
Optimal Portfolio Liquidation

Yuheng CAI, Taichen FAN
Division of Financial Technology

The Chinese University of Hong Kong
Shatin, Hong Kong

{1155152883, 1155150355}@link.cuhk.edu.hk

December 12, 2020

Abstract

Optimal Portfolio Liquidation is one of the common challenges in stock
trading whose aim is to minimize a combination of risks and transactions
cost arising from permanent and temporary market impact when selling
a large number of stocks within a given time frame. Our attempt in this
project is to turn this challenge into a reinforcement learning problem
and compare the research result with a known baseline method achieved
with Almgren and Chriss model[1]. A quick introduction video is here
https://youtu.be/dBjzqcKjlBQ

Keywords: Almgren and Chriss model Optimal Liquidation Prob-
lem Deep Reinforcement Learning

1 Introduction
Optimal Liquidation Problem - How to Sell Stocks with Minimal Loss. Assume
that you have a certain number of stocks or portfolio that you want to sell within
a given time frame. Taking into account the costs arising from market impact
and a trader’s risk aversion, the goal is to create a trading list that sells all
stocks in the portfolio, within the given time frame, such that the total cost of
trading, also known as expected shortfall is minimized.

2 Related Work
Almgren and Chriss[1] provided a direct mathematical solution to the optimal
execution of portfolio transactions problem. We follow the same formal math-
ematical definition for trading trajectory, trading list and trading strategy for
liquidating a single stock, price dynamics and market impact etc; but these will
be used for the purpose of benchmark. We will explore a reinforcement learning
approach that can solve the optimal liquidation problem.

1

Reinforcement learning is a framework that an intelligent agent explores
the financial market in an iterative manner that allows it to learn the optimal
trading strategy through new information. Reinforcement learning methods
can be categorized into: critic-only, actor-only and actor-critic approach. Our
project work will be closely related to the actor-critic with a deep neural network
approach[4].

3 Preliminaries
Optimal Portfolio Liquidation is essentially aiming at minimizing the combination
of risk and transaction costs arising from permanent, temporary market impact
and random price fluctuation. As an example, assuming that a financial institute
has a large number of stocks that they want to sell within a given time frame.
Selling order directly to the market as it is, transaction costs may rise due to
permanent and temporary market impact; on the other hand, splitting up into
pieces in time, cost may rise due to stock price volatility. Following subsections
define how optimal portfolio liquidation problem might be formulated and its
mathematical solution based on the Almgren and Chriss Model, which will serve
as a baseline method for our Reinforcement Learning approach.

3.1 Baseline Method - Almgren and Chriss model
Almgren and Chriss[1] provided a solution to the optimal portfolio liquidation
problem by assuming the permanent and temporary market impact functions
are linear functions of the rate of trading, and stock prices follow a discrete
arithmetic random walk.

3.2 Trading Trajectory, Trading List, and Trading Strat-
egy

Suppose we hold T shares of a stock that we need to liquidate before time T .
Divide T into N intervals of length = T/N and :

• Trading Trajectory: the list (x0, ..., xN), where xk is the number of shares
we plan to hold at time tk. It’s required that the initial position x0=X,
and at liquidation time T , xN=0.

• Trading List: the list (n0, ..., nN), nk = xk−1 − xkas the number of shares
being sold between time tk−1 and tk.

• Trading Strategy: the rule determining nkfrom the information available
at time tk−1.

Following is a visual example of a trading trajectory with N = 12

2

Figure 1: Trading Trajectory Visualization

3.3 Price Dynamics
It’s assumed that stock price fluctuates according to a discrete arithmetic random
walk as following formula:

Sk = Sk−1 + στ1/2εk

for k = 1, 2, 3, ..., N and where:
Sk - stock price at time k,
σ - standard deviation of the fluctuations in stock price,
τ - length of discrete time interval,
εk - draws from independent random variables.

3.4 Permanent Market Impact
Every time we sell a stock, the stock price is affected by market impact. In
Almgren and Chris model, it distinguishes between Permanent and Temporary
Impact, which will be added into our price model.

Permanent market impact refers to a stock’s equilibrium price changes as
a result of trading. Its effect persists for the entire liquidation period T . We
denote the permanent price impact as g(v), and will add it to our price model
as following:

Sk = Sk−1 + στ1/2εk − τg(
nk
τ
)

Where permanent impact function, g(v), is the linear function of the trading

3

rate, v = nk/t. We will take g(v) to have the form:

g(v) = γ
nk
τ

where γ is a constant, replacing it in above we get:

Sk = Sk−1 + στ1/2εk − τnk

With this form, we can see that for each n shares that we sell, we will depress the
stock price permanently by nγ regardless of the time we take to sell the stocks.

3.5 Temporary Market Impact
Temporary market impact refers to a stock’s temporary imbalances in supply
and demand caused by our trading. This leads to temporary price movements
away from equilibrium. Its effect dissipates by the next trading period. With
this, the effective stock price at time k is given by:

S̃k = Sk−1 − h
nk
τ

Where, we have again assumed the temporary impact function, h(v), is a linear
function of the trading rate, v = nk/τ . We will take h(v), to have the form:

h(v) = εsign(nk) + η(
nk
τ
)

where ε and η are constants. It’s important to note that h(v) does not affect the
price Sk.

3.6 Capture
Capture refers to the total profits of trading along a particular trading trajectory
till the completion of all trades. Capture can be denoted as:∑N

k=1
nkS̃k = XS0 +

∑N

k=1
(στ1/2εk − τg(

nk
τ
))xk −

∑N

k=1
nkh(

nk
τ
)

As we can see this is the sum of the product of the number of shares nkthat we
sell in each time interval, times the effective price per share S̃k received on that
sale.

3.7 Implementation Shortfall
Implementation Shortfall refers to total cost of trading:

Is = XS0 −
∑N

k=1
nkS̃k

This is what we need to minimize when determining the best trading strategy.

4

Since εkis a random variable, so is implementation shortfall Is. Therefore
minimization of implementation shortfall can be framed in terms of the expecta-
tion value of the shortfall and its corresponding variance. We will denote the
expected shortfall as E(x) and variance of shortfall as V (x):

E(x) =
∑N

k=1
τxkg(

nk
τ
) +

∑N

k=1
nkh(

nk
τ
)

and
V (x) = σ2

∑N

k=1
τxk

2

So now, we can reframe our minimization problem in terms of E(x) and V (x). For
a given level of variance of shortfall, V (x), we seek to minimize the expectation
of shortfall, E(x).

3.8 Utility Function
The goal of optimal portfolio liquidation is to find the strategy that has the
minimum expected shortfall E(x) for a given maximum level of variance V (x) >=
0. This constrained optimization problem can be solved by introducing a
Lagrange multiplier. Therefore the problem finally reduces to finding the trading
strategy that minimize the Utility Function U(x):

U(x) = E(x) + λV (x)

The parameterλ is referred to as trader’s risk aversion, which controls how much
we penalize the variance relative to the expected shortfall.

The intuition of this utility function can be thought of as follows. Consider a
stock, which exhibits high price volatility and thus a high risk of price movement
away from the equilibrium price. A risk averse trader would prefer to trade a
large portion of the volume immediately, causing a known price impact, rather
than risk trading in small increments at successively adverse prices. Alternatively,
if the price is expected to be stable over the liquidation period, the trader would
rather split the trade into smaller sizes to avoid price impact. The trade-off
between speed of execution and risk of price movement is ultimately what governs
the structure of the resulting trade list.

Almgren and Chriss solved the above problem and showed that each value of
risk aversion there is uniquely determined optimal execution strategy, which is
summarized as follows just for completeness. The details can be found in their
paper [1].

The optimal trading trajectory:

xj =
sinh(κ(T − tj))

sinh(κT)
X, forj = 1, 2, 3, ..., N

and the associated trading list:

nj =
2sinh(12κτ)

sinh(κT)
cosh(κ(T − tj− 1

2
))X, forj = 1, 2, 3, ..., N

5

The expected shortfall and variance of the optimal trading strategy are given by:

E(x) =
1

2
γX2 + εX + η̃X2 tanh(

1
2κT)(τsinh(2κT) + 2Tsinh(κτ))

2τ2sinh2(κT)

V (x) =
1

2
σ2X2 τsinh(κT)cosh(κ(T − τ))− Tsinh(κτ)

sinh2(κT)sinh(κτ)

In this project, we will apply the reinforcement learning approach to find the
optimal execution strategy instead of above Almgren and Chriss’s mathematical
solution, which only serves as a benchmark for our project.

4 Reinforcement Learning Approach

4.1 Actor-Critic Method
Actor-Critic method is adopted to combine the advantages of actor-only and
critic-only methods. In this method, the critic learns the value function and
uses it to determine how the actor’s policy parameters should be changed, while
the critic supplies the actor with knowledge of the performance. Actor-critic
methods usually have good convergence properties, in contrast to critic-only
methods. The Deep Deterministic Policy Gradients (DDPG) algorithm[2] is one
example of actor-critic method that has been explored in this project. The rest
of the section formulates the optimal liquidation problem so that it can be solved
using reinforcement learning.

Figure 2: Actor-Critic Method

The optimal liquidation problem is a minimization problem where we need
to find the trading list that minimizes the implementation shortfall. In order
to solve this problem through reinforcement learning, we need to restate the
optimal liquidation problem in terms of States, Actions and Rewards.

6

4.2 States
The optimal liquidation execution problem requires that the agent must sell all
stocks in hand within a given time frame. Hence the state vector must provide
information about remaining time or the number of trades remaining at any
time step. In this project state vector at time tk as:

[rk−5, rk−4, rk−3, rk−2, rk−1, rk,mk, ik]

where:

• rk = log(Sk

Sk−1
) is the log of return at time tk

• mk = Nk

N is the number of trades remaining at time tk normalized by the
total number of trades

• ik = Xk

X is the remaining number of shares at time tk normalized by the
total number of shares

This is a simplified state vector capturing minimum variables, which can be
further expanded for agents to detect possible price trends and transaction costs
etc.

4.3 Actions
To generalize the design, we will define action ak at time tk as the percentage
of total number of stocks to sell. So the exact number of shares to sell at each
time step is:

nk = ak × xk

where xk is the number of shares remaining at time tk.

4.4 Rewards
As mentioned previously, utility function is defined as:

U(x) = E(x) + λV (x)

where E(x) the expected shortfall, V (x) is referred as level of variance of shortfall
and λ refers to trader’s risk aversion, which controls how much we penalize the
variance relative to the expected shortfall.

Defining the rewards is trickier than defining states and actions, since the
original problem is a minimization problem. One option is to use the difference
between two consecutive utility functions. By maximizing the difference between
two consecutive utility functions (t and t+ 1), we are effectively driving utility
function down over time. So denoting the optimal trading strategy trajectory
computed at time t as x∗t , reward at time t as:

Rt =
Ut(x

∗
t)− Ut+1(x

∗
t+1)

Ut(x∗t)

Where we have normalized the difference to train the actor-critic model easier.

7

4.5 Simulation Environment
In order to train our deep reinforcement learning agent implemented in DDPG,
we need an environment to simulate stock prices that follow a discrete arithmetic
walk and that the permanent and temporary market impact functions are linear
functions of the rate of trading, just like in the Almgren and Chriss model. This
simple trading environment serves as a starting point to create more complex
trading environments such as book orders, network latencies, trading fees etc
(for future improvement but not in the scope of this project).

5 Experiments

5.1 Benchmark Environment Parameters
The simulation environment can be characterized by Financial Parameters and
Almgren and Chriss Model Parameters as follows.

Table 1: Financial Parameters for Benchmarck

Same Financial Parameters are being applied throughout all experiments.

Table 2: Almgren and Chriss Model Parameters for Benchmark

Almgren and Chriss solved the minimization problem mathematically to
determine the unique optimal execution strategy for each value of risk aversion
λ.

5.2 DDPG V.S. Almgren and Chriss Methods
Deep Deterministic Policy Gradient (DDPG) is implemented in this project
to find a policy that can generate optimal trading trajectories minimizing

8

implementation shortfall and benchmarked against the Almgren and Chriss
Model using the same simulation environment. A DDPG agent is fed the
states observed from the simulation environment and predicts actions using the
actor model and performs trading in the environment. Then the simulation
environment returns the reward and new state The process continues for a given
number of episodes. Our DDPG implementation has been trained for 100,000
episodes. The comparison between DDPG and Almgren and Chriss Model
benchmark is as follows:

Method Risk Aversion λ Implementation Shortfall
Almgren Chriss Model 1e-06 $480,925.46

DDPG Model 1e-06 $707,143.50

Table 3: DDPG V.S. Almgren and Chriss Implementation Shortfall

6 Conclusion
In this project we conducted basic experiments to seek optimal portfolio liq-
uidation strategy using Deep Deterministic Policy Gradient method under a
simulation environment where stock prices follow a discrete arithmetic walk
and that the permanent and temporary market impact functions are linear
functions of the rate of trading. Under the same financial and Almgren and
Chriss parameters, DDPG achieved a higher (worse) expected implementation
shortfall compared with that produced by Almgren and Chriss model.

Although the preliminary result is not satisfactory, there are multiple areas
worth exploring in future:

• Incorporate different reward function design to formulate the reinforcement
learning problem

• Use more realistic price dynamics, such as geometric brownian motion
(GBM) [3]

• Add more complex dynamics to the environment such as trading fees by
adding and extra term to the fixed cost of selling

• Try other actor-critic Deep Reinforcement Learning method for continuous
space

References
[1] Robert Almgren and Neil Chriss. Optimal execution of portfolio transactions.

Journal of Risk, pages 5–39, 2011.

[2] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control
with deep reinforcement learning, 2019.

9

[3] K. Reddy and Vaughan Clinton. Simulating stock prices using geometric
brownian motion: Evidence from australian companies. The Australasian
Accounting Business and Finance Journal, 10:23–47, 2016.

[4] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. Deterministic policy gradient algorithms. In Proceedings
of the 31st International Conference on International Conference on Machine
Learning - Volume 32, ICML’14, page I–387–I–395. JMLR.org, 2014.

10

	Introduction
	Related Work
	Preliminaries
	Baseline Method - Almgren and Chriss model
	Trading Trajectory, Trading List, and Trading Strategy
	Price Dynamics
	Permanent Market Impact
	Temporary Market Impact
	Capture
	Implementation Shortfall
	Utility Function

	Reinforcement Learning Approach
	Actor-Critic Method
	States
	Actions
	Rewards
	Simulation Environment

	Experiments
	Benchmark Environment Parameters
	DDPG V.S. Almgren and Chriss Methods

	Conclusion

