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Abstract

Empirical studies have revealed that many minima in the loss landscape of deep learning
are connected and reside on a low-loss valley. We present a general framework for finding
continuous symmetries in the parameter space, which give rise to the low-loss valleys. We
introduce a novel set of nonlinear, data-dependent symmetries for neural networks. We
then show that conserved quantities associated with linear symmetries can be used to de-
fine coordinates along the minima. The distribution of conserved quantities reveals that
using common initialization methods, gradient flow only explores a small part of the global
minimum. By relating conserved quantities to convergence rate and sharpness of the min-
imum, we provide insights on how initialization impacts convergence and generalizability.
We also find the nonlinear action to be viable for ensemble building to improve robustness
under certain adversarial attacks.

Keywords: Symmetry, gradient flow, conserved quantity, Lie group, Lie algebra

1. Introduction

Training deep neural networks (DNN) is generally a highly non-convex problem. The loss
landscape of DNN is expected to be very rugged, with the number of local minima growing
rapidly with model size (Bray and Dean, 2007; Şimşek et al., 2021). However, it has been
observed that many DNN loss landscapes contain approximately flat directions along which
the loss does not change significantly (Freeman and Bruna, 2017; Garipov et al., 2018).
The loss landscape is shaped by the model architecture and the dataset. Hence, a natural
question is: How are parameter space symmetries of the architecture related to flat minima?

* Equal contribution.

© 2022 B. Zhao, I. Ganev, R. Walters, R. Yu & N. Dehmamy.



Extended Abstract Track
Zhao Ganev Walters Yu Dehmamy

!"

!#

Figure 1: Extended minimum in a
2-layer network L = ∥Y − UV X∥2.
Points along the minimum are re-
lated by scaling symmetry U →
Ug−1 and V → gV . The conserved
quantity, Q = U2−V 2, parametrizes
trajectories and minimum.

Intuitively, it is clear that a symmetry may lead
flat minima, as applying a symmetry does not change
the loss. However, finding such flat directions is
mostly done empirically (Freeman and Bruna, 2017;
Garipov et al., 2018; Draxler et al., 2018; Benton
et al., 2021; Izmailov et al., 2018). Theoretical re-
sults on the existence of such flat minima and how to
find them remain sparse. Kunin et al. (2021) shows
that some flat directions can be traced back to scal-
ing and shift symmetries of the loss landscape. We
discover a set of continuous symmetries which keep
nonlinear NN invariant under certain conditions.

We show that coordinates along flat minima can
be parametrized using conserved quantities. As in
Noether’s theorem in physics (Noether, 1918), when
a continuous symmetry exists, some quantity will re-
main unchanged during gradient flow dynamics. We
generalize the work in Kunin et al. (2021) and dis-
cuss an alternative way to derive such quantities. We
also derive the explicit form of conserved quantities
for different continuous symmetries of NN. Complete
theoretical results appear in Appendix B and C.

2. Continuous Symmetries in Deep Learning

Let G be a group. An action of G on the parameter space Param is a function · : G ×
Param → Param, written as g · θ, that satisfies the unit and multiplication axioms of
the group, meaning I · θ = θ where I is the identity of G, and g1 · (g2 · θ) = (g1g2) · θ for
all g1, g2 ∈ G. The action G × Param → Param is a symmetry of L if it leaves the loss
function invariant, that is:

L(g · θ) = L(θ), ∀θ ∈ Param, g ∈ G. (1)

The groups we discuss below are all matrix Lie groups. Any smooth action of such a
group induces an action of the infinitesimal generators of the group, i.e., elements of its Lie
algebra. To describe this action, let g = Lie(G) = TIG be the Lie algebra, which can be
thought of as a certain subspace of matrices in gln = Rn×n, or equivalently, as the tangent
space at the identity I of G. Given an action of G on the parameter space, we have a vector
field for every element M of the Lie algebra g, known as the infinitesimal action of M :

Mθ :=
d

dt

∣∣∣∣
t→0

(expM (t) · θ) ∀θ ∈ Param. (2)

Proposition 1 (Infinitesimal symmetry) Let G be a matrix Lie group acting on pa-
rameter space and leaving the loss invariant. Then the gradient vector field is point-wise
orthogonal to the infinitesimal action vector field of any Lie algebra element M ∈ g:

⟨∇θL , Mθ⟩ = 0 ∀θ ∈ Param. (3)
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In the special case where G acts linearly on parameter space, the infinitesimal action
of the matrix M ∈ g on Param is defined in terms of matrix multiplication: Mθ =
M · θ. Examples of linear symmetries in homogeneous and radial neural networks have
been discussed in literatures, which we summarize in Appendix B.3. Below we show a more
interesting application of Proposition 1 in nonlinear neural networks.

Proposition 2 (Nonlinear symmetries) Consider the F (X) = Uσ(V X) network for a
fixed batch X ∈ Rm×k. Let G ⊆ GLh(R) be such that ∀g ∈ G, σ(gV X) is full rank (rank
min(h, k). Consider the following nonlinear action of G on Param×Data

g · (U, V,X) = (Uπ(g, V X), gV, X) π(g, Z) = σ(Z)σ(gZ)+ (4)

where π : G × Rh×k → GLh(R) is a nonlinear representation of G and A+ is the the
pseudoinverse of A. Then, the action (4) is a symmetry of Param which keeps F (X)
invariant if h = k.

This result applies a pair of consecutive layers in arbitrary architectures and can easily
generalize to multilayer neural networks. One consequence of these continuous symmetries
is the existence of extended, flat minima (Appendix B.6). Next, we discuss how these
symmetries give rise to conserved quantities during gradient flow (GF) dynamics.

3. Conserved Quantities of Gradient Flow

Gradient descent can be regarded as a discrete approximation of a continuous gradient flow
process, where t ∈ R>0. In gradient flow, the parameters have the dynamics

θ̇(t) = dθ(t)/dt = −ε∇L(θ(t)). (5)

A conserved quantity of GF is a function Q : Param → R such that for any two time
points s, t ∈ R>0 along a GF trajectory Q(θ(s)) = Q(θ(t)). In other words, we have
dQ(θ(t))/dt = 0. A few conserved Q of GF have been discovered, most notably layer
imbalance in homogeneous feed-forward networks (Du et al., 2018). We generalize these
results to the symmetries discussed above.

Proposition 3 Suppose the action of G on Param is linear and leaves L invariant. For
any M ∈ g, the function QM : Param → R is a conserved quantity:

QM (θ) = ⟨θ,M · θ⟩ (6)

The space of distinct conserved quantities of the form QM for M ∈ g is in one-to-one
correspondence with the space of symmetric matrices in g.

The conserved QM are only nonzero for the symmetric part of M . For all M , the

flow lines satisfy the differential equation θ̇
T
Mθ = 0, which has the form of an angular

momentum when M is anti-symmetric. More details and examples are in Appendix C.3.
In physics, Noether’s theorem (Noether, 1918) states that continuous symmetries give

rise to conserved quantities. Recently, Tanaka and Kunin (2021) showed that Noether’s
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theorem can also be applied to gradient descent by approximating it as a second order GF.
In the limit where the second order GF reduces to first order GF (23), results from Noether’s
theorem reduce to our conservation law

〈
Mθ,∇L

〉
= 0 (11) in Appendix C.4.

The conserved quantities we derived so far assumes continuous gradient flow. In gradient
descent, the values of these conserved quantities may change due to the time discretization.
However, the change in Q is expected to be small. For example, in two-layer linear networks,
the change of Q is bounded by the square of learning rate. Appendix D contains derivations
and empirical observations of the magnitude of change in Q.

4. Applications and Future Work

Relation to convergence rate and generalizability Conserved quantities are deter-
mined at initialization and by definition unchanged during gradient flows. By relating the
values of conserved quantities to optimization and model generalizability, we know some
properties of the trajectory and the final model before the gradient flow even starts. This
knowledge allows us to choose good conserved quantity values at initialization, in order to
influence the convergence rate or the sharpness of the trained model. In Appendix F, we
derive the relation between conserved quantities and convergence rate for two optimization
examples. We show that initializing parameters with certain conserved quantity values
accelerates convergence. In Appendix G, we derive the relation between conserved quan-
tities and sharpness of solutions in a simple two-layer network, and show empirically that
conserved quantity values affect sharpness in larger networks.

Ensemble models While the set of possible values for a conserved quantity is often
unbounded, common initialization methods such as Xavier initialization (Glorot and Bengio,
2010) limit the values of Q to a small range (Appendix E). As a result, only a small part
of the minimum is reachable by the models. Applying the group actions allow us to obtain
an ensemble without any retraining or searching. We show that even with stochasticity in
the data, the loss is approximately unchanged under the group action. The ensemble has
the potential to improve robustness under adversarial attacks (Appendix H).

(a) (b) (c) (d)

Figure 2: Overview of empirical observations with more details in Appendix F, G, and H.
(a) In a two-layer neural network, the convergence rate depends on the conserved quantity
Q. (b) The distribution of the eigenvalues of the Hessian at the minimum is related to Q.
(c) The ensemble created by group actions has similar loss values when ε is small. (d) The
ensemble model improves robustness against fast gradient sign method attacks.
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Appendix A. Related Work

Continuous symmetry in parameter space Overparametrization in neural networks
leads to symmetries in the parameter space G luch and Urbanke (2021). Continuous sym-
metry has been identified in fully-connected linear networks (Tarmoun et al., 2021), ho-
mogeneous neural networks (Badrinarayanan et al., 2015; Du et al., 2018), radial neural
networks (Ganev et al., 2022), and softmax and batchnorm functions (Kunin et al., 2021).

Conserved quantities The imbalance between layers in linear or homogeneous networks
is known to be invariant during gradient flow and related to convergence rate (Saxe et al.,
2014; Du et al., 2018; Arora et al., 2018a,b; Tarmoun et al., 2021; Min et al., 2021). Huh
(2020) discovered similar conservation laws in natural gradient descents. Kunin et al. (2021)
develop a more general approach for finding conserved quantities for certain one-parameter
symmetry groups. In physics, Noether’s theorem gives a conserved quantity for every con-
tinuous symmetry Noether (1918). However, while symmetry of the loss function may be
known, the kinetic energy makes it difficult to find symmetry of the Lagrangian that de-
scribes the learning dynamics. Tanaka and Kunin (2021) takes a different route by studying
the dynamics of the conserved quantity caused by this kinetic symmetry breaking.
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Topology of minimum The global minimum of overparametrized neural networks are
connected spaces instead of isolated points. Cooper (2018) proves that the global minima
is usually a manifold with dimension equal to the number of parameters subtracted by the
number of data points. Şimşek et al. (2021) study permutation symmetry and show that in
certain overparametrized networks, the minimum related by permutations are connected.
Entezari et al. (2021) hypothesize that SGD solutions can be permuted to points on the same
connected minima. Ainsworth et al. (2022) develop algorithms that find such permutations.

Appendix B. Continuous symmetries in deep learning

In this section, we first summarize our notation for basic neural network constructions.
Then we consider group actions on the parameter space that leave the loss invariant. We
prove that, in the case of such an action, the gradient vector field is orthogonal to the
infinitesimal action vector field corresponding to any Lie algebra element.

B.1. The parameter space and loss function

The parameters of a neural network consist of a choice of weight matrix1 for each layer.
In symbols, one has Wi ∈ Rni×mi for each layer i, where ni and mi are the layer output
and input dimensions, respectively. For feedforward networks, successive input and output
dimensions match: mi = ni−1. We group the widths into a tuple n = (nL, . . . , n1, n0),
and the parameter space becomes2: Param(n) = RnL×ni−1 × · · · × Rn1×n0 . We denote an
element therein as a tuple of matrices θ = (Wi ∈ Rni×ni−1)Li=1. The activation of the i-th
layer is a piecewise differentiable function σi : Rni → Rni , which can be pointwise, as is
conventionally the case, but is not necessarily so.

Fix parameter values θ ∈ Param. For any input vector x ∈ Rn0 , we set Hθ,i(x), or
simply Hi(x), to be the feature vector in the i-th layer, before the activation is applied.
Hence we have the recursion Hi+1 = Wi+1 ⋆ σ(Hi), where ⋆ denotes the matrix product,
convolution, or other ways that the weights may act on the input features. For simplicity,
we largely focus on the case of multilayer perceptrons (MLPs), when ⋆ denotes matrix
multiplication. The feedforward function Fθ : Rn0 → RnL corresponding to parameters
θ ∈ Param is then defined as Fθ(x) = σL(Hθ,L(x)).

The “loss function” L of our model is defined as:

L : Param×Data → R, L(θ, (x, y)) = Cost(y, Fθ(x)). (7)

where Data = Rn0×RnL is the space of possible training data pairs, and Cost : RnL×RnL →
R is a differentiable cost function, such as mean square error or cross-entropy. This loss
function generalizes to multiple samples, where the data consists of matrices X ∈ Rn0×k

and Y ∈ RnL×k whose columns are the k samples. (We use capital letters for matrix data
and small letters for individual samples, but retain the same notation for the feedforward
function, i.e., Fθ : Rn0×k → RnL×k.) In the results appearing below, we prove properties
of L that hold for any training data. Hence, unless specified otherwise, we take a fixed
batch of training data {(xi, yi)}ki=1 ⊆ Data, and consider the loss to be a function of the
parameters only.

1. For the purposes of exposition, we suppress the bias vectors.
2. When clear from context, we omit n and write just Param.
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Example 1 (Two-layer network with MSE) Consider a network with n = (n, h,m),
the identity output activation, and no biases. The parameter space is Param(n) = Rn×h ×
Rh×m and we denote an element as θ = (U, V ). Taking the mean square error cost function,
the loss function for data (X,Y ) ∈ Rn×k × Rm×k takes the form L(θ, (X,Y )) = 1

k∥Y −
Uσ1(V X)∥2.

B.2. Action of continuous groups and infinitesimal symmetries

Let G be a group. An action of G on the parameter space Param is a function · : G ×
Param → Param, written as g · θ, that satisfies the unit and multiplication axioms of the
group, meaning I · θ = θ where I is the identity of G, and g1 · (g2 · θ) = (g1g2) · θ for all
g1, g2 ∈ G .

Definition 4 (Parameter space symmetry) We say that the action G × Param →
Param is a symmetry of L if it leaves the loss function invariant, that is:

L(g · θ) = L(θ), ∀θ ∈ Param, g ∈ G (8)

The groups we discuss below are all matrix Lie groups, that is, continuous subgroups
G ⊆ GLn(R) of the general linear group of invertible n × n real matrices, for some n.
Any smooth action of such a group induces an action of the infinitesimal generators of the
group, i.e., elements of its Lie algebra. To describe this action, let g = Lie(G) = TIG be
the Lie algebra, which can be thought of as a certain subspace of matrices in gln = Rn×n,
or (equivalently) as the tangent space at the identity I of G. With the former realization
in mind, for every matrix M ∈ g, we have an exponential map expM : R → G valued in the

group, defined as expM (t) =
∑∞

k=0
(tM)k

k! . Given an action of G on the parameter space,
we have a vector field for every element M of the Lie algebra g, known as the infinitesimal
action of M :

Infinitesimal action of M vector field: Mθ :=
d

dt

∣∣∣∣
t→0

(expM (t) · θ) ∀θ ∈ Param.

(9)

In the case of a parameter space symmetry, the invariance of L translates into the following
orthogonality condition, where the inner product ⟨, ⟩ : Param×Param → R is calculated
by contracting all indices, e.g. ⟨A,B⟩ =

∑
ijk...Aijk...Bijk....

Proposition 5 (Infinitesimal symmetry) Let G be a matrix Lie group acting parame-
ter space and leaving the loss function invariant. Then the gradient vector field is point-wise
orthogonal to the infinitesimal action vector field of any Lie algebra element M ∈ g:

⟨∇θL , Mθ⟩ = 0 ∀θ ∈ Param (10)

Proof The gradient is the transpose of the Jacobian, so the left-hand-side becomes
dLθ

(
d
dt

∣∣
0

(expM (t) · θ)
)
, which is equal to d

dt

∣∣
0
L(expM (t) · θ) by the chain rule. The in-

variance of L implies that L(expM (t) · θ) = L(θ) for any t. The result follows.
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In the special case where G acts linearly on parameter space, we have the following
reformulation. The general linear group GL(Param) consists of all invertible linear trans-
formations3 of the parameter space. Suppose G is a subgroup of GL(Param), with the
resulting linear action on Param. Then its Lie algebra g is a Lie subalgebra of gld = Rd×d

where d = dim(Param), and the infinitesimal action of the matrix M ∈ g on Param is
defined in terms of matrix multiplication: Mθ = M · θ. A corollary of Proposition 5 is:

Corollary 6 Suppose G acts linearly on the parameter space leaving the loss function
invariant. Then the gradient of the loss function and the multiplication action of any M ∈ g
are orthogonal:

⟨∇θL , M · θ⟩ = 0 ∀θ ∈ Param (11)

B.3. Examples of linear symmetries

We now describe a linear group action on the parameter space with a cancellation property
on successive layers. Such an action exists for a vast swath of different architectures. Before
discussing the general case, however, we first analyze two-layer networks, hence illustrating
the main ideas in as simple a way as possible. To this end, consider a two-layer network
with dimension vector (m,h, n), so that the parameter space consists of pairs of matrices
(U, V ) ∈ Rm×h×Rh×n. Let σ = σ1 be the hidden layer activation and assume (for simplicity)
that there is no output activation. The feedforward function is therefore F (x) = Uσ(V x)
for x ∈ Rn. Let G ⊆ GLh(R) be a subgroup, and let π : G → GLh(R) a representation; the
simplest example is when π(g) = g. Define the action of G on Param as follows:

g · U = Uπ(g−1), g · V = gV (12)

Proposition 7 (Equivariant activation) Suppose σ(gz) = π(g)σ(z) for all z ∈ Rh.
Then the action given in 12 is a symmetry of the parameter space.

Proof The loss depends on the parameters only through the feedforward function, so it
suffices to show that (U, V ) and g · (U, V ) give the same feedforward function. The key
computation is: (g ·U)σ((g ·V )x) = Uπ(g−1)σ(gV x) = Uσ(V x), where x ∈ Rn is any input
vector.

To describe the infinitesimal action, note that the representation π : G → GLh induces a
representation dπ : g → glh of the Lie algebra, defined by dπ(M) = d

dt

∣∣
0
π(expM (t)). Using

the fact that exp−M (t) = expM (t)−1, the infinitesimal action of the Lie algebra g induced
by 12 is given by:

M · U = −Udπ(M), M · V = MV (13)

The infinitesimal version of σ(gz) = π(g)σ(z) is

⟨Mz, dσz⟩ = dπ(M)σ(z) (14)

3. Concretely, let d = dim(Param) be the dimension of the parameter space; in terms of the widths, we
have d =

∑L
i=1 nini−1. Then Param ≃ Rd and parameters can be ‘flattened’ into d-vectors. One

can identify GL(Param) with the group GLd(R) of invertible d × d matrices, and its Lie algebra with
gld = Rd×d.
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where dσz ∈ Rh×h is the Jacobian matrix of σ : Rh → Rh at z ∈ Rh. When the activation
is elementwise, we have Mz⊙σ′(z) = dπ(M)σ(z) (⊙ denotes elementwise multiplication) 4

Example 2 (Linear networks) The simplest example of Proposition 7 is that of linear
networks, where σ(x) = x. One can take π(g) = g and G = GLh(R).

Example 3 (Homogeneous activations) Suppose the activation σ : Rh → Rh is homo-
geneous, so that σ is applied pointwise in the standard basis, and there exists α > 0 such
that σ(cz) = cασ(z) for all c ∈ R>0 and z ∈ Rh. Define the positive scaling group G to
be the subgroup of GLh consisting of diagonal matrices with positive diagonal entries. We
show that, for any g ∈ G, and any z ∈ Rh, we have σ(gz) = gασ(z). Indeed, let g be
an element of the positive rescaling group, so g = diag(c) is a diagonal matrix, where the
diagonal entries c = (c1, . . . , ch) satisfy ci ∈ R>0. For z = (z1, . . . , zh) ∈ Rh, we have:
σ(gz) =

∑
j σ(cjzj) =

∑
j c

α
j σ(zj) = gασ(z), as desired. Hence, we set π(g) = gα. We have

dπ(M) = αM and so the infinitesimal version of rescaling invariance of homogeneous σ
becomes Mz ⊙ σ′(z) = αMσ(z).

Example 4 (LeakyReLU) A special type of homoegeneous activation is LeakyReLU (in-
cluding ReLU), defined as σ(z) = max(z, 0) − smin(z, 0), where s is positive real number.
We have that α = 1, and take π(g) = g. Since σ(z) = zσ′(z), infinitesimal equivariance
becomes Mz ⊙ σ′(z) = Mσ(z).

Example 5 (Radial rescaling activations) A less trivial example of continuous sym-
metries is the case of a radial rescaling activation (Ganev et al., 2022) where for x ∈ Rh\{0},
σ(x) = f(∥x∥)x for some function f . Radial rescaling activations are is equivariant under
rotations of the input: for any orthogonal transformation g ∈ O(h) (that is, gT g = I) we
have σ(gz) = gσ(z) for all z ∈ Rh. Indeed, σ(gz) = f(∥gz∥)(gz) = g(f(∥z∥)z) = gσ(z),
where we use the fact that ∥gz∥ = zT gT gz = zT z = ∥z∥ for g ∈ O(h). Hence, Proposition
7 is satisfied with π(g) = g.

B.4. Nonlinear Symmetries

So far we assumed the group action g ·θ is linear. We now introduce a set of nonlinear group
actions that can keep the the loss invariant. Consider the equivariance π(g)σ(z) = σ(gz)
from Prop. 7. Consider our example subnetwork F (z) = Uσ(V z) with dimensions (n, h,m).
Most σ may not be equivariant under the linear action of the full GLh(R) group. However,
if we generalize Prop. 7 and allow π to act nonlinearly, it is possible to make many σ
equivariant under the full GLh(R).

Let Ha
b denote entry in row a and column b of a batch of inputs X ∈ Rm×k. Assume σ

acts independently on each sample a (column), σ(X)a = σ(Xa). We can define the following
nonlinear symmetry for a fixed input:

Proposition 8 (Nonlinear symmetries) Consider the F (X) = Uσ(V X) network for a
fixed batch X ∈ Rm×k. Let G ⊆ GLh(R) be such that ∀g ∈ G, σ(gV X) is full rank (rank

4. The general case is dσz · (Mz) = dπ(M) ·σ(z), where dσz ∈ Rh×h is the Jacobian matrix of σ : Rh → Rh

at z ∈ Rh, and · denotes matrix multiplication.
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min(h, k). Consider the following nonlinear action of G on Param×Data

g · (U, V,X) = (Uπ(g, V X), gV, X) π(g, Z) = σ(Z)σ(gZ)+ (15)

where π : G × Rh×k → GLh(R) is a nonlinear representation of G and A+ is the the
pseudoinverse of A. Then, the action (15) is a symmetry of Param which keeps F (X)
invariant if h = k.

Proof We can check that the group axioms are satisfied when k ≤ h. For brevity, let
Z = V X so that g · (U,Z) = (Uπ(g, Z), gZ). Setting g = I, we see that the identity
action holds when σ(Z)+σ(Z) = Ik, which requires k ≤ h. For the group multiplication,
for g1, g2 ∈ G we have

g2 · g1 · (U,Z) = g2 · (Uπ(g1, Z), g1Z)

= (Uπ(g1, Z)π(g2, g1Z), g2g1Z)

π(g1, Z)π(g2, g1Z) = σ(Z)σ(g1Z)+σ(g1Z)σ(g2g1Z)+

= σ(Z)σ(g2g1Z)+ = π(g2g1, Z)

⇒ g2 · g1 · (U,Z) = [g2g1] · (U,Z) (16)

Setting g2 = g−1
1 , (16) shows the inverse axiom also holds. Lastly, in order for this action to

be a symmetry, the identity action should yield I · (U, V,X) = (U, V,X), meaning π(I, Z) =
σ(Z)σ(Z)+ = Ih. This only holds if h ≥ k. As a result, (15) is a symmetry if h = k.

Note that the nonlinear symmetry above is restricted to a given input X ∈ Rh×h (setting
h = h to have a symmetry). This means that a transformed set of parameters (U ′, V ′)
defined by (U ′, V ′, X) = g · (U, V,X) will not yield the same output as (U, V ) when used
on a different input X∗ because π(g−1, V X)σ(gV X∗) ̸= σ(V X∗). We cannot use it to
define transformed parameters (U ′, V ′) = g(̇U, V )one batch X to transform parameters to
(U ′, V ′) = (Uπ(g, V X), gV ), while U ′σ(V ′X) = Uσ(V X), for different batch X ′ ∈ Rh×h

using π(g, V X) may not keep F (V X)

B.5. Linear symmetries: multilayer case

We now state a more general version of the results of the previous section by combining
equivariances across all layers of a multilayer network. Specifically, consider a feedforward
fully-connected neural network with widths n = (n0, . . . , nL), so that the parameters space

consists of tuples of matrices θ = (Wi ∈ Rni×ni−1)
L
i=1. For each layer 1 < i < L, let Gi be a

subgroup of GLni , and let πi : Gi → GLni(R) be a representation (in many cases, we take
πi(g) = g). Define an action of G = G1 × · · · ×GL on Param via

∀g = (g1, . . . , gL) ∈ G, g ·Wi = gi+1Wiπi(g
−1
i ) (17)

For each i, the representation πi induces a Lie algebra representation d(πi) : gi → glni
, as

described above. The infinitesimal action of the Lie algebra g = g1 × · · · × gL induced by
17 is given by:

∀M = (M1, . . . ,ML) ∈ g, g ·Mi = Mi+1Wi −Wid(πi)(Mi) (18)

The proof of the first part of the following Proposition proceeds by induction, where the
key computation is that of from Proposition 7. The second part relies on Corollary 6.

12
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Proposition 9 Suppose that, for each i = 1, . . . , L, the activation σi intertwines the two
actions of Gi, that is, σi(gizi) = πi(gi)σ(zi) for all gi ∈ Gi, zi ∈ Rni. Then:

1. (Combined equivariance of activations) The action of G = G1 × · · · × GL defined in
17 is a symmetry of the parameter space.

2. (Infinitesimal equivariant action) The action of g = g1×· · ·×gL defined in 18 satisfies
⟨∇θL,M · θ⟩ for all θ ∈ Param and all M ∈ g.

Next, we discuss the effects of continuous symmetry on the loss landscape.

B.6. Linear symmetries lead to extended, flat minima

In this section, we show that, in the case of a linear group action, applying the action of
any element of the group to a local minimum yields another local minimum. This fact is a
corollary of a more general result; in order to describe it and remove ambiguity, we include
the following clarifications. Let G be a matrix Lie group acting as a linear symmetry.
Fix a basis (θ1, . . . , θd) of the parameter space. The gradient ∇θL of the loss L at a
point θ ∈ Param in the parameter space as another vector in Param ≃ Rd, whose i-th
coordinate is the partial derivative ∂L

∂θi

∣∣
θ
. Hence, it makes sense to apply the group action

to the gradient: g · ∇θL. We regard vectors in Param ≃ Rd as column vectors with d
rows. Thus, the transpose of any vector is a row vector with d columns. In the case of the
gradient, its transpose at θ matches the Jacobian dLθ ∈ R1×d of L, that is: dLθ = (∇θL)T .
Alternative notation for the Jacobian is dLθ0 = ∂L

∂θ

∣∣
θ0

, where we now use θ as a dummy
variable and θ0 ∈ Param as a specific value. As noted above, we are interested in matrix
Lie groups G ⊆ GLd(R) = GL(Param), and assume that the matrix transpose gT belongs
to G for any g ∈ G. These assumptions hold in all examples of interest.

Proposition 10 Suppose the action of G on the parameter space is linear and leaves the
loss invariant. Then the gradients of L at any θ0 and g · θ0 are related as follows:

gT · ∇g·θ0L = ∇θ0L ∀g ∈ G, ∀θ0 ∈ Param (19)

Proof Let Tg : Param → Param be the transformation corresponding to g ∈ G. The the
Jacobian dLθ0 is given by:

dLθ0 =
∂L
∂θ

∣∣∣∣
θ0

=
∂(L ◦ Tg)

∂θ

∣∣∣∣
θ0

=
∂L
∂θ

∣∣∣∣
g·θ0

∂Tg

∂θ

∣∣∣∣
θ0

= dLg·θ0 ◦ Tg

where we have used the definition of the Jacobian, the invariance of the loss (L ◦ Tg = L),
the chain rule, the linearity of the action. The result follows from applying Tg−1 on the
right to both sides, and using the fact that the gradient is the transpose of the Jacobian.

Now suppose θ∗ is a critical point of L so that ∇θ∗L = 0. Then Proposition 10 implies
that g · θ∗ is another critical point: ∇g·θ∗ = (gT )−1∇θ∗L = 0. If the group G is connected
(as the case in most applications), then continuity implies that critical points that are local
minima are sent to other local minimum. We summarize this discussion in the following
corollary:
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Corollary 11 Suppose G is connected. If θ∗ is a critical point (resp. local minimum) of
L, then so is g · θ∗.

Hence, if θ∗ is a critical point, then the set {g · θ | g ∈ G} belongs to the critical locus.
This set is known as the orbit of θ under the action of G, and is isomorphic to the quotient
G/StabG(θ), where StabG(θ) = {g ∈ G | g · θ = θ} is the stabilizer subgroup of θ in G.
In the case of a linear action, the orbit is a smooth manifold. While the corollary above
implies that the critical locus is a union of G-orbits, it does not imply, in general, that the
critical locus is a single G-orbit. It also does not rule out the case that the stabilizer is a
somewhat ‘large’ subgroup of G, in which case the orbit would have low dimension.

Example 6 (Running example) Recall that the parameter space of a two-layer network
is Param = Rm×h×Rh×n, where the dimension vector is (m,h, n), and we write elements as
(U, V ). Pick such an element in which U and V have full rank (this is a generic condition).

• Linear case. The GLh-orbit has dimension h2 − max(0, h− n) max(0, h−m).

• Homogeneous case. The orbit of the positive rescaling group has dimension min(h,max(n,m)).

• Radial rescaling case. The orbit of the orthogonal group has dimension
(
h
2

)
if

h ≤ max(n,m) and dimension
(
h
2

)
−
(
h−max(m,n)

2

)
otherwise.

To summarize:

Linear case dim = h2 − max(0, h− n) max(0, h−m) (20)

Homogeneous case dim = min(h,max(n,m)) (21)

Radial rescaling case dim =

{(
h
2

)
if h ≤ max(n,m)(

h
2

)
−
(
h−max(m,n)

2

)
otherwise

(22)

Next, we discuss how these symmetries give rise to conserved quantities during “gradient
flow” (GF) dynamics (continuous version of gradient descent (GD)).

Appendix C. Conserved quantities of gradient flow

Thus far, we discussed a class of continuous symmetries of the loss in neural networks and
how it may lead to extended loss minima, which we will call “valleys”. Symmetries can
move us along a loss valley. The questions that arises are: How do we distinguish between
different minima along a valley? Can we parametrize points along a loss valley? Does
training using SGD typically end up in a specific part of these valleys? We will show now
that these questions can be addressed using conserved quantities.

In brief, we show that certain quantities remain constant during gradient flow (GF)
(continuous version of gradient descent (GD)). We will denote these conserved quantities
by Q. The value of Q is fixed by the initialization and remains constant during GF. As
we show, common initialization schemes, such as Xavier, lead to a narrow distribution of
values for Q. As a result, if stochasticity is not too high, SGD will only converge to and
explore a small portion of a loss valley. Our goal is to provide a systematic way to explore
the rest of the valley. By applying symmetries we can change the value of Q and thereby
explore parts of loss valleys which SGD seldom converges to.
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C.1. Gradient flow (GF)

The update rule for GD is θt+1 = θt − ε∇L(θt) where ε is the learning rate, which in
general can be a symmetric matrix. GD can be regarded as a discrete approximation of a
continuous GF process, where t ∈ R>0. In GF, the parameters have the dynamics

θ̇(t) = dθ(t)/dt = −ε∇L(θ(t)). (23)

At time t = 0, initializing at θ(0) ∈ Param, GF defines a “trajectory” θ(t) ∈ Param for
t ∈ R>0.

C.2. Conserved quantities

A conserved quantity of GF is a function Q : Param → R such that for any two time
points s, t ∈ R>0 along a GF trajectory Q(θ(s)) = Q(θ(t)). In other words, we have
dQ(θ(t))/dt = 0. A few conserved Q of GF have been discovered, most notably layer
imbalance Qimb ≡ ∥Wi∥2 − ∥Wi−1∥2 (Du et al., 2018) for each pair of feedforward linear
(σ(x) = x) layers i− 1, i, and its full matrix version Qi = W T

i Wi −Wi−1W
T
i−1. It is known

that imbalance and certain other conserved Q can be related to symmetries (Huh, 2020;
Kunin et al., 2021). We generalize these results to the symmetries discussed above. Using
chain rule and the GF equation we have

dQ

dt
=

〈
∂Q

∂θ

∣∣∣∣
θ(t)

,
dθ(t)

dt

〉
= −⟨∇Q, ε∇L⟩ = 0 (24)

which also equals −⟨ε∇Q,∇L⟩ = 0 because ε = εT . Note that, if f : R → R is any function,
and Q is a conserved quantity, the f ◦ Q is also a conserved quantity. Additionally, any
linear combination of conserved quantities is again a conserved quantity.

C.3. Conserved quantities from symmetries

For simplicity, set the learning rate to identity, ε = I. Notice the similarity of dQ/dt = 0
(24) with infinitesimal group action (11) ⟨M · θ,∇L⟩ = 0. We can associate a conserved Q
to a symmetry by finding solutions to ∇Q(θ) = M · θ (or more generally to f(θ)∇Q(θ) =
M · θ, with f : Param → R). Alternatively, we can use the GF equation to write (11) as

Q̇M ≡
〈
θ̇,M · θ,

〉
= 0. Matrices in the Lie algebra g give rise to conserved quantities for

the gradient flow, as explained in the following proposition:

Proposition 12 Suppose the action of G on Param is linear5 and leaves L invariant. For
any M ∈ g, the function QM : Param → R is a conserved quantity:

QM (θ) = ⟨θ,M · θ⟩ (25)

The space of distinct conserved quantities of the form QM for M ∈ g is in one-to-one
correspondence with the space of symmetric matrices in g.

5. For simplicity, we also assume that G is closed under taking transposes, and that G acts faithfully .
These assumptions generally hold in practice.
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Proof Flattening θ into a d =
∏

n dimensional vector, we get M ∈ Rd×d. Assuming,
MT ∈ g, let M sym = 1

2(M +MT ) ∈ g. Using GF θ̇ = −∇L, we have QM = θTMθ = QMsym

and Q̇M =
〈
θ̇,M · θ

〉
+
〈
θ,M · θ̇

〉
= −⟨∇L,M sym · θ⟩ = 0

The conserved QM = QMS
above are only nonzero for the symmetric part of M . If M

is an anti-symmetric matrix in g, then QM ≡ 0, so we do not obtain meaningful conserved
quantities. Instead, we can only conclude that flow lines satisfy the differential equation

θ̇
T
Mθ = 0. Selecting coordinates e1, . . . , ed for the parameter space Param, this equation

becomes: ∑
i<j

Mijr
2
ijϕ̇ij ≡ 0 (26)

where (rij , ϕij) are the polar coordinates for the point (θi,θj) ∈ R2. In summary, we find:

M ∈ g M symmetric M anti-symmetric

differential equation conserved quantity differential equation

θ̇TMθ = 0 QM (θ) = θTMθ
∑

i<j mijr
2
ijϕ̇ij ≡ 0

Example 7 (Imbalance in linear layers) Let σi(z) = z in an L layer feedforward NN
(i < L). L is invariant under Gi = GLni(R). Let M ∈ glni

be symmetric. The correspond-
ing QM is given by

QM = Tr
[
W T

i MiWi

]
− Tr

[
Wi+1MW T

i+1

]
(27)

Using the one-hot matrices Ekl (only component k, l is 1, rest are 0) and setting M =
E{kl} = Ekl + Elk, we get QM =

[
WiW

T
i −W T

i+1Wi+1

]
kl
. This shows that each component

kl of the whole matrix Q = WiW
T
i −W T

i+1Wi+1 is conserved in linear layers.

Example 8 (Equivariant σ) Let σ be equivariant under a linear action of g ∈ G ⊆
GLh(R) with π(g)σ(z) = σ(gz). Let F (z) = Uσ(V z) be two layers in an NN with loss
invariant under the above G. For symmetric M ∈ g, and using the infinitesimal action
(13), the following QM is conserved

QM = Tr
[
Udπ(M)UT

]
− Tr

[
V TMV

]
. (28)

Example 9 (Homogeneous activation under scaling) For g ∈ G = Rh
>0 (positive

scaling group) we have σ(gz) = gασ(z) and dπ(M) = αM , which yields the conserved
QM = αTr

[
UMUT

]
− Tr

[
V TMV

]
. Note, for scaling all M are diagonal and hence

symmetric. Using the basis M = Ekk, we see that the set of all conserved QM becomes
Q = diag

[
αUTU − V V T

]
(here, diag[A] is the leading diagonal). Special cases of this are

LeakyReLU and ReLU with α = 1.

Example 10 (Radial rescaling activation) Consider the F (z) = Uσ(V z) network with
dimensions (n, h,m) and let σ(z) = f(∥z∥)z be the radial rescaling activation. As in sec.
B.3, G = O(h) commutes with σ, making it a symmetry of L. The Lie algebra g consists
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only of anti-symmetric matrices M = −MT , and so from (25) yields QM = 0 and no
nontrivial QM can be found this way. However, M ∈ g still satisfies

θTM θ̇ = −Tr
[
UMU̇T

]
+ Tr

[
V TMV̇

]
= 0, (29)

and (26). Using the canonical basis of E[kl] ∈ g = o(h) given by E[kl] = Ekl − Elk ([kl]
meaning anti-symmetrized indices), (29) becomes

θTE[kl]θ̇ = [U̇TU ][kl] − [V̇ V T ][kl] =
n∑

s=1

r2U,sϕ̇U,s −
m∑
s=1

r2V T ,sϕ̇V T ,s = 0 (30)

(rU,s, ϕU,s) and (rV T ,s, ϕV T ,s) are the polar coordinates of row Us and column V s = V T
s in

the 2D plane with basis (ek, el) 6. This is analogous to the “angular momentum” in 2D
x ∧ ẋ = r2ϕ̇. Intuitively, (30) states that in every 2D plane (k, l), the angular momenta
of rows of U and columns of V are equal. This result trivially generalizes to multi-layer
networks, with U = Wi and V = Wi−1.

C.4. Relation to Noether’s theorem

We now show how the approach in (Tanaka and Kunin, 2021) relates to our conservation

law dQ/dt =
〈
θ̇,Mθ

〉
= 0. Assuming a small time-step τ ≪ 1, we can write GD as

θ(t + τ) − θ(t) = −ε̃∇L(θ(t)). Expanding the l.h.s to second order in τ and discarding
O(τ3) terms defines the 2nd order GF equation

2nd order GF:
dθ

dt
+

τ

2

d2θ

dt2
= −ε∇L. (31)

Here ε = ε̃/τ . To use Noether’s theorem, the dynamics (i.e. GF) must be a variational
(Euler-Lagrange (EL)) equation derived from an “action” S(θ) (objective function), which
for (31) is the time integral of Bregman Lagrangian L (Wibisono and Wilson, 2015)

S(θ) =

∫
dtL(θ(t), θ̇(t); t) =

∫
γ
dtet/τ

[τ
2

〈
θ̇, ε−1θ̇

〉
− L(θ)

]
(32)

where θ : R → Param is a trajectory (flow path) in Param, parametrized by t. The
variational EL equations find the paths γ∗ which minimize the action, meaning ∂Sγ/∂γ|γ∗ =
0.

Noether’s theorem states that if M ∈ g is a symmetry of the action S(θ) (32) (not just
the loss L(θ)), then the Noether current JM is conserved

Noether current: JM =

〈
Mθ,

∂L

∂θ̇

〉
= et/τ

〈
Mθ, ε

−1θ̇
〉

= et/τJ0M ,

Conservation:
dJM
dt

= et/τ
[

1

τ
J0M +

dJ0M
dt

]
= 0, ⇒ J0M (t) = J0Me−t/τ (33)

6. The polar coordinate are found by setting Usl = rU,s cosϕU,s and Usk = rU,s sinϕU,s (same for V T ).
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Tanaka and Kunin (2021) also derived the Noether current (33), but concludes that because
L(θ, θ̇) ̸= L(θ), the symmetries are “broken” and therefore doesn’t derive conserved charges
for the types of symmetries we discussed above. However, while Tanaka and Kunin (2021)
focuses on 2nd order GF, we note that our conserved Q were derived for first order GF,
which is found from the τ → 0 limit of 2nd oder GF. In this limit L → et/τL and thus
symmetries of L also becomes symmetries of L. When τ → 0, 2nd order GF reduces to
ε−1θ̇ = −∇L the conserved charge goes to

lim
τ→0

J0M =
〈
Mθ,∇L

〉
= J0M (0) lim

τ→0
e−t/τ = 0, (34)

which means that we recover the invariance under infinitesimal action (11). In fact, for
linear symmetries and symmetric M ∈ g, J0M = dQM/dt = 0.

Appendix D. Gradient descent and drifting conserved quantities

Due to the non-infinitesimal time steps, conserved quantities in gradient flow are no longer
conserved in gradient descent. However, with small learning rate, we expect the change in
the conserved quantities to be small. In this section, we first prove that the change of Q is
bounded by the square of learning rate for two layer linear networks, then show empirically
that the change Q is small for nonlinear networks.

D.1. Change in Q in gradient descent (linear layers)

Proposition 13 Consider the two layer linear network, where U ∈ Rm×h, V ∈ Rh×n are
the only parameters, and the loss function L is a function of UV . In gradient descent with
learning rate η, the change in the conserved quantity Q = Tr

[
UTU − V V T

]
at step t is

bounded by

|Qt+1 −Qt| ≤ η2
∣∣∣∣dL(t)

dt

∣∣∣∣ . (35)

Proof Let Ut and Vt be the value of U and V at time t in a gradient descent. The update
rule is

Ut+1 = Ut − η
∂L
∂U

, Vt+1 = Vt − η
∂L
∂V

(36)

Consider the two layer linear reparametrization W = UV .

Qt = Tr
[
UT
t Ut − VtV

T
t

]
Qt+1 = Tr

[
UT
t+1Ut+1 − Vt+1V

T
t+1

]
= Tr

[(
Ut − η

∂L(Ut)

∂Ut

)T (
Ut − η

∂L(Ut)

∂Ut

)
−
(
Vt − η

∂L(Vt)

∂Vt

)(
Vt − η

∂L(Vt)

∂Vt

)T
]

(37)

Expanding Qt+1 and subtracting by Qt, we have

Qt+1 −Qt = Tr

[
η2
(

∂L
∂Ut

)T ∂L
∂Ut

− η

(
∂L
∂Ut

)T

Ut − ηUT
t

∂L
∂Ut

− η2
∂L
∂Vt

(
∂L
∂Vt

)T

+ η
∂L
∂Vt

V T
t + ηVt

(
∂L
∂Vt

)T
]

(38)
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Note that (
∂L
∂Ut

)T

Ut = (∇LV T
t )TUt = Vt∇LTUt = Vt

(
∂L
∂Vt

)T

, (39)

and similarly

UT
t

∂L
∂Ut

=
∂L
∂Vt

V T
t . (40)

Therefore, 38 simplifies to

Qt+1 −Qt = η2 Tr

[(
∂L
∂Ut

)T ∂L
∂Ut

− ∂L
∂Vt

(
∂L
∂Vt

)T
]

= η2

(
Tr

[(
∂L
∂Ut

)T ∂L
∂Ut

]
− Tr

[(
∂L
∂Vt

)T ∂L
∂Vt

])
, (41)

and the variation of Q in each step is bounded by the convergence rate:

|Qt+1 −Qt| = η2

∣∣∣∣∣Tr

[(
∂L
∂Ut

)T ∂L
∂Ut

]
− Tr

[(
∂L
∂Vt

)T ∂L
∂Vt

]∣∣∣∣∣
≤ η2

∣∣∣∣∣Tr

[(
∂L
∂Ut

)T ∂L
∂Ut

]
+ Tr

[(
∂L
∂Vt

)T ∂L
∂Vt

]∣∣∣∣∣
= η2

∣∣∣∣dLdt
∣∣∣∣ (42)

D.2. Empirical observations

In gradient flow, the conserved quantity Q is constant by definition. In gradient descent,
Q varies with time. In order to see how applicable our theoretical results are in gradient
descent, we investigate the amount of variation in Q in gradient descent using two-layer
neural networks.

Since Q is the difference between the two terms f1(U) = 1
2 Tr[UTU ] and f2(V ) =∑

a,j

∫ Vaj

x0
dx σ(x)

σ′(x) , we normalize Q by the initial value of f1(U) and f2(V ), i.e.,

Q̃ =

∣∣∣12 Tr[UTU ] −
∑

a,j

∫ Vaj

x0
dx σ(x)

σ′(x)

∣∣∣∣∣1
2 Tr[UT

0 U0]
∣∣+
∣∣∣∑a,j

∫ V0aj
x0

dx σ(x)
σ′(x)

∣∣∣
and denote the amount of change in Q̃ as

∆Q̃(t) = Q̃(t) − Q̃(0) (43)
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We run gradient descent on two-layer networks with whitened input with the following
objective

argminU,V {L(U, V ) = ∥Y − Uσ(V T )∥2F } (44)

where σ is the identity function, ReLU, sigmoid, or tanh. Y ∈ R5×10, U ∈ R5×50 and
V ∈ R10×50 have random Gaussian initialization with zero mean. We repeat the gradient
descent with learning rate 0.1, 0.01, and 0.001.

The variation ∆Q̃(t) and loss is shown in Fig.3. The amount of change in Q is small
relative to the magnitude of f1(U) and f2(V ), indicating that conserved quantities in gra-
dient flow are approximately conserved in gradient descent. The error in Q grows with step
size, as ∆Q̃(t) is larger with the largest learning rate we used, although it has the same
magnitude as those of smaller learning rates. We also observe that Q stays constant after
loss converges.
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Figure 3: Dynamics of conserved quantities in GD. The amount of change in Q is small
relative to its magnitude, and Q converges when loss converges.

Appendix E. Distribution of Q under Xavier initialization

We first consider a linear two-layer neural network UV X, where U ∈ Rm×h, V ∈ Rh×n, and
X ∈ Rn×k. We choose the following form of the conserved quantity:

Q =
1

2
Tr[UTU − V V T ]. (45)

Xavier initialization keeps the variance of each layer’s output the same as the variance of the
input. Under Xavier initialization (Glorot and Bengio, 2010), each element in a given layer
is initialized independently, with mean 0 and variance equal to the inverse of the layer’s
input dimension:

Uij = N
(

0,
1

h

)
Vij = N

(
0,

1

n

)
(46)

The expected value of Q is

E[Q] = V ar(Uij) ×m× h + V ar(Vij) × h× n = m− h. (47)

Figure 4 shows the distribution of Q for 2-layer linear NN with different layer dimensions.
For each dimension tuples (m,h, n), we constructed 1000 sets of parameters using Xavier
initialization. The centers of the distributions of Q match Eq. (47).
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Figure 4: Distribution of Q for 2-layer linear NN with different layer dimensions.

Next, we consider the nonlinear two-layer neural network Uσ(V X), where σ : R −→ R
is an element-wise activation function. For simplicity, we assume whitened input (X = I).
We choose the following form of the conserved quantity:

Q =
1

2
Tr[UTU ] −

∑
a,j

∫ Vaj

0
dx

σ(x)

σ′(x)
(48)

Figure 5 shows the distribution of Q for 2-layer linear NN with different nonlinearities,
each with 1000 sets of parameters created under Xavier initialization. The shapes of the
distributions are similar to that of linear networks. The value of Q is usually concentrated
around a small range of values. Since the range of Q is unbounded, the Xavier initialization
limits the model to a small part of the global minimum.
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Figure 5: Distribution of Q for 2-layer linear NN with different nonlinearities, with param-
eter dimensions m = h = n = 100.

Appendix F. Conserved quantity and convergence rate

The values of conserved quantities are unchanged throughout the gradient flow. Since
the conserved quantities parameterize trajectories, initializing parameters with certain con-
served quantity values accelerates convergence. We derive the relation between conserved
quantities and convergence rate for two example optimization problems and provide numer-
ical evidence that initializing parameters with optimal conserved quantity values accelerates
convergence.
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F.1. Example 1: ellipse

We first show that the convergence rate is related to the conserved quantity in a toy opti-
mization problem. Consider the following loss function with a ∈ R:

L(w1, w2) = w2
1 + aw2

2

∇L = (2w1, 2aw2)

Assuming gradient flow,

dw1

dt
= −∇w1L = −2w1

dw2

dt
= −∇w2L = −2aw2

Then w1, w2 are governed by the following differential equations:

w1(t) = w10e
−2t w2(t) = w20e

−2at

where w10 , w20 are initial values of w1 and w2. We can find conserved quantities by using
an ansatz Q = f(wi

1w
k
2) and solving ∇Q · ∇L = 0 for i, k. Below we use the following form

of conserved quantity:

Q =
w2a
1

w2
2

=
w2a
10

w2
20

To show the effect of Q on the convergence rate, we fix L(0) and derive how Q affects
L(t). Let L(0) = w2

10
+ aw2

20
= L0. Let w20 continue to be an independent variable. Then

w2
10

= L0 − aw2
20

. Substitute in w2
10

, the loss at time t is

L(t) = w1(t)
2 + aw2(t)

2 = (L0 − aw2
20)e−4t + aw2

20e
−4at

and Q becomes

Q =
w2a
10

w2
20

=
(L0 − aw2

20
)a

w2
20

The derivative of L in the direction of Q is

∂QL(t) =
dL(t)

dw20

dw20

dQ
=

dL(t)

dw20

(
dQ

dw20

)−1

=
(
−2aw20e

−4t + 2aw20e
−4at

)(a(L0 − aw2
20

)a−1(−2aw20)w2
20

− 2w20(L0 − aw2
20

)a

w4
20

)−1

=

(
−2aw20e

−4t + 2aw20e
−4at

)
w4
20

a(L0 − aw2
20

)a−1(−2aw20)w2
20

− 2w20(L0 − aw2
20

)a

=
2aw5

20

(
e−4at − e−4t

)
2w20(L0 − aw2

20
)a−1

(
−a2w2

20
− (L0 − aw2

20
)
)

In general, ∂QL(t) ̸= 0, meaning that the loss at time t depends on Q. Since we have
fixed the initial loss, the convergence rate L(t)−L(0) also depends on Q. Special cases where
∂QL(t) = 0 include a = 1 (circle), a = 0 (collapsed dimension), and certain initializations
such as w20 = 0 (local maximum of gradient magnitude).
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F.2. Example 2: radial activation functions

In this example, we find the conserved quantities and their relation with convergence rate
for two-layer reparametrization with radial activation functions under spectral initialization.

Define radial function g : Rm×n −→ Rm×n as

g(W )ij = h (|Wi|)Wij , (49)

where |Wi| =
(∑

k W
2
ik

) 1
2 is the norm of the ith row of W , and h : R −→ R outputs a scalar.

Consider the following objective:

argminU,V {L(U, V ) =
1

2
∥Y − Ug(V T )∥2F } (50)

with spectral initializations

U0 = ΦU0, V0 = ΨV 0,

where Φ,Ψ come from the singular value decomposition Y = ΦΣY ΨT , and U0, V 0 are
random diagonal matrices.

Proposition 14 Under the gradient flow U = −∇UL and V = −∇V L, the following
quantity is an invariant:

Q =
1

2
Tr[UTU ] −

∑
i

∫ V̄ii

x0

dx
g(x)

g′(x)
(51)

Proof Since g is a radial function on rows and ΨT is an orthogonal matrix, g(V
T

ΨT ) =

g(V
T

)ΨT . With spectral initialization, the loss function can be reduced to only involving
diagonal matrices:

L =
1

2
∥Y − Ug(V T )∥2F

=
1

2
∥ΦΣΨT − ΦUg[(ΨV )T ]∥2F

=
1

2
∥ΦΣΨT − ΦUg(V

T
)ΨT ∥2F

=
1

2
∥Φ
(

Σ − Ug(V
T

)
)

ΨT ∥2F

=
1

2
∥Σ − Ug(V

T
)∥2F (52)

Since V is a diagonal matrix, g is now an element wise function on V . Let W = Ug(V
T

).
The gradients for U and V are

∂L
∂U

= ∇WLg(V )T

∂L
∂V

= ∇WLTU ⊙ g′(V ) (53)
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where g′(x) = dg(x)/dx is the derivative of the nonlinearity. Additionally, since L does not
depend on Φ and Ψ,

∂L
∂Φ

=
∂L
∂Ψ

= 0 (54)

Since the rows of Φ,Ψ are orthogonal,

∂L
∂U

=
∂L
∂U

ΦT = ∇WLg(V )TΦT

∂L
∂V

=
∂L
∂V

ΨT =
(
∇WLTU ⊙ g′(V )

)
ΨT (55)

Φ and Ψ are not changed in gradient flow, so ∂Q
∂U = ∂Q

∂U
ΦT and ∂Q

∂V = ∂Q

∂V
ΨT . Define

inner product on matrices as ⟨X,Y ⟩ = Tr[XTY ]. For Q to be a conserved quantity, we need
⟨∇L,∇Q⟩ = 0:

⟨∇L,∇Q⟩ = ⟨ ∂L
∂U

,
∂Q

∂U
⟩ + ⟨ ∂L

∂V
,
∂Q

∂V
⟩

= ⟨∇WLg(V )TΦT ,
∂Q

∂U
ΦT ⟩ + ⟨

(
∇WLTU ⊙ g′(V )

)
ΨT ,

∂Q

∂V
ΨT ⟩

= ⟨∇WLg(V )T ,
∂Q

∂U
⟩ + ⟨

(
∇WLTU ⊙ g′(V )

)
,
∂Q

∂V
⟩

= Tr
[
∂
U

TQ∇WLg(V )T + U
T∇WL(∂V Q⊙ g′(V ))

]
= 0 (56)

Following the same procedure as for elementwise functions, to have a Q which satisfies (56)
it is sufficient to have

∂Q

∂U ia

= f(U, V )U ia
∂Q

∂V aj

g′(V )aj = −f(U, V )g(V )aj f(U, V ) ∈ R (57)

For simplicity, let f(U, V ) = 1. Then, (57) is satisfied by

Q =
1

2
Tr[ŪT Ū ] −

∑
i

∫ V̄ii

x0

dx
g(x)

g′(x)
(58)

Tarmoun et al. (2021) shows that the conserved quantity Q appears as a term in the
convergence rate of the matrix factorization gradient flow. We observe a similar relationship
between Q and convergence rate when the loss function is augmented with a radial activation
function, as shown in the following proposition.

Proposition 15 Consider the objective function and spectral initialization defined in Propo-
sition 14. Let h (|Wi|) = |Wi|−2, and X = Ug(V T ) = ΦΣXΨT . Then, the eigencomponent
of X approaches the corresponding eigencomponent of Y at a rate of

σ̇X
i =

1

λi
(σY

i − σX
i )(σX

i
2

+ 1)2, (59)

where σX
i = diag(ΣX)i, σ

Y
i = diag(ΣY )i, and λi = Ū2

ii + V̄ 2
ii are conserved quantities.
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Proof Similar to Tarmoun et al. (2021), components can be decoupled, and we have a set
of differential equations on scalars:

u̇i = [σY
i − uig(vi)]g(vi)

v̇i = [σY
i − uig(vi)]ui

dg(vi)

dvi
(60)

We also have

ġ(vi) =
dg

dvi

dvi
dt

= [σY
i − uig(vi)]ui

(
dg(vi)

dvi

)2

. (61)

Let σX
i = uig(vi). Then

σ̇X
i = u̇ig(vi) + uiġ(vi)

=
[
σY
i − uig(vi)

] [
g(vi)

2 + u2i

(
dg(vi)

dvi

)2
]
. (62)

Since V is a diagonal matrix, g is now an element wise function on V . Specifically, g(vi) = 1
vi

.
According to Proposition 14, the following quantity is invariant:

1

2
u2i −

∫
dx

g(x)

g′(x)
=

1

2
u2i −

∫
dx

v−1
i

−v−2
i

=
1

2
u2i +

1

2
v2i (63)

Since any function of the invariant is also invariant, we will use the following form:

Q = U
T
U + V

T
V , (64)

and define

λi = Qii = u2i + v2i (65)

Using the g that we defined,

σX
i = uig(vi) = uiv

−1
i . (66)

In order to relate σX and Q, we first write ui and vi as functions of σX
i ad Q using (65)

and (66):

u2i =
λiσ

X
i

2

σX
i

2 + 1
, v2i =

λi

σX
i

2 + 1
. (67)
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Then, substitute ui, vi, g(vi), and dg(vi)
dvi

into (62), and we have

σ̇X
i = [σi − uig(vi)]

[
g(vi)

2 + u2i

(
dg(vi)

dvi

)2
]

=
[
σY
i − uig(vi)

] [( 1

vi

)2

+ u2i
(
−v−2

i

)2]
=
[
σY
i − uig(vi)

] [
(v2i )

−1 + u2i (v
2
i )

−2
]

=
[
σY
i − σX

i

] [( λi

σX
i

2 + 1

)−1

+
λiσ

X
i

2

σX
i

2 + 1

(
λi

σX
i

2 + 1

)−2
]

=
[
σY
i − σX

i

] [σX
i

2 + 1

λi
+

σX
i

2(σX
i

2 + 1)

λi

]
=
[
σY
i − σX

i

] [σX
i

4 + 2σX
i

2 + 1

λi

]
=

1

λi
(σY

i − σX
i )(σX

i
2 + 1)2 (68)

Proposition 15 relates the rate of change in parameters σ̇X
i and the conserved quantity

λi. To get a more explicit expression of how λi affects convergence rate, we will derive a
bound for |σY

i − σX
i |, which describes the distance between trainable parameters to their

desired value.

Proposition 16 The difference between the singular values of Ug(V T ) and Y is bounded
by

|σX
i − σY

i | ≤ |σX
i (0) − σY

i |e
− t

λi . (69)

Proof Note that

˙σX
i =

1

λ
(σY

i − σX
i )(σX

i
2 + 1)2 ≥ 1

λi
(σY

i − σX
i ) (70)

Consider the following two differential equations, with same initialization a(0) = b(0):

ȧ =
1

λ
(σ − a)(a2 + 1)2

ḃ =
1

λ
(σ − b) (71)

In these equations, both a and b moves from a(0) = b(0) to σ monotonically. Since ȧ ≥ ḃ at
every a = b, a will always be closer to σ than b does. We can explicitly solve for b, which
yields b(t) = σ+(b(0)−σ)e−

t
λ . Then the distance between b and σ is |b−σ| = |b(0)−σ|e−

t
λ .

Using |b− σ|, we can bound |a− σ|:

|a− σ| ≤ |b− σ| = |b(0) − σ|e−
t
λ (72)
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Therefore,

|σX
i − σY

i | ≤ |σX
i (0) − σY

i |e
− t

λi (73)

Since λ is a conserved quantity, its value set at initialization remains unchanged through-
out the gradient flow. Therefore, we are able to optimize the convergence rate by choosing
a favorable value for λ at initialization. In this example, smaller λi’s lead to faster conver-
gence.

F.3. Experiments

We compare the convergence rate of two-layer networks initialized with different Q values.
We run gradient descent on two-layer networks with whitened input with the following
objective

argminU,V {L(U, V ) = ∥Y − Uσ(V T )∥2F } (74)

where σ is the identity function, ReLU, sigmoid, or tanh. Y ∈ R5×10, U ∈ R5×50 and
V ∈ R10×50 have random Gaussian initialization with zero mean. We repeat the gradient
descent with learning rate 0.1, 0.01, and 0.001. The learning rate is set to 10−3, as we do
not observe significant changes in the shape of learning curves at smaller learning rates.
U and V are initialized with different variance, which leads to different initial values of
Q. As shown in Fig.6, the number of steps required for the loss curves to drop to near
convergence level is correlated with Q in both linear and element-wise nonlinear networks.
This result provides empirical evidence that initializing parameters with optimal values for
Q accelerates convergence.

We then demonstrate the effect of conserved quantity values on the convergence rate of
radial neural networks. Fig.7 shows the training curve for loss function defined in Propo-
sition 15. We initialize parameters U ∈ R5×5 and V ∈ R10×5 with 4 different values of Q
and the learning rate is set to 10−5. As predicted in Eq. 69, convergence is faster when
Q = Tr[UTU + V TV ] is small.
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Figure 6: Training curves of two-layer networks initialized with different Q. The value of
Q affects convergence rate.
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Figure 7: Training curve for the loss function defined in Proposition 15. Smaller value of
Q = Tr[UTU + V TV ] at initialization leads to faster convergence.

Appendix G. Conserved quantity and generalization ability

Conserved quantities parameterize the minimum of neural networks and are related to the
eigenvalues of the Hessian at minimum. Recent theory and empirical studies suggest that
sharp minimum do not generalize well (Hochreiter and Schmidhuber, 1997; Keskar et al.,
2017; Petzka et al., 2021). Explicitly searching for flat minimum has been shown to improve
generalization bounds and model performance (Chaudhari et al., 2017; Foret et al., 2020;
Kim et al., 2022). We derive their relationship for the simplest two-layer network, and
show empircally that conserved quantity values affect sharpness. Like convergence rate, a
systematic study of the relationship between conserved quantity and generalization ability
of the solution is an interesting future direction.

G.1. Example: two-layer linear network with 1D parameters

We again consider the two-layer linear network with loss L = 1
2∥Y −UV X∥2. For simplicity,

we work with one dimensional parameters U, V ∈ R and assume X = Y = 1 in this example.
We show that at the point to which the gradient flow converges, the eigenvalues of the
Hessian are related to the value of the conserved quantity.

The gradients and Hessian of L are

∇L =

[
−(Y − UV X)V X
−(Y − UV X)UX

]
H =

[
V 2X2 −Y X + 2UV X2

−Y X + 2UV X2 U2X2

]
(75)

At the minima, U, V are related by UV X = Y . Recall that Q = U2 − V 2 is a conserved
quantity. From the above two equations, we can write U, V as functions of Q. Taking the

solution U =
√

1
2(Q +

√
Q2 + 4), V =

√
1
2(−Q +

√
Q2 + 4) and substitute in X = Y = 1,

we have

H =

[
1
2(−Q +

√
Q2 + 4) 1

1 1
2(Q +

√
Q2 + 4)

]
, (76)

and the eigenvalues of H are

λ1 = 0, λ2 = 2
√

Q2 + 4. (77)
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We have shown that Q is related the eigenvalues of the Hessian at the minimum. Since
the eigenvalues determines the curvature, Q also determines the sharpness of the minimum,
which is believed to related to model’s generalization ability. The result in this example
can also be observed in Figure 1, where the minimum of the Q = 0 trajectory lies at the
least sharp point of the loss valley.

G.2. Experiments: two-layer networks

The goal of this section is to explore the relation between Q and the sharpness of the trained
model. We measure sharpness by the magnitude of the eigenvalues of the Hessian, which
are related to the curvature at the minima. We use the same loss function (74) in Section
F.3. The parameters are U ∈ R10×50 and V ∈ R5×50, each initialized with zero mean
and various standard deviations that lead to different Q’s. We first train the models using
gradient descent. We then use the vectorized parameters in the trained model to compute
the eigenvalues of the Hessian.

The linear model extends the example in Section G.1 to higher dimension parameter
spaces. 700 out of the 750 eigenvalues are around 0 (with magnitude ≤ 10−3). After
removing the small eigenvalues, the center of the eigenvalue distribution correlates positively
with the value of Q (Figure 8(a)). In models with nonlinear activations, Q is still related
to eigenvalue distributions, although the relations seem to be more complicated.
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Figure 8: Eigenvalues of the Hessian from trained models initialized with different conserved
quantity values (Q). The distribution of the eigenvalues and the value of Q appear to be
related.

Appendix H. Ensemble models

In neural networks, the optima of the loss functions are connected by curves or volumes,
on which the loss is almost constant (Freeman and Bruna, 2017; Garipov et al., 2018;
Draxler et al., 2018; Benton et al., 2021; Izmailov et al., 2018). Various algorithms have
been proposed to find these low-cost curves, which provides a low-cost way to create an
ensemble of models from a single trained model. Using our group actions, we propose a new
way of constructing models with similar loss values. We show that even with stochasticity
in the data, the loss is approximately unchanged under the group action (Appendix H).
This provides an efficient alternative to build ensemble models, since the transformation
only requires random elements in the symmetry group, without any searching or additional
optimization.
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We implement our group actions by modifying the activation function between two
consecutive layers. Let H = V X be the output of the previous layer. The group action on
the weights U, V is

g · (U, V ) = (Uπ(g,H), gV ) (78)

where π(g,H) = σ(H)σ(gH)†. The new activation implements the symmetry group action

Uσ(H) → Uπ(g,H)σ(gH) (79)

by wrapping the transformations around an activation function σ′(x) = π(g, x)σ(gx), so
that Uσ′(H) = Uπ(g,H)σ(gH).

We test the group action on CIFAR-10. The model contains a convolution layer with
kernel size 3, followed by a max pooling, a fully connected layer, a leaky ReLU activation,
and another fully connected layer. The group action is on the last two fully connected
layers. After training a single model, we create transformed models using g = I + εM ,
where M ∈ R32×32 is a random matrix and ε controls the magnitude of movement in the
parameter space. We then use the mode of the transformed models’ prediction as the final
output.

We compare the ensemble formed by group actions to four ensembles formed by various
random transformation. Let g = I + εM . The random baselines are:

• ‘group’: (U, V ) 7→ (Uπ(g,H), gV ). This is the model created by group actions.

• ‘g−1’: (U, V ) 7→ (Ug−1, gV ).

• ‘random’: (U, V ) 7→ (Ug′, gV ), where g′ = I+εD and D is a random diagonal matrix.

• ‘shuffle’: (U, V ) 7→ (Uπ′(g,H), gV ), where π′(g,H) is constructed by randomly shuf-
fling π(g,H).

• ‘interpolated permute’ or ’perm interp’: (U, V ) 7→ (U
(
I+ ε

2
(I+S)

I+ε

)−1
,
I+ ε

2
(I+S)

I+ε V ),

where S ∈ R32×32 is a random permutation matrix.
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Figure 9: Change in accuracy compared to the original single model when using the ensemble
model and 4 baselines. The red color indicates degradation in model performance. The
ensemble created by group actions has similar loss values when ε is small.
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Figure 10: Adversarial attacks on the original model and the ensemble models with various
strengths. In FGSM, the group ensemble model improves robustness. In PGD, the ensemble
has negligible effects on robustness.

Figure 9 shows the accuracy of the ensembles compared to single models. The ensemble
formed by group actions preserves the model accuracy for small ε and has smaller accu-
racy drop at larger ε. The ensemble model also improves robustness against Fast Gradient
Signed Method (FGSM) attacks (Figure 10). Under FGSM attacks with various strength,
the ensemble model created using group actions consistently performs better than the base-
lines with random transformations. However, the same improvement is not observed under
Projected Gradient Descent (PGD) attacks.
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