
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RETHINKING THE ROLES OF GRAPHS AND LARGE
LANGUAGE MODELS IN KNOWLEDGE-GRAPH-BASED
RETRIEVAL-AUGMENTED GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) demonstrate strong reasoning abilities but face
limitations such as hallucinations and outdated knowledge. Knowledge Graph
(KG)-based Retrieval-Augmented Generation (RAG) addresses these issues by
grounding LLM outputs in structured external knowledge from KGs. However,
current KG-based RAG frameworks still struggle to optimize the trade-off be-
tween retrieval accuracy and efficiency in identifying a suitable amount of relevant
graph information for the LLM to digest. We introduce SubgraphRAG, extending
the KG-based RAG framework that retrieves subgraphs centered on query/topic
entities and leverages LLMs for reasoning and answer generation. Our approach
innovatively integrates a lightweight multilayer perceptron (MLP) with a parallel
triple-scoring mechanism for efficient subgraph retrieval while encoding direc-
tional structural distances to enhance retrieval accuracy. The size of retrieved
subgraphs can be flexibly adjusted to match the query’s need and the downstream
LLM’s reasoning capacity. This design strikes a balance between model com-
plexity and reasoning power, enabling scalable and generalizable retrieval pro-
cesses. Notably, based on our retrieved subgraphs, smaller models like Llama3.1-
8B deliver competitive results with explainable reasoning, while larger models
like GPT-4o achieve comparable or better state-of-the-art accuracy compared with
previous baselines—all without finetuning. Extensive evaluations on the WebQSP
and CWQ benchmarks highlight SubgraphRAG’s strengths in efficiency, accuracy,
and reliability by reducing hallucinations and improving response grounding.

1 INTRODUCTION

Large language models (LLMs) have increasingly demonstrated remarkable abilities (Brown et al.,
2020; Kojima et al., 2022; Wei et al., 2022; Bubeck et al., 2023; Yao et al., 2023; Huang & Chang,
2023). However, issues like hallucinations (Ji et al., 2023; Huang et al., 2023; Zhang et al., 2023),
outdated knowledge (Dhingra et al., 2022; Kasai et al., 2023), and a lack of domain expertise (Li
et al., 2023b) undermine their trustworthiness. Retrieval-augmented generation (RAG) has emerged
as a promising strategy to mitigate these problems by grounding LLM outputs in external knowledge
sources (Shuster et al., 2021; Borgeaud et al., 2022; Vu et al., 2024; Gao et al., 2024b).

While text-based retrieval provides some improvement, graph-based structures offer a more efficient
alternative for organizing knowledge (Chein & Mugnier, 2008). Graphs facilitate explicit representa-
tion of relationships, reduce information redundancy, and allow for more flexible updates (Robinson
et al., 2015). Consequently, recent studies have explored using graph-structured knowledge, particu-
larly knowledge graphs (KGs), as external resources for RAG in LLMs (Pan et al., 2024; Peng et al.,
2024; Edge et al., 2024). However, developing effective and efficient frameworks for KG-based
RAG remains limited due to the unique challenges posed by the complex structures of KGs.

Firstly, traditional text-based retrieval methods, such as BM25 (Robertson et al., 1994; Robertson &
Zaragoza, 2009) or dense retrieval with cosine similarity (Karpukhin et al., 2020), are insufficient
for supporting LLMs in complex reasoning tasks (Sun et al., 2018). For instance, a query like “What
is the most famous painting by a contemporary of Michelangelo and Raphael?” requires not only
retrieving works by their contemporaries but also reasoning about relationships beyond Michelan-
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Question: "Which organizations conduct business with 
the companies founded by Elon Musk, Jeff Bezos, and Bill 
Gates (all three), but were not founded by any of them?"

SubgraphRAG
Step 1 - Topic entity 𝒯 extraction: 

Step 2 - Subgraph 𝒢௦ extraction:  
Step 2.1 - Structural Feature Construction

Option 1: Directional Distance encoding (used) 

Option 2: GNNs (not used in this work)

𝑧 𝒢, 𝒯 =bidirectional-propagation(𝑠)
𝑠 is one-hot encodings of the topic entities

Step 2.2 - Extract Relevant Triples in Parallel

…Top 𝐾 triples in
𝑝ఏ(𝜏|𝑧ఛ 𝒢, 𝒯 , 𝑞)

Step 3 – LLMs for reasoning over the extracted subgraph:  

… …

…

company founder
business partnership

…

Relationships

“Use the triples in the list as
evidence to answer the question” 

The list of answers: 
[Nvidia, Nasa]

The reason given the input 
triple evidence is as follows. 

Nvidia has business 
partnerships with:
1. Tesla founded by Elon

Musk
2. Amazon founded by Jeff 

Bezos
3. Microsoft founded by

Bill Gates
Nvidia was not founded by 
Elon Musk, Jeff Bezos, or Bill 
Gates.

Figure 1: The framework of SubgraphRAG. Retrieved subgraphs consist of relevant triples that are
extracted in parallel. Retrieved subgraphs are flexible in their forms and their sizes. In the above
example, the relevant subgraph has flexible and complex forms (neither trees nor paths).

gelo and Raphael themselves. Thus, KG retrieval goes beyond basic entity linking, requiring the
extraction of nonlocal entities connected through multi-hop, relevant relationships to support rea-
soning (Jiang et al., 2023a; Luo et al., 2024b; Sun et al., 2024a). Such information is often best
represented as KG subgraphs, whose retrieval enables more effective downstream reasoning.

Second, KG-based RAG faces significant computational challenges. Extracting complex structural
patterns, such as paths or subgraphs, during KG retrieval is crucial. Efficient similarity search meth-
ods like locality-sensitive hashing (Indyk & Motwani, 1998) are not suitable for this task. Therefore,
identifying relevant structural information efficiently while meeting the latency requirements of po-
tentially online graph queries and adapting to dynamic updates of KGs is essential to designing a
practically applicable KG-based RAG framework (Trivedi et al., 2017; Liang et al., 2024).

Third, extracting structural information must cover the critical evidence needed to answer the query
without exceeding the reasoning capacity of LLMs. Expanding the context window increases com-
putational complexity and can degrade RAG performance by introducing irrelevant information (Xu
et al., 2024) and causing the “lost in the middle” phenomenon (Liu et al., 2024b). To prevent these
issues, redundant structural information should be pruned to keep only relevant evidence within the
LLMs’ processing limits, improving accuracy and avoiding hallucinations of LLMs.

Existing KG-based RAG frameworks face limitations for the aforementioned challenges, often due
to suboptimal balance between retrieval and reasoning. For example, many approaches rely on
LLMs to perform retrieval through iterative searches over KGs, resulting in significant complexity
from multiple LLM calls per query (Kim et al.; Gao et al., 2024a; Wang et al., 2024; Guo et al.,
2024; Ma et al., 2024; Sun et al., 2024a; Jiang et al., 2024; Jin et al., 2024; Xiong et al., 2024).
These methods may also miss relevant entities or relationships due to the limited context windows
of LLMs. Conversely, methods that employ lighter models for both retrieval and reasoning, such as
LSTMs or GNNs, embed iterative reasoning within the retrieval process itself (Zhang et al., 2022;
Liu et al., 2024a; Sun et al., 2019). Despite being efficient, these methods may not well capture
the contextual information due to the weak reasoners. Additionally, some approaches retrieve fixed
types of subgraphs for efficiency such as paths (Zhang et al., 2022; Luo et al., 2024b), restricting the
coverage of critical evidence for LLM reasoning—a point we will explore more in Sec. 3.1.

Design Principles We argue that there is an inherent tradeoff between model complexity and rea-
soning capability. To effectively search over KGs, which are expected to grow rapidly, knowledge
retrievers should remain lightweight, flexible, generalizable, and equipped with basic reasoning abil-
ities to efficiently filter relevant (even if only roughly relevant) information from vast amounts of
irrelevant data, while delegating complex reasoning tasks to LLMs. As LLMs continue to demon-
strate increasingly sophisticated reasoning abilities and are likely to improve further, this division
of labor becomes even more sensible. As long as the retrieved information fits within the LLM’s
reasoning capacity, LLMs—leveraging their superior reasoning power—can then perform more fine-
grained analysis and provide accurate answers with appropriate prompting. This approach extends
the two-stage Recall & Ranking (rough to fine) framework commonly used in traditional informa-
tion retrieval and recommendation pipelines, with the key advance being that each stage is paired
with appropriately tiered reasoning capabilities from AI models to meet the demands of answering
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complex queries. Besides, for questions proven too challenging, the concept of iterating the above
process can be adopted. However, this consideration is beyond the scope of the current work.

Present Work Our framework for KG-based RAG, SubgraphRAG (Fig. 1), follows a pipeline that
first retrieves a relevant subgraph around the query’s topic entities, and then employs LLMs to
reason over it. While this approach mirrors some existing methods (He et al., 2021; Jiang et al.,
2023b), SubgraphRAG introduces novel design elements that significantly improve both efficiency
and accuracy by adhering to the aforementioned principles. For efficiency, we employ a lightweight
multilayer perceptron (MLP) combined with parallel triple-scoring for subgraph retrieval. To ensure
accuracy, we encode tailored structural distances from the topic entities as structural features. This
enables our MLP retriever to outperform more complex models, such as GNNs, LLMs, and heuristic
searches, in terms of covering the triples and entities critical for answering the query while main-
taining high efficiency. Additionally, the retrieved subgraphs have flexible forms, with adjustable
sizes to accommodate the varying capacities of LLMs. SubgraphRAG employs unfine-tuned LLMs,
maintaining generalization, adaptability to updated KGs, and compatibility with black-box LLMs.

We evaluate SubgraphRAG on two prominent multi-hop knowledge graph question answering
(KGQA) benchmarks—WebQSP and CWQ. Remarkably, even without fine-tuning, smaller models
like Llama-3.1-8B can achieve competitive performance. Larger models, such as GPT-4o, deliver
state-of-the-art (SOTA) results, surpassing previous methods for most cases. Additionally, LLMs
enhanced by the retrieved subgraphs in SubgraphRAG exhibit a substantial capability of reducing
hallucination by generating knowledge-grounded answers and explanations.

2 PRELIMINARIES

A KG can be represented as a set of triples, denoted by G = {(h, r, t) | h, t ∈ E , r ∈ R}, where E
represents the set of entities and R represents the set of relations. Each triple denoted by τ = (h, r, t)
characterizes a fact that the head entity h and the tail entity t follow a directed relation r. In practice,
entities and relations are often associated with a raw text surface form friendly for LLM reasoning.

KG-based RAG aims to enhance LLM responses using knowledge in the KG as the context. Given
a query q, LLMs may access knowledge indicated by triples in the KG to address the request in q.
The challenge arises in searching for relevant knowledge from the KG which is often large-scale,
and reasoning over the collected knowledge to give the correct response.

Entity Linking is often adopted as the first step in KG-based RAG, whose goal is to identify the set
of entities Tq ⊂ E directly involved in the query q. The entities in Tq , named topic entities, provide
valuable inductive bias for retrieval as the triples relevant to q are often close to Tq .

Knowledge Graph Question Answering (KGQA) is an important application commonly used to
evaluate KG-based RAG, where the query q is a question that requires finding answers that satisfy
certain constraints. The answer(s) Aq often corresponds to a set of entities in the KG. A question
that requires multiple triples in the KG as evidence to identify an answer entity is classified as a
complex question necessitating multi-hop reasoning, in contrast to a single-hop question.

3 THE SUBGRAPHRAG FRAMEWORK

Our proposed framework, SubgraphRAG, adopts a retrieval-and-reasoning pipeline for KG-based
RAG. Specifically, given a query q, SubgraphRAG first extracts knowledge that can be represented
as a subgraph Gq ⊂ G, and then LLMs generate the response by reasoning over Gq . While some
existing works adopt a similar pipeline (Zhang et al., 2022; Luo et al., 2024b; Wu et al., 2023; Wen
et al., 2023), our novelty lies in addressing the challenges in the following three aspects: First, the
extracted Gq is expected to cover the evidence relevant for answering q as much as possible, while
being limited by some size budget K adjustable according to the capacity of the downstream LLM.
Second, Gq extraction is extremely efficient and scalable. Third, suitable prompting is used to guide
the LLM to reason over Gq and generate the grounded answer with explanations.
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3.1 EFFICIENT, FLEXIBLE AND EXPRESSIVE SUBGRAPH RETRIEVAL

Problem Reduction To begin with, we formulate the subgraph retrieval problem and gradually re-
duce it to an efficiently solvable problem. An LLM can be viewed as an answer generator P(·|Gq, q)
that takes queries and evidence represented by subgraphs. Given a query q and its answer Aq , the
best subgraph evidence for this LLM is denoted as G∗

q = argmaxGq⊆G P(Aq | Gq, q). Of course,
solving this problem is practically impossible as it requires the knowledge of Aq . Instead, we aim to
learn a subgraph retriever from data and expect this retriever to generalize to unseen future queries.

Specifically, let the subgraph retriever be a distribution Qθ(·|q,G) over the subgraph space of the KG.
θ denotes the parameters. Given a training set of question-answer pairs D, the subgraph retriever
learning problem can be formulated as the following problem:

max
θ

E(q,Aq)∼D,Gq∼Qθ(Gq|q,G) P(Aq | Gq, q). (1)

This problem is hard to solve due to the complexity of the LLM (P). Simply evaluating P(Aq | Gq, q)
means calling the LLM to generate the particular answer Aq , which could be costly and only applied
to grey/white-box LLMs with accessible output logits, let alone the incomputable gradient dP

dGq
.

To solve the problem in Eq. 1, we adopt the following idea. If we know the optimal subgraph
G∗
q , the maximum likelihood estimation (MLE) principle can be leveraged to train the retriever

maxθ E(q,Aq)∼D Qθ(G∗
q | G, q). However, getting G∗

q for an even known question-answer pair
(q,Aq) is computationally hard and LLM-dependent. Instead, we use (q,Aq) to construct surrogate
subgraph evidence with heuristics G̃(q,Aq) and train the retriever based on MLE:

max
θ

E(q,Aq)∼D Qθ(G̃q | G, q), where G̃q = G̃(q,Aq). (2)

An example of G̃q is the shortest paths between topic entities Tq and answer entities Aq . Eq. 2 is
conceptually similar to the weak supervision adopted in Zhang et al. (2022). However, the formu-
lation in Eq. 2 indicates that the sampled subgraph does not necessarily follow a fixed type like
paths. Instead, the retriever distribution Qθ can be factorized into distributions over triples, allowing
efficient training, efficient subgraph retrieval, flexible subgraph types, and adjustable subgraph sizes.

Triple Factorization We propose to adopt a retriever that allows a subgraph distribution factoriza-
tion over triples given some latent variables zτ = zτ (G, q) (to be elaborated later):

Qθ(Gq | G, q) =
∏
τ∈Gq

pθ(τ | zτ , q)
∏

τ∈G\Gq

(1− pθ (τ | zτ , q)) , (3)

This strategy is inspired by the studies on graph generative models (Kipf & Welling, 2016)
and enjoys four benefits: Efficiency in Training - The problem in Eq. 2 can be factorized as
maxθ E(q,Aq)∼D

∑
τ∈G̃q

log pθ(τ | zτ , q) +
∑

τ∈G\G̃q
log(1 − pθ(τ | zτ , q)); Efficiency in Sam-

pling - After computing zτ , we can select triples τ from G in parallel; Flexibility - Triple combi-
nations can form arbitrary subgraphs; Adjustable Size - Subgraphs formed by top-K triples with
different K values can accommodate various LLMs with diverse reasoning capabilities. In practice,
Qθ can be further simplified given topic entities Tq (He et al., 2021; Jiang et al., 2023b), by expecting
subgraphs only close to the topic entities, i.e., pθ(τ | zτ , q) = 0 for a τ that is far from Tq .

Relevant Designs Previous approaches often adopt heuristics and focus on particular types of sub-
graphs, such as constrained subgraph search (e.g., searching for connected subgraphs (He et al.,
2024)), constrained path search from topic entities (Zhang et al., 2022; Wu et al., 2023; Luo et al.,
2024b; Sun et al., 2024a; Liu et al., 2024a; Mavromatis & Karypis, 2024; Sun et al., 2024b), and en-
tity selection followed by extracting entity-induced subgraphs, where all triples involving an entity
are included together (Yasunaga et al., 2021; Taunk et al., 2023). The loss in flexibility narrows the
space of possible retrieved subgraphs, which eventually harms the effectiveness of the RAG.

Directional Distance Encoding (DDE) The latent variable zτ (G, q) models the relationship be-
tween a triple τ and the query q given G. One idea is to employ graph neural networks (GNNs)
to compute zτ (G, q) through message passing between entities/relations with attribute and ques-
tion embeddings. Some previous works indeed adopt GNNs to get entity representations (Yasunaga
et al., 2021; Kang et al., 2023; Mavromatis & Karypis, 2024; Liu et al., 2024a). However, GNNs are
known to have limited representation power (Xu et al., 2019; Morris et al., 2019; Chen et al., 2020).
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System: Based on the triples retrieved from a knowledge graph, please answer the question. Please return formatted answers as a list, each prefixed with ``ans:". 
User: Triplets: (𝑒ଵ, 𝑟ଵଶ, 𝑒ଶ) \n (𝑒ଷ, 𝑟ଷସ, 𝑒ସ) \n … \n     Question: …

Assistant: To answer the question, we have to find …. From the triples we can see that …. Therefore, the answers are: \n ans: … \n ans: … \n ….
// ICL example
// ICL example

User: Triplets: (𝑒, 𝑟, 𝑒) \n (𝑒, 𝑟ௗ, 𝑒ௗ) \n … \n     Question: …

Assistant: To answer the question, we have to find …. From the triples we can see that …. Therefore, the answers are: \n ans: … \n ans: … \n ….

// the evaluation question 

// the answer

Figure 2: The prompt used in SubgraphRAG. Concrete examples can be found in Appendix D).

The structural relationship between τ and q provides valuable information complementing to their
semantic relationship. Inspired by the success of distance encoding and labeling trick in enhanc-
ing the structural representation power of GNNs (Li et al., 2020; Zhang et al., 2021), we propose a
DDE as zτ (G, q) to model the structural relationship. Given topic entities Tq , let s(0)e be a one-hot
encoding representing e ∈ Tq or e ̸∈ Tq . For the l + 1-th round, we perform feature propaga-
tion and compute s(l+1)

e = MEAN{s(l)e′ | (e′, ·, e) ∈ G}, and through the reverse direction to
account the directed nature of G, s(r,l+1)

e = MEAN{s(r,l)e′ | (e, ·, e′) ∈ G}, where s(r,0)e = s(0)e . We
concatenate the results across all arounds and both directions to obtain the final entity encodings
se = [s(0)e ∥s(1)e ∥ · · · ∥s(r,1)e ∥ · · · ], which leads to triple encodings as zτ (G, q) = [sh||st] that concates
the head h’s and the tail t’s encodings. In section 4.1, we compare different approaches to compute
zτ (G, q) - using GNNs, DDEs or only one-hot encodings of Tq , and DDEs perform the best.

A Lightweight Implementation For pθ(·|zτ (G, q), q) We present a lightweight implementation of
pθ that integrates structural and semantic information. Following previous approaches (Karpukhin
et al., 2020; Gao et al., 2024b), we employ off-the-shelf pre-trained text encoders to embed all enti-
ties/relations in a KG based on their text attributes. These semantic text embeddings are computed
and stored in a vector database during the pre-processing stage for efficient retrieval. For a newly
arrived question q, we embed q to obtain zq and retrieve embeddings zh, zr, zt from the vector
database for the involved entities and relation. After computing DDEs zτ , an MLP is employed for
binary classification using the concatenated input [zq∥zh∥zr∥zt∥zτ ].
Relevant Designs We considered several alternative design options but found them less suitable due
to concerns regarding efficiency and adaptability to KG updates. Cross-encoders, which concatenate
a question and a retrieval candidate for joint embedding (Wolf et al., 2019), potentially offer better
retrieval performance. However, due to the inability to pre-compute embeddings, this approach sig-
nificantly reduces retrieval efficiency when dealing with a large number of retrieval candidates, as
is the case in triple retrieval. Li et al. (2023a) embeds each triple as a whole rather than individual
entities and relations. However, this approach incurs higher computational and storage costs and ex-
hibits reduced generalizability to the triples that are new combinations of entities and relations. Our
lightweight implementation allows for rapid triple scoring while maintaining good generalization.

3.2 PROMPTING-BASED LLM REASONING

We employ an LLM to perform reasoning over Gq by incorporating the linearized list of triples form-
ing Gq into the prompt. This approach allows the LLM to ground its reasoning in the retrieved struc-
tured knowledge and select the answers Âq from the entities within Gq , mitigating issues like halluci-
nations and outdated knowledge (Lin et al., 2019; Shuster et al., 2021; Vu et al., 2024). Specifically,
we prompt the LLM to generate knowledge-grounded explanations besides the answers, which fur-
ther effectively reduces hallucinations. We adopt in-context learning (ICL) (Brown et al., 2020) and
design dedicated prompt templates with explanation demonstrations to guide LLMs (see Fig. 2).

Without fine-tuning LLMs, we reduce computational costs, enable the usage of SOTA black-box
LLMs, and maintain the framework’s generalizability for unseen KGs. Fine-tuning also risks en-
hancing prediction accuracy at the expense of general reasoning and explanatory capabilities. High-
quality text-based explanations are typically unavailable for question-answering tasks in practice. As
a result, previous KG-based RAG approaches that rely on fine-tuning often depend on larger, unfine-
tuned LLMs like GPT-4 to generate explanations as additional training data (Luo et al., 2024b).

Regarding the size K of the retrieved subgraph, while increasing K in principle improves the cov-
erage of relevant information, it also risks introducing more irrelevant information that may ulti-
mately hurt LLM reasoning (Xu et al., 2024; Liu et al., 2024b). Different LLMs are inherently
equipped with different sized context window and also exhibit distinct capabilities in reasoning over
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Table 1: Evaluation results for retrieval recall and wall-clock time. Best results are in bold. Being
training-free, cosine similarity and G-Retriever stay unchanged in generalization evaluations.

Model WebQSP CWQ CWQ→WebQSP WebQSP→CWQ

Triples Entites Triples Entites Triples Entites Triples Entites

Shortest Path GPT-4o Answer Time (s) Shortest Path GPT-4o Answer Time (s) Shortest Path GPT-4o Answer Shortest Path GPT-4o Answer

cosine similarity 0.714 0.719 0.708 3 0.488 0.567 0.582 13 0.714 0.719 0.708 0.488 0.567 0.582
SR+NSM w E2E 0.487 0.504 0.707 101 - - - - - - - - - -
Retrieve-Rewrite-Answer 0.058 0.062 0.740 69 - - - - - - - - - -
RoG 0.713 0.388 0.807 948 0.623 0.298 0.841 2327 0.589 0.323 0.658 0.301 0.139 0.412
G-Retriever 0.294 0.325 0.545 672 0.183 0.217 0.375 1530 0.294 0.325 0.545 0.183 0.217 0.375
GNN-RAG 0.522 0.405 0.818 68 0.500 0.386 0.841 160 0.446 0.364 0.691 0.444 0.351 0.697
SubgraphRAG 0.883 0.865 0.944 6 0.811 0.840 0.914 12 0.794 0.776 0.887 0.622 0.623 0.773

Table 2: Breakdown of recall evaluation over # hops. Best results are in bold.
Model Shortest Path Triple Recall GPT-4o Triple Recall Answer Entity Recall

WebQSP CWQ WebQSP CWQ WebQSP CWQ

1 2 1 2 ≥ 3 1 2 1 2 ≥ 3 1 2 1 2 ≥ 3
(65.8%) (34.2%) (28.0%) (65.9%) (6.1%) (65.8%) (34.2%) (28.0%) (65.9%) (6.1%) (65.8%) (34.2%) (28.0%) (65.9%) (6.1%)

cosine similarity 0.874 0.405 0.629 0.442 0.333 0.847 0.483 0.629 0.511 0.464 0.943 0.253 0.903 0.472 0.289
SR+NSM w E2E 0.565 0.324 - - - 0.580 0.376 - - - 0.916 0.301 - - -
Retrieve-Rewrite-Answer 0.064 0.046 - - - 0.062 0.061 - - - 0.745 0.729 - - -
RoG 0.869 0.415 0.766 0.597 0.253 0.446 0.271 0.347 0.293 0.122 0.874 0.677 0.920 0.827 0.628
G-Retriever 0.335 0.216 0.134 0.205 0.168 0.345 0.284 0.159 0.240 0.226 0.596 0.446 0.377 0.384 0.269
GNN-RAG 0.532 0.502 0.515 0.498 0.446 0.384 0.445 0.328 0.408 0.418 0.810 0.831 0.853 0.841 0.787

MLP 0.828 0.687 0.651 0.690 0.534 0.811 0.781 0.635 0.707 0.616 0.933 0.874 0.932 0.870 0.793
MLP + topic entity 0.944 0.729 0.854 0.750 0.560 0.884 0.775 0.769 0.773 0.647 0.976 0.843 0.956 0.885 0.665
SubgraphRAG 0.953 0.748 0.831 0.820 0.626 0.908 0.809 0.823 0.860 0.755 0.977 0.881 0.946 0.916 0.741

long-context retrieval results (Dubey et al., 2024). As such, although the training of SubgraphRAG
retriever is LLM-agnostic, the size K needs to be properly selected per LLM. In Section 4.2, we
empirically verify that more powerful LLMs can benefit from incorporating a larger-sized retrieved
subgraph, demonstrating the benefit of size-adjustable subgraph retrieval in SubgraphRAG.

Along with the introduction of components in SubgraphRAG, we have introduced the most relevant
works. Other relevant works are reviewed in Appendix A due to the page limitation.

4 EXPERIMENTS

We design our empirical studies to examine the effectiveness and efficiency of SubgraphRAG in
addressing the various challenges inherent to KG-based RAG, covering both retrieval and reasoning
aspects. Q1) Overall, to meet the accuracy and low-latency requirements of KG-based RAG, does
SubgraphRAG effectively and efficiently retrieve relevant information? Q2) For complex questions
involving multi-hop reasoning and multiple topic entities, does SubgraphRAG properly integrate
structural information for effective retrieval? Q3) How effectively does SubgraphRAG perform on
KGQA tasks, and how is its accuracy influenced by different factors? Q4) To what extent can our
pipeline provide effective knowledge-grounded explanations for question answering?

Datasets. We adopt two prominent and challenging KGQA benchmarks that necessitate multi-hop
reasoning – WebQSP (Yih et al., 2016) and CWQ (Talmor & Berant, 2018). Both benchmarks
utilize Freebase (Bollacker et al., 2008) as the underlying KG. To evaluate the capability of LLM
reasoners in knowledge-grounded hallucination-free question answering, we introduce WebQSP-sub
and CWQ-sub, where we remove samples whose answer entities are absent from the KG.

4.1 EVALUATION FOR RETRIEVAL (Q1 & Q2)

Baseline Retrievers. Cosine similarity performs structure-free triple retrieval based on triple
embeddings (Li et al., 2023a). SR+NSM w E2E (Zhang et al., 2022) and Retrieve-Rewrite-
Answer (Wu et al., 2023) propose constrained path search based on pre-trained text encoders.
RoG (Luo et al., 2024b) adopts a similar strategy but fine-tunes an LLM for relation path prediction.
G-Retriever (He et al., 2024) combines cosine similarity search with combinatorial optimization to
construct a connected subgraph. GNN-RAG employs GNNs to predict answer entities and extracts
shortest paths between them and topic entities (Mavromatis & Karypis, 2022; 2024).

Implementation Details. We employ gte-large-en-v1.5 (Li et al., 2023c) as pre-trained text encoder
for both the cosine similarity baseline and SubgraphRAG, a 434M model that achieves a good bal-
ance between efficiency and English retrieval performance, as evidenced by the Massive Text Em-
bedding Benchmark (MTEB) leaderboard (Muennighoff et al., 2023). For supervision signals, there
are no ground-truth relevant subgraphs for a query q. Previous path-based subgraph retrievers adopt
the shortest paths between the topic and answer entities for the weak supervision signals (Zhang
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Figure 3: Retrieval effectiveness on CWQ across a spectrum of K values for top-K triple retrieval.

et al., 2022; Luo et al., 2024b). We also utilize these shortest paths as the heuristic relevant sub-
graphs G̃q to train Qθ as in Eq. 2. To reduce the size of candidate triples G, we construct subgraphs
centered at topic entities Tq , following previous works. See Appendix B.1 for more details.

Table 3: Question-answering performance
on WebQSP and CWQ. Best results are in
bold. By default, our reasoners use the top
100 retrieved triples. Results with 200 and
500 triples (indicated in parentheses) are also
shown. Results with (↔) evaluate retriever
generalizability, where the retriever is trained
on one dataset and applied to the other.

WebQSP CWQ

Macro-F1 Hit Macro-F1 Hit

UniKGQA 72.2 - 49.0 -
SR+NSM w E2E 64.1 - 46.3 -
KD-CoT 52.5 68.6 - 55.7
ToG (GPT-4) - 82.6 - 67.61

StructGPT - 74.69 - -
Retrieve-Rewrite-Answer - 79.36 - -
G-Retriever 53.41 73.46 - -
RoG-Joint 70.26 86.67 54.63 61.94
RoG-Sep 66.45 82.19 53.87 60.55
EtD - 82.5 - 62.0
GNN-RAG 71.3 85.7 59.4 66.8

SubgraphRAG + Llama3.1-8B 70.57 86.61 47.16 56.98
SubgraphRAG + Llama3.1-70B 74.70 86.24 51.78 57.89
SubgraphRAG + ChatGPT 69.21 83.11 49.13 56.27
SubgraphRAG + GPT4o-mini 77.45 90.11 54.13 62.02
SubgraphRAG + GPT4o 76.46 89.80 59.08 66.69

SubgraphRAG + GPT4o-mini (200) 77.82 90.54 54.69 63.49
SubgraphRAG + GPT4o (200) 78.24 90.91 59.42 67.49
SubgraphRAG + GPT4o-mini (500) 77.67 91.22 55.41 64.97

SubgraphRAG + Llama3.1-8B (↔) 66.42 83.42 37.96 48.57
SubgraphRAG + GPT4o-mini (↔) 73.81 88.08 44.69 54.21
SubgraphRAG + GPT4o-mini (↔, 500) 76.20 91.22 50.30 60.80
SubgraphRAG + GPT4o (↔) 74.27 87.10 47.55 54.89
SubgraphRAG + GPT4o (↔, 500) 77.12 89.68 55.14 62.98

Evaluation Metrics. Our retrieval evaluation cov-
ers both effectiveness and efficiency. For effective-
ness, we employ three recall metrics, respectively
for shortest path triples (i.e., G̃q), GPT-4o-identified
relevant triples, and answer entities within retrieved
subgraphs. The first metric assesses the ability of the
approaches to retrieve the weak supervision signals
for training. For more accurate assessment of rele-
vant triple retrieval, we employ GPT-4o to identify ≤
20 relevant triples for all test set samples, potentially
capturing relevant triples beyond the shortest paths
(see Appendix D for more details on labeling). We
calculate individual recall values per question and
average across all questions. For efficiency, we mea-
sure wall clock time on a 48GB NVIDIA RTX 6000
Ada GPU, reporting results in seconds. To focus
on model computational efficiency, we exclude KG
query times from our measurements. For text em-
bedding computation, employed by SubgraphRAG
variants and most baselines (cosine similarity, G-
Retriever, and GNN-RAG), we only count the time
for question embedding computation as the entity
and relation embeddings for the entire KG can be
pre-computed. Such pre-computation may yield a
time-memory trade-off.

Overall Evaluation (Q1). Table 1 shows that SubgraphRAG consistently outperforms all other ap-
proaches in retrieval effectiveness. RoG achieves the most competitive baseline performance for
retrieving shortest path triples. However, when evaluated on GPT-4o-labeled triples, RoG’s per-
formance drops significantly (45.6% for WebQSP, 52.2% for CWQ), while SubgraphRAG remains
robust (2.0% decrease for WebQSP, 3.6% increase for CWQ). This stark difference, despite using the
same training signals, empirically validates that SubgraphRAG’s individual triple selection mecha-
nism allows for more flexible and effective subgraph extraction compared to RoG’s constrained path
search approach. Regarding efficiency, SubgraphRAG is only slightly slower than the cosine simi-
larity baseline on WebQSP while being one to two orders of magnitude faster than other baselines,
including GNN-RAG. For the cosine similarity baseline and SubgraphRAG, we report recall met-
rics based on the top-100 retrieved triples (2.3% of total candidate triples on average). This budget
consistently yields robust reasoning performance across LLMs in subsequent experiments.

Generalizability. We further examine the generalizability of the retrievers by training them on
dataset A and evaluating on dataset B, denoted as A → B in Table 1. Despite an anticipated
performance degradation, SubgraphRAG consistently outperforms the alternative approaches.
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Ablation Study for Design Options and Retrieval Size. To evaluate individual component con-
tributions, we conduct an ablation study with several variants. MLP is a structure-free variant
employing only text embeddings. We consider GraphSAGE (Hamilton et al., 2017), a popular
GNN, to update entity representations prior to the triple scoring. We further augment both MLP and
GraphSAGE with a one-hot-encoding topic entity indicator (MLP + topic entity and GraphSAGE
+ topic entity). Following Sun et al. (2018), we incorporate Personalized PageRank (PPR) (Haveli-
wala, 2002), seeded from the topic entities, to integrate structural information (MLP + topic entity +
PPR). To account for both the varying capabilities of downstream LLMs and inference cost/latency
constraints, we evaluate these variants across a broad spectrum of retrieval sizes (K).

Fig. 3 presents the results on CWQ, with the baselines’ performance and average number of triples
retrieved included for reference. Larger retrieval sizes uniformly improve recall across all variants.
Equipped with DDE, SubgraphRAG outperforms all baselines and other variants. This demonstrates
that SubgraphRAG’s superiority is not solely attributable to larger retrieval sizes. Regarding design
options, the topic entity indicator invariably leads to an improvement. In contrast, GNN variants
often result in performance degradation compared to their MLP counterparts. We suspect that the
diffusion of semantic information introduces noise in triple selection. Finally, PPR fails to reliably
yield improvements. For the results on WebQSP, see Appendix B.3, which are also consistent.

Multi-Hop and Multi-Topic Questions (Q2). To evaluate the effectiveness of various approaches
in capturing structural information for complex multi-hop and multi-topic questions, we group ques-
tions based on the number of hops and topic entities. Table 2 presents the performance breakdown
by hop count. SubgraphRAG consistently outperforms other methods on WebQSP and achieves the
best overall performance on CWQ. Notably, while the cosine similarity baseline and RoG demon-
strate competitive performance for single-hop questions, their performance degrades significantly
for multi-hop questions. Appendix B.4 provides a performance breakdown for single-topic and
multi-topic questions, focusing exclusively on CWQ due to the predominance of single-topic ques-
tions in the WebQSP test set (98.3%). SubgraphRAG consistently exhibits superior performance
across all metrics for both single-topic and multi-topic questions. Our comprehensive analysis high-
lights the remarkable effectiveness of DDE in capturing complex topic-centered structural informa-
tion essential for challenging questions involving multi-hop reasoning and multiple topic entities.

4.2 KGQA RESULTS (Q3 & Q4)

KGQA Baselines. Besides the baselines in retrieval evaluation, we include more KGQA methods,
including UniKGQA (Jiang et al., 2023b), KD-CoT (Wang et al., 2023a), StructGPT (Jiang et al.,
2023a), ToG (Sun et al., 2024a), and EtD (Liu et al., 2024a). For RoG, we present two entries: RoG-
Joint and RoG-Sep. Originally, RoG fine-tuned its LLMs on the training sets of both WebQSP and
CWQ. Yet, this joint training approach leads to significant label leakage, with over 50% of WebQSP
test questions (or their variants) appearing in CWQ’s training set, and vice versa. Therefore, we
re-trained RoG on each dataset separately, indicated as RoG-Sep.

Evaluation Metrics. Along with the commonly reported Macro-F1 and Hit2, we also include Micro-
F1 to account for the imbalance in the number of ground-truth answers across samples and Hit@1
for a more inclusive evaluation. To further assess model performance, we introduce scoreh, inspired
by (Yang et al., 2024), which evaluates how truth-grounded the predicted answers are and the degree
of hallucination. This metric penalizes hallucinated answers while favoring missing answers over
incorrect ones. Scores are normalized to a range of 0 to 100, with higher scores indicating better
truth-grounding in the model’s answers. The scoring strategy is described in detail in Appendix C.
Experiment Settings. We use the vllm (Kwon et al., 2023) framework for efficient LLM infer-
ence. For UniKGQA, KD-CoT, Retrieve-Rewrite-Answer, ToG, and EtD, we report their published
results due to the difficulty in reproducing them. For StructGPT, we directly use their provided
processed files to obtain results for WebQSP. For SR, we include their reported results for WebQSP
and CWQ, and further evaluate it on WebQSP-sub as we could not run through SR’s code on the
two CWQ datasets. For the remaining baselines, we successfully reproduced their results and eval-
uated them on additional metrics and datasets, including WebQSP-sub and CWQ-sub. However, we

1Their Hit computation is different from other baselines, causing potential overestimation in performance.
2The baselines claim to report Hit@1, but they actually compute Hit, which measures whether at least one

correct answer appears in the LLM response.
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Table 4: Question-answering performance on WebQSP-sub and CWQ-sub. Best results are in bold.
By default, our reasoners use the top 100 retrieved triples. Results with 200 and 500 triples (indi-
cated in parentheses) are also shown. Results with (↔) evaluate retriever generalizability, where the
retriever is trained on one dataset and applied to the other.

WebQSP-sub CWQ-sub

Macro-F1 Micro-F1 Hit Hit@1 Scoreh Macro-F1 Micro-F1 Hit Hit@1 Scoreh
SR+NSM w E2E 58.79 37.04 68.63 60.62 64.44 - - - - -
G-Retriever 54.13 23.84 74.52 67.56 67.97 - - - - -
RoG-Joint 72.01 47.70 88.90 82.62 76.13 58.61 52.12 66.22 61.17 55.15
RoG-Sep 67.94 43.10 84.03 77.61 72.79 57.69 52.83 64.64 60.64 54.51

SubgraphRAG + Llama3.1-8B 72.10 46.56 88.58 84.80 82.42 54.76 51.76 65.80 59.69 62.89
SubgraphRAG + Llama3.1-70B 75.97 51.64 87.88 85.89 85.57 61.49 59.91 68.43 65.52 67.62
SubgraphRAG + ChatGPT 70.81 44.73 85.18 80.82 81.53 56.37 54.44 64.40 60.99 61.31
SubgraphRAG + GPT4o-mini 78.34 58.44 91.34 87.36 82.21 61.13 58.86 70.01 65.48 64.20
SubgraphRAG + GPT4o 77.61 56.78 91.40 86.40 81.85 65.99 63.18 73.91 68.89 66.57

SubgraphRAG + GPT4o-mini (200) 78.66 58.65 91.73 87.04 81.98 61.58 57.47 71.45 65.87 63.66
SubgraphRAG + GPT4o (200) 79.40 58.91 92.43 87.75 82.46 66.48 61.30 75.14 69.42 66.45
SubgraphRAG + GPT4o-mini (500) 78.46 57.08 92.43 88.01 81.95 62.18 56.86 72.82 66.57 62.77

SubgraphRAG + Llama3.1-8B (↔) 67.91 42.79 85.25 81.21 80.09 43.03 40.73 55.09 47.58 56.78
SubgraphRAG + GPT4o-mini (↔) 74.42 49.41 89.10 84.67 81.35 49.47 45.16 60.18 54.18 58.86
SubgraphRAG + GPT4o-mini (↔, 500) 76.83 52.01 92.30 87.43 81.41 55.58 49.13 67.24 59.69 59.87
SubgraphRAG + GPT4o (↔) 74.98 50.67 88.26 84.73 83.24 52.40 52.28 60.36 56.39 63.70
SubgraphRAG + GPT4o (↔, 500) 77.96 56.40 90.96 86.66 83.35 61.96 58.48 70.47 64.96 66.86

Table 5: Breakdown of QA performance by reasoning hops.

WebQSP-sub CWQ-sub

1 2 1 2 ≥ 3
(65.8%) (34.2%) (28.0%) (65.9%) (6.1%)

Marco-F1 Hit Marco-F1 Hit Marco-F1 Hit Marco-F1 Hit Marco-F1 Hit

G-Retriever 56.41 78.20 45.73 65.35 - - - - - -
RoG-Joint 77.05 92.96 62.53 81.54 59.75 66.33 59.70 68.56 41.46 43.27
RoG-Sep 74.50 89.83 55.62 73.45 59.35 66.20 59.45 67.17 31.33 33.33

SubgraphRAG (Llama3.1-8B) 75.50 91.40 65.87 83.62 51.54 63.05 57.52 68.93 41.88 47.37
SubgraphRAG (GPT4o-mini) 80.56 92.86 74.11 88.51 57.36 67.34 63.85 72.74 51.14 54.39

do not include results for G-Retriever on CWQ as it required over 200 hours of computation on 2
NVIDIA RTX 6000 Ada GPUs. If not specified, the LLM reasoners in SubgraphRAG use the top
100 retrieved triples; results using more triples are explicitly noted. All Llama models used are their
instruction fine-tuned versions, i.e., Llama3.1-8B(70B)-Instruct. The used GPT models’ versions
are gpt-3.5-turbo-1106, gpt-4o-mini-2024-07-18, and gpt-4o-2024-08-06. For all LLM reasoners
used in SubgraphRAG, both the temperature and the seed are set to 0 to ensure reproducibility.

Overall Performance. Tables 3 and 4 present the evaluation results, where SubgraphRAG achieves
state-of-the-art (SOTA) on both WebQSP and WebQSP-sub. Even with smaller 8B LLMs, our
method surpasses previous SOTA approaches by ≤ 4% in Macro-F1 and Hit metrics (excluding
RoG-Joint due to test label leakage). With larger models like Llama3.1-70B-Instruct and GPT-4o,
SubgraphRAG achieves greater performance, showing ≤ 12% improvement in Macro-F1 and ≤ 9%
in Hit. On the more challenging CWQ and CWQ-sub datasets, which require extended reasoning
hops, SubgraphRAG performs competitively even with smaller 8B models. When paired with ad-
vanced reasoning models like GPT-4o, SubgraphRAG achieves results second only to ToG on CWQ.
Notably, SubgraphRAG requires only a single call to GPT-4o, whereas ToG requires 6-8 calls, which
increases computational cost, and we were unable to reproduce ToG’s performance using their pub-
lished code. On CWQ-sub, SubgraphRAG demonstrates gains of ≤ 9% in Macro-F1 and ≤ 11% in
Hit, indicating that tasks with greater reasoning complexity benefit substantially from more power-
ful LLMs. Our method also excels in truth-grounded QA, with Scoreh consistently outperforming
baselines by ≤ 12%, driven by our prompt design that encourages retrieval-grounded reasoning.

Additionally, our framework generalizes well, with retrievers trained on one dataset performing
effectively on others. Although moderate performance decay occurs due to domain shift, this can
largely be mitigated by including more triples extracted by the retriever. Notably, the decay is gener-
ally minor on WebQSP and WebQSP-sub but more pronounced on CWQ and CWQ-sub, potentially
due to greater label leakage from the WebQSP test set to the CWQ training set.

Detailed Performance Breakdown & Analysis. Table 5 presents the performance breakdown by
reasoning hops. Our method, even with an 8B LLM, shows significantly better results on questions
requiring multi-hop reasoning. This improvement can be attributed to our design philosophy, which
does not restrict the form of the retrieved subgraphs and leverages unfine-tuned LLMs with ICL
examples, fully unlocking their reasoning capabilities. Interestingly, SubgraphRAG shows relatively
lower performance on some 1-hop questions in CWQ-sub. Cross-referencing with Table 8, which
provides a detailed breakdown of whether the generated answers are truth-grounded, we find that
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Table 6: Ablation studies with different retrievers, using the same prompt and Llama3.1-8B-Instruct
as the reasoner. Rand refers to random triple sampling, RandNoAns removes triples with ground-
truth answers after random sampling, and NoRetriever directly asks questions without KG info.

WebQSP CWQ WebQSP-sub CWQ-sub

Macro-F1 Hit Macro-F1 Hit Macro-F1 Micro-F1 Hit Hit@1 Scoreh Macro-F1 Micro-F1 Hit Hit@1 Scoreh
Rand + SubgraphRAG Reasoner 37.69 60.14 27.34 35.85 37.79 17.79 60.74 54.97 65.06 29.97 29.15 39.15 35.11 52.45

RandNoAns + SubgraphRAG Reasoner 21.18 33.54 16.40 22.71 20.61 8.64 33.03 27.33 47.29 16.47 16.44 23.00 19.42 43.79
NoRetriever + SubgraphRAG Reasoner 35.86 51.90 25.64 32.34 35.03 17.01 51.38 47.59 55.57 27.42 22.66 33.95 30.65 44.87

cosine similarity + SubgraphRAG Reasoner 58.41 74.14 34.59 43.61 59.26 37.31 75.43 71.20 73.16 39.05 35.48 49.02 43.68 55.72
Retrieve-Rewrite-Answer + SubgraphRAG Reasoner 8.96 11.43 - - 9.11 5.23 11.43 10.84 63.45 - - - - -

StructGPT + SubgraphRAG Reasoner 62.14 75.00 - - 62.55 44.72 75.69 73.57 80.82 - - - - -
G-Retriever + SubgraphRAG Reasoner 48.91 64.50 28.47 34.58 49.92 28.08 65.88 62.60 72.54 31.55 32.22 38.17 35.22 58.22

RoG-Sep + SubgraphRAG Reasoner 57.68 74.39 36.85 45.23 59.36 40.32 76.65 72.61 79.69 44.11 43.69 54.04 47.68 66.18
GNN-RAG + SubgraphRAG Reasoner 62.34 78.81 46.40 54.35 63.93 42.43 80.89 77.10 82.86 55.08 53.38 64.33 59.76 67.55

GNN-RAG (↔) + SubgraphRAG Reasoner 52.07 71.38 34.88 43.13 53.01 34.58 72.93 67.99 73.37 39.98 34.60 49.54 44.91 57.42

SubgraphRAG 70.57 86.61 47.16 56.98 72.10 46.56 88.58 84.80 82.42 54.76 51.76 65.80 59.69 62.89
SubgraphRAG (↔) 66.42 83.42 37.96 48.57 67.91 42.79 85.25 81.21 80.09 43.03 40.73 55.09 47.58 56.78

(a) WebQSP-sub (b) CWQ-sub

Figure 4: Ablation studies on the number of retrieved triples used in LLM reasoners.

previous methods may generate many correct answers that are not actually supported by the retrieved
results. Further investigation suggests this discrepancy may partly result from dataset leakage, giving
tuning-based methods an advantage: In CWQ, over 60% of test samples have answers that have
appeared in the training set, making it easier for these methods to succeed without robust reasoning.
Thus, future studies are needed to fully investigate the potential leakage.

Performance with Different Retrievers. To assess the impact of our retriever on the overall per-
formance, we conducted extensive studies by replacing the retrieval results with those from baseline
retrievers, while keeping all other settings constant (same prompts, same LLM reasoners). Tables 6
and 9 show the results using Llama3.1 8B and GPT4o-mini as the LLM reasoners, respectively.
For retrievers from Retrieve-Rewrite-Answer, StructGPT, G-Retriever, and RoG, we used all their
retrieved triples, while for other cases, we kept 100 triples. Clearly, pairing with our retriever yields
significantly better performance on all metrics and datasets compared to using baseline retrievers,
indicating that our superior results are largely due to the effectiveness of our improved retriever.

Performance with Different # of Retrieved Triples. Irrelevant context can mislead LLMs (Wu
et al., 2024), and retrieving more triples may not always improve performance. To investigate this,
we conducted experiments (Fig. 4) by feeding Llama 3.1 8B and GPT-4o-mini different numbers
of retrieved triples. The results show a significant performance decay in Llama 3.1 8B with more
triples, while GPT-4o-mini performs even better with additional retrieved triples. This suggests that
different LLMs have varying capacities for robust reasoning, and users should input proper numbers
of retrieved results to match the capacity of the used LLM and the available computational budget.

Explainability. By retrieving flexible, high-quality evidence subgraphs as context and exploiting
the strong reasoning capabilities of pre-trained LLMs, SubgraphRAG can natively provide effective
explanations along with answer predictions. In contrast, explainable predictions with fine-tuned
LLMs necessitate extra labeling efforts for preserving explainability (Luo et al., 2024b) or post hoc
explainability approaches (Krishna et al., 2023). To illustrate the explanability of our framework,
we provide multiple examples of our reasoner’s responses (see Appendix E).

5 CONCLUSION

We propose SubgraphRAG, a KG-based RAG framework that performs efficient and flexible sub-
graph retrieval followed by prompting unfine-tuned LLMs. SubgraphRAG demonstrates better or
comparable accuracy, efficiency, and explainability compared to existing approaches.
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A ADDITIONAL RELATED WORK

The field of KGQA has evolved significantly over time. Early approaches to KGQA do not rely
on LLMs for answer generation (Yasunaga et al., 2021; Taunk et al., 2023; Zhang et al., 2022; Lin
et al., 2019; Sun et al., 2019), though they often employ pre-trained language models (PLMs) like
BERT as text encoders (Devlin et al., 2019). These methods typically search for answer entities with
GNNs Yasunaga et al. (2021); Taunk et al. (2023); Lin et al. (2019) or LSTM-based models Sun et al.
(2019); Zhang et al. (2022).

With the rapid advancement of LLMs in recent years, researchers began to leverage them in KGQA.
For instance, recent work has explored using LLMs as translators, converting natural language ques-
tions into executable SPARQL queries for KG databases to retrieve the answers (Jiang et al., 2023a;
Wang et al., 2023b; Luo et al., 2024a; Xiong et al., 2024).

Contemporary approaches have further expanded the role of LLMs, utilizing them for both knowl-
edge retrieval from KGs and reasoning (Kim et al.; Gao et al., 2024a; Wang et al., 2024; Guo et al.,
2024; Ma et al., 2024; Sun et al., 2024a; Jiang et al., 2024; Jin et al., 2024). The strength of this strat-
egy lies in LLMs’ ability to handle multi-hop tasks by breaking them down into manageable steps.
However, as discussed in Section 1, this often necessitates multiple LLM calls, resulting in high
latency. To mitigate this issue, some frameworks have attempted to fine-tune LLMs to memorize
knowledge, but this reduces their ability to generalize to dynamically updated or novel KGs (Luo
et al., 2024b; Mavromatis & Karypis, 2024). Other models have explored fine-tuning adapters em-
bedded in fixed LLMs to better preserve their general reasoning capabilities while adapting to spe-
cific KGs (He et al., 2024; Gao et al., 2024a; Hu et al., 2024).

In parallel with these developments, several approaches have emerged that, like our approach, allow
LLMs to reason over subgraphs (Kim et al.; Liu et al., 2024a; Li et al., 2023a; Guo et al., 2024;
Wu et al., 2023; Li et al., 2024; Wen et al., 2023), though they employ different retrieval strategies.
Kim et al. breaks queries into sub-queries, retrieving evidence for each sub-query before reasoning
over the collected evidence. Guo et al. (2024) uses PLM-based entity extraction followed by multi-
hop expansion for retrieval. Li et al. (2023a) linearizes KG triples into natural language for global
triple retrieval using BM25 or dense passage retrievers. Wen et al. (2023) extracts topic entities and
merges triples into the retrieved subgraph using two heuristic methods: connecting topic entities via
paths and retrieving their 1-hop neighbors.

While these subgraph retrieval strategies share similarities with SubgraphRAG, they lack several key
advantages of it, such as retrieval efficiency, adjustable subgraph sizes, and flexible subgraph types.
Consequently, they frequently result in suboptimal coverage of relevant information in the retrieved
subgraphs. SubgraphRAG addresses these limitations, offering a more comprehensive and adaptable
approach to KGQA that builds upon and extends the capabilities of existing methods, while fully
leveraging the power of advanced LLMs.

B ADDITIONAL EXPERIMENT DETAILS FOR SUBGRAPH RETRIEVAL

B.1 ADDITIONAL IMPLEMENTATION AND EVALUATION DETAILS

For Retrieve-Rewrite-Answer, RoG, G-Retriever, GNN-RAG, and SR+NSM w E2E, we utilize their
official open-source implementations for training and evaluation. While a pre-trained RoG model is
publicly available, it was jointly trained on the training subset of both WebQSP and CWQ, causing a
label leakage issue due to sample duplication across the two datasets. To address this, we retrain the
RoG model separately on the training subset of WebQSP and CWQ. Both Retrieve-Rewrite-Answer
and G-Retriever were originally only evaluated on the WebQSP dataset. We managed to adapt the
G-Retriever codebase for an evaluation on the CWQ dataset. While SR+NSM w E2E originally also
reports the results for CWQ, we failed in running the official codebase for this dataset.

RoG, G-Retriever, the cosine similarity baseline, GNN-RAG, and all SubgraphRAG variants per-
form relevant subgraph retrieval from the identical rough subgraphs. These subgraphs are centered
around the topic entities and are included in the released RoG implementation. In contrast, Retrieve-
Rewrite-Answer directly loads and queries the raw KG.
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Figure 5: Retrieval effectiveness on WebQSP across a spectrum of K values for top-K triple re-
trieval.

Table 7: Breakdown of recall evaluation for CWQ over topic entity count. Best results are in bold.

Model Shortest Path Triples GPT-4o-labeled Triples Answer Entities

Single Multiple Single Multiple Single Multiple
(46.3%) (53.7%) (46.3%) (53.7%) (46.3%) (53.7%)

cosine similarity 0.586 0.403 0.587 0.499 0.517 0.638
RoG 0.711 0.547 0.324 0.275 0.769 0.903
G-Retriever 0.245 0.128 0.289 0.156 0.393 0.360
GNN-RAG 0.496 0.503 0.369 0.403 0.829 0.851

MLP 0.788 0.568 0.777 0.600 0.894 0.873
MLP + topic entity 0.858 0.690 0.819 0.718 0.894 0.889
SubgraphRAG 0.877 0.754 0.871 0.820 0.911 0.916

GraphSAGE originally only deals with node attributes and we propose a straightforward extension
of it for handling both the node attributes and edge attributes. Let ze be the text embedding of an
entity e ∈ E and zr be the text embedding of a relation r ∈ R. A GraphSAGE layer updates entity
representations with

zl+1
N (e) = MEAN

({
[zle′∥zr] | (e′, r, e) ∈ G

})
, (4)

zl+1
e = σ

(
[zle∥zl+1

N (e)

)
, (5)

z0e = ze, (6)

where σ(·) is an MLP. Empirically we find that 1-layer GraphSAGE yields the best performance.

B.2 IMPLEMENTATION DEPENDENCIES

Our implementation is based on the following packages: PyTorch (Paszke et al., 2019), Transform-
ers (Wolf et al., 2020), xFormers (Lefaudeux et al., 2022), NetworkX (Hagberg et al., 2008), and
PyTorch Geometric (Fey & Lenssen, 2019). We employ the built-in implementation of PPR from
NetworkX.

B.3 ADDITIONAL EXPERIMENT RESULTS FOR VARYING K IN TOP-K TRIPLE RETRIEVAL

Fig. 5 presents the performance of SubgraphRAG variants on WebQSP across a spectrum of K
values for top-K triple retrieval, which is consistent with the observations made for CWQ.

B.4 EVALUATION BREAKDOWN OVER TOPIC ENTITY COUNT

See table 7.
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(a) WebQSP-sub (b) CWQ-sub

Figure 6: Ablation studies on the number of retrieved triples and the used retrievers in Sub-
graphRAG. The triples from RoG’s retriever are generated using beam search with sizes {3, 6,
9, 12}, and all the experiments use SubgraphRAG’s un-fine-tuned LLM reasoners.

Table 8: Detailed performance of truth-grounded QA. No Ans Samples refers to cases where LLM
reasoners refuse to answer; NR (Not Retrieved) indicates answers not present in the retrieved triples,
while R (Retrieved) indicates answers found within the retrieved triples.

Dataset Method Samples w/ Ans Entities in KG Samples w/o Ans Entities in KG
No Ans Samples

Total Samples
Wrong Ans
Total Ans

Correct Ans (NR)
Correct Ans

Wrong Ans (NR)
Wrong Ans

No Ans Samples
Total Samples

Wrong Ans (NR)
Total Ans

Wrong Ans (R)
Total Ans

WebQSP

RoG-Joint 0/1559 = 0% 4605/10206 = 45% 170/5601 = 3% 1178/4605 = 26% 0/69 = 0% 24/126 = 19% 70/126 = 56%
RoG-Sep 0/1559 = 0% 6867/12401 = 55% 327/5534 = 6% 2494/6867 = 36% 0/69 = 0% 71/162 = 44% 43/162 = 27%

SubgraphRAG (Llama3.1-8B) 29/1559 = 2% 1397/5850 = 24% 59/4453 = 1% 84/1397 = 6% 13/69 = 19% 16/107 = 15% 71/107 = 66%
SubgraphRAG (GPT4o-mini) 12/1559 = 1% 1802/8011 = 22% 37/6209 = 1% 126/1802 = 7% 7/69 = 10% 17/83 = 20% 31/83 = 37%

CWQ

RoG-Joint 0/2848 = 0% 3651/6709 = 54% 305/3058 = 10% 1293/3651 = 35% 0/683 = 0% 1835/2729 = 67% 363/2729 = 13%
RoG-Sep 0/2848 = 0% 3183/6129 = 52% 341/2946 = 12% 1295/3183 = 41% 0/683 = 0% 1840/2620 = 70% 268/2620 = 10%

SubgraphRAG (Llama3.1-8B) 210/2848 = 7% 2417/5028 = 48% 21/2611 = 1% 98/2417 = 4% 199/683 = 29% 114/1052 = 11% 819/1052 = 78%
SubgraphRAG (GPT4o-mini) 203/2848 = 7% 2194/5205 = 42% 30/3011 = 1% 159/2194 = 7% 137/683 = 20% 170/953 = 18% 564/953 = 59%

C SUPPLEMENTARY KGQA RESULTS

Truth-grounded QA Analysis. Table 8 provides a detailed analysis of truth-grounding in generated
answers, showing that previous methods often produce correct answers that are unsupported by the
retrieved results, increasing the risk of hallucination. In particular, our method is significantly less
likely to generate answers that are not present in the retriever results (the NR answers in the table).
For instance, on CWQ-sub, more than 10% of RoG’s correct answers are NR, while SubgraphRAG
keeps this to just 1%. SubgraphRAG can also decline to answer when there is insufficient evidence,
with refusal rates increasing from 2% to 19% on WebQSP and from 7% to 29% on CWQ for ques-
tions lacking answers in the KG, compared to questions with KG-supported answers. In contrast,
baseline models consistently provide answers even when supporting evidence is absent. Together,
these qualities make SubgraphRAG a more trustworthy and truth-grounded KGQA framework.

To obtain a single metric to assess the degree of truth-grounded QA performance, we follow (Yang
et al., 2024) to develop a scoring strategy to aggregate the results of these tables. Specifically, for
samples with answer entities present in the KG, correct answers receive a score of +1, incorrect an-
swers -1, and missing answers 0. For samples without answer entities in the KG, missing answers,
answers with entities found in the retrieved results, and answers with entities not found in the re-
trieved results are scored +1, -1, and -1.5, respectively. Denote si as the score yielded for sample i
and ai the number of answers outputted by the LLM reasoner for this sample. For a dataset with n

samples: Scoreh = Normalize
(

1
n

∑n
i=0

si
ai

)
, where we use min-max normalization with min = 0

and max = 100. This metric penalizes hallucinated answers while favoring missing answers over
incorrect ones.

Performance with Different Retrievers. To assess the impact of our retriever on overall perfor-
mance as analyzed in Sec. 4.2, Table 9 provides additional ablation results using GPT4o-mini as the
reasoner.

Performance with Different # of Retrieved Triples. Fig. 4 shows how our SubgraphRAG would
perform with different numbers of retrieved triples. To further demonstrate the superior perfor-
mance of our proposed retriever module, we also scale RoG’s retriever with more retrieved triples
by increasing its beam search sizes (noting that this substantially increases computational costs).
As shown in Fig. 6, clearly, even when using RoG’s retriever with more triples in SubgraphRAG,
our proposed retriever consistently achieves significantly better results, further demonstrating the
effectiveness of our retriever module.
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Table 9: Ablation studies with different retrievers, using the same prompt and GPT4o-mini as the
reasoner. Rand refers to random triple sampling, RandNoAns removes triples with ground-truth
answers after random sampling, and NoRetriever directly asks questions without KG info.

WebQSP CWQ WebQSP-sub CWQ-sub

Macro-F1 Hit Macro-F1 Hit Macro-F1 Micro-F1 Hit Hit@1 Scoreh Macro-F1 Micro-F1 Hit Hit@1 Scoreh
Rand + SubgraphRAG Reasoner 47.70 68.37 33.13 39.82 47.15 23.74 68.57 64.59 69.67 35.55 34.26 42.94 40.48 54.81

RandNoAns + SubgraphRAG Reasoner 36.83 49.63 25.69 30.70 35.77 14.62 48.94 44.96 57.12 26.25 26.11 31.60 29.21 48.80
NoRetriever + SubgraphRAG Reasoner 47.49 71.01 33.43 42.25 46.68 25.53 70.94 62.67 60.22 35.66 31.11 44.66 39.99 44.24

cosine similarity + SubgraphRAG Reasoner 64.94 78.19 41.23 49.22 65.26 43.84 78.90 74.15 73.03 45.07 42.27 53.83 49.37 57.06
Retrieve-Rewrite-Answer + SubgraphRAG Reasoner 38.26 53.62 - - 37.54 19.62 53.37 50.10 67.68 - - - - -

StructGPT + SubgraphRAG Reasoner 71.62 82.68 - - 71.66 59.05 82.87 80.44 81.48 - - - - -
G-Retriever + SubgraphRAG Reasoner 59.28 75.25 36.79 42.23 59.55 35.19 76.01 72.87 76.31 39.55 39.42 45.47 43.29 57.67

RoG-Sep + SubgraphRAG Reasoner 70.08 82.25 44.30 51.15 70.91 54.69 83.45 78.51 81.00 49.85 50.40 57.51 52.35 64.27
GNN-RAG + SubgraphRAG Reasoner 73.27 85.93 52.91 59.64 74.24 53.92 87.24 83.39 84.41 60.89 59.86 68.43 64.04 67.71

GNN-RAG (↔) + SubgraphRAG Reasoner 61.19 78.99 43.42 51.37 61.41 42.02 79.79 74.98 76.11 48.04 43.7 56.88 52.32 59.45

SubgraphRAG 77.45 90.11 54.13 62.02 78.34 58.44 91.34 87.36 82.21 61.13 58.86 70.01 65.48 64.20
SubgraphRAG (↔) 73.81 88.08 44.69 54.21 74.42 49.41 89.10 84.67 81.35 49.47 45.16 60.18 54.18 58.86

D PROMPT TEMPLATES

Fig. 7 is the detailed prompt template used in our experiments for all samples, and Fig. 8 provides
the prompt employed to label relevant triples via GPT-4o.
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Input Prompts for KGQA

System:
Based on the triples retrieved from a knowledge graph, please answer the question. Please return formatted answers as a list, each
prefixed with “ans:”.

User: // ICL example
Triplets:
(Lou Seal,sports.mascot.team,San Francisco Giants)
(San Francisco Giants,sports.sports team.championships,2012 World Series)
(San Francisco Giants,sports.sports championship event.champion,2014 World Series)
(San Francisco Giants,time.participant.event,2014 Major League Baseball season)
(San Francisco Giants,time.participant.event,2010 World Series)
(San Francisco Giants,time.participant.event,2010 Major League Baseball season)
(San Francisco Giants,sports.sports team.championships,2014 World Series)
(San Francisco Giants,sports.sports team.team mascot,Crazy Crab)
(San Francisco Giants,sports.sports team.championships,2010 World Series)
(San Francisco Giants,sports.professional sports team.owner s,Bill Neukom)
(San Francisco Giants,time.participant.event,2012 World Series)
(San Francisco,sports.sports team location.teams,San Francisco Giants)
(San Francisco Giants,sports.sports team.arena stadium,AT&T Park)
(AT&T Park,location.location.events,2012 World Series)
(m.011zsc4 ,organization.leadership.organization,San Francisco Giants)
(San Francisco Giants,sports.sports team.previously known as,New York Giants)
(AT&T Park,location.location.events,2010 World Series)
(Crazy Crab,sports.mascot.team,San Francisco Giants)
(New York Giants,baseball.baseball team.league,National League)
(San Francisco Giants,sports.sports team.colors,Black)
(San Francisco Giants,sports.sports team.previously known as,New York Gothams)
(m.0k079qm,base.schemastaging.team training ground relationship.team,San Francisco Giants)
(m.0k079ry,base.schemastaging.team training ground relationship.team,San Francisco Giants)
(2010 World Series,time.event.locations,AT&T Park)
(San Francisco Giants,time.participant.event,2012 Major League Baseball season)
(San Francisco Giants,baseball.baseball team.league,National League)
(m.0crtd80,sports.sports league participation.league,National League West)
(San Francisco Giants,sports.sports team.location,San Francisco)
(San Francisco Giants,sports.sports team.sport,Baseball)
(m.05n6dtn,baseball.baseball team stats.team,San Francisco Giants)

Question:
What year did the team with mascot named Lou Seal win the World Series?

Assistant: // ICL example
To find the year the team with mascot named Lou Seal won the World Series, we need to find the team with mascot named Lou
Seal and then find the year they won the World Series.
From the triplets, we can see that Lou Seal is the mascot of the San Francisco Giants.
Now, we need to find the year the San Francisco Giants won the World Series.
From the triplets, we can see that San Francisco Giants won the 2010 World Series and 2012 World Series and 2014 World Series.
So, the team with mascot named Lou Seal (San Francisco Giants) won the World Series in 2010, 2012, and 2014.
Therefore, the formatted answers are:
ans: 2014 (2014 World Series)
ans: 2012 (2012 World Series)
ans: 2010 (2010 World Series)

User: // Sample to infer
Triplets:
(ea, rab, eb) // Retrieved triples
(ec, rcd, ed)
. . .
Question:
what’s . . . ? // Q in datasets

Figure 7: Detailed prompt for LLM question-answering used in our experiments for all samples.
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Input Prompts for Labeling Relevant Triples via GPT-4o

System:
Based on the triplets retrieved from a knowledge graph, please select relevant triplets for answering the question. Please return
formatted triplets as a list, each prefixed with ”evidence:”.

User: // Sample to infer
Triplets:
(ea, rab, eb) // Retrieved triples
(ec, rcd, ed)
. . .
Question:
what’s . . . ? // Q in datasets

Figure 8: Detailed prompt for labeling triples via GPT-4o.
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E EXPLAINABLITY EXAMPLES

To demonstrate the superior explainability of our approach, we provide multiple example responses
from our LLM reasoners below, which cover questions requiring different reasoning hops and logic
chains. We have also included examples of our LLM reasoners refusing to answer due to insufficient
information in Appendix E.2, which helps to provide more truth-grounded answers. Due to limited
space, we do not include retrieved triples for all the examples, but one will be able to find full
prediction files in our released repository.

E.1 LLM RESPONSES WITH EXPLAINABLE REASONING

CWQ-WebQTest-100 bf66fd89b6e9fc5fcb96c8b3f7a0e616

Question:
The people from the country that contains Nord-Ouest Department speak what languages today?

Retrieved Triples:
(Haiti,location.country.languages spoken,Haitian Creole)
(Haiti,location.country.first level divisions,Nord-Ouest Department)
(Haiti,location.country.official language,French)
(French,language.human language.countries spoken in,Haiti)
(Nord-Ouest Department,location.administrative division.first level division of,Haiti)
(Haiti,location.country.languages spoken,French)
(Haiti,location.country.administrative divisions,Nord-Ouest Department)
(Haiti,location.country.official language,Haitian Creole)
(Nord-Ouest Department,location.location.containedby,Haiti)
(Haitian Creole,language.human language.main country,Haiti)
...

LLM Response:
To find the languages spoken in the country that contains Nord-Ouest Department, we need to find the country that contains
Nord-Ouest Department.
From the triplets, we can see that Nord-Ouest Department is contained by Haiti.
So, the country that contains Nord-Ouest Department is Haiti.
From the triplets, we can see that Haiti speaks Haitian Creole and French.
Therefore, the people from the country that contains Nord-Ouest Department (Haiti) speak Haitian Creole and French today.
The formatted answer is:
ans: Haitian Creole
ans: French

Ground-truth:
Haitian Creole
French

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

CWQ-WebQTest-1320 c5498ca807d2e1ec30d4c8fdd41f0bf7

Question:
What stadium does the team with mascot named Hank play at?

Retrieved Triples:
(Milwaukee Brewers,sports.sports team.team mascot,Hank)
(Hank,sports.mascot.team,Milwaukee Brewers)
(Milwaukee Brewers,sports.sports team.previously known as,Seattle Pilots)
(Seattle Pilots,sports.defunct sports team.later known as,Milwaukee Brewers)
(Milwaukee Brewers,sports.sports team.arena stadium,Miller Park)
(Milwaukee Brewers,sports.sports team.location,Milwaukee)
(Miller Park,sports.sports facility.teams,Milwaukee Brewers)
(Milwaukee,sports.sports team location.teams,Milwaukee Brewers)
(Miller Park,location.location.containedby,Milwaukee)
(Milwaukee Brewers,baseball.baseball team.current coaches,m.0527c88)
...

LLM Response:
To find the stadium where the team with mascot named Hank plays, we need to find the team with mascot named Hank and then
find the stadium they play at.
From the triplets, we can see that Hank is the mascot of the Milwaukee Brewers.
Now, we need to find the stadium where the Milwaukee Brewers play.
From the triplets, we can see that the Milwaukee Brewers play at Miller Park.
Therefore, the formatted answer is:
ans: Miller Park

Ground-truth:
Miller Park

CWQ-WebQTrn-2152 92fba37c9723caee68665ad9a5e4a468

Question:
Which of team owners Tom Hicks sports team are in the American League West?

Retrieved Triples:
(Texas Rangers,sports.professional sports team.owner s,Tom Hicks)
(Tom Hicks,sports.sports team owner.teams owned,Texas Rangers)
(Dallas Stars,sports.professional sports team.owner s,Tom Hicks)
(Seattle Pilots,sports.defunct sports team.later known as,Milwaukee Brewers)
(Tom Hicks,sports.sports team owner.teams owned,Dallas Stars)
(United States of America,base.locations.countries.states provinces within,Alabama)
(Houston Astros,sports.professional sports team.owner s,Drayton McLane, Jr.)
(m.0crtd2r,sports.sports league participation.team,Los Angeles Angels of Anaheim)
(United States of America,base.aareas.schema.administrative area.administrative children,Alabama)
(m.0crtd31,sports.sports league participation.team,Anaheim Angels)
(United States of America,base.aareas.schema.administrative area.administrative children,Washington, D.C.)
(United States of America,base.locations.countries.states provinces within,Mississippi)
(m.0crtd3v,sports.sports league participation.team,California Angels)
(United States of America,base.aareas.schema.administrative area.administrative children,Mississippi)
(American League West,baseball.baseball division.teams,Texas Rangers)
...

LLM Response:
To find the teams owned by Tom Hicks that are in the American League West, we need to find the teams owned by Tom Hicks and
then find the teams in the American League West.
From the triplets, we can see that Tom Hicks owns the Texas Rangers and Dallas Stars.
Now, we need to find the teams in the American League West.
From the triplets, we can see that the teams in the American League West are Texas Rangers, Los Angeles Angels of Anaheim,
Seattle Mariners, Oakland Athletics, and Seattle Pilots.
So, among the teams owned by Tom Hicks (Texas Rangers and Dallas Stars), only Texas Rangers is in the American League West.
Therefore, the formatted answer is:
ans: Texas Rangers

Ground-truth:
Texas Rangers
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CWQ-WebQTrn-557 960c16ffdb29e173df0577fc76c7455d

Question:
In the film with the character named Winged Monkey #7, who played Dorothy?

LLM Response:
To find the actor who played Dorothy in the film with the character named Winged Monkey #7, we need to find the film that
Winged Monkey #7 is in and then find the actor who played Dorothy in that film.
From the triplets, we can see that Winged Monkey #7 is in the film ”The Wizard of Oz” (m.0yj6tr7).
Now, we need to find the actor who played Dorothy in ”The Wizard of Oz”.
From the triplets, we can see that Judy Garland (m.0k6y72) played Dorothy in ”The Wizard of Oz”.
Therefore, the formatted answer is:
ans: Judy Garland

Ground-truth:
Judy Garland

CWQ-WebQTrn-2904 cb8d941f825c5dd7b2d6f3faef7f9229

Question:
What city is home for Lauren Conrad and had a mayor named Willie Brown?

LLM Response:
To find the city that is home for Lauren Conrad and had a mayor named Willie Brown, we need to find the city where Lauren
Conrad lives and the city where Willie Brown was the mayor.
From the triplets, we can see that Lauren Conrad lived in Los Angeles (m.043jjv4) and San Francisco (m.04hy 14).
From the triplets, we can see that Willie Brown was the mayor of San Francisco.
Therefore, the city that is home for Lauren Conrad and had a mayor named Willie Brown is San Francisco.
So, the formatted answer is:
ans: San Francisco

Ground-truth:
San Francisco

CWQ-WebQTrn-124 405a78f132e69f4771aff40d07cd0294

Question:
Which movie did Angelina Jolie direct, that was produced by Erwin Stoff?

LLM Response:
To find the movie that Angelina Jolie directed, which was produced by Erwin Stoff, we need to find the movies that Angelina Jolie
directed and the movies that Erwin Stoff produced.
From the triplets, we can see that Angelina Jolie directed the following movies:
- In the Land of Blood and Honey
- Unbroken
- By the Sea
From the triplets, we can see that Erwin Stoff produced the following movies:
- Unbroken
- The Day the Earth Stood Still
- Edge of Tomorrow
- Water for Elephants
- Austin Powers: The Spy Who Shagged Me
- The Blind Side
- The Replacements
- I Am Legend
- Hardball
- The Lake House
- Street Kings
- 47 Ronin
Now, we need to find the common movie between Angelina Jolie’s directed movies and Erwin Stoff’s produced movies.
The common movie is Unbroken.
Therefore, the formatted answer is:
ans: Unbroken

Ground-truth:
Unbroken
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WebQSP-WebQTest-33

Question:
what timezone is sweden

Retrieved Triples:
(Sweden,location.location.time zones,Central European Time Zone)
(Sweden,location.country.languages spoken,Finnish Language)
(Finnish Language,language.human language.countries spoken in,Sweden)
(Sweden,location.country.languages spoken,Turoyo Language)
(Sweden,location.country.official language,Swedish Language)
(Spain,location.location.time zones,Central European Time Zone)
(Stockholm,location.location.time zones,Central European Time Zone)
(Unitary state,government.form of government.countries,Sweden)
(Swedish Language,language.human language.countries spoken in,Finland)
(Sweden,location.country.languages spoken,Swedish Language)
...

LLM Response:
To find the timezone of Sweden, we can look for the triplets that contain Sweden and have a property related to timezones.
From the triplets, we can see that Sweden is located in the Central European Time Zone.
Therefore, the answer is:
ans: Central European Time Zone

Ground-truth:
Central European Time Zone

WebQSP-WebQTest-188

Question:
where did bristol palin go to school

Retrieved Triples:
(m.0byl4zl,education.education.institution,Wasilla High School)
(Wasilla High School,education.educational institution.students graduates,m.0byl4zl)
(Juneau-Douglas High School,education.educational institution.students graduates,m.0cpkbwp)
(m.0cpkbwp,education.education.institution,Juneau-Douglas High School)
(Bristol Palin,people.person.education,m.0byl4zl)
(Bristol Palin,people.person.education,m.0cpk4bl)
(Bristol Palin,people.person.education,m.0cpkbwp)
(m.0cpk4bl,education.education.institution,West Anchorage High School)
(West Anchorage High School,education.educational institution.students graduates,m.0cpk4bl)
(m.0byl4zl,education.education.student,Bristol Palin)
(m.0cpk4bl,education.education.student,Bristol Palin)
(m.0cpkbwp,education.education.student,Bristol Palin)
(m.04tlm1z,education.education.institution,Wasilla High School)
(m.0n1g77g,education.education.institution,Wasilla High School)
(Wasilla High School,education.educational institution.students graduates,m.04tlm1z)
(Wasilla High School,education.educational institution.students graduates,m.0n1g77g)
(Bristol Palin,people.person.place of birth,Wasilla)
(Wasilla,location.location.people born here,Bristol Palin)
(Bristol Palin,people.person.nationality,United States of America)
(Levi Johnston,people.person.place of birth,Wasilla)
...

LLM Response:
To find where Bristol Palin went to school, we need to find the educational institutions that Bristol Palin attended.
From the triplets, we can see that Bristol Palin attended the following educational institutions:
- Wasilla High School (m.0byl4zl)
- Juneau-Douglas High School (m.0cpkbwp)
- West Anchorage High School (m.0cpk4bl)
Therefore, the formatted answers are:
ans: Wasilla High School
ans: Juneau-Douglas High School
ans: West Anchorage High School

Ground-truth:
West Anchorage High School
Wasilla High School
Juneau-Douglas High School

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

WebQSP-WebQTest-760

Question:
what party does barack obama belong to

Retrieved Triples:
(Barack Obama,influence.influence node.influenced by,Saul Alinsky)
(Barack Obama,organization.organization founder.organizations founded,National Commission on Fiscal Responsibility and
Reform)
(Barack Obama presidential campaign, 2012,government.election campaign.party,Democratic Party)
(Barack Obama,government.politician.election campaigns,Barack Obama presidential primary campaign, 2008)
(Barack Obama,government.politician.party,m.03gjhww)
(Barack Obama,government.politician.election campaigns,Barack Obama 1996 Illinois Senate Campaign)
(Barack Obama 2004 US Senate Campaign,government.election campaign.party,Democratic Party)
(Barack Obama,influence.influence node.influenced by,Reinhold Niebuhr)
(m.03gjhww,government.political party tenure.party,Democratic Party)
(Barack Obama,organization.organization founder.organizations founded,White House Task Force to Protect Students from
Sexual Assault)
(Barack Obama presidential primary campaign, 2008,government.election campaign.party,Democratic Party)
(Barack Obama 1996 Illinois Senate Campaign,government.election campaign.party,Democratic Party)
(Barack Obama,base.politicalconventions.presidential nominee.nominated at,2008 Democratic National Convention)
(Barack Obama,government.politician.government positions held,m.03h96h6)
(Barack Obama,government.politician.election campaigns,Barack Obama 2004 US Senate Campaign)
...

LLM Response:
From the triplets, we can see that Barack Obama is associated with the Democratic Party in several instances:
1. (Barack Obama,government.politician.party,m.03gjhww)
2. (Barack Obama 2004 US Senate Campaign,government.election campaign.party,Democratic Party)
3. (Barack Obama 1996 Illinois Senate Campaign,government.election campaign.party,Democratic Party)
4. (Barack Obama presidential primary campaign, 2008,government.election campaign.party,Democratic Party)
5. (Democratic Party presidential primaries, 2008,government.primary election.party,Democratic Party)
6. (m.03gjhww,government.political party tenure.party,Democratic Party)
Therefore, the formatted answer is:
ans: Democratic Party

Ground-truth:
Democratic Party

WebQSP-WebQTest-62

Question:
what was jesse james killed with

LLM Response:
To find what Jesse James was killed with, we need to find the cause of his death.
From the triplets, we can see that Jesse James was killed by Assassination.
Now, we need to find the cause of Assassination.
From the triplets, we can see that Assassination includes causes of death such as Assassination in ways which appear natural,
Assassination by ’Accident’, Assassination by firearm, and Assassination by ’Suicide’.
However, we are looking for what Jesse James was killed with, not how he was killed.
From the triplets, we can see that Firearm is a cause of death that includes causes of death such as Assassination by firearm.
Therefore, Jesse James was killed with a Firearm.
So, the answer is:
ans: Firearm

Ground-truth:
Firearm
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E.2 LLM REFUSAL TO ANSWER DUE TO INSUFFICIENT INFORMATION

WebQSP-WebQTest-386

Question:
how deep is lake merritt oakland

LLM Response:
To find the depth of Lake Merritt in Oakland, we need to look for any information related to the depth of Lake Merritt.
From the triplets, we can see that Lake Merritt is a lake, but there is no direct information about its depth.
However, we can see that Lake Merritt is a National Historic Landmark (m.06 44f4,
protected sites.natural or cultural site listing.designation as national or cultural site, m.06 44f4) and a National Historic
Landmark (m.06 44f4, protected sites.natural or cultural site listing.category or criteria, National Historic Landmark).
We can also see that Lake Merritt is a lake (Lake Merritt, common.topic.notable types, Lake) and it is located in Oakland (Lake
Merritt, location.location.containedby, Oakland).
But there is no information about the depth of Lake Merritt.
However, we can see that there is a mention of a location with geolocation m.0cs7t50 (Lake Merritt, location.location.geolocation,
m.0cs7t50), but this does not provide any information about the depth of the lake.
Therefore, based on the given triplets, we cannot find any information about the depth of Lake Merritt.
ans: not available

Ground-truth:
3.048

WebQSP-WebQTest-612

Question:
who does jeremy shockey play for in 2012

LLM Response:
To find out who Jeremy Shockey played for in 2012, we need to find the team he played for and the year he played for that team.
From the triplets, we can see that Jeremy Shockey played for the New Orleans Saints, Carolina Panthers, Miami Hurricanes
football, and New York Giants.
However, we need to find the year he played for each of these teams.
From the triplets, we can see that Jeremy Shockey played for the New Orleans Saints in 2007,
for the Carolina Panthers in 2007,
for the Miami Hurricanes football in 2001,
and for the New York Giants in 2002.
However, there is no information about Jeremy Shockey playing for any of these teams in 2012.
Therefore, we cannot determine which team Jeremy Shockey played for in 2012 based on the given triplets.
ans: not available

Ground-truth:
Carolina Panthers

CWQ-WebQTest-397 0b3a8b0643fac530a078012a025201fa

Question:
Harvard Board of Overseers is part of the school with what colors?

LLM Response:
To find the school with the colors that Harvard Board of Overseers is part of, we need to find the parent organization of Harvard
Board of Overseers.
From the triplets, we can see that Harvard Board of Overseers is a child of Harvard University.
Now, we need to find the colors of Harvard University.
From the triplets, we can see that there is no direct information about the colors of Harvard University. However, we can see that
Harvard University is a parent of Harvard Board of Overseers, and Harvard Board of Overseers is a child of Harvard University.
But we can also see that Harvard University is a parent of itself (Harvard
University,education.educational institution.campuses,Harvard University), which means it’s an educational institution.
However, there is no information about the colors of Harvard University.

Ground-truth:
Crimson
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CWQ-WebQTest-1528 2f6fb6d585b98261a3ae6d2a112a4c91

Question:
What movie starring Logan Lerman that was edited by Thomas J Nordberg?

LLM Response:
To find the movie starring Logan Lerman that was edited by Thomas J Nordberg, we need to find the movies edited by Thomas J
Nordberg and then find the ones starring Logan Lerman.
From the triplets, we can see that the following movies were edited by Thomas J Nordberg:
- Scary Movie 2
- The Host
- I Love You Phillip Morris
- U Turn
- Any Given Sunday
- The Guardian
- Alexander
Now, we need to find the movies among these that star Logan Lerman.
From the triplets, we can see that Logan Lerman starred in the following movies:
- What Women Want
- The Perks of Being a Wallflower
- Fury
- Percy Jackson: Sea of Monsters
- Noah
- Riding in Cars with Boys
- 3:10 to Yuma
However, none of these movies are among the ones edited by Thomas J Nordberg.
But, we can see that Fury is not edited by Thomas J Nordberg but Fury is related to another film edited by Thomas J Nordberg.
The film Fury is related to Fury (2014) which is a film edited by Thomas J Nordberg.

Ground-truth:
What Women Want

CWQ-WebQTest-12 c701ad2b5b8ef3f3ed26dd2ed8703d05

Question:
Who held his governmental position from December 12, 1808 and was Governor of Ohio in 2011?

LLM Response:
To find the answer, we need to find a person who held a governmental position from December 12, 1808 and was Governor of
Ohio in 2011.
From the triplets, we can see that there is no direct information about a person holding a governmental position from December 12,
1808. However, we can find a person who was Governor of Ohio in 2011.
From the triplets, we can see that Mike DeWine was the Governor of Ohio.
However, there is no information about Mike DeWine holding a governmental position from December 12, 1808.
We can also see that there is no information about any other person holding a governmental position from December 12, 1808.
Therefore, we cannot find a person who held a governmental position from December 12, 1808 and was Governor of Ohio in 2011.
ans: not available

Ground-truth:
Return J. Meigs, Jr.
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