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Abstract

Large Language Models are increasingly deployed as judges
(Laal) in code generation pipelines. While attractive for scal-
ability, LaaJs tend to overlook domain-specific issues rais-
ing concerns about their reliability in critical evaluation tasks.
To better understand these limitations in practice, we exam-
ine Laal behavior in a concrete industrial use case: legacy
code modernization via COBOL code generation. In this set-
ting, we find that even production-deployed LaaJs can miss
domain-critical errors, revealing consistent blind spots in
their evaluation capabilities.

To better understand these blind spots, we analyze generated
COBOL programs and associated LaaJs judgments, drawing
on expert knowledge to construct a preliminary taxonomy.
Based on this taxonomy, we develop a lightweight analytic
checker tool that flags over 30 domain-specific issues ob-
served in practice. We use its outputs as analytic hints, dy-
namically injecting them into the judge’s prompt to encour-
age Laal to revisit aspects it may have overlooked.
Experiments on a test set of 100 programs using four
production-level Laals show that Laal alone detects only
about 45% of the errors present in the code (in all judges
we tested), while the analytic checker alone lacks explana-
tory depth. When combined, the LaaJ+Hints configuration
achieves up to 94% coverage (for the best-performing judge
and injection prompt) and produces qualitatively richer, more
accurate explanations, demonstrating that analytic—LLM hy-
brids can substantially enhance evaluation reliability in de-
ployed pipelines.

Introduction

As code generation systems improve, evaluation must keep
pace, not just in scale but in depth. The ability to assess
the correctness, safety, and relevance of generated code is
critical for real-world deployment, especially in high-stakes
domains. Large Language Models (LLMs), when used as
LLM-as-a-Judge offer a scalable alternative to human or
automatic analytic evaluation, particularly for tasks lacking
clear ground truth. While LLMs have demonstrated strong
general reasoning capabilities needed for judgment , prior
studies suggest they often struggle with tasks requiring deep
domain knowledge. Our work provides further empirical
support for this observation, focusing on how reliably Laals
perform in real-world, domain-specific evaluation scenarios.
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Figure 1: Full Workflow for improving LLM-as-a-Judge
evaluations. The main pipeline (blue) generates candidate
outputs from the LLM and scores them using a Laal. Two
refinement loops are overlaid: (1) Blind Spots Collection
(green), where SMEs analyze Laal errors and curate a tax-
onomy of blind spots, and (2) Hints Optimization (red),
where targeted hints are derived and injected via an Ana-
Iytic Checker to guide LaalJ reasoning. This process allows
Laal evaluations to be continuously improved by addressing
specific weaknesses in model judgment.

We focus on COBOL code generation, a representative
task in legacy system modernization where domain-specific
evaluation is especially challenging. Unlike modern lan-
guages, COBOL often involves non-standard control flow,
implicit data handling, and business-specific conventions
that are rarely documented or standardized. These patterns
are difficult for general-purpose LLMs to recognize, espe-
cially given COBOL’s under-representation in training data
and the relatively sparse availability of public benchmarks
or test suites.

In our internal setting, we developed and deployed mul-
tiple LaaJ configurations specifically tailored for COBOL
evaluation task. Although these LaaJs were carefully engi-
neered and refined through human-in-the-loop testing, we
still found that critical domain-specific issues were often
missed. We hypothesized that these failures stem not merely
from insufficient tuning, but from blind spots, recurrent
omissions or reasoning failures that current LaaJs consis-
tently overlook. These blind spots are often subtle: a missing
initialization, a file operation without proper status checks,



or improper use of restart logic. While each may appear mi-
nor in isolation, collectively they undermine the reliability
of model-based evaluation in high-stakes environments.

To systematically investigate these limitations, we de-
signed a multi-stage workflow (Figure 1) involving Laal er-
ror analysis, blind spot identification, and targeted interven-
tion. We first constructed a curated dataset of COBOL pro-
grams containing realistic, domain-specific issues, and used
production-grade Laals to evaluate them. Expert reviewers
then analyzed Laal judgments to identify failure modes, re-
sulting in a structured taxonomy of blind spots. Based on this
taxonomy, we developed an analytic checker that uses a cat-
alog of over 30 issue types to dynamically analyze each gen-
erated program. For each input, it emits concise, structured
hints for the detected issues, which are then injected into the
Laal prompt to guide the model toward known blind spots.
This approach offers a practical, non-intrusive mechanism
for improving evaluation depth: by dynamically guiding the
model’s focus for each input at inference time, it helps mit-
igate per-instance evaluation failures without retraining or
fine-tuning, while preserving auditability and compatibility
with existing production pipelines.

Our main contributions are:

» Expert-guided discovery and categorization of LaaJ blind
spots in COBOL evaluation; the initial taxonomy;

* A rule-based analytic checker that scans the code and
outputs analytic hints;

* A demonstration that prompt-level analytic hint injection
yields measurable improvements in Laal performance.

Related Work LLMs are increasingly used as automated
judges in code generation (Zhuo 2024; Tong and Zhang
2024; Zhao et al. 2024). However, recent studies have shown
that LaaJs often overlook fine-grained errors and struggle
to capture semantic correctness, particularly in complex do-
mains like code generation (Doddapaneni et al. 2024; Tong
and Zhang 2024; Tan et al. 2024). To address these is-
sues, several works proposed enhancing Laal reasoning with
prompt-level interventions, such as self-refinement (Madaan
et al. 2023), rationale rewriting (Trivedi et al. 2024), or tool-
assisted evaluation (Schick et al. 2023).

Closest to our approach are hint-injection methods that
steer LLM reasoning with targeted cues, including AutoHint
(learned task-specific hints), Directional Stimulus Prompt-
ing (policy-generated stimulus tokens) (Li et al. 2023),
Progressive-Hint Prompting (reusing prior answers as hints)
(Zheng et al. 2023), and Hint-before-Solving (pre-drafted
hints) (Fu et al. 2024).

Unlike these approaches (mostly evaluated on general
reasoning/math), our method injects expert-validated, rule-
based analytic hints extracted directly from the code, yield-
ing interpretable, high-precision guidance for LaaJ without
any auxiliary policy model, self-hinting loop, or retraining.

From Failure Analysis to Hint-Guided
Evaluation

Category

Interface Usage

Error Handling

Resource Handling

State Management

Access Logic

Description

How external calls, APIs, or
procedure interfaces are
declared and invoked.

How status codes and
return values are checked,
interpreted, or handled.

How specialized or
managed datasets and
system resources are
accessed.

How transactions,
checkpoints, and
commit/rollback
operations are controlled.

How access paths,

Representative Issues

- Missing or mismatched parameters in
external calls

- Referenced resources not included in
the declared procedure interface

- No check for call success/failure after
APl invocation
- Conditionals lack fallback branches

- 1/0 operations on special resources
using unsupported mechanisms

- Explicitly opening/closing resources
that should be managed automatically

- Checkpoint or restart logic uses the
wrong control block

- Critical state variables not included in
procedure signature

- Access selectors have wrong format

- Retrieval criteria incorrectly copied

selectors, or retrieval from unrelated fields

criteria are constructed

and applied.

- Attempting to write to undeclared files
- Writing to files without verifying
correct open mode

1/0 Configuration How files and record-

based I/0 operations are
set up and validated.

Figure 2: Taxonomy of domain-specific evaluation issues
identified in COBOL Laal failures.

Identifying Blind Spots We constructed a development
dataset of 100 COBOL programs deliberately generated to
include realistic, domain-specific errors. The programs were
produced using the mistral-medium language model
with a carefully crafted instruction prompt. Human experts
subsequently validated that the generated code indeed ex-
hibited the intended faults.

We evaluated the generated COBOL programs using two
LaaJ configurations that were developed and deployed as
part of our production pipeline for automated code quality
assessment. These configurations are based on the following
LLMs:11ama—-3-405b, and mistral-medium.

Drawing on domain expertise, we manually analyzed the
outputs to identify and characterize recurring blind spots of
the judges. This analysis was conducted in iterative refine-
ment cycles: experts reviewed missed issues, updated anno-
tations, and adjusted emerging categories as patterns became
clearer. Over multiple passes, a stable set of recurring failure
types emerged. We distilled these into a structured taxonomy
capturing the most characteristic classes of LaaJ evaluation
failure.

Taxonomy Below we present an initial taxonomy com-
prising six categories. Each reflects a class of domain-
specific evaluation challenges that were frequently missed
by Laals, even after the rigorous prompt tuning and human-
in-the-loop validation we conducted while developing these
production-level judges. These categories reflect patterns
that emerged repeatedly across expert reviews of LaaJs eval-
uations. While some relate to syntactic or structural vio-
lations (e.g., missing status fields, undeclared descriptors),
others reveal deeper semantic blind spots that require non-
local reasoning about state, control flow, or implicit conven-
tions in COBOL-IMS (Information Management System)
systems.

These categories, while rooted in COBOL-specific eval-
uation and the particular set of base LLM models, reveal



broader patterns that may generalize to other domains and
LaaJs. Across categories, we observe that Laals tend to
struggle with multi-line reasoning, particularly when issues
depend on non-local context or the interaction between dis-
tributed control structures. Several error types reflect omis-
sions rather than incorrect content, such as missing status
checks, or initializations, which highlights Laal’s difficulty
in detecting when something important is not present. This
points to a broader limitation: foundation models often ex-
cel at recognizing what is in the input, but struggle to reason
about what should be there and is missing. Finally, many
errors stem from misunderstanding execution order or con-
trol flow, such as using a file before it is opened or skipping
necessary status checks after a call. These cases suggest that
current LaaJs lack the ability to simulate program semantics
or execution state, instead relying heavily on surface-level
patterns. Taken together, these observations may offer in-
sights into the limitations of current LLM-based code qual-
ity evaluators.

Analytic Checker and Hints We developed a lightweight
analytic checker that encodes over 30 error types identified
through expert review. The checker uses pattern-matching
to detect the issues in the program and emits short, human-
readable messages, we call analytic hints.

These hints are then dynamically injected into the Laal
prompt to help overcome its blind spots, encouraging the
model to revisit aspects of the input code it previously over-
looked. While our injection strategy is deliberately naive,
plain-text hints placed at the top of the judge’s prompt, it
already leads to measurable improvements in LaaJ perfor-
mance. This opens a path for further refinement: by tuning
the phrasing, formatting, or placement of the hints, develop-
ers may unlock additional gains with minimal overhead.

Experiments and Results

Setup We constructed a test set of 100 fresh synthetic
COBOL programs, each deliberately seeded with multiple
subtle errors. This dataset was reserved exclusively for eval-
uation and was not used during the taxonomy construction
or tool development phases. The programs were generated
with mistral-medium using a carefully crafted instruc-
tion prompt, and human experts validated that the intended
errors are present.

We evaluated four production LaaJ configurations, based
on llama-4-Maverick, llama-3-405b, DeepSeek-v3, and gpt-
0ss-120b, from our internal pipeline for automated code
quality assessment. All judges use the same detailed eval-
uation prompt (not disclosed due to proprietary constraints),
which we refer to as the native prompt in our experiments.

The hint injection was implemented in two ways. First,
in a naive setup, per-input hints were inserted by sim-
ply appending them to the end of the native prompt. Sec-
ond, in a more guided setup, the prompt explicitly in-
structed the model to address the provided hints, in a de-
tailed way. We used these two configurations to demonstrate
how prompt design influences the effectiveness of the hint-
injection phase.

Hybrid Laa) Issues
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Figure 3: Hybrid Laajs detection rates (naive vs optimized
hint injection schemes), with Native Laajs detection rates.

Results For each judge, we conducted the following ex-
periment. For every sample COBOL program, we first es-
timated the total number of issues present. Since the exact
number of true issues is unknown, we approximated it as
the union of errors detected by the analytic tool and by the
native judge, that is the sum of both counts minus their over-
lap. We then run the hybrid judges on each sample: naive
hint injection prompt and best hint injection prompt.

We then evaluated the hybrid judges on each sample using
two configurations: the naive hint-injection prompt and the
optimized (best) hint-injection prompt. For each configura-
tion, we measured the fraction of errors detected by the hy-
brid judge within each error category: analytic errors, over-
lapping errors, and errors originally detected by the native
judge, and averaged the results over all 100 programs to ob-
tain the final coverage rates.

As shown in Figure 3, introducing analytic hints led to
consistent gains across all models. Native judges detected
roughly 45-53 % of total issues, whereas hybrid judges
reached 63-94.4%, depending on model and prompt. Most
of the improvement stems from capturing analytic-only er-
rors previously missed by the native judges, while per-
formance on native-only and overlap categories remained
stable or improved slightly. The optimized hint injection
achieved the highest coverage for all but one model, with
DeepSeek-v3 and gpt-oss-120b exceeding 90 %. Overall,
analytic hint injection yielded a 1.5-2x increase in total de-
tection coverage.

To verify that the hint-augmented judges retained their
original evaluative capabilities (specifically, the ability to re-
discover issues not explicitly listed in the analytic hints) we
performed an additional analysis. We converted the expla-
nations produced by the native judges into structured lists of
issues and then searched for corresponding or semantically
similar issues within the explanations of the hint-augmented
judges. This matching was conducted by a gpr-oss-120b-
based issue finder judge. The results, summarized in Fig-
ure 4, show that the hint-augmented judges reproduced ap-
proximately 45-70% of the issues originally identified by
their native counterparts. In particular, DeepSeek-v3 and
gpt-o0ss-120b achieved the highest rediscovery rates, recov-
ering 70.06 % and 67.31% of the native-judge issues, re-
spectively.
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Figure 4: Percent of native judge errors rediscovered by hy-
brid judges (with best hint-injection prompt).

Interestingly, the rediscovery rates varied considerably
across models, indicating that some judges preserved their
original evaluative behavior more effectively than others
when augmented with analytic hints. We propose using this
issue-rediscovery rate as an additional diagnostic metric for
assessing evaluator reliability: higher values indicate models
that can integrate new analytic guidance without losing prior
evaluative competence, whereas lower values may reveal in-
stability or over-dependence on prompt conditioning.

Conclusions

We presented a practical approach for enhancing LaaJs us-
ing analytic hint injection in code evaluation. Grounded in
expert analysis of COBOL evaluation failures, our method
couples a taxonomy of blind spots with a lightweight
checker that emits targeted hints. Injecting these hints into
the judge’s prompt refocuses its reasoning toward previously
overlooked issues, yielding significant gains without retrain-
ing. Among all models, the gpt-oss-120b judge with hints
achieved the best performance, addressing 94.4% of errors
while retaining 67.31% of those identified by the native
judge. This demonstrates that prompt-level analytic inter-
ventions can substantially improve judgment coverage while
preserving general evaluative capabilities.

Notably, the hint-augmented judges did not fully repro-
duce all issues identified by their native counterparts, with
rediscovery rates of 45% and 67%. This drop suggests that
the injected hints altered the judges’ focus: by emphasizing
analytic issues, they improved detection of these issues but
deprioritized unhinted aspects of the evaluation. Thus, hint
injection improves targeted diagnostic precision but may
narrow overall coverage, highlighting both the promise and
the limitation of analytic-guided evaluation: it can direct the
model’s attention where it matters most but my narrow its
coverage if not carefully balanced.

Our study, limited to one task and a small dataset, of-
fers an initial demonstration that analytic guidance at in-
ference time can substantially enhance model-based evalua-
tion. This work contributes to the growing body of research
on hybrid evaluation systems that augment foundation mod-
els with structured analytic tools.
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