[7 18].

Despite the theoretical advantages of direct S2ST, it is still very challenging to train a direct S2ST
model in practice. Due to the linguistic diversity during translation, as well as the diverse acoustic
variations (e.g., duration, pitch, energy, etc.), the target speech follows a complex multimodal
distribution. To address this issue, Jia et al. [6], Inaguma et al. [[7] propose the two-pass architecture,
which first generates the target text with a linguistic decoder, and then uses an acoustic decoder
to generate the target speech based on the hidden states of the linguistic decoder. The two-pass
architecture decomposes the generation process into two steps: content translation and speech
synthesis, making it easier to model the complex distribution of the target speech and achieving
state-of-the-art performance among direct S2ST models.

Although the two-pass architecture achieves better translation quality, two passes of autoregressive
decoding also incur high decoding latency. To reduce the decoding latency, Huang et al. [9] recently
proposes non-autoregressive (NAR) S2ST that generates target speech in parallel. However, due to
the conditional independence assumption of NAR models, it becomes more difficult to capture the
multimodal distribution of the target speech compared with autoregressive modelﬂ Therefore, the
trade-off between translation quality and decoding speed of S2ST remains a pressing issue.

In this paper, we introduce an S2ST model with both high-quality translations and fast decoding
speeds: DASpeech, a non-autoregressive two-pass direct S2ST model. Like previous two-pass models,
DASpeech includes a speech encoder, a linguistic decoder, and an acoustic decoder. Specifically, the
linguistic decoder uses the structure of DA-Transformer [[L1] decoder, which models translations via
a directed acyclic graph (DAG). The acoustic decoder adopts the design of FastSpeech 2 [12]], which
takes the hidden states of the linguistic decoder as input and generates the target mel-spectrogram.
During training, we consider all possible paths in the DAG by calculating the expected hidden state
for each target token via dynamic programming, which are fed to the acoustic decoder to predict
the target mel-spectrogram. During inference, we first find the most probable path in DAG and
take hidden states on that path as input to the acoustic decoder. Due to the task decomposition of
two-pass architecture, as well as the ability of DA-Transformer and FastSpeech 2 themselves to model
linguistic diversity and acoustic diversity, DASpeech is able to capture the multimodal distribution of
the target speech. Experiments on the CVSS Fr—En benchmark show that: (1) DASpeech achieves
comparable or even better performance than the state-of-the-art S2ST model Translatotron 2, while
maintaining up to 18.53 x speedup compared to the autoregressive model. (2) Compared with the
previous NAR S2ST model TranSpeech [9]], DASpeech no longer relies on knowledge distillation and
iterative decoding, achieving significant advantages in both translation quality and decoding speed.
(3) When training on speech-to-speech translation pairs of the same speaker, DASpeech emerges with
the ability to preserve the source speaker’s voice during translation.

2 Background

2.1 Directed Acyclic Transformer

Directed Acyclic Transformer (DA-Transformer) [[11}[13]] is proposed for non-autoregressive machine
translation (NAT), which achieves comparable results to autoregressive Transformer [[14] without
relying on knowledge distillation. DA-Transformer consists of a Transformer encoder and an NAT
decoder. The hidden states of the last decoder layer are organized as a directed acyclic graph (DAG).
The hidden states correspond to vertices of the DAG, and there are unidirectional edges that connect
vertices with small indices to those with large indices. DA-Transformer successfully alleviates the
linguistic multi-modality problem since DAG can capture multiple translations simultaneously by
assigning different translations to different paths in DAG.

Formally, given a source sequence X = (x1,...,xy) and a target sequence Y = (y1, ..., yar), the
encoder takes X as input and the decoder takes learnable positional embeddings G = (gy, ..., &1) as
input. Here L is the graph size, which is set to A times the source length, i.e., L = A - N,and Ais a
hyperparameter. DA-Transformer models the fransiation probability Py(Y|X) by marginalizing all

*1t is known as the multi-modality problem [10] in non-autoregressive sequence generation.



possible paths in DAG:

Py(Y|X) =) Py(Y]A, X)Py(AlX), (1)
Ael

where A = (aq,...,aps) is a path represented by a sequence of vertex indexes with 1 = a; < -+ <
apr = L, and T contains all paths with the same length as the target sequence Y. The probability of
path A is defined as:

M—-1 M—-1

Po(AlX) = H Po(aitila;, X H Eo a1 2

where E € RUX1 is the transition probability matrix. We apply lower triangular masking on E to
allow only forward transitions. With the selected path A, all target tokens are predicted in parallel:

M
Py(Y|A, X) Hpg vilai, X) = [ [ Pasyir 3)

where P € RY*IVl is the prediction probability matrix, and V indicates the vocabulary. Finally, we
train the DA-Transformer by minimizing the negative log-likelihood loss:

Loar = —log Py(Y|X) = —log Y Py(Y|A, X)Py(A|X), “
Aer

which can be calculated with dynamic programming.

2.2 FastSpeech 2

FastSpeech 2 [[12] is a non-autoregressive text-to-speech (TTS) model that generates mel-spectrograms
from input phoneme sequences in parallel. It is composed of three stacked modules: encoder,
variance adaptor, and mel-spectrogram decoder. The encoder and mel-spectrogram decoder consist
of several feed-forward Transformer blocks, each containing a self-attention layer followed by a
1D-convolutional layer. The variance adaptor contains three variance predictors including duration
predictor, pitch predictor, and energy predictor, which are used to reduce the information gap between
input phoneme sequences and output mel-spectrograms. During training, the ground truth duration,
pitch and energy are used to train these variance predictors and also as conditional inputs to generate
the mel-spectrogram. During inference, we use the predicted values of these variance predictors. The
introduction of variation information greatly alleviates the acoustic multi-modality problem, which
leads to better voice quality. The training objective of FastSpeech 2 consists of four terms:

£TTS = ELl + ‘Cdur + ‘Cpitch + Eenergy7 (5)

where L£1,; measures the L1 distance between the predicted and ground truth mel-spectrograms, Ly,
Lpitch and Lenergy compute the mean square error (MSE) loss between predictions and ground truth
for duration, pitch, and energy, respectively.

3 DASpeech

In this section, we introduce DASpeech, a non-autoregressive two-pass direct S2ST model that
generates target phonemes and target mel-spectrograms successively. Formally, the source speech
sequence is denoted as X = (z1, ...,z ), where N is the number of frames in the source speech. The
sequences of target phoneme and target mel-spectrogram are represented by Y = (y1, ..., yar) and
S = (sq,..., sT), respectively. DASpeech first generates Y from X with a speech-to-text translation
(SZTTf]DA-Transformer. Subsequently, it generates S with a FastSpeech 2-style decoder conditioned
on the last-layer hidden states of the DA-Transformer. We first overview the model architecture of
DASpeech in Section 3.1} In Section[3.2] we introduce our proposed training techniques that leverage
pretrained S2TT DA-Transformer and FastSpeech 2 models and finetune the entire model for S2ST
end-to-end. Finally, we present several decoding algorithms for DASpeech in Section[3.3]
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Figure 1: Overview of DASpeech. The last-layer hidden states of the linguistic decoder are organized
as a DAG. During training, the input to the acoustic decoder is the sequence of expected hidden states.
During inference, it is the sequence of hidden states on the most probable path.

3.1 Model Architecture

As shown in Figure [T} DASpeech consists of three parts: a speech encoder, a non-autoregressive
linguistic decoder, and a non-autoregressive acoustic decoder. Below are the details of each part.

Speech Encoder Since our model takes speech features as input, we replace the Transformer
encoder in the original DA-Transformer with a speech encoder. The speech encoder contains a
subsampler followed by several Conformer blocks [15]. Specifically, the subsampler consists of two
1D-convolutional layers which shrink the length of input sequences by a factor of 4. Conformer
combines multi-head attention modules and convolutional layers together to capture both global and
local features. We use relative positional encoding [16]] in the multi-head attention module.

Non-autoregressive Linguistic Decoder The linguistic decoder is identical to the decoder of DA-
Transformer, which generates the target phoneme sequence from the source speech in parallel. Each
decoder layer comprises a self-attention layer, a cross-attention layer, and a feed-forward layer. The
decoder takes learnable positional embeddings as input, and the last-layer hidden states are organized
as a DAG to model translations, as we described in Section [2.1]

Non-autoregressive Acoustic Decoder The acoustic decoder adopts the design of FastSpeech 2,
which generates target mel-spectrograms from the last-layer hidden states of DA-Transformer in
parallel. The model architecture is the same as that introduced in Section except that the
embedding matrix of the input phonemes is removed, since the input has changed from the phoneme
sequence to the hidden state sequence.

3.2 Training

DASpeech has the advantage of easily utilizing pretrained S2TT DA-Transformer and FastSpeech
2 models. We use the pretrained S2TT DA-Transformer to initialize the speech encoder and the
non-autoregressive linguistic decoder, and use the pretrained FastSpeech 2 model to initialize the
non-autoregressive acoustic decoder. Finally, the entire model is finetuned for direct S2ST. This
pretraining-finetuning pipeline simplifies model training and enables the use of additional S2TT and
TTS data. However, end-to-end finetuning presents a major challenge due to the length discrepancy
between the output from the linguistic decoder and the input to the acoustic decoder. Specifically, the
hidden state sequence output by the linguistic decoder has a length of L = A - N, while the input
sequence required by the acoustic decoder should have a length of M, which is the length of the
ground truth phoneme sequence. Therefore, it is necessary to determine how to obtain the input

>In this work, speech-to-text translation refers to speech-to-phoneme translation if not otherwise specified.



sequence of acoustic decoder Z = (z1, ..., zys) from the last-layer hidden states of linguistic decoder
V = (vy,...,v1). The following introduces our proposed approach: Expect-Path Training.

Expect-Path Training Intuitively, the i-th input element z; should be the hidden state of the vertex
responsible for generating y;. However, since there may be multiple vertices capable of generating
each y; due to numerous possible paths, we would like to consider all potential paths. To address this
issue, we define z; as the expected hidden state under the posterior distribution Py(a;|X,Y):

L
zi =Y Pyla; =j|IX,Y)-v;, (6)
j=1

where Py(a; = j|X,Y) refers to the probability of vertex j being the i-th vertex on path A, which
means that y; is generated by vertex j. We can compute Py(a; = 7|X,Y) as follows:

Aer
. Py(Y, A|X)
- ]]. i: . 8
AZEF (a ]) ZA/GFPQ(Y,A/|X) (®)

_ Saer Lo =) - Po(Y AIX)
ZAel"PQ(Y?A‘X) ’
where 1(a; = j) is an indicator function to indicate whether the i-th vertex of path A is vertex j.

To calculate ) 4 . 1(a; = j) - Po(Y, A|X) and ) , . Py(Y, A|X) in Equation @), we employ the
Sforward-backward algorithm [17], which involves two passes of dynamic programming.

€))

Forward Algorithm The forward probability is defined as «; () = Py(y1, ..., Yi, a; = j|X ), which is
the probability of generating the partial target sequence (y1, ..., ;) and ending in vertex j at the i-th
step. By definition, we have a1 (1) = Py, and a1(1 < j < L) = 0. Due to the Markov property,
we can sequentially calculate «;(-) from its previous step ;1 (+) as follows:

Jj—1
ai(j) =Pjy Y oi1(k) Eg . (10)
k=1

Backward Algorithm The backward probability is defined as 3;(j) = Py(Yit1, - yumla; = 4, X),
which is the probability of starting from vertex j at the i-th step and generating the rest of the target
sequence (Y;+1, .-, Yar)- By definition, we have 8y (L) = 1 and By (1 < j < L) = 0. Similar to
the forward algorithm, we can sequentially calculate 3;(j) from its next step 3;+1(j) as follows:

L
Bi()) = Y Ejk-Bis1(k) - Pry,,,. (11)

k=j+1

Recalling Equation (9), the denominator is the sum of the probabilities of all valid paths, which is
equal to aps(L). The numerator is the sum of the probabilities of all paths with a; = j, which is
equal to a;(j) - B;(j). Therefore, the Equation (6) can be calculated as:

S ai(j) - B:(5)
zz:;Pa(ai:ﬂX,Y)wj:;W-vj. (12)

The time complexity of the forward-backward algorithm is O (M L?). Finally, the training objective
of DASpeech is as follows:

LpAaspeech = Lpat + 1 - L1Ts, (13)
where p is the weight of TTS loss. The definitions of Lpat and Lyrg are the same as those in

Equations (@) and (5).
3.3 Inference

During inference, we perform two-pass parallel decoding. First, we find the most probable path A* in
DAG with one of the decoding strategies proposed for DA-Transformer (see details below). We then



feed the last-layer hidden states on path A* to the non-autoregressive acoustic decoder to generate
the mel-spectrogram. Finally, the predicted mel-spectrogram will be converted into waveform using a
pretrained HiFi-GAN vocoder [18]. Since both DAG and TTS decoding are fully parallel, DASpeech
achieves significant improvements in decoding efficiency compared to previous two-pass models
which rely on two passes of autoregressive decoding. Considering the trade-off between translation
quality and decoding efficiency, we use the following two decoding strategies for DA-Transformer in
our experiments: Lookahead and Joint-Viterbi.

Lookahead Lookahead decoding sequentially chooses a; and y; in a greedy way. At each decoding
step, it jointly considers the transition probability and the prediction probability:

aj,y; = argmax Py(y;|a;, X)Py(aila;i—1, X). (14)

ai,Yi

Joint-Viterbi Joint-Viterbi decoding [19] finds the global joint optimal solution of the translation
and decoding path via Viterbi decoding [20]:

A*Y* = argmax Py(Y, A|X). (15)
AY

After Viterbi decoding, we first decide the target length M and obtain the optimal path by backtracking
from a3}, = L. More details can be found in the original paper.

4 Experiments

4.1 Experimental Setup

Dataset We conduct experiments on the CVSS dataset [4], a large-scale S2ST corpus containing
speech-to-speech translation pairs from 21 languages to English. It is extended from the CoVoST
2 [21]] S2TT corpus by synthesizing the target text into speech with state-of-the-art TTS models.
It includes two versions: CVSS-C and CVSS-T. For CVSS-C, all target speeches are in a single
speaker’s voice. For CVSS-T, the target speeches are in voices transferred from the corresponding
source speeches. We evaluate the models on the CVSS-C French—English (Fr—En) and CVSS-T
French—English (Fr—En) datasets. We also conduct a multilingual experiment by combining all 21
language directions in CVSS-C together to train a single many-to-English S2ST model.

Pre-processing We convert the source speech to 16000Hz and generate target speech with 22050Hz.
We compute the 80-dimensional mel-filterbank features for the source speech, and transform the
target waveform into mel-spectrograms following Ren et al. [[12]. We apply utterance-level and
global-level cepstral mean-variance normalization for source speech and target speech, respectively.
We follow Ren et al. [12]] to extract the duration, pitch, and energy information of the target speech.

Model Configurations The speech encoder, linguistic decoder, and acoustic decoder contain 12
Conformer layers, 4 Transformer decoder layers, and 8 feed-forward Transformer blocks, respectively.
The detailed configurations can be found in Table [5|in Appendix [A] For model regularization, we
set dropout to 0.1 and weight decay to 0.01, and no label smoothing is used. We use the HiFi-GAN
vocoder pretrained on the VCTK datasetﬂ [22] to convert the mel-spectrogram into waveform.

Training DASpeech follows the pretraining-finetuning pipeline. During pretraining, the speech
encoder and the linguistic decoder are trained on the S2TT task for 100k updates with a batch of
320k audio frames. The learning rate warms up to Se-4 within 10k steps. The acoustic decoder
is pretrained on the TTS task for 100k updates with a batch size of 512. The learning rate warms
up to Se-4 within 4k steps. During finetuning, we train the entire model for 50k updates with a
batch of 320k audio frames. The learning rate warms up to le-3 within 4k steps. We use Adam
optimizer [23] for both pretraining and finetuning. For the weight of TTS loss u, we experiment with
w € {1.0,2.0,5.0,10.0} and choose 1 = 5.0 according to results on the dev set. We implement our
model with the open-source toolkit fairseq [24]. All models are trained on 4 RTX 3090 GPUs.

In the multilingual experiment, the presence of languages with limited data or substantial interlingual
variations makes the mapping from source speech to target phonemes particularly challenging. To
address this, we adopt a two-stage pretraining strategy. Initially, we pretrain the speech encoder and

See VCTK_Vl1inlhttps://github.com/jik876/hifi-ganl
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Table 1: Results on CVSS-C Fr—En and CVSS-T Fr—En test sets. * indicates results quoted from
Huang et al. [9]. ® indicates results of our re-implementation. f: target length beam=15 and noisy
parallel decoding (NPD). Ti1one, Tunit, and Tyl indicate the sequence length of phonemes, discrete
units, and mel-spectrograms, respectively. ** means the improvements over S2UT are statistically
significant (p < 0.01).

ASR-BLEU (Fr—En)

ID | Models Decoding #Iter #Param CVSS-C  CVSS-T Speedup
| Ground Truth \ / \ / \ / | 84.52 81.48 | /
Single-pass autoregressive decoding
Al | S2UT 5] Beam=10 Tunit 73M 22.23 22.28 1.00x
A2 Translatotron [3] Autoregressive Tinel 79M 16.96 11.25 2.32x
Two-pass autoregressive decoding
Bl | UnitY [7] Beam=(10, 1) | Tphone + Tunit 64M 24.09 24.29 1.43%
B2 Translatotron 2 [[6] Beam=10 Tonone + Timel 87T™M 25.21 24.39 1.42x
Single-pass non-autoregressive decoding
c1® TranSpeech [9] Iteration 5 67M 17.24 / 11.04 x
co* +b=15 + NPDf Iteration 15 67M 18.39 / 2.53%
c3% TranSpeech [9] Iteration 5 67M 16.38 16.49 12.45x%
ca® +b=15 + NPD! Iteration 15 67M 19.05 18.60 3.35%
Two-pass non-autoregressive decoding
D1 DASpeech Lookahead 1+1 93M 24.71%* 24.45** 18.53 %
D2 A=0.5) Joint-Viterbi 1+1 93M 25.03** 25.26* 16.29x
D3 DASpeech Lookahead 1+1 93M 24.41** 24.17** 18.45x%
D4 A=1.0) Joint-Viterbi 1+1 93M 24.80** 24.48** 15.65x
Cascaded systems
E1l | S2T +FastSpeech2 | Beam=10 | Tihone +1 | 499M+41IM | 24.71 2449 | /
E2 | DAT + FastSpeech 2 Lookahead 1+1 SIM+41M 22.19 22.10 /
E3 (A=0.5) Joint-Viterbi 1+1 SIM+41M 22.80 22.75 /
E4 | DAT + FastSpeech 2 Lookahead 1+1 5SIM+41M 22.68 22.57 /
E5 A=1.0) Joint-Viterbi 1+1 SIM+41M 23.20 23.15 /

the linguistic decoder using the speech-to-subword task, followed by pretraining on the speech-to-
phoneme task. In the second stage of pretraining, the embedding and output projection matrices
of the decoder are replaced and trained from scratch to accommodate changes in the vocabulary.
We employ this pretraining strategy for DASpeech, UnitY and Translatotron 2 in the multilingual
experiment. We learn the subword vocabulary with a size of 6K using the SentencePiece toolkit.

We also adopt the glancing strategy [25]] during training, which shows effectiveness in alleviating the
multi-modality problem for NAT. It first assigns target tokens to appropriate vertices following the
most probable path A = arg maxacr Py(Y, A|X), and then masks some tokens. We linearly anneal
the unmasking ratio 7 from 0.5 to 0.1 during pretraining and fix 7 to 0.1 during finetuning.

Evaluation During finetuning, we save checkpoints every 2000 steps and average the last 5 check-
points for evaluation. We use the open-source ASR-BLEU toolkiﬂ to evaluate the translation quality.
The translated speech is first transcribed into text using a pretrained ASR model. SacreBLEU [26] is
then used to compute the BLEU score [27] and the statistical significance of translation results. The
decoding speedup is measured on the test set using 1 RTX 3090 GPU with a batch size of 1.

Baseline Systems We implement the following baseline systems for comparison. More details about
the model architectures and hyperparameters can be found in Appendix [A]

» S2UT [5] Speech-to-unit translation (S2UT) model generates discrete units corresponding to the
target speech with a sequence-to-sequence model. We introduce the auxiliary task of predicting
target phonemes to help the model converge.

"nttps://github.com/facebookresearch/fairseq/tree/ust/examples/speech_
to_speech/asr_bleu
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* Translatotron [3]] Translatotron generates the target mel-spectrogram with a sequence-to-sequence
model. We also introduce the auxiliary task of predicting the target phonemes.

» UnitY [7] UnitY is a two-pass model which generates target phonemes and discrete units succes-
sivelyﬂ We remove the R-Drop training [28]] for simplification. We pretrain the speech encoder
and first-pass decoder on the S2TT task.

* Translatotron 2 [6] Translatotron 2 is a two-pass model which generates target phonemes and
mel-spectrograms successively. We enhance Translatotron 2 by replacing LSTM with Transformer,
and introducing an additional encoder between two decoders following Inaguma et al. [7]. The
speech encoder and first-pass decoder are pretrained on the S2TT task.

* TranSpeech [9] TranSpeech is the first non-autoregressive S2ST model that generates target
discrete units in parallel. To alleviate the acoustic multi-modality problem, TranSpeech introduces
bilateral perturbation (BiP) to disentangle the acoustic variations from the discrete units. We
re-implement TranSpeech following the configurations in the original paper.

» S2T + FastSpeech 2 The cascaded system that combines an autoregressive S2TT model and
FastSpeech 2. The S2T model contains 12 Conformer layers and 4 Transformer decoder layers,
which is also used in UnitY and Translatotron 2 pretraining.

* DAT + FastSpeech 2 The cascaded system that combines the S2TT DA-Transformer model and
FastSpeech 2. Both models are used in DASpeech pretraining.

4.2 Main Results

Table summarizes the results on the CVSS-C Fr—En and CVSS-T Fr—En datasets. (1) Compared
with previous autoregressive models, DASpeech (D1-D4) obviously surpasses single-pass models
(A1, A2) and achieves comparable or even better performance than two-pass models (B1, B2),
while preserving up to 18.53 times decoding speedup compared to S2UT. (2) Compared with the
previous NAR model TranSpeech (C1-C4), DASpeech does not rely on knowledge distillation and
iterative decoding, achieving significant advantages in both translation quality and decoding speedup.
(3) DASpeech obviously outperforms the corresponding cascaded systems (D1-D4 vs. E2-E5),
demonstrating the effectiveness of our expect-path training approach. We also find that the cascaded
model prefers larger graph size (A = 1.0 is better) while DASpeech prefers smaller graph size
(A = 0.5 is better). We think the reason is that a larger graph size can improve S2TT performance,
but it also makes end-to-end training more challenging. We further study the effects of the graph size
in Appendix (C| (4) On the CVSS-T dataset, which includes target speeches from various speakers, we
observe a performance degradation in Translatotron and Translatotron 2 as the target mel-spectrogram
becomes more difficult to predict. In contrast, DASpeech still performs well since its acoustic decoder
explicitly incorporates variation information to alleviate the acoustic multi-modality, demonstrating
the potential of DASpeech in handling complex and diverse target speeches.

Table [2] shows the results on CVSS-C dataset of the multilingual X—En S2ST model. We report
the average ASR-BLEU scores on all languages, as well as the average scores on high/middle/low-
resource languageﬂ We find that DASpeech still obviously outperforms S2UT but performs slightly
worse than Translatotron 2 and UnitY in the multilingual setting, with an average gap of about 1.3
ASR-BLEU compared to Translatotron 2. However, DASpeech has about 13 times decoding speedup
compared to Translatotron 2, achieving a better quality-speed trade-off.

Table 2: ASR-BLEU scores on CVSS-C test sets Table 3: ASR-BLEU scores on the CVSS-C
of the multilingual X—En S2ST model. Fr—En test set with best-path training and
expect-path training.

Models | Avg. High Mid Low

S2UT [3] 515 1674 624 084 _Models | Best Expect | A
UnitY [7] ] 8.15 2497 978 1.86 DASpeech | +Lookahead | 24.45 2471 | +0.26
Translatotron 2 [6] 8.74 2592 11.07 2.04 (A=0.5) | +Joint-Viterbi | 24.84 25.03 | +0.19
DASpeech | + Lookahead 742 2284 951 141 DASpeech | + Lookahead | 24.18  24.41 | +0.23
(A=0.5) | +Joint-Viterbi | 7.43 22.80 9.49 145 (A=1.0) | +Joint-Viterbi | 24.46  24.80 | +0.34

8Note that the original UnitY uses subwords instead of phonemes. Here we use phonemes just for consistency
with other systems.
The detailed results of each language pair can be found in Table@ in Appendix @
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Table 4: Average speaker similar-

4.3 Alternative Training Approach: Best-Path Training ity on CVSS-T Fr—En test set.

In addition to the expect-path training approach proposed in Speaker
. h . . Models imilari

Section[3.2} we also experiment with a simpler approach: Best- Similarity

Path Training. The core idea is to select the most probable path ~ Ground Truth | 048

A = argmaxcr Py(Y, A|X) via Viterbi algorithm [20], and Unit-based S2ST

take the hidden states on path A = (a1, ..., ays) as input to the lsji?tg% 8'82

acoustic decoder, i.e., z; = v;,. As shown in Table [3] best- TranSpeech 0.03

path training also performs well but is inferior to expect-path

. ) . 8 Mel-spectrogram-based S2ST
training. We attribute this to the fact that when using best-path

O . o Translatotron [3] 0.04
training, only hidden states on the most probable path participate  Translatotron 2 ‘ 0.05
in TTS training, which may result in insufficient training for the  "pxgpeech | + Lookahead 0.14
remaining hidden states. In contrast, all hidden states participate (A=10.5) | +Joint-Viterbi 0.10

in TTS training with our expect-path training, which achieves
better performance. The time complexity of Viterbi algorithm used in the best-path training is also
O(M L?). More details about the best-path training can be found in Appendix

4.4 Analysis of Decoding Speed

In this section, we provide more detailed analysis of decoding speed. Figure [2] shows the translation
latency of different models for speech inputs of different lengths. The results indicate that the
translation latency of autoregressive models (S2UT, Translatotron, UnitY, and Translatotron 2)
significantly increases with the length of the source speech. In contrast, the translation latency of
non-autoregressive models (TranSpeech and DASpeech) are hardly affected by the source speech
length. When translating longer speech inputs, DASpeech’s decoding speed can reach more than
20 times that of S2UT. Furthermore, we illustrate the quality-speed trade-off of different models
in Figure 3] By adjusting the hyperparameter A, the translation quality and decoding latency will
change. Specifically, as A increases, the decoding latency of the model will increase, and it achieves
the best translation quality when A = 0.5. It is evident that DASpeech achieves the best trade-off
between translation quality and decoding latency among all models. We further study the speedup
under batch decoding in Appendix

4.5 Voice Preservation

In this section, we investigate the voice preservation ability of direct S2ST models on the CVSS-T
Fr—En dataset, where target speeches are in voices transferred from source speeches. Specifically,
we use a pretrained speaker verification modeﬂ to extract the speaker embedding of the source

Yhttps://github.com/yistLin/dvector


https://github.com/yistLin/dvector

speech and generated target speech. We define the cosine similarity between source and target speaker
embeddings as speaker similarity, and report the average speaker similarity on the test set in Table
We find that: (1) unit-based S2ST model can not preserve the speaker’s voice since discrete
units contain little speaker information; and (2) DASpeech can better preserve the speaker’s voice
than Translatotron and Translatotron 2, since its acoustic decoder explicitly introduces variation
information of the target speech, allowing the model to learn more complex target distribution.

5 Related Work

Direct Speech-to-Speech Translation Speech-to-speech translation (S2ST) extends speech-to-text
translation [30-33]] which further synthesizes the target speech. Translatotron [3] is the first S2ST
model that directly generates target mel-spectrograms from the source speech. Since continuous
speech features contain a lot of variance information that makes training challenging, Tjandra et al.
[34], Zhang et al. [35] use the discrete tokens derived from a VQ-VAE model [36] as the target. Lee
et al. [SL137]] extend this research line by leveraging discrete units derived from the pretrained HuBERT
model [38] as the target. To further reduce the learning difficulty, Inaguma et al. [[7]], Jia et al. [6], Chen
et al. [39] introduce a two-pass architecture that generates target text and target speech successively.
To address the data scarcity issue, some techniques like pretraining and data augmentation are used to
enhance S2ST [8| 40H44]. Huang et al. [9] proposes the first non-autoregressive S2ST model which
achieves faster decoding speed. Our DASpeech extends this line of research and achieves better
translation quality and faster decoding speed.

Non-autoregressive Machine Translation Machine translation based on autoregressive decoding
usually has a high decoding latency [43]]. Gu et al. [10] first proposes NAT for faster decoding speed.
To alleviate the multi-modality problem in NAT, many approaches have been proposed [46] like
knowledge distillation [47H49]], latent-variable models [50} 51]], learning latent alignments [52H56]],
sequence-level training [57, 58]], and curriculum learning [25]]. Recently, Huang et al. [11]] introduce
DA-Transformer, which models different translations with DAG to alleviate the multi-modality
problem, achieving competitive results with autoregressive models. Ma et al. [59]], Gui et al. [60]
further enhance DA-Transformer with fuzzy alignment and probabilistic context-free grammar.

Non-autoregressive Text-to-Speech Ren et al. [61], Peng et al. [62] first propose non-autoregressive
TTS that generates mel-spectrograms in parallel. FastSpeech 2 [12] explicitly models variance
information to alleviate the issue of acoustic multi-modality. Many subsequent works enhance
non-autoregressive TTS with more powerful generative models like variational auto-encoder (VAE)
[63}164], normalizing flows [65H67]], and denoising diffusion probabilistic models (DDPM) 68! 169].
DASpeech adopts the design of FastSpeech 2 for training stability and good voice quality.

6 Conclusion

In this paper, we introduce DASpeech, a non-autoregressive two-pass direct S2ST model. DASpeech
is built upon DA-Transformer and FastSpeech 2, and we propose an expect-path training approach
to train the model end-to-end. DASpeech achieves comparable or even better performance than the
state-of-the-art S2ST model Translatotron 2, while maintaining up to 18.53x speedup compared
to the autoregressive model. DASpeech also significantly outperforms previous non-autoregressive
model in both translation quality and decoding speed. In the future, we will investigate how to
enhance DASpeech using techniques like pretraining and data augmentation.

7 Limitations & Broader Impacts

Limitations Although DASpeech achieves impressive performance in both translation quality and
decoding speed, it still has some limitations: (1) the translation quality of DASpeech still lags
behind Translatotron 2 in the multilingual setting; (2) the training cost of DASpeech is higher than
Translatotron 2 (96 vs. 18 GPU hours) since it requires dynamic programming during training; and
(3) the outputs of DASpeech are not always reliable, especially for some low-resource languages.

Broader Impacts In our experiments, we find that DASpeech emerges with the ability to maintain
the speaker identity during translation. It raises potential risks in terms of model misuse, such as
mimicking a particular speaker or voice identification spoofing.
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A Details of Baseline Models

In our experiments, we implement five baseline systems using fairseq: S2UT, Translatotron, UnitY,
Translatotron 2, and TranSpeech. We reproduce TranSpeech with their open-source implementa-
tionﬂ In this section, we mainly introduce the configurations of the other four baseline systems.

Figure [ shows the model architectures of these models. In terms of model architecture, S2UT and
Translatotron are single-pass S2ST models while UnitY and Translatotron 2 are two-pass S2ST
models. In terms of predicted targets, S2UT and UnitY predict discrete units while Translatotron and
Translatotron 2 predict mel-spectrograms. Below we describe the details of each model. The detailed
hyperparameters can be found in Table[5]
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Figure 4: Overview of baseline models.

S2UT Our implemented S2UT model includes three parts: a speech encoder, a linguistic decoder,
and an acoustic decoder. The speech encoder is the same as DASpeech. The linguistic decoder is
appended to the top layer of the speech encoder for multi-task learning, which predicts the target
phonemes during training. The acoustic decoder generates the reduced discrete units derived from
the 11-th layer of the pretrained mHuBERT mode We do not include other auxiliary tasks and
remove CTC decoding in Lee et al. [S] for simplification. The model is trained from scratch for 100k
steps. We use beam search with a beam size of 10.

Translatotron The speech encoder and linguistic decoder of Translatotron are the same as S2UT.
The acoustic decoder generates mel-spectrograms autoregressively. The pre-net dimension is 32 and
the reduction factor of the acoustic decoder is 5. The model is trained from scratch for 100k steps.

UnitY UnitY is a two-pass model that includes four parts: a speech encoder, a linguistic decoder, a
text-to-speech encoder, and an acoustic decoder. The architecture of the speech encoder, linguistic
decoder, and acoustic decoder are the same as S2UT. The additional text-to-speech encoder is
used to bridge the gap in representations between two decoders. We remove R-Drop training for
simplification. We first conduct S2TT pretraining and finetune the model for 50k steps. We set the
beam size of the first-pass and second-pass decoder to 10 and 1, respectively.

Translatotron 2 The model architecture of Translatotron 2 is similar to UnitY except that the second
decoder generates mel-spectrograms rather than discrete units. The reduction factor of the acoustic
decoder is set to 5. We first conduct S2TT pretraining and finetune the model for 50k steps. The
beam size is set to 10 for the first-pass decoder.

For all the above models, we save checkpoints every 2000 steps and average the last 5 checkpoints for
evaluation, which is the same as DASpeech. For S2UT and UnitY, we use the pretrained unit-based
HiFi—GANE] vocoder to synthesize waveform. For Translatotron and Translatotron 2, we use the
same pretrained HiFi-GAN vocoder as DASpeech.

"https://github.com/Rongjiehuang/TranSpeech

121’1ttps ://dl.fbaipublicfiles.com/hubert/mhubert_base_vp_en_es_fr it3_
L11_kml000.bin

Phttps://dl.fbaipublicfiles.com/fairseq/speech_to_speech/vocoder/code_
hifigan/mhubert_vp_en_es_fr 1t3_400k_layerll_kml1000_13/9g_00500000
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Table 5: Hyperparameters of DASpeech and baseline models.

Hyperparameters S2UT Translatotron UnitY Translatotron 2 DASpeech
conv_kernel_sizes (5,5) (5,5) 5,5) 5,5) (5,5)
encoder_type conformer conformer conformer conformer conformer
encoder_layers 12 12 12 12 12
Speech Encoder encoder_embed_dim 256 256 256 256 256
encoder_ffn_embed_dim 2048 2048 2048 2048 2048
encoder_attention_heads 4 4 4 4 4
encoder_pos_enc_type relative relative relative relative relative
depthwise_conv_kernel_size 31 31 31 31 31
decoder_layers 4 4 4 4 4
decoder_embed_dim 512 512 512 512 512
Linguistic Decoder decoder_ffn_embed_dim 2048 2048 2048 2048 2048
decoder_attention_heads 8 8 8 8 8
label_smoothing 0.1 0.1 0.1 0.1 0.0
s2t_loss_weight 8.0 0.1 8.0 0.1 1.0
encoder_layers - - 2 2 -
encoder_embed_dim - - 512 512 -
Text-to-Speech Encoder | 0 er ffn_embed_dim - - 2048 2048 -
encoder_attention_heads - - 8 8 -
decoder_layers 6 6 2 6 8
decoder_embed_dim 512 512 512 512 256
decoder_ffn_embed_dim 2048 2048 2048 2048 1024
decoder_attention_heads 8 8 8 8 4
label_smoothing 0.1 - 0.1 - -
Acoustic Decoder n_frames_per_step 1 5 1 5 1
unit_dictionary_size 1000 - 1000 - -
var_pred_hidden_dim - - - - 256
var_pred_kernel_size - - - 3
var_pred_dropout - - - - 0.5
s2s_loss_weight 1.0 1.0 1.0 1.0 5.0
Ir le-3 le-3 le-3 le-3 le-3
1Ir_scheduler inverse_sqrt inverse_sqrt inverse_sqrt inverse_sqrt inverse_sqrt
warmup_updates 4000 4000 4000 4000 4000
warmup_init_Ir le-7 le-7 le-7 le-7 le-7
Training optimizer Adam Adam Adam Adam Adam
dropout 0.1 0.1 0.1 0.1 0.1
max_tokens 40k x4 40k x4 40k x4 40k x4 40kx8
weight_decay 0.0 0.0 0.0 0.0 0.01
clip_norm 1.0 1.0 1.0 1.0 1.0
max_update 100k 100k 50k 50k 50k

B Detailed Results on CVSS-C X—En Datasets

Table[6] summarizes the detailed results of each language pair on CVSS-C test sets of the multilin-

gual X—En S2ST models.

Table 6: Results on CVSS-C test sets of the multilingual X—En S2ST models.

High Mid
Models A& | B De Ca Es | Fa It  Ru Zh Pt
S2UT [3] 515 | 19.65 1335 1537 1858 | 143 1447 794 093 642
UnitY [7] 815 | 2727 2081 2422 2758 | 3.63 21.68 10.86 4.16 8.56
Translatotron 2 [6] 874 | 2804 2154 2534 2877 | 423 23.66 1341 449 954
DASpeech | +Lookahead | 7.42 | 2543 17.87 22.58 2549 | 3.01 20.80 1296 2.86 7.90
(A=0.5) | +Joint-Viterbi | 7.43 | 2539 1836 2233 2510 | 2.81 2076 1294 3.05 7.89
Low
Modets ‘ Nl Tr Et Mn Ar Lv SI S Cy Ta Ja I
S2UT [3] 467 052 036 014 056 039 073 128 066 017 020 038
UnitY [7] 1060 379 107 012 078 150 081 138 174 010 0.5 027
Translatotron 2 6] 1L17 458 L12 032 135 137 093 149 150 010 022 033
DASpeech | +Lookahead | 9.04 175 0.04 008 064 143 120 133 070 009 029 029
(A=0.5) | +Joint-Viterbi | 9.43  1.66 0.07 0.08 048 148 130 130 085 009 031 032
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C Effects of the Graph Size

In this section, we investigate how the graph size affects the performance. We vary the size factor
A from 0.25 to 1.5, and measure the translation quality of both the S2TT DA-Transformer model
and DASpeech on the CVSS-C Fr—En test set. As shown in Figures[5]and[6] we observe that
the performance of S2TT DA-Transformer keeps increasing as the graph size gets larger, which is
consistent with the observations in machine translation [[11}|59]. However, DASpeech performs best
at A = 0.5 and shows a performance drop at larger A. We speculate that this is because larger graph
size makes end-to-end training more challenging. We will investigate this issue in the future.
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Figure 5: Phoneme-level BLEU scores of the Figure 6: ASR-BLEU scores of DASpeech under
S2TT DA-Transformer under different size fac-  different size factor \.
tor \.

D Speedup Under Batch Decoding

As Gu and Kong [46] pointed out, the speed benefits of non-autoregressive models may degrade
during batch decoding. To better understand this problem, we evaluate the speedup ratio under
different decoding batch sizes. As shown in Figure [/} the speedup ratio keeps dropping as the
decoding batch size increases. Nevertheless, DASpeech (A = 0.5 with Joint-Viterbi decoding)
still achieves more than 6 x speedup with a decoding batch size of 64 and maintains comparable
performance with Translatotron 2.

A1 @8 -6 @ bv-32 @ b=64

25.20 1 A Translatotron 2
25.00 oo O o A
5 24.80
T 0o O o A
D 24,60
>4
2
24.40
[ DASpeech (A=0.5) + Lookahead
24.20 + [ DASpeech (A=0.5) + Joint-Viterbi
A\ Unity DASpeech (A=1.0) + Lookahead
24.00 - DASpeech (A=1.0) + Joint-Viterbi

T T
12 4 6 8 10 12 14 16 18
Speedup Ratio

Figure 7: Speedup ratio compared to S2UT baseline (not shown in the figure) and ASR-BLEU score
on the CVSS-C Fr—En test set with different batch decoding sizes (b € {1, 8,16, 32,64}).
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E Best-Path Training

Best-path-training selects the most probable path A= (ai, ..., apr) and takes the hidden states on
path Aas input to the acoustic decoder. Formally, given the target phoneme sequence Y, we can find
the most probable path A = arg max 4cp Ps(Y, A|X) via Viterbi algorithm [20]. Specifically, we use
9;(4) to denote the probability of the most probable path so far (a1, ..., a;) with a; = j that generates
(Y1, ..., ¥:). Considering the definition of a; = 1, we have 6;(1) = P, and §1(1 < j < L) = 0.
For i > 1, we can sequentially calculate J;(-) from its previous step J;_1(-) due to the Markov
property:

6i(j) = f?gf(&q(/ﬂ) “Erj - Pjy.), (16)
®i(j) = arg max(;—1(k) - Eyj - Pjy,), (17)
<j

where ¢;(j) stores G;_1 of the most probable path so far (a1, ..., a;—1,d; = j). After M iterations,
we can obtain the most probable path by backtracking from ay; = L:

i = Giv1(iy1)- (18)

Finally, we select the hidden states on the most probable path, i.e., z; = v,, as the input sequence of
the acoustic decoder.
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