
Under review as submission to TMLR

One-Round Active Learning through Data Utility Learning
and Proxy Models

Anonymous authors
Paper under double-blind review

Abstract

While active learning (AL) techniques have demonstrated the potential to produce high-
performance models with fewer labeled data, their application remains limited due to the
necessity for multiple rounds of interaction with annotators. This paper studies the problem
of one-round AL, which aims at selecting a subset of unlabeled points and querying their
labels all at once. A fundamental challenge is how to measure the utility of different choices
of labeling queries for learning a target model. Our key idea is to learn such a utility metric
from a small initial labeled set. We demonstrate that our approach leads to state-of-the-art
performance on various AL benchmarks and is more robust to the lack of initial labeled data.
In addition to algorithmic development and evaluation, we introduce a novel metric for
quantifying ‘utility transferability’ – the degree of correlation between the performance
changes of two learning algorithms due to variations in training data selection. Previous
studies have often observed a notable utility transferability between models, even those
with differing complexities. Such transferability enabled our approach, as well as other
techniques such as coresets, hyperparameter tuning, and data valuation, to scale up to more
sophisticated target models by substituting them with smaller proxy models. Nevertheless,
utility transferability has not yet been rigorously defined within a formal mathematical
framework, a gap that our work addresses innovatively. We further propose two Monte Carlo-
based methods for efficiently comparing utility transferability for different proxy models,
thereby facilitating a more informed selection of proxy models.

1 Introduction

While the past several decades have witnessed the potential of active learning (AL) methods to produce
high-performance models with fewer labels, they are often slow and even infeasible in practice. Specifically,
for existing AL methods to be effective, it requires many rounds of interaction with the annotators and the
interaction in different rounds must be adaptive, in the sense that the choice of the instances in one round
depends on the responses to the labeling requests in all the previous rounds. However, for tasks in which it
takes significant time and resources to label the queried instance (e.g., in scientific experimental design, it
would take days or even months to obtain feedback from wet-lab or physics experiments (Botu & Ramprasad,
2015; Nord et al., 2016; Yang et al., 2019)), adaptive interaction over many rounds is inefficient. Moreover, in
practice, there is typically a waiting time before labeling queries are responded to, simply due to the fact that
potential data annotators may not respond promptly upon request. For example, in marketing applications,
one can actively request feedback by sending surveys to customers (annotators), but the customers may not
be responsive (Sharp et al., 2011). If the overall task is to be completed within a certain time frame, this
effectively limits the number of rounds of interaction.

This paper focuses on one-round AL—a special AL problem where only a single round of interaction is
allowed. Specifically, the learner is required to select a set of unlabeled instances and query their labels all at
once. Importantly, this setting features high throughput and time efficiency as the selected instances can be
labeled completely in parallel. A fundamental question in one-round AL is: How can we measure the utility
of different subsets of unlabeled data points and select the one with the highest utility while adhering to some
given labeling budget?

1

Under review as submission to TMLR

Figure 1: Overview of DULO.

A natural idea to approach the one-round AL problem is to adopt data utility metrics from state-of-the-art
multi-round AL methods (Wei et al., 2015; Ash et al., 2019; Killamsetty et al., 2020) and use them to perform
one-round selection. A commonality of most of these data utility metrics is that they rely on hypothesized
labels assigned by the temporary target model that is trained on the currently available labeled instances.
For multi-round AL, the size of labeled instances will grow as more rounds of labeling requests are responded
to by the annotators; as a result, the hypothesized labels will become more accurate over time and the data
utility metrics based on hypothesized labels will, in turn, become more reliable. However, in one-round
setting, the classifier used for generating hypothesized labels can only be trained on a small initial labeled set
and thus the hypothesized labels are highly unreliable. Hence, directly adapting multi-round AL methods to
one-round setting suffers unstable and unsatisfactory performance. There are only very few existing works in
the field of AL focusing on the one-round setting. Most of them, however, either make too strong or too weak
assumptions about the initial labeled data points. For example, Contardo et al. (2017) assumes a large-size
labeled pool comprising classes that do not appear in the unlabeled pool, and Yu et al. (2006); Gu et al.
(2012); Shoham & Avron (2020); Jin et al. (2022) consider a very restricted setting where no initial labeled
data points are given. On the contrary, this work considers a more reasonable setting where there are few
initial labeled data points given.

The contributions of this work are summarized as follows.

(1) New algorithm for one-round AL. We propose Data Utility function Learning and Optimization
(DULO), a model-agnostic one-round AL framework (illustrated by Figure 1). Our framework is grounded on
the notion of a data utility function, which maps any given set of unlabeled instances to some performance
measure of the target model trained on the set after being labeled. One-round AL can be naturally formulated
as a problem of seeking the set of unlabeled instances that maximizes the data utility function. We propose to
learn a model to approximate the data utility function, and present a blockwise stochastic greedy algorithm
to efficiently select data that optimizes the learned model. As this model is trained to predict data utility
without label information, thus circumventing the limitation caused by unreliable hypothesized labels. To
improve scalability, we leverage the proxy model technique which uses a smaller proxy model in place of the
larger target model to perform data utility learning. To further address the concern about the computational
efficiency of data utility learning, in Section 3.2.1 we show that it is not necessary to learn the utility of large
data subsets as the variance of utility over different subsets of a given size diminishes as the size increases.

(2) Characterizing and measuring utility transferability for selecting proxy models. The proxy
model-based idea above builds upon a popular observation that the choice of training data often affects
performance of different models in similar ways. Specifically, the data that are more useful for training one
model are usually also more useful for training another, even when the two models are of different complexities.
Indeed, this observation has been leveraged to improve efficiency in various applications, including AL, coreset

2

Under review as submission to TMLR

selection, data valuation, among others (Lewis & Catlett, 1994; Coleman et al., 2019; Nath et al., 2021; Jia
et al., 2019). Despite the broad applicability, principled ways of measuring the correlation of data utility
between different models are still lacking. Towards this end, we formalize the notion of utility transferability,
which characterizes to what extent a proxy model mimics the target model’s performance variations when
trained over different subsets. We further develop two Monte Carlo methods to efficiently compare the
strength of transferability for different proxy models, which could facilitate the selection of a better proxy
model.

(3) Experiments. We evaluate DULO to select data from a class-imbalanced pool, a noise-contaminated
pool, and a unlabeled pool that exhibits natural variations of data quality. We show that our approach
outperforms state-of-art batch AL strategies across different settings and datasets. In addition, it is more
robust to the lack of initial labeled data.

2 Related Work

According to whether the samples are selected iteratively or not, AL approaches can be classified into two
main categories: One-Round Active Learning and Multi-Round Active Learning.

Multi-Round AL. Multi-round active learning has been widely studied in the past, where one can send
selected unlabeled data to be labeled to the oracle, update the querying strategy (usually a partially trained
model), and choose new unlabeled data depending on the updated querying strategy. We refer the readers
to (Ren et al., 2021) for a more comprehensive survey of multi-round AL. Earlier studies of multi-round
AL focused on the setting where only one example is selected in each round, e.g., (Schohn & Cohn, 2000;
Fine et al., 2002). Batch AL was later proposed to improve label acquisition efficiency by querying multiple
examples in each round. Most of state-of-the-art multi-round AL methods rely on partially-trained classifiers
to generate hypothesized labels for unlabeled points and further use them to prioritize them for selection. For
instance, BADGE (Ash et al., 2019) samples a batch of unlabeled points with large and diverse gradients, but
to calculate the gradients, unlabeled data need to be assigned with some hypothesized labels. Filtered Active
Submodular Selection (FASS) (Wei et al., 2015) selects unlabeled data points by optimizing the predicted
performance of a K-Nearest-Neighbors classifier or Naive Bayes, which can be calculated analytically only given
the hypothesized labels of the unlabeled points. GLISTER (Killamsetty et al., 2020) formulates the active
learning problem as bi-level optimization, which seeks unlabeled points that lead to the highest validation
performance when these points and corresponding hypothesized labels are used for training. These approaches
suffer unsatisfactory performance in the early rounds as the classifier used for generating hypothesized labels is
trained on limited labeled data. In contrast, our data utility metric estimates the unlabeled data’s usefulness
without the need of hypothesized labels.

One-Round AL. One-round active learning is a much less studied field compared with the multi-round
setting, as it cannot benefit from the feedback of the labeling oracle. However, such techniques are useful when
frequently querying the labeling oracle is not possible or time-consuming, e.g., as cited by (Gu et al., 2012;
Contardo et al., 2017) when using Amazon Mechanical Turk (AMT). An existing one-round AL approach
is to derive an upper bound on the prediction error of the target models and then select unlabeled data
by minimizing the bound. However, such a derivation is possible only for specific models, such as linear
regression (Yu et al., 2006; Gu et al., 2012) and graph-based predictive model (Guillory & Bilmes, 2009).
By contrast, our work proposes a general-purpose approach for one-round AL and does not restrict the
type of target models. Another idea of enabling one-round selection is via meta-learning (Contardo et al.,
2017). However, unlike our work, this work assumes a large-size labeled pool comprising classes that do not
appear in the unlabeled pool. Shoham & Avron (2020) selects unlabeled data in one-round via optimizing a
V-optimality criterion for kernel ridge regression. Jin et al. (2022) proposes a one-round AL technique for
image segmentation tasks based on contrastive learning and diversity-based querying strategy. Compared to
our work, Yu et al. (2006); Gu et al. (2012); Shoham & Avron (2020); Jin et al. (2022) consider a slightly
different setting where no initial labeled data points are given and their algorithms are specialized to specific
target models or applications.

3

Under review as submission to TMLR

3 One-Round AL via DULO

3.1 Algorithm

In this section, we will formalize the problem of one-round AL and present our algorithm to solve the problem
via optimizing a learned data utility metric.

One-round AL problem setup. Let the feature and the label space be denoted by X and Y, respectively.
A ground-truth labeling function (or the oracle) f∗ : X → Y returns the ground-truth label for any given
input feature. A one-round AL algorithm is given a pool of unlabeled data points U = {xi}, a set of labeled
data points L = {(xi, f∗(xi))}N

i=1, and a budget M . It then selects a subset Sx of size M from the unlabeled
pool to request their labels such that the performance of a target model trained on the labeled data is
maximized. In particular, the initial labeled data should be small and particularly, insufficient for training a
high-performance model.

We define a data utility function (DUF) as a mapping from an unlabeled set to a real number indicating
the utility of the set. We follow a typical AL goal and consider the performance of the model trained on
the unlabeled data after labeling as its utility score. Formally, let Sx = {xi}n

i=1 denote a set of features. A
learning algorithm A is a (potentially randomized) function that takes a training set S = {(xi, f∗(xi))}n

i=1 as
input and returns a classifier f . A metric function u takes a classifier as input and outputs its performance.
u(f) usually measures f ’s ability to generalize, such as validation loss or accuracy. Given A, u, and f∗, a
DUF is defined as UA,u,f∗(Sx) = EA [u(A({(x, f∗(x))|x ∈ Sx}))]. When context is clear, we omit subscripts
and simply write U(Sx).

One can formulate a one-round AL problem as an optimization problem that seeks an unlabeled set maximizing
the DUF: argmax|Sx|=M,Sx⊆U U(Sx) where U is the unlabeled pool and M is the labeling budget. Note
that each evaluation of U(Sx) requires labeling Sx and training on the labeled instances. Therefore, an
unlabeled set selection problem cannot be solved by evaluating the DUF on different choices of unlabeled
sets and picking the best one. We propose to train a parametric model Û (referred to as a data utility model
hereinafter) to approximate DUFs based on the initial labeled data. Overall, the proposed algorithm, DULO,
proceeds in two stages: (1) learning Û from initial labeled data and (2) optimizing Û over the unlabeled pool
to select the most useful points.

Stage 1: Data utility learning. Learning a DUF consists of two steps: utility sampling and utility model
training. The initial labeled data set L = {(xi, f∗(xi))}N

i=1 is randomly partitioned into a training set Ltr

and a validation set Lval. In the utility sampling step, we randomly sample subsets St from Ltr, apply the
training algorithm A on St and obtain the model ft ∼ A(St). We then calculate the validation accuracy (or
loss) of ft on Lval, which gives u(ft). Let Sx

t denote the set of features in St. Then, we could score each St

with its utility u(ft). We will refer to the scored subsets {(Sx
t , u(ft))}T

t=1 as utility samples. In the utility
model training step, we will learn a model Û to approximate the DUF U using the utility samples. Since U is
a set function, its output is invariant to input permutation. There has been extensive work on modeling such
functions, either by designing neural network architectures that are permutation-invariant in nature (Zaheer
et al., 2017) or imposing permutation invariance as a soft constraint via regularization (Alieva et al., 2021).
Our data utility learning framework is flexible to incorporate different modeling strategies for set functions
and can benefit from the advances of set function learning. In our experiments, we instantiate the utility
model Û by DeepSets (Zaheer et al., 2017)—a popular model for set function to showcase the AL result
enabled by data utility learning.

Stage 2: Data utility optimization. With the learned utility model Û , we will then solve the following
optimization problem to select the most useful unlabeled points:

argmax
|Sx|=M,Sx⊆U

Û(Sx), (1)

The challenges for solving the problem above are three-fold. First, the above problem is a combinatorial
optimization problem. Finding the global optimal solution is NP-hard in general. Second and more subtly,
when the selection budget M is much larger than the size of the initial labeled set N (which is a typical AL

4

Under review as submission to TMLR

Figure 2: Example of the correlation between data utilities for commonly used models for CIFAR-10. The
values in both x- and y-axis are test accuracy. ‘SP’ stands for Spearman’s correlation coefficient.

scenario), even an optimal solution to the maximization of Û in (1) cannot ensure selecting the truly useful
data (i.e., the one that maximizes U). During the utility learning stage, the maximal size of the input sets
that Û could be trained on is N . Hence, Û cannot generalize to unseen unlabeled sets of size much larger
than N as effectively as those sets of size less than N . Thus, the solution to (1) may not be close to the
solution to argmax|Sx|=M,Sx⊆U U(Sx). Third, evaluation time of Û increases with the input size.

To tackle these challenges, we propose a Blockwise Stochastic Greedy (BSG) algorithm. Specifically, at each
iteration, we first sample (without replacement) a subset B ⊂ U (called a block) from the unlabeled pool
U . The block size B = |B| should be chosen such that the Û has both good generalizability and efficient
evaluation. We select MB

|U| data points from each block. Within each block, we run a stochastic greedy
algorithm, which also proceeds iteratively. Specifically, in each sub-iteration, we randomly select a subset
Z ⊆ B (without replacement) and find the data point e within Z such that e achieves the highest marginal
contribution to unlabeled set R that is already selected within B, i.e., e = argmaxe∈Z Û(R ∪ {e})− Û(R).
The runtime of BSG is O(|U|) in terms of the number of evaluations of Û .

The pseudo-code of DULO is provided in Appendix A. It is worth noting that although unlabeled data is
selected block-by-block, DULO is completely different from multi-round batch-mode AL, since it does not
require the data points selected in the previous blocks to be labeled before we select data points from the
current one. Therefore, data selection within different blocks is fully parallelizable.

3.2 Computational Considerations

Since our goal is to develop a one-round AL tool for realistic machine learning tasks, scalability is crucial.
While the optimization part of DULO can be made scalable via the BSG algorithm, the computation time of
data utility learning still remains a major hurdle. Specifically, constructing a size-T set of utility samples
requires retraining a target model for T times. In our ablation study (Section 5.2), we found that for DUF to
be learned accurately, we often need to retrain the target for about 5 times the size of the initial labeled data.
The overhead of retraining increases with (1) the size of the retrained model and (2) the size of sets that are
trained on.

5

Under review as submission to TMLR

To improve the efficiency of data utility learning for large target models, we propose to use a separate, less
computationally intensive proxy model in place of the much larger and more accurate target model to generate
utility samples. Besides, retraining of a proxy model could be further accelerated by parallelization without
any communication overhead. This proxy-model-based idea builds on an important phenomenon observed in
many past works (Lewis & Catlett, 1994; Coleman et al., 2019; Nath et al., 2021) that the points that are
more useful for one learning algorithm are usually also more useful for another, or in other words, the relative
data utility scores of different data subsets are transferable between models. Figure 2 illustrates such utility
transferability, where the x and y-axis of each point represent the accuracy of two different models trained on
a given subset and different points are trained on different subsets. Although an expensive classifier’s accuracy
is much higher than a less expensive classifier, the accuracies of two classifiers are positively correlated. The
observation of utility transferability has been also leveraged to boost efficiency in other applications, including
coreset selection (Lewis & Catlett, 1994; Coleman et al., 2019), hyperparameter tuning (Nath et al., 2021)
and data valuation (Jia et al., 2019). Despite its wide adoption, how to measure utility transferability remains
an open question (Wu & Zhang, 2021). In Section 4, we will rigorously characterize the transferability and
present ways to measure it, which could further facilitate the selection of proxy models.

3.2.1 Do We Need To Learn the Utility for Large Subsets?

As discussed earlier, the inefficiency of data utility learning also grows with the size of subsets used for
retraining a proxy model. However, as these subsets are randomly selected from the initial labeled data and
the initial labeled data are often limited in practice, the size of these subsets being trained on is usually
small. The readers may worry that if the initial labeled dataset is large, one needs to perform many slow
retrainings on many large subsets. In this section, we show that this is not necessary as the variance of utility
over different subsets of a given size diminishes as the size increases.

Recent empirical observations (Hestness et al., 2017; Rosenfeld et al., 2019; Kaplan et al., 2020; Hashimoto,
2021) show when the data size is large, the generalization error of a neural network is strikingly predictable
with merely the information of data size. The relationship between error and size consistently follows a
power-law. Despite the past works on the scaling law phenomenon, they have been mostly focused on an
empirical study of how the average model performance over different subsets of a given size changes as the
size increases. However, in the context of active learning, we are interested in the confidence interval of the
performance prediction. If the confidence interval is narrow for a given data size, it means that different
subsets of that size would result in similar model performance. In that case, it does not matter which subsets
of that size are selected and therefore, we do not need to perform active learning at the size.

In this section, we take a step towards analyzing the confidence interval of scaling law-based performance
prediction and present the first analysis for a class of deep neural networks whose output behavior closely
mimic linear models. Remarkably, this class includes pretrained networks as well as sufficiently wide deep
nets (Achille et al., 2021; Mu et al., 2020; Lee et al., 2019). In these scenarios, a deep neural network
can be transformed into an equivalent linear model trained with a simple quadratic loss but still reaches a
performance similar to the original model. Therefore, we can approximate deep neural networks’ DUFs by
analyzing the equivalent linear model. Specifically, given a model fw(x), let w0 denote an initial set of weights
(e.g., pre-trained on ImageNet for image classification task). Following Achille et al. (2021), we consider a
linearization f lin

w (x) of the network fw(x) given by the first-order Taylor expansion of fw(x) around w0:
f lin

w (x) = fw0(x) +∇wfw0(x) · (w−w0). If the weights w do not move too much from the initial pre-trained
weights w0 during fine-tuning, then f lin

w (x) will remain a good approximation of the network while becoming
linear in w (but still remaining highly non-linear with respect to the input x). Effectively, this is equivalent to
training a linear classifier using the gradients zi := ∇wfw0 (xi) as features (Mu et al., 2020). (Achille et al.,
2021) showed that equivalent performance can be obtained by replacing the loss function with the regularized
least-squares loss

∑n
i=1
∥∥f lin

w (xi)− f∗(xi)
∥∥2 + λ∥w∥2. The advantage of this equivalent formulation of neural

networks is that the optimal weights w∗ can now be written in closed-form.

Theorem 3.1. The DUFs for linearized neural network with mean squared error (MSE) metric trained
on a i.i.d. sampled dataset S of size n whose gradient distribution ∇wfw0 (xi) is subgaussian follows

6

Under review as submission to TMLR

U(S) = n−1C + O
(

n−3/2
√

log(1/δ)
)

with probability at least 1− δ over the choice of S for sufficiently large
n. C is a constant depending on test data.

Implication of Theorem 3.1 for Data Utility Learning. The term O
(

n−3/2
√

log(1/δ)
)

in Theorem 3.1
shows that the confidence interval shrinks as the data size grows larger. That is, the performance variation
between different subsets become neglectable in large-data regime and hence it is not crucial to learn the
difference and choose among different subsets. This implies that we can safely focus data utility learning on
the small-data regime, and performing data utility learning on relatively small subsets is a win-win for both
efficiency and data selection effectiveness.

Figure 3: Sketch of learning curves.
Dot lines represent confidence interval.

Implication of Theorem 3.1 for Active Learning. Another
implication of the above result is for deciding whether (a potentially
inefficient) AL would make a difference compared with random se-
lection. Figure 3 shows a cartoon sketch that breaks down learning
curve phases according to whether it could be predicted by power-law
with high confidence. In small-data regime, power-law prediction is
inaccurate. However, this is exactly the regime where AL is useful—
the choice of data selection makes a big difference. In the large-data
regime, the performance of the model is affected less by the specific
choice of data and hence, the AL would not be as powerful. Particu-
larly, our result provides a characterization of the confidence interval
as a function of n. Similar to the scaling law, in practice one can fit
a function log(Var(error)) ≈ −α log(n) + C to predict the variability
of utility. Based on the prediction, one can determine whether it is worth performing active learning for a
given data acquisition budget. We will provide experimental results to validate the result in Appendix D.5.2.

4 Measuring Utility Transferability

In this section, we formalize the transferability of data utility across different learning algorithms, and propose
two heuristics to evaluate the transferability. These heuristics can be used as a guideline for selecting proxy
models. Specifically, given a pool of candidate proxy models that meet a given computational budget (i.e.,
efficiently trainable for thousands of times), one can pick the model with the highest (estimated) utility
transferability against the target model.

For a given dataset D = {(xi, f∗(xi))}n
i=1 and a binary vector α ∈ {0, 1}n, write Dα = {(xi, f∗(xi))|αi = 1} as

the subset of D that is selected by the non-zero entries in α. Let wα = A(Dα), representing the model obtained
by applying the learning algorithm A on Dα. In this section we assume A is deterministic for simplicity and
readability. Therefore, U({xi|αi = 1}) = u(wα). We start by formally defining utility transferrability.
Definition 4.1. Given a dataset D, we say two learning algorithms A and Ã are p-utility transferable if
Prα,β [T (α, β) > 0] ≥ p where

T (α, β)=(u(wβ)− u(wα)) · (u(w̃β)− u(w̃α)) (2)

and (α, β) ∼ Unif({0, 1})n ×Unif({0, 1})n.

The parameter p reflects the ‘extent’ of transferability. When p = 1, w and w̃ have perfect utility transferability.
We describe two efficient methods to measure transferability. The uniform distribution in the definition
results from the Maximum Entropy Principle. Although a proxy model can preserve the target model’s
selection result as long as the maximal utility subset on proxy model is also the maximal utility subset on
target model, we do not know the maximal utility subsets a priori. Hence, the uniform distribution over pair
of subsets is the most reasonable prior in Definition 4.1.

Vanilla Monte Carlo (VMC) Method. One natural idea is to use a Monte Carlo approach to estimate p.
We can randomly sample m subsets Dα1 , . . . ,Dαm , train the target model and proxy models on each of Dαi , and
then count the number of (i, j)-pairs such that T (αi, αj) > 0, i, j = 1, . . . , m. The Monte Carlo estimation of p

7

Under review as submission to TMLR

is thus p̂ =
∑

1≤i<j≤m
I[T (αi,αj)>0]

m(m−1)/2 , which is unbiased with sample variance V ar(p̂) = p(1− p)/(m(m− 1)/2)).
Suppose that we are given a pool of K proxy model candidates, then the proxy model selection time is
roughly m× (

∑K
k=1 Tproxy,k + Ttarget), where Tproxy,k and Ttarget are average computation time for training

k-th candidate proxy model and the target model, respectively. Proxy models are often chosen such that
the training time is neglectable compared to the target model. So the computational time of proxy model
selection is dominated by mTtarget, i.e., retraining the target model for m times. When p = 1/2, if we want
V ar(p̂) < 10−4 (so the standard deviation < 10−2), m ≈ 75. On the other hand, directly learning the data
utility model without the proxy model technique requires training the target model for thousands of times
(see details in the Ablation Study in Section 5.2). Hence, leveraging a proxy model for data utility learning
and (if allowed) spending extra computational budget selecting the most suitable proxy model is in general
more recommendable than directly retraining the target model for the sake of efficiency.

Lower Bound Estimation Based (LBEB) Method. We develop another Monte-Carlo based approach
to select proxy models from the perspective of the lower bound of p = Prα,β [T (α, β) > 0]. First notice that
Prα,β [T (α, β) > 0] = 1

2n

∑
α∈{0,1}n Prβ [T (α, β) > 0]. Therefore, we can sample Dα1 , . . . ,Dαm

as before and
try to bound

∑
αi

Prβ [T (αi, β) > 0]. By first-order Taylor expansion, we have u(wβ)−u(wα) ≈ ∂u
∂α (β−α) =

∂u
∂wα

∂wα

∂α (β − α). Let z = β − α. We have (u(wβ)− u(wα)) · (u(w̃β)− u(w̃α)) ≈
(

∂u
∂wα

∂wα

∂α z
)
·
(

∂u
∂w̃α

∂w̃α

∂α z
)

=(
∂u

∂wα

∂wα

∂α z
)T

·
(

∂u
∂w̃α

∂w̃α

∂α z
)

= zT
(

∂wα

∂α

)T
(

∂u
∂wα

)T (
∂u

∂w̃α

) (
∂w̃α

∂α

)
z. Let Σ =

(
∂wα

∂α

)T
(

∂u
∂wα

)T (
∂u

∂w̃α

) (
∂w̃α

∂α

)
.

If the learning algorithm wα is ERM style gradient-based algorithm, then
(

∂wα

∂α

)T can be computed by implicit
function theorem (similar to the technique used in (Koh & Liang, 2017)). Prz[zT Σz > 0] indicates the degree
of transferrability between two models. Since we are particularly interested in the transferability between two
models of different sizes, Σ is asymmetric. But note that zT Σz > 0 if and only if zT (Σ + ΣT)z > 0. Hence,
we can instead analyze the symmetric matrix A := Σ + ΣT . We derive a lower bound of the probability for
which zT Az > 0.

Theorem 4.2. For any fixed α ∈ {0, 1}n, let S = (β − α)T A(β − α). We have

Pr
β∼Unif({0,1})n

[S > 0] ≥ 1− exp
(

−µ2

2
∑n

k=1 c2
k

)
(3)

where ck and µ are a function of A and α and can be computed in O(k) and O(n) runtime, respectively.

Figure 4: VMC method vs. LBEB
method to compare transferability be-
tween models. The error bar indicates
the standard deviation across 10 runs
of random set sampling.

The exact computation of ck and µ is deferred to Appendix B.2 due
to space constraint. From this theorem, we know that the lower
bound of Prβ∼Unif({0,1})n [zT Az > 0] can be thus characterized by
the ratio C(A(α), α) = µ2∑n

k=1
c2

k

, and the quantity
∑m

i=1 C(A(αi), αi)
can be used as an efficient measure for transferability. A larger value
of this quantity implies stronger transferability.

In Figure 4, we empirically evaluate the two methods to measure trans-
ferability. Specifically, for 8 most commonly used models for CIFAR-
10 and MNIST, we train them on the same m subsets of the full

datasets, compute p̂ =
∑

1≤i<j≤m
I[T (αi,αj)>0]

m(m−1)/2 and
∑m

i=1 C(A(αi), αi)
for each pair of models. We set m ≤ 90 in the experiment. To es-
tablish the ground truth, we train 8 different models on 5000 (≫ 90)
subsets of MNIST/CIFAR-10, and rank each pair of models according
to p̂ computed over m = 5000. We then rank each pair of models
according to the VMC and the LBEB method, and the performance
of transferability measurements is evaluated by the number of misordered pair of model pairs, with respect to
the ground truth transferability ranking. As we can see, both methods are able to achieve low misorder rate
(< 18%) when m ≥ 60. For small m, LBEB method achieves better performance in measuring transferability.

8

Under review as submission to TMLR

5 Evaluation

5.1 Experimental Settings

Protocol. We evaluate the performance of different AL strategies on different types of models and a
varied amount of selected data points. We evaluate the robustness of DULO on different practical scenarios
such as imbalanced or noisy unlabeled datasets. We also test the performance on real-world datasets and
provide insights into the selected data. Finally, we perform ablation studies for the sample complexity and
hyperparameters for DULO. A potential variant for DULO that is combined with Uncertainty Sampling is
deferred to Appendix D.5.1.

Datasets & Proxy Models & Implementation. We summarize the dataset and proxy/target model
settings in Table 1. The proxy models are selected based on the tradeoff between the utility transferability
with the target model and computational budget. All of the Ltr and U are sampled from the corresponding
datasets’ original training data, where the sampling distribution is uniform unless otherwise specified. For all
datasets, we randomly sample 4000 subsets of Ltr and use the corresponding proxy model to generate the
training data for utility learning. We set stochastic greedy optimization’s precision parameter ϵ = 10−3 and
optimization block size B = 2000 in all experiments. For each experiment setting, we repeat DULO and other
baseline algorithms 10 times to obtain the average AL performance and error bars. We defer the dataset
descriptions, model architectures, hyperparameters and other experiment details to Appendix D.

Dataset |Ltr| |Lval| Proxy Model (time / p̂) Target Model (time)
MNIST 300 300 LR (0.75 hrs / 0.832) LeNet (1.5 hrs)

CIFAR-10 500 500 SmallCNN (0.9 hrs / 0.824) Small VGG (12 hrs)
USPS 300 300 SVM (1 min / 0.794) LR (8 min)

PUBFIG83 500 500 LeNet (1 hrs / 0.872) Small VGG (18 hrs)
CIFAR-100 1000 1000 SmallCNN (2 hrs / 0.844) ResNet50 (1.5 day)

IMDb 1000 1000 Small RNN (1 day / 0.8) LSTM (12 days)

Table 1: Dataset and Model Settings. The ‘time’ in the table means the rough clock time for training 4000
proxy/target models. p̂ means the proxy model’s estimated utility transferability with the target model.

Baselines. We consider representative batch AL strategies as our baselines: (1) FASS (Wei et al., 2015) first
filters out the data samples with low uncertainty about predictions. It then selects a subset by first assigning
each unlabeled data a hypothesized label with the partially-trained classifier’s prediction and optimizing a
Nearest Neighbor submodular function on the unlabeled dataset with hypothesized labels. (2) BADGE
(Ash et al., 2019) first generates hypothesized labels and selects a subset based on the diverse gradient
embedding obtained with the hypothesized samples. (3) GLISTER (Killamsetty et al., 2020) also generates
hypothesized labels and performs discrete bi-level optimization problem on the hypothesized samples. (4)
Random is a setting we randomly select a subset from the unlabeled pool. FASS, BADGE, GLISTER can
be trivially extended to the one-round setting by only perform 1 round of data selection.
Remark 5.1. Since the considered baselines such as BADGE and GLISTER have been shown to outperform
techniques like uncertainty sampling (Settles, 2009) and coreset-based approaches (Sener & Savarese, 2017)
(even in one-round setting), we do not compare them in this work. Moreover, we do not compare with the
very few existing one-round AL methods Yu et al. (2006); Gu et al. (2012); Shoham & Avron (2020); Jin
et al. (2022) as all of these algorithms either (1) consider a different setting, or (2) are specialized to specific
target models or applications.

5.2 Experiment Results

5.2.1 Quality of Data Utility Prediction

We empirically estimate the quality of data utility prediction from a trained DeepSet-based utility model.
Specifically, we randomly sample data subsets of the same size from the initial labeled training data Ltr (‘seen
data’) and unlabeled pool U (‘unseen data’), and test the performance of the trained data utility model Û in

9

Under review as submission to TMLR

predicting the test accuracy of proxy models trained on the subset. As Figure 5 shows, the estimated test
accuracy is highly correlated with actual test accuracy. The mean square error of the prediction for unseen
data is < 0.0024 for MNIST dataset and < 10−4 for CIFAR-10 dataset. We also note that Û will slightly
underestimate the utility of high-quality dataset and overestimate the utility of low-quality dataset. However,
the overall trend is preserved, as the Spearman coefficient is 0.933 for MNIST and 0.913 for CIFAR-10.

Figure 5: Prediction of the trained data utility model on validation subsets. “Seen data” indicates the
elements in the validation subsets are used during utility model training; “unseen” indicates otherwise.

5.2.2 Imbalanced Dataset

Figure 6: Target model accuracy vs. selection budget
for DULO and baselines. Shaded regions indicate stan-
dard errors.

We artificially generate class-imbalance for MNIST
unlabeled dataset by sampling 55% of the instances
from one class and the rest of the instances uniformly
across the remaining 9 classes. For CIFAR-10’s unla-
beled dataset, we sample 50% of the instances from
two classes, 25% instances from another two classes,
and 25% instances from the remaining 6 classes. The
result for MNIST class-imbalance setting is shown in
Figure 6 (a). The results demonstrate that DULO sig-
nificantly outperforms the other baselines. By exam-
ining the data points selected by different strategies,
we found that DULO can indeed select more balanced
dataset, thereby leading to higher performance. Fig-
ure 6 (c) shows the performance of class-imbalance
one-round AL on CIFAR-10. Again, DULO consis-
tently outperforms other baselines.

5.2.3 Noisy Dataset

To create noisy datasets, we inject Gaussian noise
into images in random subsets of data. The noise
scale refers to the standard deviation of the random Gaussian noise. For MNIST, we add each of the noise
scales of 0.25, 0.6, and 1.0 to 25% unlabeled data (i.e., 75% of the unlabeled data are noisy and there are 3
different noisy levels). For CIFAR-10, we add noise to 25% unlabeled data points with noise scale 1.0. Figure
6 (b) and (d) show that DULO outperforms other baselines by more than 1% for every data selection size,
and is very close to, or sometimes even better the performance on a randomly selected clean dataset. To get
more insights into the selection process, we inject an MNIST image together with its three noisy variants of
different noise scales into the MNIST unlabeled dataset and examine their selection order in DULO, shown
in Figure 7 (a). DULO tends to select clean, high-quality images early and is able to sift out noisy data.

10

Under review as submission to TMLR

5.2.4 Datasets with Natural Quality Variations

We study the effectiveness of different AL strategies on real-life datasets from different domains, including
USPS, PubFig83, CIFAR-100 and IMDb dataset. These datasets usually contain some natural variations in
data quality. The results are shown in Table 2. We can see that DULO consistently outperforms all other
baselines in almost all of the settings and all labeling budgets. Figure 7 (b) illustrates the images selected in
different ranks by DULO. We can see that the points selected earlier have higher image quality; especially,
the last five selected ‘6’ digit images tend to be blurry and some could easily be confused with other digits.
The last ten selected images contain four ‘1’s, which is because USPS is a class-imbalanced dataset, and there
are more ‘1’s than other classes. Figure 7 (c) shows the rankings of 3 images within an optimization block.
As we can see, the early face images selected by DULO contain complete face features, while the later ones
either contain more irrelevant features or are corrupted.

DULO FASS BADGE GLISTER Random
USPS 88.43 (0.28) 87.59 (0.41) 87.00 (0.60) 87.38 (0.52) 87.56 (0.41)

PubFig83 51.55 (0.66) 49.29 (2.95) 50.29 (1.16) 51.5 (2.18) 50.87 (1.01)
CIFAR-100 77.18 (0.42) 75.91 (0.99) 76.2 (1.27) 73.44 (1.38) 76.02 (0.46)

IMDb 88.25 (0.44) 88.12 (0.2) 88.13 (0.45) 88.13 (0.15) 87.95 (0.52)

Table 2: Datasets with Natural Quality Variations. The selection budget for USPS, PubFig83, CIFAR-100
and IMDb are 1000, 2000, 25000 and 20000, respectively.

Figure 7: Selection ranks for different images in a greedy optimization block. (a) MNIST, (b) PubFig83, (c)
USPS.

5.2.5 Robustness to Scarcity of initial labeled Data

Figure 8: (a) Robustness to variation in initial labeled
data size. (b) Effect of # utility samples on DULO
performance.

Figure 8 (a) shows the one-round AL performance
for utility models trained with different amount of
labeled training samples |Ltr|. Note that here the
largest possible training samples for the proxy model
varies, but we still train the classifiers with 300 la-
beled training samples together with selected data
points. We fix the block size and number of sub-
sets sampled for utility training in the experiments.
As we can see, near-optimal performance could be
achieved even when there are only 100 labeled train-
ing data points. When |Ltr| is too large, the trained
utility model’s performance might degrade due to insufficient training samples compared with input size.
When |Ltr| is too small, the generalizability of utility model to large sets would be worse and at the same
time, the block size has a small upper limit, which can capture less data interaction.

11

Under review as submission to TMLR

5.2.6 Ablation Study of Size of Utility Samples

The overhead of data utility learning hinges on the size of utility samples for training proxy models. Figure
8 (b) shows the one-round AL performance for data utility models trained with different amount of utility
samples. We find that the performance is nearly optimal as long as the number of utility samples is above
500, which only takes around 12 min to generate. Therefore, a practical guideline for setting the size of initial
labeled dataset is 10-50 data points per class, and for setting the number of utility samples is at least 2× the
total number of initial labeled dataset.

5.2.7 Ablation Study of Optimization Block Size

Figure 9 (a) shows the one-round AL performance with different optimization block sizes B. As we can
see, both too small and too large block size can degrade the selected data’s utility. When B is too small,
DeepSets fails to capture interactions between data points selected from different blocks. When B is too
large, DeepSets has large generalization error.

Although the stochastic optimization algorithm runs in O(|U|) regardless of the block size (without paral-
lelization), individual DeepSets evaluation time increases significantly with a larger input set. Figure 9 (b)
shows the runtime vs accuracy plot with different block sizes. We can see that when B is too large, it suffers
from both poor utility and inefficiency. However, we find a wide range of B that achieves both good efficiency
and high data utility (the points located on the right of the figure), which is around |Ltr| (|Ltr| = 500 for
CIFAR-10 in our setting). This servers as a heuristic choice of B. In this range, the block size is small enough
so that DeepSets models generalize well on input sets of block sizes, while also being large enough so that the
utility model could capture most of the data interactions.

Figure 9: Ablation Study: (a) compares DULO’s performance with different optimization block sizes, and (b)
studies the relationship between efficiency and AL performance for different block sizes when the number of
selected data is 6000.

6 Conclusion & Future Works

This work proposes a general framework for one-round AL, an important AL setting where only one round of
label query is allowed, via DUF learning and optimization as well as the use of proxy models. We develop
a principled approach for selecting the proxy models. Our evaluation shows that it outperforms existing
baselines across various datasets and models.

There are two assumptions underlying our approach: (1) the labels of the initial labeled dataset are correct
and (2) the labeled and unlabeled datasets should share the same label space. While these two assumptions
usually hold in practice, extending DULO to noisy initial labeled data and varied label settings would be
interesting future directions.

12

Under review as submission to TMLR

References
Alessandro Achille, Aditya Golatkar, Avinash Ravichandran, Marzia Polito, and Stefano Soatto. Lqf: Linear

quadratic fine-tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 15729–15739, 2021.

Ayya Alieva, Aiden Aceves, Jialin Song, Stephen Mayo, Yisong Yue, and Yuxin Chen. Learning to make
decisions via submodular regularization. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=ac288vnG_7U.

Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep batch
active learning by diverse, uncertain gradient lower bounds. arXiv preprint arXiv:1906.03671, 2019.

Jock A Blackard. Comparison of neural networks and discriminant analysis in predicting forest cover types.
Colorado State University, 1998.

Venkatesh Botu and Rampi Ramprasad. Adaptive machine learning framework to accelerate ab initio
molecular dynamics. International Journal of Quantum Chemistry, 115(16):1074–1083, 2015.

Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy Liang,
Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for deep learning. arXiv
preprint arXiv:1906.11829, 2019.

Gabriella Contardo, Ludovic Denoyer, and Thierry Artières. A meta-learning approach to one-step active
learning. arXiv preprint arXiv:1706.08334, 2017.

Shai Fine, Ran Gilad-Bachrach, and Eli Shamir. Query by committee, linear separation and random walks.
Theoretical Computer Science, 284(1):25–51, 2002.

Quanquan Gu, Tong Zhang, Jiawei Han, and Chris Ding. Selective labeling via error bound minimization.
Advances in neural information processing systems, 25:323–331, 2012.

Andrew Guillory and Jeff A Bilmes. Label selection on graphs. Advances in Neural Information Processing
Systems, 22:691–699, 2009.

Tatsunori Hashimoto. Model performance scaling with multiple data sources. In International Conference on
Machine Learning, pp. 4107–4116. PMLR, 2021.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad, Md Pat-
wary, Mostofa Ali, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable, empirically. arXiv
preprint arXiv:1712.00409, 2017.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nezihe Merve Gurel, Bo Li, Ce Zhang, Costas J
Spanos, and Dawn Song. Efficient task-specific data valuation for nearest neighbor algorithms. arXiv
preprint arXiv:1908.08619, 2019.

Qiuye Jin, Mingzhi Yuan, Qin Qiao, and Zhijian Song. One-shot active learning for image segmentation via
contrastive learning and diversity-based sampling. Knowledge-Based Systems, 241:108278, 2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh Iyer. Glister: Gener-
alization based data subset selection for efficient and robust learning. arXiv preprint arXiv:2012.10630,
2020.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In International
Conference on Machine Learning, pp. 1885–1894. PMLR, 2017.

13

https://openreview.net/forum?id=ac288vnG_7U

Under review as submission to TMLR

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-Dickstein, and
Jeffrey Pennington. Wide neural networks of any depth evolve as linear models under gradient descent.
Advances in neural information processing systems, 32:8572–8583, 2019.

David D Lewis and Jason Catlett. Heterogeneous uncertainty sampling for supervised learning. In Machine
learning proceedings 1994, pp. 148–156. Elsevier, 1994.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and Andreas Krause.
Lazier than lazy greedy. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29, 2015.

Fangzhou Mu, Yingyu Liang, and Yin Li. Gradients as features for deep representation learning. arXiv
preprint arXiv:2004.05529, 2020.

Vishwesh Nath, Dong Yang, Ali Hatamizadeh, Anas A Abidin, Andriy Myronenko, Holger R Roth, and
Daguang Xu. The power of proxy data and proxy networks for hyper-parameter optimization in medical
image segmentation. In International Conference on Medical Image Computing and Computer-Assisted
Intervention, pp. 456–465. Springer, 2021.

Brian Nord, Adam Amara, Alexandre Réfrégier, La Gamper, Lu Gamper, B Hambrecht, C Chang, Jaime E
Forero-Romero, Santiago Serrano, Carla Cunha, et al. Spokes: An end-to-end simulation facility for
spectroscopic cosmological surveys. Astronomy and Computing, 15:1–15, 2016.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning
in python. the Journal of machine Learning research, 12:2825–2830, 2011.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B Gupta, Xiaojiang Chen, and Xin
Wang. A survey of deep active learning. ACM Computing Surveys (CSUR), 54(9):1–40, 2021.

Jonathan S Rosenfeld, Amir Rosenfeld, Yonatan Belinkov, and Nir Shavit. A constructive prediction of the
generalization error across scales. arXiv preprint arXiv:1909.12673, 2019.

Greg Schohn and David Cohn. Less is more: Active learning with support vector machines. In ICML,
volume 2, pp. 6. Citeseer, 2000.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set approach.
arXiv preprint arXiv:1708.00489, 2017.

Burr Settles. Active learning literature survey. 2009.

Anne Sharp, Patrick Moore, and Katherine Anderson. Are the prompt responders to an online panel survey
different from those who respond later? Australasian Journal of Market & Social Research, 19(1), 2011.

Neta Shoham and Haim Avron. Experimental design for overparameterized learning with application to single
shot deep active learning. arXiv preprint arXiv:2009.12820, 2020.

Kai Wei, Rishabh Iyer, and Jeff Bilmes. Submodularity in data subset selection and active learning. In
International Conference on Machine Learning, pp. 1954–1963. PMLR, 2015.

Wentao Wu and Ce Zhang. Towards understanding end-to-end learning in the context of data: machine
learning dancing over semirings & codd’s table. In Proceedings of the Fifth Workshop on Data Management
for End-To-End Machine Learning, pp. 1–4, 2021.

Kevin K Yang, Zachary Wu, and Frances H Arnold. Machine-learning-guided directed evolution for protein
engineering. Nature methods, 16(8):687–694, 2019.

Kai Yu, Jinbo Bi, and Volker Tresp. Active learning via transductive experimental design. In Proceedings of
the 23rd international conference on Machine learning, pp. 1081–1088, 2006.

14

Under review as submission to TMLR

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, and Alexander
Smola. Deep sets. arXiv preprint arXiv:1703.06114, 2017.

15

Under review as submission to TMLR

A Pseudocode of the Proposed One-Round AL Algorithm

Algorithm 1: DULO for One-Round AL
input : L - initial labeled data, A - training algorithm for classifier f , u - metric function, AU -

training algorithm for utility model Û , T - number of utility samples, U - unlabeled data pool,
M - labeling budget, B - optimization block size, ϵ - precision parameter for stochastic greedy
algorithm.

output : Sselected - selected set.
1 Split L into training set Ltr and validation set Lval.
2 // Data Utility Learning
3 Initialize set of utility sample SU = ∅.
4 for t = 1, . . . , T do
5 Randomly choose a subset St = (Sx

t , f∗(Sx
t)) ⊆ Ltr.

6 Train classifier ft ← A(St) (or ft ∼ A(St) if A is stochastic).
7 SU = SU ∪ {(Sx

t , u(ft,Lval))}.
8 end
9 Train Û ← AU (SU).

10 // Data Utility Optimization
11 Initialize Sselected = ∅, U ′ = U .
12 while |Sselected| < M do
13 Sample B ⊆ U ′ of size B.
14 R← ∅
15 while |R| < MB

|U| do
16 Sample Z ⊆ B \R of size |U|

M log(1/ϵ)
17 Find e = argmaxe∈Z Û(R ∪ {e})
18 R← R ∪ {e}
19 end
20 Sselected ← Sselected ∪R.
21 U ′ ← U ′ \R.
22 end
23 return Sselected

Remark A.1. Proxy Model Selection: If a pool of candidate proxy models that meet a given computational
budget (i.e., efficiently trainable for thousands of times) is available, then we can pick the one with the highest
(estimated) utility transferability against the target model. The utility transferability can be estimated by
the two methods proposed in Section 4.

16

Under review as submission to TMLR

B Proofs

B.1 Theorem 3.1

Theorem 3.1 (Restated). The DUFs for linearized neural network with mean squared error (MSE) metric
trained on a i.i.d. sampled dataset S of size n whose gradient distribution ∇wfw0 (xi) is subgaussian follows

U(S) = n−1C + O

(√
log(1/δ)
n3/2

)
(4)

with probability at least 1− δ over the choice of S for sufficiently large n. C is a constant depending on test
data.

Proof. The proof follows from (Hashimoto, 2021) with the major differences in the regularization term
of linear regression. We first change the notation to the traditional one used in linear regression: write
β = w−w0 ∈ Rd, X := Z ∈ Rn×d, y := Y− fw0(X) ∈ Rd, so we have

β̂ =
(
XT X + λI

)−1
XT y (5)

Assuming y = Xβ + ε for some β ∈ Rd, ε ∼ N (0, σ2I). Then the covariance of β̂ − β with respect to ε
becomes

E
ε

[
(β − β̂)(β − β̂)T

]
(6)

= E
ε

[
(
(
XT X + λI

)−1
XT y − β)(

(
XT X + λI

)−1
XT y − β)T

]
(7)

= E
ε

[(
XT X + λI

)−1 (XT y −
(
XT X + λI

)
β)(XT y −

(
XT X + λI

)
β)T

(
XT X + λI

)−1] (8)

= E
ε

[(
XT X + λI

)−1 (XT (Xβ + ε)−
(
XT X + λI

)
β)(XT (Xβ + ε)−

(
XT X + λI

)
β)T

(
XT X + λI

)−1]
(9)

= E
ε

[(
XT X + λI

)−1 (XT ε− λβ)(XT ε− λβ)T
(
XT X + λI

)−1] (10)

=
(
XT X + λI

)−1
XT E

ε
[εεT]X

(
XT X + λI

)−1 (11)

= σ2 (XT X + λI
)−1

XT X
(
XT X + λI

)−1 (12)

= σ2 (XT X + λI
)−1 − λσ2

((
XT X + λI

)−1)2
(13)

Denote A = XT X + λI. Assume σ2 = 1 for simplicity. If each data point xi in X are i.i.d. sampled from
some subgaussian distribution xi ∼ p. Let X∗ ∈ Rm×d be some test data. Now we want to bound the
expected loss

L(n) = 1
m

E
X,ε

[∥∥∥X∗(β − β̂)
∥∥∥2

2

]
(14)

17

Under review as submission to TMLR

First, by fixing X, define e = β − β̂ we can see that

E
ε

[∥∥∥X∗(β − β̂)
∥∥∥2

2

]
(15)

= E
ε

[
tr
(
eT X∗T X∗e

)]
(16)

= E
ε

[
tr
(
X∗T X∗eeT

)]
(17)

= tr

(
X∗T X∗ E

ε
[eeT]

)
(18)

= tr
(
X∗T X∗ (A−1 − λ(A−1)2)) (19)

= tr
(
X∗T X∗A−1)− λtr

(
X∗T X∗(A−1)2) (20)

The challenge now is thus to estimate EX [A−1] and EX [(A−1)2].

Define Σ = E[XT X]/n. Since X is drawn from some subgaussian distribution, by matrix concentration
inequality, with probability with at least 1− δ we have

∥∥XT Xn−1 − Σ
∥∥

op
≤ C

√
log(1/δ)√

n
(21)

for sufficiently large n. Let ∆ = XT Xn−1 − Σ. Therefore A = n(Σ + ∆) + λI = n
(
(Σ + λ

n I) + ∆
)

By equality (P + Q)−1 = P −1 +
∑∞

t=1 P −1(−QP −1)t, we have

A−1 = n−1
(

(Σ + λ

n
I) + ∆

)−1
(22)

= n−1

[
(Σ + λ

n
I)−1 +

∞∑
t=1

(Σ + λ

n
I)−1

(
−∆(Σ + λ

n
I)−1

)t
]

(23)

whenever
∥∥∆(Σ + λ

n I)−1
∥∥

op
< 1. Since

∥∥∆(Σ + λ
n I)−1

∥∥
op
≤ ∥∆∥op

∥∥(Σ + λ
n I)−1

∥∥
op

, and since σmin(Σ +
λ
n I) ≥ σmin(Σ) which is a constant, we know that this series converge for sufficiently large n. In this case,
the first term is the dominant one.

E
[
tr
(
X∗T X∗A−1)] (24)

= tr

(
X∗T X∗n−1(Σ + λ

n
I)−1

)
+ n−1 E

[
tr

(
X∗T X∗

∞∑
t=1

(Σ + λ

n
I)−1

(
−∆(Σ + λ

n
I)−1

)t
)]

(25)

where the second term is dominated by

tr

(
X∗T X∗

∞∑
t=1

(Σ + λ

n
I)−1

(
−∆(Σ + λ

n
I)−1

)t
)

(26)

≈ tr

(
X∗T X∗(Σ + λ

n
I)−1(−∆)(Σ + λ

n
I)−1

)
(27)

≤ d
∥∥X∗T X∗∥∥

op

∥∥∥∥(Σ + λ

n
I)−1

∥∥∥∥2

op

∥∆∥op (28)

= O

(√
log(1/δ)√

n

)
(29)

18

Under review as submission to TMLR

So

E
[
tr
(
X∗T X∗A−1)] = tr

(
X∗T X∗n−1(Σ + λ

n
I)−1

)
+ O

(√
log(1/δ)
n3/2

)
(30)

= n−1tr

(
X∗T X∗(Σ + λ

n
I)−1

)
+ O

(√
log(1/δ)
n3/2

)
(31)

By a similar argument, we have

E
[
tr
(
X∗T X∗(A−1)2)] = n−2tr

(
X∗T X∗

(
(Σ + λ

n
I)−1

)2
)

+ O

(√
log(1/δ)

n3

)
(32)

Therefore

L(n) (33)

= 1
m

[
n−1tr

(
X∗T X∗(Σ + λ

n
I)−1

)
− n−2tr

(
X∗T X∗

(
(Σ + λ

n
I)−1

)2
)

+ O

(√
log(1/δ)
n3/2

)]
(34)

Set λ = nλ′, we have

L(n) = 1
m

[
n−1tr

(
X∗T X∗(Σ + λ′I)−1)+ O

(√
log(1/δ)
n3/2

)]
(35)

under the condition of

∥∥XT Xn−1 − Σ
∥∥

op
≤ C

√
log(1/δ)√

n
(36)

where this event happens with probability at least 1− δ. So the expected loss has diminishing return as n
grows with high probability for sufficiently large n.

B.2 Theorem 4.2

Theorem 4.2 (Restated). For any fixed α ∈ {0, 1}n, let S = (β − α)T A(β − α). We have

Pr
β∼Unif({0,1})n

[S > 0] ≥ 1− exp
(

−µ2

2
∑n

k=1 c2
k

)
(37)

where ck and µ are a function of A and α and can be computed in O(k) and O(n) runtime, respectively.

Proof. Since β ∼ Unif({0, 1})n, therefore βi − αi ∼ Unif({0, 1}) if αi = 0, and βi − αi ∼ Unif({−1, 0}) if
αi = 1. Let x = β − α. Denote Sk =

∑k
i,j=1 xiAijxj , so

Sn = xT Ax =
n∑

i=1

n∑
j=1

xiAijxj (38)

19

Under review as submission to TMLR

We first note that µ = E[Sn] can be easily computed as

µ = E[Sn] (39)

= E

 n∑
i=1

n∑
j=1

xiAijxj

 (40)

=
n∑

i=1
Aii E

[
x2

i

]
+
∑
i ̸=j

Aij E [xi]E [xj] (41)

= 1
4

n∑
i=1

Aii +
∑
i ̸=j

Aij E [xi]E [xj] (42)

Define

Yk = Sk − E [Sk] (43)

Then it’s easy to see that for all k ≥ 0 we have

E [Yk+1|Yk] = Yk (44)

so the sequence of (Y0, Y1, . . . , Yn) is a martingale. Also,

|Yk+1 − Yk| (45)
= |Sk+1 − Sk − E [Sk+1 − Sk]| (46)

=

∣∣∣∣∣ak+1,k+1x2
k+1 + 2xk+1

k∑
i=1

ai,k+1xi − E

[
ak+1,k+1x2

k+1 + 2xk+1

k∑
i=1

ai,k+1xi

]∣∣∣∣∣ (47)

=

∣∣∣∣∣ak+1,k+1(x2
k+1 − 1/2) + 2xk+1

k∑
i=1

ai,k+1xi − E

[
2xk+1

k∑
i=1

ai,k+1xi

]∣∣∣∣∣ (48)

=

∣∣∣∣∣xk+1

(
ak+1,k+1xk+1 + 2

k∑
i=1

ai,k+1xi

)
−

(
ak+1,k+1/2 + 2E[xk+1]

k∑
i=1

ai,k+1 E[xi]
)∣∣∣∣∣ (49)

Let

ck = sup
x1,...,xk

∣∣∣∣∣xk

(
ak,kxk + 2

k−1∑
i=1

ai,kxi

)
−

(
1
2ak,k + 2E[xk]

k−1∑
i=1

ai,k E[xi]
)∣∣∣∣∣ (50)

Since everything is linear, ck could be efficiently computed in O(k) as

bk = E

[
1
2ak,k + 2E[xk]

k−1∑
i=1

ai,k E[xi]
]

(51)

ck = max (|bk| , (52)∣∣∣∣∣F (xk)
(

ak,kF (xk) + 2
k−1∑
i=1

max(0, ai,kF (xi))
)
− bk

∣∣∣∣∣ , (53)∣∣∣∣∣F (xk)
(

ak,kF (xk) + 2
k−1∑
i=1

min(0, ai,kF (xi))
)
− bk

∣∣∣∣∣
)

(54)

where F (xk) = 1 if xk ∼ Unif({0, 1}), and F (xk) = −1 if xk ∼ Unif({−1, 0}).

20

Under review as submission to TMLR

By Azuma’s inequality, we have

Pr [Yn ≤ −ε] = Pr [Sn − E[Sn] ≤ −ε] ≤ exp
(

−ε2

2
∑n

k=1 c2
k

)
(55)

By setting ε = E[Sn], we have

Pr
[
xT Ax ≤ 0

]
≤ exp

(
−E[Sn]2

2
∑n

k=1 c2
k

)
(56)

We note that the value of ck depends on the order of rows/columns of A. Therefore, in practice, we can
further improve this bound by randomly sample many different permutations and get the smallest value.

21

Under review as submission to TMLR

C Stochastic Greedy Algorithm

For completeness, we briefly introduce the stochastic greedy algorithm (SG) from (Mirzasoleiman et al., 2015)
here, and refer the readers to the original work for a more thorough introduction. The stochastic greedy
algorithm is a simple approach that, for each iteration, randomly selects a subset of data and then finds
the best data point within that subset. This approach was originally proposed for maximizing submodular
functions. In the context of optimizing utility model (i.e., the trained DeepSets model), the “best data
point” within each randomly selected subset refers to the data point z with the highest marginal contribution
Û(S ∪ {z}) − Û(S), where S is the set of data points selected in previous iterations. The pseudo-code is
outlined in Algorithm 2.

The main distinction between this approach and the vanilla greedy algorithm is that the candidate data
points to be selected in each iteration of stochastic greedy algorithm is a smaller, randomly selected subset
instead of all unselected data points. Thus, this approach is more efficient than vanilla greedy optimization
and the runtime is linear in the number of dataset size to achieve 1 − 1/e − ϵ optimization guarantee for
monotone submodular functions (ϵ is a precision parameter).

Although SG provides no theoretical approximation guarantee for general functions, our experiments show
that it achieves high empirical performance on DUFs. We conjecture that this is because DUFs usually
exhibits diminishing return property similar to submodular functions. Exploring different approaches for
optimizing data utility models are interesting future directions.

Algorithm 2: Stochastic Greedy Optimization for Utility Model
input : dataset D, trained utility model Û : 2D → R, target selection size k, precision parameter for

stochastic greedy algorithm ϵ.
output : A set S ⊆ D s.t. |S| = k.

1 S ← ∅.
2 for t = 1, . . . , k do
3 Sample R ⊆ D \ S of size |D|

k log(1/ϵ)
4 Find z = argmaxz∈R Û(S ∪ {z})
5 S ← S ∪ {z}
6 end
7 return S

22

Under review as submission to TMLR

D Additional Experiment Settings

D.1 Transferability Evaluation

Figure 2 shows examples of the transferability of data utilities between different learning algorithms. The
dataset here we use is CIFAR-10. For each point in the figures, we randomly sample 5000 CIFAR-10 images
and add Gaussian noise to a random portion of the images. We then record the test accuracies of different
model architectures trained on the dataset.

For the experiment in Section 4 that compares VMC and LBEB in measuring transferability, we use 5
models on CIFAR-10 and 3 models on MNIST. Specifically, for CIFAR-10 we use ResNet18, ResNet50,
VGG11, VGG16, and a small CNN model is used as the proxy model for CIFAR-10 dataset, which has two
convolutional layers, each is followed by a max pooling layer and a ReLU activation function. For MNIST we
use logistic regression, LeNet and a slightly larger CNN model which has six convolutional layers. There
are

(5
2
)

+
(3

2
)

= 13 model pairs in total, and we want to rank the transferability of these 13 model pairs.

we train them on the same m subsets of the full datasets, and compute p̂ =
∑

1≤i<j≤m
I[T (αi,αj)>0]

m(m−1)/2 and∑m
i=1 C(A(αi), αi) for each pair of models. We set m ≤ 90 in the experiment. To establish the ground truth,

we train 8 different models on 5000 (≫ 90) subsets of MNIST/CIFAR-10, and rank each pair of models
according to p̂ computed over m = 5000. We then rank each pair of models according to the VMC and
the LBEB method, and the performance of transferability measurements is evaluated by the number of
misordered pair of model pairs, with respect to the ground truth transferability ranking.

In the computation of
∑m

i=1 C(A(αi), αi), we need to first compute ∂u
∂α = ∂u

∂wα

∂wα

∂α . We use the similar trick
in influence function technique (Koh & Liang, 2017) based on implicit function theorem, which involves the
computation of Hessian inverse

(
∂2u

∂wα∂wT
α

)−1
. Since this may be computationally expensive for large models,

we follow the widely used heuristic and only choose to use the last layer of the model. We compute the
exact Hessian matrix in our experiment, and the Hessian inverse computation can be further accelerated
with techniques such as conjugate gradient (Koh & Liang, 2017). For the computation of ck and µ, since
they depend on the permutation of matrix A and α, we randomly sample 2000 permutations and pick the
maximum value of C(A(αi), αi).

D.2 Details for Figure 5

In Figure 5, all sampled subsets are of the same size, where for MNIST the size is 250 and for CIFAR10 the
size is 350. For each subset sampling, we first uniformly randomly generate a real value α ∈ [1, 20] for each
class, and then draw a distribution sample p from Dirichlet distribution Dir(α1, . . . , αK) where K represents
the number of classes. We draw a subset with different class sizes proportional to p. This sampling design is
to ensure the diversity of class distributions in the sampled subsets.

D.3 Details of Datasets Used in Section 5

MNIST. MNIST consists of 70,000 handwritten digits. The images are 28× 28 grayscale pixels.

CIFAR-10. CIFAR-10 consists of 60,000 3-channel images in 10 classes (airplane, automobile, bird, cat,
deer, dog, frog, horse, ship and truck). Each image is of size 32× 32.

USPS. USPS is a real-life dataset of 9,298 handwritten digits. The images are 16× 16 grayscale pixels.
The dataset is class-imbalanced with more 0 and 1 than the other digits.

PubFig83. PubFig83 is a real-life dataset of 13,837 facial images for 83 individuals. Each image is resized
to 32× 32.

CIFAR-100. CIFAR-100 is similar to CIFAR-10 except it has 100 classes.

23

Under review as submission to TMLR

IMDB. The IMDb dataset consists of 50,000 movie reviews, each marked as being a positive or negative
review.

D.4 Implementation Details

Target Models & Proxy Models. A small CNN model is used as the proxy model for CIFAR-10 and
CIFAR-100 datasets, which has two convolutional layers, each is followed by a max pooling layer and a ReLU
activation function. LeNet model is the proxy model for PubFig83 dataset, and we also used it to test the
AL performance for MNIST in the experiment. LeNet is adapted from (LeCun et al., 1998), which has two
convolutional layers, two max pooling layers and one fully-connected layer. A variant of VGG model1 is used
to evaluate AL performance on CIFAR-10 and PubFig83, which has six convolutional layers, and each of
them is followed by a batch normalization layer and a ReLU layer. We use Adam optimizer with learning
rate 10−3, mini-batch size 32 to train all of the aforementioned models for 30 epochs, except that we train
LeNet for 5 epochs when using it for testing AL performance on MNIST. We also use the support vector
machine (SVM) to evaluate AL performance on the USPS dataset. We implement SVM with scikit-learn
(Pedregosa et al., 2011) and set the L2 regularization parameter to be 0.1. For IMDb, we use LSTM model
follows from PyTorch tutorial2 as the target model, which use a pretrained word embedding. A smaller RNN
model adapted from the same source is used as the proxy model. All other training details follow from the
same tutorial.

All of our experiments are performed on Tesla K80 GPU.

DeepSets as Architecture for Utility Learning. A DeepSets model is a function Û(S) = ρ(
∑

x∈S ϕ(x))
where both ρ and ϕ are neural networks. In our experiment, both ϕ and ρ networks have 3 fully-connected
layers. For MNIST and USPS, we set the number of neurons to be 128 in each hidden layer. For CIFAR-10
and PubFig83, we set the number of neurons in every hidden layer to be 512. We set the dimension of set
features (i.e., the output of ϕ network) for DeepSets models to be 128 in all experiments, except for USPS
dataset the set feature number is 64. We use the Adam optimizer with learning rate 10−5, mini-batch size
of 32, β1 = 0.9, and β2 = 0.999 to train all of the DeepSets-based utility models. For IMDb dataset, the
utility learning as well as baseline algorithms is performed on the embedding of the corresponding sentence
encodings.

The size of the utility samples is chosen uniformly at random from the training set. This design is because in
stochastic greedy optimization, the utility model needs to predict the utility for subsets of all sizes smaller
than the block size. It is interesting future work to investigate whether a different sampling strategy can
further improve performance.

Baselines & Evaluation Protocol. In terms of the baseline batch AL approaches, we set β in FASS
to be the size of unlabeled dataset after parameter tuning. We set the learning rate in GLISTER to be
0.05, following the original paper. We test these baselines with open-source implementation3. The model
performance is evaluated on a hold-out test set.

As implied by Theorem 3.1, the advantage of a good AL selection strategy will be less significant in high-data
regime, so we mainly focus on the case where selection budget is relatively low in our experiment.

D.5 Additional Results

D.5.1 Combining DULO with Uncertainty Sampling

Traditionally, AL techniques like uncertainty sampling (US) and query by committee (QBC) have shown great
promise in several domains of machine learning (Settles, 2009). However, in the task of multi-round batch
AL, naive uncertainty sampling fails to capture the interactions between selected samples. Simply choosing
the most uncertain samples may lead to a selected set with very low diversity. Filtered Active Submodular

1https://github.com/YiZeng623/frequency-backdoor
2https://github.com/bentrevett/pytorch-sentiment-analysis
3https://github.com/decile-team/distil

24

Under review as submission to TMLR

Figure 10: Ablation Study: the performance of DULO when we run greedy optimization on the β most
uncertain samples of the current classifiers.

Selection (FASS) (Wei et al., 2015) combines the uncertainty sampling method with a submodular data
subset selection framework. Specifically, at every round t, FASS first selects a candidate set of βt most
uncertain samples among unlabeled data, and then runs greedy optimization on an appropriate submodular
objective (with the hypothesized labels assigned by the current model). It is natural to ask whether we
should also combine DULO with uncertainty sampling by only performing greedy optimization on the most
uncertain samples. We evaluate the performance of DULO when we first filter out data points that the current
classifier has high confidence about, and preserve a candidate set of β most uncertain samples on which we
run stochastic greedy optimization. We show the performance of different values of β on class-imbalanced
and noisy MNIST dataset in Figure 10, where β = |U| = 2000 coincides with the setting of the original
DULO algorithm. As we can see, for all settings studied in our experiments, β = 2000 consistently outperforms
other smaller values of β. Hence, using uncertainty sampling to pre-process unlabeled samples does not seem
to lead to better performance in our one-round AL framework. We conjecture that this is because we only
have very few labeled samples at the beginning. In that case, the performance of the initial classifiers is
pretty poor and their uncertainty outputs are not informative.

D.5.2 Do We Need To Learn DUF in Large Data Regime? Predict Utility Variance with Scaling Law

In this section, we show the practical implication of our Section 3.2.1 and Theorem 3.1. Many recent
literature on the Scaling Law of Model Performance (Hestness et al., 2017; Rosenfeld et al., 2019; Kaplan
et al., 2020; Hashimoto, 2021) propose to predict model performance on the large data regime by fitting a
function log(error) ≈ −α log(n) + C, where n is the dataset size, and α and C are parameters to be fitted.
Our Theorem 3.1 suggests that there may also be certain scaling law style relationship between the dataset
size and the variance of model performance, where the randomness is due to the i.i.d. sampling of dataset
from a natural distribution. ‘ Thus, we can predict the variance of model performance on the large data
regime by first fitting a function log(Var(error)) ≈ −α log(n) + C in the small data regime (where training a
model is fast), and then extrapolating the prediction to large data regime (where training a model is slow).
Based on the prediction, one can determine whether it is worth performing active learning for a given data
acquisition budget. If the predicted utility variability is small, then active learning strategies may only bring
small improvements upon random sampling. In that case, it could be not that worthwhile performing active
learning.

Experiment. We wish to scale datasets while preserving the original distribution. Thus, given a dataset D,
we subsample subsets whose cardinalities are n = r|D|, where r = 0.1%, 0.2%, . . . , 9.9%, 10%. For each r, we
subsample 10 subsets uniformly at random from the original dataset. We train a model on each of the subsets
and compute the variance of model loss on a hold-out test set for a given cardinality. We then fit a function
log(Var(error)) ≈ −α log(n) + C on the cardinalities that are of 0.1%, 0.2%, . . . , 4.9%, 5% of the original
dataset, and use the learned function to predict the utility variance for cardinalities that are of 5.1%, 5.2%,
. . . , 9.9%, 10% of the original dataset. Figure 11 shows the result of scaling law prediction on three different
datasets (Covertype (Blackard, 1998), MNIST, CIFAR10) with different model architectures. As we can see,
the scaling law generally performs well for predicting the variance of model test loss in the large data regime.

25

Under review as submission to TMLR

Figure 11: Illustration of the scaling law prediction for different datasets and different architectures. The
heavier orange dashed line corresponds to the variance of model test loss predicted by the scaling law. The
“error” in the y-axis refers to cross entropy loss. In the figure, “CNN” refers to a small CNN model adapted
from PyTorch tutorial https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html.

Discussion. Overall, the consequence of Section 3.2.1 and Theorem 3.1 is two-fold. First, it provides
a theoretical understanding of data utility function (DUF): the data utility becomes more predictable by
the size of training data when the size gets larger. Thus, in AL, the choice of unlabeled data sets matters
more when the selection budget is smaller. Second and more importantly, it provides practical guidance
for designing the input size of data utility model in one-round AL. The computational overhead of data
utility learning grows with the size of subsets used for model retraining. The result in Section 5 shows that
performing data utility learning on relatively small subsets is a win-win for both efficiency and data selection
effectiveness (as the utility of larger sets has much less variance).

26

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

	Introduction
	Related Work
	One-Round AL via DULO
	Algorithm
	Computational Considerations
	 Do We Need To Learn the Utility for Large Subsets?

	Measuring Utility Transferability
	Evaluation
	Experimental Settings
	Experiment Results
	Quality of Data Utility Prediction
	Imbalanced Dataset
	Noisy Dataset
	Datasets with Natural Quality Variations
	Robustness to Scarcity of initial labeled Data
	Ablation Study of Size of Utility Samples
	Ablation Study of Optimization Block Size

	Conclusion & Future Works
	Pseudocode of the Proposed One-Round AL Algorithm
	Proofs
	Theorem 3.1
	Theorem 4.2

	Stochastic Greedy Algorithm
	Additional Experiment Settings
	Transferability Evaluation
	Details for Figure 5
	Details of Datasets Used in Section 5
	Implementation Details
	Additional Results
	Combining DULO with Uncertainty Sampling
	Do We Need To Learn DUF in Large Data Regime? Predict Utility Variance with Scaling Law

