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Abstract
To use reinforcement learning from human feed-
back (RLHF) in practical applications, it is cru-
cial to learn reward models from diverse sources
of human feedback and to consider human factors
involved in providing feedback of different types.
However, the systematic study of learning from
diverse types of feedback is held back by limited
standardized tooling available to researchers. To
bridge this gap, we propose RLHF-Blender, a con-
figurable, interactive interface for learning from
human feedback. RLHF-Blender provides a mod-
ular experimentation framework and implemen-
tation that enables researchers to systematically
investigate the properties and qualities of human
feedback for reward learning. The system facil-
itates the exploration of various feedback types,
including demonstrations, rankings, comparisons,
and natural language instructions, as well as stud-
ies considering the impact of human factors on
their effectiveness. We discuss a set of concrete
research opportunities enabled by RLHF-Blender.
More information is available at our Website.

1 Introduction
Reinforcement learning from human feedback (RLHF) is
a powerful tool to train agents when it is difficult to specify
a reward function or when human knowledge can improve
training efficiency. Recently, using multiple forms of hu-
man feedback for reward modeling has come into focus
(Jeon et al., 2020; Ghosal et al., 2023; Ibarz et al., 2018;
Bıyık et al., 2022a; Mehta & Losey, 2022). Using diverse
sources of information opens up several possibilities: (1)
feedback from different sources allows for correcting poten-
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tial biases in the data; (2) the feedback type can be adapted
to a particular task or user based on preferences, knowledge
state, or available input modalities; (3) agents can actively
select an appropriate type of feedback during training to
optimize learning. However, implementing such systems
is challenging because it requires an interplay of different
disciplines, such as machine learning, user interface design,
and even psychology. A particular limitation is that there
are no readily available tools to collect and learn from di-
verse types of human feedback. Consequently, there has
been little systematic investigation of learning from a larger
set of feedback types.

Moreover, existing estimates of human feedback quality
used in reward modeling are often based on simplified as-
sumptions (Ghosal et al., 2023). Grounding assumptions on
the quality of human feedback in data from human subject
studies can improve the learning of human-aligned reward
models.

To enable such studies, we propose RLHF-Blender, which
provides a standardized and modular setup that enables sys-
tematic empirical studies with human subjects to study learn-
ing from different feedback types (Figure 1). RLHF-Blender
generalizes across various possible environments and users
and enables a detailed analysis of various dependencies to
improve estimates of human feedback characteristics like ir-
rationality or bias. Our prototype implementation showcases
a series of user interactions for different types of human
feedback and how they can be processed as input for reward
models. We aim to align the efforts of machine learning and
human-computer interaction towards a goal of expressive
and versatile human feedback for human-AI interaction.

Contributions — In this paper, we (1) Highlight challenges
and possible solutions for learning from diverse human
feedback. We discuss how considering different dependen-
cies can improve the estimation of human feedback quality.
When then present a standard encoding scheme for human
feedback ; (2) Introduce RLHF-Blender as the implementa-
tion of an interactive application for the investigation of hu-
man feedback in reinforcement learning; (3) Discuss poten-
tial future research opportunities to learn from diverse hu-
man feedback enabled by our system. RLHF-Blender will
be made available for research as open-source software.

https://rlhfblender.info/
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Figure 1. An overview of RLHF-Blender: The user interface serves samples of agent behavior to the user. These samples are drawn from
an episode buffer with steps from an online RL agent or offline data sources. Via the user interface, users can provide different types of
feedback. RLHF-Blender translates these different types of feedback into a standard encoding, which is then passed to a reward model.
All user interactions and feedback can be logged and stored for post-hoc data analysis and reward model training.

2 Related Work
In this section, we provide a brief overview of work on
reinforcement learning from human feedback.

Reinforcement Learning from Human Feedback — Us-
ing human feedback as the sole or an additional source of re-
ward information has gained traction in research (Ng et al.,
2000; Knox & Stone, 2009; Griffith et al., 2013; Chris-
tiano et al., 2017), especially for the alignment of large lan-
guage models (Ouyang et al., 2022). This paper focuses
on learning rewards solely from human feedback, exclud-
ing approaches like interactive reward shaping (Knox &
Stone, 2009; Warnell et al., 2017). Different types of feed-
back, ranging from ratings, demonstrations (Ng et al., 2000;
Abbeel & Ng, 2004), comparisons (Wirth et al., 2017) to in-
terruptions (Hadfield-Menell et al., 2017) or even language
and narrations (Fish et al., 2018; Sumers et al., 2022b) has
been proposed. A wide range of different types of feed-
back can be interpreted via a common framework of reward-
rational choice (Jeon et al., 2020).

Modeling Irrationality and Bias — Initial research in
learning from human feedback worked with the assump-
tion of optimal human feedback (Ng et al., 2000; Abbeel
& Ng, 2004), but it has been established that human feed-
back is generally sub-optimal and noisy (Ramachandran &
Amir, 2007; Ghosal et al., 2023). Models like a Boltzmann
distribution capture human irrationality in decision-making
(Luce, 2012) and feedback (Ziebart et al., 2010; Jeon et al.,
2020). However, such models are often based on simplified
assumptions. Studying the characteristics of feedback in hu-
man studies can improve the estimation of irrationality and
bias and, in turn, learning based on these reward models.

Human-Centered Studies — Despite calls to ground mod-
els of human feedback in human-subject studies instead of
simplified heuristics (Ghosal et al., 2023; Shah et al., 2019),
so far, the investigation of human factors in learning from
feedback, in particular from different types, has been lim-
ited. One existing study explored the interaction of 20 par-
ticipants with a robot via different input channels (Koert
et al., 2020) in a simulated kitchen and a sorting task. They

uncovered a positive effect on agent performance and chal-
lenges like the intuitiveness of different feedback types or
frustration if the robot ignores human feedback. In a differ-
ent study (Bı yık et al., 2020) with 27 total participants, the
correct formulation of queries was investigated. This study
showed that an information-gain objective decreasing uncer-
tainty was well suited to propose effective questions. There
has been a recent effort to provide testing environments for
human-subject experimentation in reinforcement learning
(Taylor et al., 2021) or active querying (Bıyık et al., 2022b).
However, existing work has focused on simple feedback
types and user interfaces, and more extensive human studies
as possible future research directions have been highlighted.

3 Learning from Human Feedback
Preliminaries — In this work, we are interested in analyz-
ing human feedback used for reward learning for training
machine learning agents. Our discussion is not restricted to
a specific implementation of reinforcement learning from
human feedback (Christiano et al., 2017; Wirth et al., 2017).
We assume that an agent can learn from a set of observations
generated in an online learning process from the agent act-
ing in an environment or based on offline data from recorded
behavior of, e.g., humans or a trained ML model. In general,
the reward function for a task is fully specified by human an-
notators. In certain conditions, a ground-truth reward func-
tion can be available for the complete or part of the obser-
vation space. This allows us to compare human feedback
with such ground-truth rewards. Additionally, we will dis-
cuss the possibility of calibrating estimates of human feed-
back quality based on a ground-truth reward function.

3.1 Dependencies Influencing Feedback Quality

Previous work has pointed at differences in human irra-
tionality for different types of feedback (Ghosal et al., 2023).
There are a series of various factors and dependencies that
can influence the quality of human feedback.

We start with dependencies that can be directly disentan-
gled and analyzed via human subject studies:
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Type-Dependency — As has been noted before, qual-
ity might differ between types of feedback, e.g., compar-
isons might have a higher quality compared to ratings, etc.
(Ghosal et al., 2023).
Task-Dependency — We can generally assume that the
feedback quality is dependent on the task, e.g., a tasks obser-
vation space-dimensionality, complexity, diversity of possi-
ble (close-to)-optimal policies, among other characteristics.
Progress-Dependency — Feedback can differ in quality
at different training phases, e.g., at the beginning or with
a converged model policy (Arzate Cruz & Igarashi, 2020;
Knox et al., 2012).

Additionally, there are additional dependencies that may in-
fluence feedback but are only partially measurable because
they cannot be fully disentangled from other dependencies:
Personality-Dependency — Feedback can depend on a
human’s personality or background, which might influ-
ence the quality under different criteria. This might en-
compass things such as directness or frustration tolerance
(Arzate Cruz & Igarashi, 2020; Lindner & El-Assady, 2022).
Knowledge-Dependency — A human’s ability to give high-
quality feedback can depend on their knowledge, i.e., if the
task is of high complexity or requires domain expertise.
Demand-Dependency — Cognitive demand and effort can
play a significant role in the quality of feedback, particu-
larly if we might expect feedback to be incomplete or inac-
curate due to high effort (Knox et al., 2012).

These, and potentially additional dependencies, can be the
target of experimental evaluation, and understanding them
better can improve reward modeling in the future. There-
fore, we present a dynamic and flexible experimentation
environment that allows us to cover a large space of tasks,
types of feedback, and users.

4 Human Feedback Types
We strive to enable learning from diverse human feedback.
To enable this, we first outline a structuring scheme that
captures a wide range of possible human feedback. This
structuring leads to a standard encoding format for arbitrary
feedback. We then discuss how five commonly used types of
human feedback can be modeled can be interpreted via the
encoding. In the following chapter, we present interaction
mechanics for these feedback types and describe how our
software framework interprets them.

4.1 Structuring Human Feedback

We structure incoming human feedback according to six
core dimensions: (1) the granularity of feedback; (2) if it
targets observed behavior or includes generated ; (3) if it

targets a single observation/generation or contains a relative
statement; (4) if it is given for instances, i.e., particular states
and actions, or general features; (5) what actual feedback
information is available based on the human intent; and, (6)
how the feedback was expressed. In the following, we de-
scribe the attributes required in common feedback encoding.

Observations can be provided from different sources, such
as recorded state-actions sequences from online agents act-
ing in the environment, offline data, demonstrations gener-
ated by a human expert on the fly, etc. We can give feed-
back at different levels of granularity, e.g., for the entire
episode level or a single state, etc. Each encoding instance
of feedback thus contains a reference to a single or a set of
episodes/states/segments, which we call the targets T of a
feedback instance. The target reference allows us to assign
feedback to available state-action pairs. In one special case,
feedback might not be targeted at any particular set of state-
action pairs, which might be indicated by a unique value
and can be handled by a downstream reward model.

Many types of human feedback can be assigned to targets
observed by the human, i.e., a rating or preference compar-
ison of samples shown to the human. However, feedback
can also be generative, i.e., containing new behavior gen-
erated by humans as demonstrations or desired goal states.
From a modeling perspective, we can encode generated ob-
servations equivalently to existing ones by integrating them
as target references. However, as generated behavior is not
sampled from the same underlying policy as observed be-
havior, it should be treated accordingly.

Thirdly, feedback might be defined for a single, absolute
target, for example, a rating or desired goal state or a rela-
tive statement, e.g., a ranking or comparison. Such a rela-
tive statement is expressed via a partial ordering T1 ≤ T2 ≤
T3, ..., encoded via a list of targets and respective ranking
indices, e.g., 1 and 2, in a pairwise comparison. If no par-
tial ordering is defined, e.g., for a batch of demonstrations,
we assume each target to be absolute and split batches of
feedback into absolute elements.

Feedback might be given for instances, i.e., entire obser-
vations, or on a feature-level, i.e., for abstract features.
Feature-level feedback might highlight important or desired
features via techniques like gaze tracking or asking humans
for desired goal states. When constraining feature-level
feedback to a subset of the observation space, we can save
this feedback in the same format. However, we add a flag to
indicate feature-level instead of instance-level feedback.

After establishing the feedback target, we now need to clas-
sify the information humans give based on their intent. We
use the categories of evaluative, instructive, descriptive, and
non-intentional feedback. For evaluative feedback, we as-
sume a score is available according to the target granular-
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ity, e.g., a rating for an episode or a comparative ranking be-
tween features. Instructive feedback, like demonstrations
or corrections, contains a reference to a target, potentially a
confidence/optimality score, and often either a full action
distribution or single action assigned to a state, assumed
to represent the human-optimal policy. Lastly, descriptive
feedback contains feature-level information or annotations
targeted at the entire tasks and environment.

Finally, feedback might either be expressed explicitly, i.e.,
via conscious direct human input, or implicitly, i.e., indirect,
potentially subconscious expressions like gazes or mimics.
While it is not feasible to implement a universal encoding
that directly fits raw inputs from each available implicit feed-
back type, our encoding supports the passing of extracted
scores, features, or instances alongside a potential quality/-
confidence score that encodes the estimated extraction qual-
ity from an extraction model. However, additional features
and meta-data might be passed alongside each feedback as
input for custom downstream reward models.

A Standard Encoding for Human Feedback — We uti-
lize these dimensions to classify feedback into standard en-
coding. We combine each feedback instance with additional
metadata like timestamps, verbal meta-level comments, un-
certainty, etc., enabling detailed downstream analysis. We
summarize the standard encoding as an abstract grammar:

FB →< T |{T1, T2, ...}, CL, Info,Meta-Data >

T → Episode|State|Segment|All
Info→ Evaluate|Instruct|Describe|None

Evaluate→ score

Instruct→ Policy|Action
Describe→Mask|State,Annotation

None→ ...

CL→ Instance|Feature
Meta-Data → Timestamp,User-ID, ..

4.2 Feedback Types

To outline the utility of our proposed system and framework,
we choose five exemplary types of feedback and outline user
interactions, how these types of feedback can be encoded,
and finally, comment on how a reward model might interpret
them. In subsection 5.2, we discuss an implementation for a
user interface enabling these types of feedback.

F1: Evaluative Feedback — We define this type
of feedback for cases in which a human gives a nu-
merical or otherwise quantifiable judgment of a tar-

get, e.g., binary feedback or a numeric score (Arzate Cruz
& Igarashi, 2020). It is generally defined for a single target
(simultaneous feedback for a group of targets can be split
into single-target feedback by assuming conditional inde-

pendence). It may be given at different levels of granularity;
common are evaluative feedback for an entire episode or
for single steps (Knox & Stone, 2009; Griffith et al., 2013).
As users, we must be able to select a clearly defined target
and rate it via some numerical or ordinal input. This type of
feedback is comparatively easy to utilize for reward models
because it can be used as a prediction target.

F2: Comparative Feedback — Here, a user makes
a relative judgment, i.e., a pairwise comparison be-
tween two targets or a ranking of multiple targets.

This type of preference-based feedback is widely used be-
cause it is often easier for humans to give comparative judg-
ment compared to absolute scores (Wirth et al., 2017). Com-
parative feedback is a set of targets with an associated order-
ing relation (e.g., rank values). A common granularity is seg-
ments of states-action sequences (Wirth et al., 2017; Chris-
tiano et al., 2017). For comparative feedback, users must
be able to select a set of targets and express order or pref-
erence via their input. Rankings of targets need to be trans-
lated into scores as prediction targets for reward models.

F3: Corrective Feedback — Here, the user has a
trajectory showcasing imperfect behavior as a refer-
ence and needs to instruct via an improved strategy.

This can be done either implicitly, e.g., by pushing a robot
into a correct position (Mehta & Losey, 2022), or explicitly
via specifying a better action. Implicit corrections require
an additional step translating the corrected trajectory into a
sequence of agent actions. Common granularities are cor-
rections for single states or short segments. Corrections are
given as either a preferable policy distribution or optimal ac-
tion for each target. User interactions implicit interactions
enable correct behavior, e.g., by dragging or allowing the
user to specify a correct action in a state. Corrective feed-
back can be used to directly optimize the behavioral pol-
icy of an RL agent or translated into comparative feedback,
with the corrective trajectory as the preferred trajectory.

F4: Demonstrative Feedback — Here, the human
is asked to provide a reference of optimal behav-
ior that the agent should imitate (Ng et al., 2000).

Like corrective feedback, it is instructive, providing actions
for a sequence of generated states. This type of feedback
generally requires an environment-specific user interface to
generate demonstrations. In some cases, e.g., in continuous
control environments, it may not be feasible for humans to
generate demonstrations. Similar to explicit corrective feed-
back, we can use demonstrations directly to optimize the pol-
icy via supervised learning or assign demonstrated behavior
the highest possible reward to optimize the reward model.

F5: Descriptive feedback — While there are dif-
ferent ways of defining descriptive feedback, we
chose a formulation in which descriptive feedback

is a qualitative judgment about features (Sumers et al.,
2022a). For example, certain feature values might be desir-
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able to achieve a certain (sub-)goal. Therefore, specifying a
(partial) goal state could be treated as descriptive feedback.
To enable this type of feedback, a system must provide a way
for users to annotate or generate inputs in the feature space,
e.g., by highlighting important features or generating de-
sired goal states). Descriptive feedback could be treated as a
constraint during reward model optimization (e.g., the pres-
ence of features should lead to a higher predicted reward).

5 An Implementation for Reinforcement
Learning from Different Feedback Types

This section describes our system implementation, starting
with an overview and then discussing sub-components.

5.1 System Overview

RLHF-Blender (see Figure 1) consists of three major compo-
nents: (1) An interactive user interface that enables brows-
ing episodes or segments from a set of available state-action
sequences and implements multiple feedback interactions
which can be enabled or disabled dynamically, (2) a feed-
back processor consisting of a sampling and a translator
unit, to serve appropriate episodes/segments to the user, and
to translate human feedback to a standardized format, (3)
a consistent software interface to train reward models with
the episode data and human feedback. All three components
are highly modular to enable different combinations of mod-
ules for versatile human-subject studies.

The system enables different training configurations: It can
be used with online data, i.e., an RL agent is trained syn-
chronously with a reward model. During an experiment ses-
sion, a reward model and agent can be trained on the human
feedback reward model, which in turn allows the sampling
of new trajectories by rolling out the online policy. How-
ever, such a setup might require careful synchronization or
tuning. Therefore, the preferred configuration is an offline
mode, which uses pre-collected episode data to train reward
models. A suitable dataset, e.g., contains trajectories gener-
ated by agents of different skill levels. One can dynamically
serve episodes of different skill levels during an experiment
session. Alternatively, episodes labeled with a ground-truth
reward function allow the sampling of increasingly higher-
skill behavior, potentially adapted to human feedback per-
formance.

5.2 User Interface

Our application provides a comprehensive user interface,
which provides a series of visual interfaces and interactions
for different feedback types. The interface can be dynam-
ically configured in the experiment design stage, e.g., en-
abling or disabling different types of feedback and UI ele-
ments. The interface with the feedback interactions is shown

in Figure 2. The interface enables five separate interactions
which can be dynamically enabled or disabled: Ratings, so
evaluative feedback targeted at observed episodes, can be
given via a slider, which can be adjusted to allow for dif-
ferent granulates, i.e., only binary or more fine-grained rat-
ings on a scale. Comparisons or rankings are implemented
via a drag & drop interaction that allows users to put a set
of episodes in a desired order. Again, the number of possi-
ble elements can be dynamically adjusted, e.g., only to en-
able pairwise comparisons. Furthermore, for vision-based
applications, shown in Figure 2 is the BabyAI (Chevalier-
Boisvert et al., 2019) RL environment, brushing allows users
to specify feature importance. By brushing a region in the
image, important or unimportant regions can be highlighted,
which can be passed onto an agent as additional information
(Guan et al., 2021). Finally, it allows the integration of ad-
ditional modules to generate demonstrations and action ad-
vice. Humans can select a section or single state of episodes
to give corrective feedback, e.g., by inputting a better action
compared to the one taken by the agent. For demonstrations
or corrections, the interface allows to integrate environment-
specific interfaces.

This primary interface can be enriched with additional in-
teraction mechanics and visualizations, e.g., to investigate
possible explainability methods. Our system allows the user
to scroll through the entire dataset of existing episodes, e.g.,
all the historically generated trajectories by current and past
agents. Figure 2 shows a scroll bar on the left side that en-
ables episode selection, as well as highlighting of already
labeled episodes or potentially high-impact episodes (indi-
cated via color, in this case, purple).

The bottom-right corner of Figure 2 showcases the possi-
bility of integrating views for additional information. In
this case, it presents a user with an estimate of their feed-
back’s quality or success, e.g., by comparing a ground-truth
model without human reward with the performance of a
user-trained reward model. We plan for the system to have
the ability to integrate views that can showcase various types
of information, or even explainability tools, that can support
the human and tackle issues such as lack of feedback and
resulting frustration.

5.3 Feedback Processor

A second important component is the feedback processor,
which handles both the processing of incoming human feed-
back of different types and the selection of episodes served
to the human, similar to querying the human for feedback
at a particular point in training.

5.3.1 TRANSLATOR

A translator component receives potentially heteroge-
neously structured feedback from the user interface. The
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Figure 2. A possible realization of the interface enabling all described feedback types. Users can rate individual episodes using the
interactive Likert scale. Users provide comparative feedback by dragging and dropping episodes into different categories. For a
selected episode, the interactive control element allows users to correct actions in previously sampled episodes. Here, the agent makes an
unnecessary turn, and the user corrects it by selecting the corresponding point in the trajectory and suggesting another action. Throughout
the interface, visual hints encourage the user to correct specific actions. The same control element is used to generate demonstrations
from scratch, e.g., how to reach the next crucial item in this environment. The brush tool allows users to highlight crucial parts of the
agent observation to provide descriptive feedback.

translator depends on the standard feedback encoding pre-
sented in subsection 4.1 as the data storage format for trans-
lated feedback. This standardized feedback can be used to
train single- or multi-type reward models. The translator
component combines and matches feedback sent from the
user interface with the respective segments, meta-data, etc.

5.3.2 SAMPLING/QUERYING COMPONENT

A sampling component determines which samples to show
in the user interface, i.e., for which samples we query the
user for information. Depending on the desired setup, we
might use different sampling modes, ranging from passive
to active. We can configure the user interface to enable man-
ual episode selection by the human, i.e., by providing an
overview of the data buffer with the option to analyze sam-
ples in detail. This does not involve programmatic sampling.
Alternatively, we provide three sampling modes:

• Random: Randomly sample episodes from the replay
buffer without regard for the quality or diversity of
shown samples. This might serve as a valuable baseline
to compare against more advanced sampling strategies.

• Progressive: If an ordering of the data buffer is avail-
able, e.g., by a ground-truth reward function or order
of generation by an online RL agent, we can choose to
progressively sample increasingly high-quality or new
samples to simulate training progress.

• Query-Based: We may define more advanced metrics

to select the most appropriate samples and perform
targeted queries. For example, one can select samples
with a high reward model loss if a reward model is
trained with feedback in the background.

• State-Machine: We can switch sampling strategy
throughout the process, e.g., starting with random
sampling, then going over to query-based sampling,
or changing data sources throughout the experiment.
State-machine behavior can be combined with the other
modes based on set criteria.

The sampling component is designed modularly to integrate
potential advanced query mechanisms and sampling strate-
gies for experimentation. This allows us to analyze the ef-
fect of different strategies on human behavior, reward model
training, or online training of RL agents.

5.4 Reward Model

Based on the trajectory data and collected human feedback,
we train reward models. Our system is directly integrated
with the library of reward networks of the imitation package
(Gleave et al., 2022), which simplifies compatibility with
different algorithms and avoids code duplication.

We need to specify input data and a loss function for reward
model training. Input data is available in the standard feed-
back encoding presented above, which states/actions etc.,
served from the buffer as model input. A developer can
choose a loss function dynamically based on the available
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feedback data. For example, suppose numeric evaluative
feedback is available. Then, we can train a reward model
with a simple regression loss like mean squared error to es-
timate a human-optimal reward function for state and poten-
tial actions. If both a ground-truth reward function and feed-
back with a single state granularity are available, we might
also choose a shaping reward model to predict a policy-
shaping term (Knox & Stone, 2009; Warnell et al., 2017).
For different types of feedback, particularly instructive or
comparative feedback, we might choose a different loss func-
tion to optimize the reward model (Christiano et al., 2017).

Again, the library is designed modularly, allowing the inte-
gration of different reward models or loss functions. Fur-
thermore, suppose multiple feedback types are used simulta-
neously. In that case, one may either apply different losses
to the same underlying reward model or aggregate the pre-
diction from multiple reward models, e.g., via weighting or
voting. Furthermore, additional data passed via the standard
encoding, like confidence scores or meta-data, are available
at training time and might be used as additional inputs, con-
straints, or ways to adapt the loss calculation.

5.5 Post-hoc Analysis

Finally, a key objective is facilitating post-hoc analysis, i.e.,
analyzing the quality and dependencies of human feedback
in reinforcement learning scenarios. Therefore, our system
puts emphasis on detailed logging and persistent storage
of results. The standardized format allows the sharing and
reusability of analysis scripts and tools.

Experiments are logged into separate files or tables, which
enables the analysis of individual, anonymous users. Along-
side the logged metadata and quantitative evaluation based
on reward model training or downstream training of RL
agents based on the learned reward model, we can investi-
gate factors outlined in section subsection 3.1.

6 Research Opportunities for Diverse
Human Feedback

We want to outline four possible study designs that can be
realized with our system.

6.1 Reinforcement Learning from Human Preferences

Our system suits itself to replicate the well-known setup
of reinforcement learning from human preferences (Chris-
tiano et al., 2017). During setup, we can configure a mini-
mal user interface, potentially just with a progress bar and
the ranking interface (see Figure 2D). Other types of feed-
back are, therefore, disabled. We restrict the number of dis-
played episodes to two for strict pairwise comparison. Fur-
thermore, during the setup of the interactive user interface,

we can select additional instructions or info displayed to the
participant when starting the experiment.

RL from human preferences is often implemented asyn-
chronously, i.e., with a (pre-trained) RL agent being opti-
mized based on an existing version of the reward model.
Trajectories generated in this process are then saved in the
data buffer. Then human preferences are collected based
on the collected data. Here, we might choose either a ran-
dom or progressive sampling of the buffer elements. A re-
ward model is then optimized via supervised learning on the
dataset of rated comparisons. Here, we may choose a sim-
ple neural network-based reward model which receives sin-
gle states as an input and outputs a single scalar reward esti-
mate. We then choose a loss function that optimizes a score
function from pairwise preferences (Christiano et al., 2017).

6.2 Investigating Effectiveness of Multi-type Feedback

To investigate the effectiveness of simultaneous multi-type
feedback, we enable multiple feedback types simultane-
ously, for example, ratings, ranking, and correction/action
advice. For each episode, the participant can then choose
which feedback type to use, which could enable the analysis
of preferential types of feedback for different users. Alter-
natively, one can instruct the user to utilize multiple types
of feedback for the same samples, which allows for exper-
imenting with inter-modal validation or calibration of re-
ward estimation methods. Combining numerical ratings and
rankings of episodes could increase the expressiveness of
reward models compared to pure pairwise comparisons.

The system automatically handles the translations of dif-
ferent feedback into the standard encoding and subsequent
logging. However, in the case of multi-type feedback, the
choice of the reward modeling approach is more complex.
We might train a separate reward model with an individ-
ual loss function for each feedback type and then treat the
trained models as a type of ensemble that might be combined
via custom voting or weighted averaging. Alternatively, we
might optimize a single model via a multi-objective loss that
incorporates the different types of feedback. Finally, we can
utilize frameworks like reward-rational choice (Jeon et al.,
2020) as a common loss function. Comparing these differ-
ent approaches, therefore, is a main research opportunity.

6.3 More Accurate Estimations of Human Irrationality

Humans might not be able to fully express their internal
(user-optimal) reward function via feedback, i.e., the feed-
back is subject to noise or uncertainty stemming from an un-
derlying human irrationality (Ghosal et al., 2023). In models
such as the reward-rational choice framework (Jeon et al.,
2020), we interpret instances of human feedback as imper-
fect expressions of an underlying reward function. Given a
choice from a set of possible choices c∗ ∈ C and a ground-
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ing function ψ : C → fΞ with fΞ being the set of distribu-
tions over all possible trajectories of an agent, we define a
Boltzmann-rational policy as (Jeon et al., 2020):

P(c ∗ |rU , C) =
exp(β · Eξ∼ψ(c∗)[rU (ξ)])∑
c∈C exp(β · Eξ∼ψ(c)[rU (ξ)])

Here, the coefficient β indicates the rationality, i.e., the cer-
tainty or estimated quality of a choice, and in extension,
the human feedback. As pointed out by Ghosal et al., most
work chooses a value for this coefficient based on assump-
tions, especially for simulated human feedback, which uses
this formulation. The authors, therefore, propose to fit this
β-coefficient to data for different types of feedback, like
comparisons, demonstrations, and interruptions. They use
an initial calibration phase with a known calibration reward
function, similar to the previously described ground-truth
reward function, to estimate the coefficient’s value for dif-
ferent types of feedback. However, the authors point to pos-
sible limitations of such a calibration approach.

RLHF-Blender can serve to investigate characteristics of
different human feedback types across various user groups,
tasks, and training phases. Empirical results could serve as
guidelines or priors for future estimations of human reward
using the reward-rational choice or similar frameworks. Re-
ferring to our motivating example of the β-parameter in the
Boltzmann distribution, we may assume that this β is influ-
enced by a range of different dependencies at a particular
task, feedback type, point during training, and user (see sub-
section 3.1). For simplicity, we propose to interpret the value
as a linear combination of these different dependencies:

β =
∑

αtypeβtype+αtaskβtask+αprogressβprogress+...

with α as potential weighting factors, and β being estimated
for a specific setup. As a simplified assumption, we can, for
example, assume a uniform weighting, i.e., α = 1/K, with
k being the number of considered factors. An estimate of
different dependencies would allow us to dynamically adapt
the irrationality estimate during training, fitted to the spe-
cific task, type of feedback, current progress in the train-
ing, and additional factors. We can then calculate the value
of the different dependencies by setting a particular option
fixed, e.g., the feedback type, and then marginalizing over
all other dependencies. However, this is generally infeasi-
ble, particularly when adding more and more dependencies.
Therefore, we advocate for dynamic and flexible experimen-
tation environments that cover a large space of tasks, types
of feedback, users, etc.

6.4 Training with Continuous Calibration

Using just a single calibration at the beginning of the train-
ing, as we have just described (Ghosal et al., 2023), might
be insufficient for a full calibration. As outlined in section

3.1, many possible influence factors exist. Therefore, we
could extend these calibration experiments via multiple dis-
tinct calibration phases or a continuous calibration where
we purposefully sample examples with a ground-truth re-
ward function or query the human for repeated feedback on
the same samples to investigate properties like consistency.

To enable this experimentation, the main necessary design
choice here is an appropriate sampling component. For
example, to enable multiple calibration phases, we might
choose a state-machine sampling, which switches modes
based on pre-defined time intervals, which changes the un-
derlying buffer from unlabeled online data to an offline
buffer with a ground-truth reward available. An experi-
menter can also implement a custom sampling module based
on the given system and data types, which intermixes sam-
ples of different data sources dynamically.

6.5 Investigating the Effect of Explainability

Finally, an interesting research question arises regarding the
potential role of explainability methods and additional vi-
sual information for human feedback. Such additional in-
formation could improve the quality of human feedback or
help the user to identify episodes that can profit from feed-
back in reward learning or reward shaping. Therefore, our
system is designed to include additional visualizations or
values as widgets in the user interface. This enables compar-
ative studies to study the effect of explainability techniques
on feedback quality, human confidence, and satisfaction.

7 Conclusion
As our system is still under development, we have not yet
fully evaluated and deployed our system in a realistic envi-
ronment, e.g., a large-scale user study. This also includes
other researchers’ applications of the system for custom ex-
periments. While the system is designed to be highly mod-
ular, we might find that the current system design still re-
quires substantial modifications and custom components or
restricts the system’s applicability. Therefore, validating the
system design in contact with potential users is an impor-
tant next step. We plan to make our system widely available
to the research community as an open-source project.

In this paper, we have presented a framework and implemen-
tation for a configurable interface enabling learning from di-
verse human feedback. We have presented possible depen-
dencies that influence human feedback and should be empir-
ically investigated. We have then introduced RLHF-Blender
as a modular system that enables experimenting with differ-
ent configurations for user interfaces, feedback processing,
and reward modeling, thus enabling highly flexible setups.
RLHF-Blender is available at https://rlhfblender.
info.

https://rlhfblender.info
https://rlhfblender.info
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A Workflow
In the following section, we want to present the current workflow for potential users of RLHF-Blender. In particular, we
outline how an experiment configuration can be created and show how the resulting data is logged and processed.
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B Technical Specifications
RLHF-Blender is implement as a client-server application, with a FastAPI (Tiangolo, 2023) Python web-server and a React-
based (Facebook, 2023) user interface.

The server is designed to integrate different sub-components, such as custom sampling, translation, or reward models. The
framework utilizes data formats compatible with widespread libraries Gym and StableBaselines3 (Raffin et al., 2021). This
ensures that we can support various RL environments, algorithms, and data structures and that researchers can integrate
our system into established workflows. Furthermore, the library is directly compatible with the library of reward models
included in the Imitation library (Gleave et al., 2022).

The user interface is extendable via custom React components, e.g., to integrate custom explainability or information
visualizations. In particular, an interface for custom demonstration-generation components is available. Such components
could be created for specific RL environments. As a template, a demonstration generation interface for simple navigation
tasks used for BabyAI (Chevalier-Boisvert et al., 2019) is provided.

RLHF-Blender can be deployed as a containerized application, potentially connected to a shared data storage for feedback,
e.g., an SQL database. This setup allows the application to scale to many clients and servers and could therefore enable
larger-scale distributed human experiments.

C Code Example for Standardized Data Format
The following code example showcases the described standard feedback encoding in Python code. Here, StandardizedFeed-
back serves as the container for arbitrary feedback that can be specified via the existing options.

i m p o r t enum
i m p o r t gym
from p e d a n t i c i m p o r t BaseModel
from t y p i n g i m p o r t Union , L i s t

c l a s s EpisodeID ( BaseModel ) :
”””
R e f e r e n c e t o a s p e c i f i c e p i s o d e saved i n a da ta b u f f e r
”””
env name : s t r = ” ” # e . g . : BreakoutNoFrameskip −v4
benchmark type : s t r = ” ” # e . g . : t r a i n e d
benchmark id : i n t = −1 # e . g . : 1
c h e c k p o i n t s t e p : i n t = −1 # e . g . : 1000000
ep i sode num : i n t = −1 #

c l a s s FeedbackDimens ion ( enum . Enum ) :

d e f s t r ( s e l f ) :
# j u s t r e t u r n t h e enum v a l u e
r e t u r n s e l f . name

d e f r e p r ( s e l f ) :
# j u s t r e t u r n t h e enum v a l u e
r e t u r n s e l f . name

c l a s s I n t e n t i o n ( FeedbackDimens ion ) :
e v a l u a t e = 1
i n s t r u c t = 2
d e s c r i b e = 3
none = 4

c l a s s E x p r e s s i o n ( FeedbackDimens ion ) :
e x p l i c i t = 1
i m p l i c i t = 2

c l a s s A c t u a l i t y ( FeedbackDimens ion ) :
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o b s e r v e d = 1
h y p o t h e t i c a l = 2

c l a s s R e l a t i o n ( FeedbackDimens ion ) :
a b s o l u t e = 1
r e l a t i v e = 2

c l a s s C o n t e n t ( FeedbackDimens ion ) :
i n s t a n c e = 1
f e a t u r e = 2

c l a s s G r a n u l a r i t y ( FeedbackDimens ion ) :
s t a t e = 1
segment = 2
e p i s o d e = 3
e n t i r e = 4

c l a s s T a r g e t ( BaseModel ) :
i d : i n t = −1
o r i g i n : s t r = ” r e p l a y ”
t imes t amp : i n t = −1

c l a s s Ep i sode ( T a r g e t ) :
r e f e r e n c e : EpisodeID = None

c l a s s S t a t e ( T a r g e t ) :
r e f e r e n c e : EpisodeID = None
s t e p : i n t = −1

c l a s s Segment ( T a r g e t ) :
r e f e r e n c e : EpisodeID = None
s t a r t : i n t = −1
end : i n t = −1

c l a s s S t a n d a r d i z e d F e e d b a c k T y p e ( BaseModel ) :
i n t e n t i o n : I n t e n t i o n = I n t e n t i o n . e v a l u a t e
a c t u a l i t y : A c t u a l i t y = A c t u a l i t y . o b s e r v e d
r e l a t i o n : R e l a t i o n = R e l a t i o n . r e l a t i v e
c o n t e n t : C o n t e n t = C o n t e n t . i n s t a n c e
g r a n u l a r i t y : G r a n u l a r i t y = G r a n u l a r i t y . e p i s o d e

c l a s s E v a l u a t i o n ( BaseModel ) :
r a t i n g : Union [ f l o a t , i n t , L i s t [ f l o a t ] , L i s t [ i n t ] ] = None
compar i son : Union [ f l o a t , i n t , L i s t [ f l o a t ] , L i s t [ i n t ] ] = None

c l a s s I n s t r u c t i o n ( BaseModel ) :
a c t i o n s : Union [ Episode , S t a t e , Segment ] = None
g o a l : Union [ Episode , S t a t e , Segment ] = None
o p t i m a l i l t y : Union [ f l o a t , L i s t [ f l o a t ] ] = None

c l a s s D e s c r i p t i o n ( BaseModel ) :
f e a t u r e s e l e c t i o n : L i s t [ gym . Space ] = None
f e a t u r e i m p o r t a n c e : Union [ f l o a t , L i s t [ f l o a t ] ] = None
f e a t u r e r a n k i n g : Union [ f l o a t , L i s t [ f l o a t ] ] = None
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c l a s s S t a n d a r d i z e d F e e d b a c k ( BaseModel ) :
f e e d b a c k i d : i n t = −1
f e e d b a c k t i m e s t a m p : i n t = −1
f e e d b a c k t y p e : S t a n d a r d i z e d F e e d b a c k T y p e = S t a n d a r d i z e d F e e d b a c k T y p e ( )
c o n t e n t : Union [ E v a l u a t i o n , I n s t r u c t i o n , D e s c r i p t i o n ] = None

c l a s s A b s o l u t e F e e d b a c k ( S t a n d a r d i z e d F e e d b a c k ) :
e p i s o d e i d : EpisodeID
t a r g e t : Union [ Episode , S t a t e , Segment ] = None

c l a s s R e l a t i v e F e e d b a c k ( S t a n d a r d i z e d F e e d b a c k ) :
e p i s o d e i d s : L i s t [ EpisodeID ] = [ ]
t a r g e t : L i s t [ Union [ Episode , S t a t e , Segment ] ] = [ ]


